©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - RS AGGARWAL MATHS

 (HINGLISH)

 (HINGLISH)}

BINARY OPERATIONS

Solved Examples

1. Show that the operation * on Z define by
a* $b=a+b+1$ for $a l l a, b$ in Z

Satisfies (i) the closure property (ii) the associative
law and (iii) the commutative law ltrbgt (iv) find the identity element in Z
(v) what is the inverse iof an element a in Z ?

D View Text Solution

2. Show that the opeation * on $Q\{1\}$ defined gby
$a * b=a+b-a b$ for $a l l a, b \in Q-\{1\}$
Satifies (i) the closure property (ii) the associative law
(iii) the commutative alw
(iv) what is the identity element?
(v)for each `a in $\mathrm{Q}-\{1\}$ find the inverse of a
3. On the set N of all natural numbers define the ooperation * on N by
$m^{*} n=\operatorname{gcd}(m, n)$ for all $m, n \in N$
Show at * is commutative as well as associative

D View Text Solution

4. Let $\mathrm{A}=\{1,2,3,4,5\}$ Define on operation v by
$a \vee b=\max \{a, b\}$
Prepare its compostion table

Show that a is closed for the given operation and that the given operation is commutative

D View Text Solution

Exercise 3 A

1. Let * be a binary operation defined by $a \cdot b=3 a+4 b-2$. Find $4 * 5$.
A. 20
B. 25
C. 30
D. 0

Answer: C

D Watch Video Solution

2. The binary operation • : $R \times R \rightarrow R$ is defined as $a \cdot b=2 a+b$. Find $(2 \cdot 3) \cdot 4$.

(D) Watch Video Solution

3. Let * be a binary operation, on the set of all-zero real numbers, given by $\mathrm{a} * \mathrm{~b}=\frac{a . b}{5}$ for all
$a, b R-\{0\}$. Find the value of x given that 2^{*}
$\left(x^{*} 5\right)=10$.
A. 25
B. 30
C. 20
D. 15

Answer: A
4. Let * $R \times R \rightarrow R$ be a binary operation given by $a \cdot b=a+4 b^{2}$ Then compute $(-5)^{*}\left(2^{*} 0\right)$

- Watch Video Solution

5. Let * be a binary operation on the set Q of all rational number given as $\mathrm{a}^{*} \mathrm{~b}=(2 a-b)^{2}$ for all a, b
$\in Q$ find $3 * 5$ and $5 * 3$ Is $3 * 5=5 * 3$?
6. Let * be a binary operation on N given by a*b $=$ Lcm of a and b find the value of $20 * 16$

- Watch Video Solution

7. If the binary operation * on the set Z of integers is defined by $a \cdot b=a+3 b^{2}$, find the value of $2 \cdot 4$.
A. 10
B. 30
C. 50
D. 40

Answer: C

D Watch Video Solution

8. Show that * on Z^{+}defined by a * $\mathrm{b}=|\mathrm{a}-\mathrm{b}|$ is not binary operation

D Watch Video Solution

9. Let * be a binary operation on N defined by $\mathrm{a} * \mathrm{~b}=$
a^{b} for all $\mathrm{a}, \mathrm{b} \in \mathrm{N}$ show that * is neither
commutative nor associative

D Watch Video Solution

10. Let $a * b=1 c m(a, b)$ for all values of $a, b \in N$
(i) Find (12*16)
(ii) Show that * is commutative on N
(iii) Find the identity element in N
(iv) Find all invertible elements in N

D View Text Solution
11. Let Q^{+}be the set of all positive rational numbers
(i) show theat the operation * on Q^{+}defined by $a^{*} b=\frac{1}{2}(a+b)$ is binary operation
(ii) show that * is commutative
(iii) show that * is not associative

- Watch Video Solution

12. Show that the set $A=\{-1,0,1\}$ is not closed for addition
13. Show that * on $\mathrm{R}\{-1\}$ defined by (a*b) $=\frac{a}{b+1}$ is neither commutative nor associative
(D) Watch Video Solution
14. For all $a, b \in R$ we define $a * b=|a-b|$ Show tha t^{*}
commutative but not associative

- Watch Video Solution

15. For all $\mathrm{a}, \mathrm{b} \in \mathrm{N}$ we define $\mathrm{a} * \mathrm{~b}=a^{3}+b^{3}$

Show that * is commutative but not associative

- Watch Video Solution

16. Let x be a nonempty set and * be a binary operation on $P(X)$ the power set of X defiend by
$A^{*} B=A \operatorname{cap} B$ for all A, B in $P(x)$ Itrbgt (i)Find the identity element in $P(x)$
(ii) show that X is the only inveritiable element in $P(x)$
17. A binary operation * on the set $\{0,1,2,3,4,5\}$ is defined as
a*b
$\{(a+b, \quad$ if $a+b<6),(a+b-6$ if $a+b \geq 6)$
Show that 0 is the identity for this operation and each element a has an inverse(6-a)

D View Text Solution

Exercise 3 B

1. Define * on N by m*n $=1 \mathrm{~cm}(m, n)$

Show that * is a binary operaitn which is commutative as well as associative

D View Text Solution

2. Define * on Z by a*b =a-b+ab
show that * is a binary operation operation on z which is neither commutative nor associative
3. Define * on Z by a*b =a+b-ab

Show that * is a binary operation on Z which is commutative as well as associative

- Watch Video Solution

4. Consider a binary operation on $Q-\{1\}$ define by a*b $=a+b-a b$
(i) Find the identity element in $Q-\{1\}$
(ii) Show that each a $\in \mathbb{Q}-\{1\}$ has its invese

View Text Solution

5. Let Q_{0} be the set of all nonzero rational numbers Let * be a binary operation on Q_{0} defined by a*b $=\frac{a b}{4}$ for all $\mathrm{a}, \mathrm{b} \in Q_{0}$
(i) Show that * is commutative and associative
(ii) Find the identity element in Q_{0}
(iii) Find the inverse of an element a in Q_{0}

D View Text Solution

6. On the set Q^{+}of all positive rational number define an operation * on Q^{+}by $\mathrm{a}^{*} \mathrm{~b}=$ $\frac{a b}{2} \forall a, b \in Q^{+}$

Show that
(i) * is a binary operation on Q^{+}
(ii) * is commutative
(iii)* is associative

Find the identify element in Q^{+}for *
Whast is the inverse of $a \in Q^{+}$?

D View Text Solution
7. Let $A=N \times N$ Define * on A by
$(a, b)^{*}(c, d)=(a+c, b+d)$

Show that
(i) A is closed for *
(ii) * is commutative
(iii) * is associative
(iv) identify element does not exist in A

D View Text Solution

8. Let $A=\{1,-1, I,-i\}$ hbe the set of four 4 th roots of unity prepare the commposition table for multiplication on A and show that Itrbgt (i) A is closed for multiplication
(ii) multiplication is associative on A
(iii) multiplication is commutative on A
(iv) $\mathbf{1}$ is the multiplicative identity
(v) every element in A has its multiplicative iverse
