©゙’ doubtnut

MATHS

BOOKS - RS AGGARWAL MATHS (HINGLISH)

CROSS,OR VECTOR, PRODUCT OF VECTORS

Solved Examples

1. If

$$
\vec{a}=(3 \hat{i}+\hat{j}-4 \hat{k}) \text { and } \hat{b}=(6 \hat{i}+5 \hat{j}, 2 \hat{k})
$$

find $(\vec{a} \times \vec{b})$ and $|\vec{a} \times \vec{b}|$.

- Watch Video Solution

2. If $\vec{a}=(\hat{i}-2 \hat{j}+3 \hat{k})$ and $\vec{b}=(2 \hat{i}+3 \hat{j}-5 \hat{k})$ then find $(\vec{a} \times \vec{b})$ and verify that $(\vec{a} \times \vec{b})$ is perpendicular to each one of \vec{a} and \vec{b}.

Watch Video Solution

3. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{j}-\hat{k}$, find a vector \vec{c} such that $\vec{a} \times \vec{c}=\vec{b}$ and $\vec{a} \cdot \vec{c}=3$
A. $\frac{1}{3}(5 \hat{i}+2 \hat{j}+2 \hat{k})$
B. $5 \hat{i}+2 \hat{j}+2 \hat{k}$
C. $\frac{1}{2}(5 \hat{i}+2 \hat{j}+2 \hat{k})$
D. None of these

Answer: A

Watch Video Solution

4. Find a unit vector perpendicular to each one of the vectors $\vec{a}=(4 \hat{i}-\hat{j}+3 \hat{k})$ and $\vec{b}=(2 \hat{i}+2 \hat{j}-\hat{k})$.
5. Find a vector of magnitude 15 , which is perpendicular to both the vectors $(4 \hat{i}-\hat{j}+8 \hat{k})$ and $(-\hat{j}+\hat{k})$.

- Watch Video Solution

6.

$\vec{a}=(\hat{i}+4 \hat{j}+2 \hat{k}), \vec{b}=(3 \hat{i}-2 \hat{j}+7 \hat{k})$ and $\vec{c}=(2 \hat{i}-\hat{j}+4 \hat{k})$. fir

- Watch Video Solution

7. Find a unit vector perpendicular to each of the vectors ($\rightarrow a+\rightarrow b$) and $(\rightarrow a-\rightarrow b)$, where $\rightarrow a=\hat{i}+\hat{j}+\hat{k}, \rightarrow b=\hat{i}+2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

8. If $\vec{a}=4 \hat{i}+3 \hat{j}+2 \hat{k}$ and $\vec{b}=3 \hat{i}+2 \hat{k}$, find $|\vec{b} \times 2 \vec{a}|$.
9. If $|\vec{a}|=\sqrt{26},|\vec{b}|=7$ and $|\vec{a} \times \vec{b}|=35$, then $\vec{a} \cdot \vec{b}=$

- Watch Video Solution

10.

$|\vec{a}|=2,|\vec{b}|=7$ and $(\vec{a} \times \vec{b})=(3 \hat{i}+2 \hat{j}+6 \hat{k})$, find the angle betr

- Watch Video Solution

11. Find the sine of the angle between the vectors
$\vec{a}=(2 \hat{i}-\hat{j}+3 \hat{k})$ and $\vec{b}=(\hat{i}+3 \hat{j}+2 \hat{k})$.

- Watch Video Solution

12. If vectors \vec{a} and \vec{b} are such that $|\vec{a}|=3,|\vec{b}|=\frac{2}{3}$ and $\vec{a} \times \vec{b}$ is a unit vector, then write the angle between \vec{a} and \vec{b}.
13. Find the area of the parallelogram whose adjacent sides are represented by the vectors $(3 \hat{i}+\hat{j}-2 \hat{k})$ and $(\hat{i}-3 \hat{j}+4 \hat{k})$.

- Watch Video Solution

14. Find the area of the parallelogram whose diagonals are represented by the vectors $\vec{d}_{1}=(2 \hat{i}-\hat{j}+\hat{k})$ and $\vec{d}_{2}=(3 \hat{i}+4 \hat{j}-\hat{k})$.

