©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - RS AGGARWAL MATHS

(HINGLISH)

AREA OF BOUNDED REGIONS

Solved Examples

1. Using intergration find the area of the region
bounded by the line $2 y+x=8 \mathrm{x}$-axis and the lines $x=2$ and $x=4$

- Watch Video Solution

2. Using integration, find the area of $\triangle A B C$, whose vertices are $A(2,3), B(4,7)$ and (6,2).

- Watch Video Solution

3. Calculate the area bouded by the parabola $y^{2}=4 a x$ and its latus rectum
A. $\frac{5}{3} a^{2}$ sq units
B. $8 a^{2}$ sq units
C. $\frac{8}{3} a^{2}$ sq units
D. $\frac{8}{3} a^{2}$ sq units

Answer: D

- Watch Video Solution

4. Using integration, find the area of the region bounded by the parabola $y^{2}=16 x$ and the line $x=4$
5. Find the area enclosed between the parabola
$y^{2}=4 a x$ and the line $y=m x$.

- Watch Video Solution

6. Find the area of the region $\left[(\mathrm{x}, \mathrm{y}): x^{2} \leq y \leq x\right)$

- Watch Video Solution

7. Find the area of the region bounded by the parabola $\mathrm{x}^{2}=4 \mathrm{y} \backslash \quad$ and the line $\mathrm{x}=4 \mathrm{y}-2$
8. Find the area bounded by the cirxle $x^{2}+y^{2}=16$ and the line $\mathrm{y}=\mathrm{x}$ in the first quadrant

- Watch Video Solution

9. Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are
$A(2,0), B(4,5)$ and $C(6,3)$.

- Watch Video Solution

10. The area cut off a parabola $4 y=3 x^{2}$ by the straight line $2 y=3 x+12$ in square units, is
A. 27 sq units
B. 12 sq units
C. 33 sq units
D. 21 sq units

Answer: A

- Watch Video Solution

11. Find the area bounded by the line $y=x$, the x axis and the ordinates $x=-1$ and $x=2$

- Watch Video Solution

12. Find by integration the area of the region bounded by the curve $y=2 x-x^{2}$ and the x-axis.

D Watch Video Solution

13. Find the area of the region bounded by the
ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

- Watch Video Solution

14. By using intergration prove that the area of a circle of radius r units is πr^{2} square units.

- Watch Video Solution

15. Find the area of the smaller region bounded by
the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$
16. Find the area of the region bounded by the two parabolas $y=x^{2}$ and $y^{2}=x$.

- Watch Video Solution

17. Find the area of the region included between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$, where $a>0$.
18. Find the area of the region bounded by the curves $x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$.

D Watch Video Solution

19. Find the area of the region bounded by the curves $x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$.

D Watch Video Solution

20. Find the areas of the region
$\left.\{x, y\}: y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}, \quad$ using
integration.

- Watch Video Solution

21. Find the area of the region $\left.[x, y): x^{2}+y^{2} \leq 1 \leq x+y\right\}$

- Watch Video Solution

22. Find the area of the region
$\left\{(x, y): x^{2}+y^{2} \leq 2 a x, y^{2} \leq a x, x \leq 0, y \leq 0\right\}$

-
 Watch Video Solution

23. Find the area of the region $\left\{(x, y): x^{2} \leq y \leq|x|\right\}$.

- Watch Video Solution

24. Find the area bounded by the line $y=x$ and the
curve $y=x^{3}$

- Watch Video Solution

25. Find the area bounded by the curve $y=\sin x$
between $x=0$ and $x=2 \pi$.

D Watch Video Solution

26. Find the are of the region bounded by the

$$
\begin{aligned}
& \text { curve } \quad y=x^{2}+2 \quad \text { and } \quad \text { the lines } \\
& y=x, x=0 \text { and } 3
\end{aligned}
$$

- Watch Video Solution

27. Find the area of region

$$
\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}
$$

28. Examples: Find the area of the region bounded by the curve $y^{2}=2 y-x$ and the y-axis.

- Watch Video Solution

Exercise 17

1. Find the area of the region bounded by the curve $y=x^{2}$, the x -axis, and the lines $\mathrm{x}=1$ and $\mathrm{x}=3$.

- Watch Video Solution

2. Find the area of the region bounded by the parabola $y^{2}=4 x$, the x-axis, and the lines $x=1$ and $x=4$.

- Watch Video Solution

3. Find the area under the curve $y=\sqrt{6 x+4}$ (above the x-axis) from $x=0$ to $x=2$
4. Determine the area enclosed by the curve $y=x^{3}$, and the lines $y=0, x=2$ and $\mathrm{x}=4$.

- Watch Video Solution

5. Determine the area under the curve
$y=\sqrt{a^{2}-x^{2}}$ included between the lines $x=0$ and $x=a$

- Watch Video Solution

6. Using integration, find the area of the region bounded by the line $2 y=5 x+7$, the x-axis, and the lines $\mathrm{x}=2$ and $\mathrm{x}=8$.

- Watch Video Solution

7. Find the area of the region bounded by the curve
$y^{2}=4 x$ and the line $x=3$.

D Watch Video Solution
8. Evaluate the area bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ above the x-axis.

