

MATHS

BOOKS - RS AGGARWAL MATHS (HINGLISH)

BINARY OPERATIONS

Solved Examples

1. Show that the operation * on Z define by

a* b =a+b+1 for all a,b in Z

Satisfies (i) the closure property (ii) the associative

law and (iii) the commutative law ltrbgt (iv) find

the identity element in Z

(v) what is the inverse iof an element a in Z?

2. Show that the opeation * on Q -{1} defined gby

a*b=a+b-ab for all a, b \in Q- {1}

Satifies (i) the closure property (ii) the associative

law

(iii) the commutative alw

(iv) what is the identity element ?

(v)for each `a in Q-{1} find the inverse of a

3. On the set N of all natural numbers define the

```
ooperation * on N by
```

m*n = gcd (m,n) for all m,n \in N

Show at * is commutative as well as associative

4. Let A = {1,2,3,4,5} Define on operation v by

 $a \lor b = \max \{a, b\}$

Prepare its compostion table

Show that a is closed for the given operation and

that the given operation is commutative

Exercise 3 A

A. 20

B. 25

C. 30

D. 0

Answer: C

- **2.** The binary operation $\cdot: R imes R o R$ is defined
- as $a \cdot b = 2a + b$ Find $(2 \cdot 3) \cdot 4$.

Watch Video Solution

3. Let * be a binary operation, on the set of all-zero real numbers, given by $a*b=\frac{a.b}{5}$ for all

 $a, bR - \{0\}$. Find the value of x given that 2* (x*5)=10.

A. 25

B. 30

C. 20

D. 15

Answer: A

4. Let * $R \times R \to R$ be a binary operation given by $a \cdot b = a + 4b^2$ Then compute (-5)*(2*0) Watch Video Solution

5. Let * be a binary operation on the set Q of all rational number given as a*b= $(2a - b)^2$ for all a,b

 \in Q find 3*5 and 5*3 Is 3*5=5*3?

6. Let * be a binary operation on N given by a*b

=Lcm of a and b find the value of 20*16

7. If the binary operation * on the set Z of integers is defined by $a \cdot b = a + 3b^2$, find the value of $2 \cdot 4$.

A. 10

B. 30

C. 50

D. 40

Answer: C

Watch Video Solution

8. Show that * on Z^+ defined by a*b=|a-b| is not

binary operation

Watch Video Solution

9. Let * be a binary operation on N defined by a*b = a^b for all a,b \in N show that * is neither

- 10. Let a* b =1cm (a,b) for all values of a,b $\ \in \ N$
- (i) Find (12*16)
- (ii) Show that * is commutative on N
- (iii) Find the identity element in N
- (iv) Find all invertible elements in N

11. Let Q^+ be the set of all positive rational numbers

(i) show theat the operation * on Q^+ defined by a* b = $\frac{1}{2}$ (a+b) is binary operation

(ii) show that * is commutative

(iii) show that * is not associative

Watch Video Solution

12. Show that the set A ={-1,0,1} is not closed for

addition

13. Show that * on R-{-1} defined by (a*b) = $\frac{a}{b+1}$ is

neither commutative nor associative

14. For all a,b \in R we define a*b =|a-b| Show tha t*

commutative but not associative

> Watch Video Solution

15. For all a,b \in N we define a*b = $a^3 + b^3$

Show that * is commutative but not associative

Watch Video Solution

16. Let x be a nonempty set and * be a binary operation on P(X) the power set of X defiend by A*B =`A cap B for all A,B in P(x) ltrbgt (i)Find the identity element in P(x)

(ii) show that X is the only inveritiable element inP(x)

17. A binary operation * on the set {0,1,2,3,4,5} is defined as

a*b

 $\{(a+b, \quad {
m if} \ \ a+b<6), (a+b-6 \ \ {
m if} \ \ a+b\geq 6) \}$

=

Show that 0 is the identity for this operation and

each element a has an inverse(6-a)

D View Text Solution

Exercise 3 B

1. Define * on N by m*n =1cm (m,n)

Show that * is a binary operaitn which is

commutative as well as associative

View Text Solution

2. Define * on Z by a*b =a-b+ab

show that * is a binary operation operation on z

which is neither commutative nor associative

Watch Video Solution

3. Define * on Z by a*b =a+b-ab

Show that * is a binary operation on Z which is

commutative as well as associative

4. Consider a binary operation on Q -{1} define by

a*b =a+b-ab

- (i) Find the identity element in Q-{1}
- (ii) Show that each a \in Q-{1} has its invese

View Text Solution

5. Let Q_0 be the set of all nonzero reational numbers Let * be a binary operation on Q_0 defined by a*b = $\frac{ab}{4}$ for all a,b $\in Q_0$ (i) Show that * is commutative and associative (ii) Find the identity element in Q_0 (iii) Find the inverse of an element a in Q_0

View Text Solution

6. On the set
$$Q^+$$
 of all positive rational number
define an operation $*$ on Q^+ by $a*b = \frac{ab}{2} \forall a, b \in Q^+$
Show that

- (i) * is a binary operation on Q^+
- (ii) * is commutative

(iii)* is associative

Find the identify element in Q^+ for st

Whast is the inverse of $a \in Q^+$?


```
7. Let A=N	imes N Define * on A by
```

```
(a,b)*(c,d)=(a+c,b+d)
```

Show that

- (i) A is closed for *
- (ii) * is commutative

(iii) * is associative

(iv) identify element does not exist in A

8. Let A={1,-1,1,-i} hbe the set of four 4th roots of unity prepare the commposition table for multiplication on A and show that ltrbgt (i) A is closed for multiplication
(ii) multiplication is associative on A
(iii) multiplication is commutative on A

(iv) 1 is the multiplicative identity

(v) every element in A has its multiplicative iverse