- Watch Video Solution

15. Find the area of the triangle whose adjacent sides are determined by the vectors $\vec{a}=(-2 \hat{i}-5 \hat{k})$ and $\vec{b}=(\hat{i}-2 \hat{j}-\hat{k})$.

- Watch Video Solution

16. Using vectors, find the area of the $\triangle A B C$, whose vertices are $A(1,2,3), B(2,-1,4)$ and $C(4,5,-1)$.

- Watch Video Solution

17. Show that the points whose position vectors are $(5 \hat{i}+6 \hat{j}+7 \hat{k}),(7 \hat{i}-8 \hat{j}+9 \hat{k})$ and $(3 \hat{i}+20 \hat{j}+5 \hat{k})$ are collinear.

- Watch Video Solution

18. Using vector method, show that the points $A(2,-1,3), B(4,3,1)$ and $C(3,1,2)$ are collinear

- Watch Video Solution

19. Show that the points with position vectors $\vec{a}-2 \vec{b}+3 \vec{c},-2 \vec{a}+3 \vec{b}+2 \vec{c}$ and $-8 \vec{a}+13 \vec{b}$ are collinear
whatever be $\vec{a}, \vec{b}, \overrightarrow{ }$

- Watch Video Solution

20. Prove that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$

- Watch Video Solution

21.

If
$\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$, show that $(\vec{a}-\vec{d})$ is
, it being given that $a \neq d$ and $b \neq c$.

- Watch Video Solution

22. For any three vectors $\vec{a}, \vec{b}, \vec{c}$ show that
$\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})=\overrightarrow{0}$

- Watch Video Solution

23. If $\vec{a}+\vec{b}+\vec{c}=0$,
$(\vec{a} \times \vec{b})=(\vec{b} \times \vec{c})=(\vec{c} \times \vec{a})$

- Watch Video Solution

24. Prove that the points $A, B a n d C$ with position vectors \vec{a}, \vec{b} and \vec{c} respectively are collinear if and only if
$\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=\overrightarrow{0}$.

- Watch Video Solution

25. If $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=0$, prove that $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$.

- Watch Video Solution

26. If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that
$\vec{a} \vec{b}=\vec{a} \vec{c}, \vec{a} \times \vec{b}=\vec{a} \times \vec{c}, \vec{a} \neq \overrightarrow{0}$, then show that $\vec{b}=\overrightarrow{ }$

- Watch Video Solution

27. Prove that $|\vec{a} \times \vec{b}|^{2}=\left|\begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b}\end{array}\right|$.

- Watch Video Solution

Exercise 24

1. Find $(\vec{a} \times \vec{b})$ and $|\vec{a} \times \vec{b}|$,when
(i) $\vec{a}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}-4 \hat{k}$
(ii) $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}$
(iii) $\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$
(iv) $\vec{a}=4 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=3 \hat{i}+\hat{k}$
(v) $\vec{a}=3 \hat{i}+4 \hat{j}$ and $\vec{b}=\hat{i}+\hat{j}+\hat{k}$

- Watch Video Solution

2. Find λ if $(2 \hat{i}+6 \hat{j}+14 \hat{k}) \times(\hat{i}-\lambda \hat{j}+7 \hat{k})=\overrightarrow{0}$

- Watch Video Solution

3.

$\vec{a}=(-3 \hat{i}+4 \hat{j}-7 \hat{k})$ and $\vec{b}=(6 \hat{i}+2 \hat{j}-3 \hat{k})$, find $(\vec{a} \times \vec{b})$

Verify that (i) \vec{a} and $(\vec{a} \times \vec{b})$ are perpendicular to each other and (ii) \vec{b} and $(\vec{a} \times \vec{b})$ are perpendicular to each other.