- Watch Video Solution

9. Using integration, find the area of the region bounded by the
lines
$Y=1+|x+1|, x=-2, x=3$ and $y=0$.

- Watch Video Solution

10. Find the area bounded by the curve $y=\left(4-x^{2}\right)$ the y-axis and the lines $\mathrm{y}=0 \mathrm{y}=3$

- Watch Video Solution

11. Using integration, find the area of the region bounded by the triangle whose vertices are $(-1,2),(1,5)$ and $(3,4)$.

- Watch Video Solution

12. Using integration, find the area of the region bounded by the lines,
$4 x-y+5=0 ; x+y-5=0$ and
$x-4 y+5=0$

- Watch Video Solution

13. Using intergration find the are of the region bounded between the line $\mathrm{x}=2$ and the parabola $y^{2}=8 x$
14. Using integration, find the area of the region bounded by the line $y-1=x$, the x-axis, and the ordinates $x=-2$ and $x=3$.

- Watch Video Solution

15. Sketch the region lying in the first quadrant and bounded by $y=4 x^{2}, \mathrm{x}=0, \mathrm{y}=2$ and $\mathrm{y}=4$. Find the area of the region using integration.

- Watch Video Solution

16. Sketch the region lying in the first quadrant and bounded \quad by $\quad y=9 x^{2}, x=0, y=1 a n d y=4$.

Find the area of the region using integration.

- Watch Video Solution

17. Find the area of the region enclosed between the two circles $x^{2}+y^{2}=1 \quad$ and

$$
(x-1)^{2}+y^{2}=1
$$

- Watch Video Solution

18. Sketch the region common to the circle $x^{2}+y^{2}=16$ and the parabola $x^{2}=6 y$ Also find the area of the region using intergration

- Watch Video Solution

19. Sketch the region common to the cirvle
$x^{2}+y^{2}=25$ and the parabola $y^{2}=8 x$ Also find the area of the region using intergration .

D Watch Video Solution

20. Draw a rough sketch of the region $\left\{(x, y): y^{2} \leq 3 x, 3 x^{2}+3 y^{2} \leq 16\right\}$ and find the ara enclesed by the region using the method of intergraion

- Watch Video Solution

21. Draw a rough sketch and find the area of the
region bounded by the parabolas
$y^{2}=4 x$ and $x^{2}=4 y$, using the method of integration.
22. Find by intergraiton the area bounded by the curve $y^{2}=4 a x$ and the lines $\mathrm{y}=2 \mathrm{a}$ and $\mathrm{x}=0$

- Watch Video Solution

23. Draw a rough sketch of the curve $y=\frac{x}{\pi}+2 \sin ^{2} x$, and find the area between the $x-$ axis, the curve and the ordinates $x=0$ and,$x=\pi$.
24. Find the area bounded by the curve $y=\cos x$ between $x=0$ and $x=2 \pi$

- Watch Video Solution

25. Compare the areas under the curves $y=\cos ^{2} x$ and $y=\sin ^{2} \mathrm{x}$ between $\mathrm{x}=0$ and $x=\pi$

- Watch Video Solution

26. Using integration find the area of the triangular
region whose sides have equations
$y=2 x+1, y=3 x+1$ and $x=4$

- Watch Video Solution

27. Find the area of the region
$\left\{(x, y): x^{2} \leq y \leq x\right\}$

- Watch Video Solution

28. Examples: Find the area of the region bounded
by the curve $y^{2}=2 y-x$ and the y-axis.
29. Draw a rough sketch of the curves $y=\sin x$ and
$\mathrm{y}=\cos \mathrm{x}$ as x varies from 0 to $\frac{\pi}{2}$ and find the area of the region enclosed between them and the x axis

- Watch Video Solution

30. Find the area of the bounded by the curve
$y^{2}=2 x+1$ and the line $x-y=1$

- Watch Video Solution

31. Find the area bounded by the curve $y=2 x-x^{2}$ and the straight line $y=-x$

- Watch Video Solution

32. Find the area of the region bounded by the curve $(y-1)^{2}=4(x+1)$ and the line $y=x-1$

- Watch Video Solution

33. Find the area of the region by the curve
$y=\sqrt{x}$ and the line $y=x$

- Watch Video Solution

34. Find the are of the region included between the parabola $y^{2}=3 x$ and the circle $x^{2}+y^{2}-6 x=0$ lying in the first quadrant

- Watch Video Solution

35. Find the area bounded by the curve $y=\cos x$ between $x=0$ and $x=2 \pi$

- Watch Video Solution

36. Find the area of the region in the first quadrant enclosed by the x-axis, the line $y=x$, and the circle $x^{2}+y^{2}=32$.

- Watch Video Solution

37. Using integration, find the area of $\triangle A B C$, whose vertices are $A(2,3), B(4,7)$ and (6,2).

- Watch Video Solution

38. Using intergration find the area of the area of the triangle whose vertieces are $\mathrm{A}(1,3), \mathrm{B}(2,5)$ and $\mathrm{C}($

- Watch Video Solution

39. Using integration find the area of the triangular

> region whose sides have equations
$y=2 x+1, y=3 x+1$ and $x=4$

- Watch Video Solution