(Watch Video Solution

4. Find the value of:
(i) $(\hat{i} \times \hat{j}) \cdot \hat{k}+\hat{i} \cdot \hat{j}$ (ii) $(\hat{k} \times \hat{j}) \cdot \hat{i}+\hat{j} \cdot \hat{k}$
$\hat{i} \times(\hat{j}+\hat{k})+\hat{j} \times(\hat{k}+\hat{i})+\hat{k} \times(\hat{i}+\hat{j})$

- Watch Video Solution

5. Find the unit vectors perpendicular to both \vec{a} and \vec{b} when
(i) $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}-\hat{k}$
(ii) $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-\hat{k}$
(iii) $\vec{a}=\hat{i}+3 \hat{j}-2 \hat{k}$ and $\vec{b}=-\hat{i}+3 \hat{k}$
(iv) $\vec{a}=4 \hat{i}+2 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+4 \hat{j}-\hat{k}$

- Watch Video Solution

6. Find the unit vectors perpendicular to the plane of the vectors
$\vec{a}=2 \hat{i}-6 \hat{j}-3 \hat{k}$ and $\vec{b}=4 \hat{i}+3 \hat{j}-\hat{k}$.

- Watch Video Solution

7. Find a vector of magnitude 6 which is perpendicular to both the vectors
$\vec{a}=4 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=-2 \hat{i}+\hat{j}-2 \hat{k}$.

- Watch Video Solution

8. Find a unit vector perpendicular to each of the vectors ($\rightarrow a+\rightarrow b$) and $(\rightarrow a-\rightarrow b)$, where $\rightarrow a=\hat{i}+\hat{j}+\hat{k}, \rightarrow b=\hat{i}+2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

9. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes 1 and 2 respectively and $|\vec{a} \times \vec{b}|=\sqrt{3}$.

- Watch Video Solution

10. Let $\vec{a}=\hat{i}-\hat{j}, \vec{b}=3 \hat{j}-\hat{k}$ and $\vec{c}=7 \hat{i}-\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b}, and $\vec{c} \cdot \vec{d}=1$.
A. $\vec{d}=\frac{1}{4}(\hat{i}-\hat{j}+3 \hat{k})$
B. $\vec{d}=\hat{i}+\hat{j}+3 \hat{k}$
C. $\vec{d}=\frac{1}{4}(\hat{i}+\hat{j}+3 \hat{k})$
D. $\vec{d}=\frac{1}{4}(\hat{i}+\hat{j}+\hat{k})$

Answer: C

- Watch Video Solution

11. If $\vec{a}=(4 \hat{i}+5 \hat{j}-\hat{k}), \vec{b}=(\hat{i}-4 \hat{j}+5 \hat{k})$, and $\vec{c}=(3 \hat{i}+\hat{j}-\hat{k})$ find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and for which $\vec{c} \cdot \vec{d}=21$.

- Watch Video Solution

12. Prove that $|\vec{a} \times \vec{b}|=(\vec{a} \cdot \vec{b}) \tan \theta$, where θ is the angle between \vec{a} and \vec{b}.

- Watch Video Solution

13. Write the value of p for which $\vec{a}=3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\vec{b}=\hat{i}+p \hat{j}+3 \hat{k}$ are parallel vectors.
14. verify that $\vec{a} \times(\vec{b}+\vec{c})=(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})$, "when"
(i) $\vec{a}=\hat{i}-\hat{j}-3 \hat{k}, \vec{b}=4 \hat{i}-3 \hat{j}+\hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+2 \hat{k}$
(ii) $\vec{a}=4 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}+\hat{k}$.

- Watch Video Solution

15. Find the area of the parallelogram whose adjacent sides are represented by the vectors (i) $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k} \quad$ and $\vec{b}=-3 \hat{i}-2 \hat{j}+\hat{k}$ (ii) $\vec{a}=(3 \hat{i}+\hat{j}+4 \hat{k})$ and $\vec{b}=(\hat{i}-\hat{j}+\hat{k})$
(iii) $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}$ (iv) $\vec{b}=2 \hat{i}$ and $\vec{b}=3 \hat{j}$.

- Watch Video Solution

16. Find the area of the parallelogram whose diagonals are represented by the vectors
(i) $\vec{d}_{1}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{d}_{2}=\hat{i}-3 \hat{j}+4 \hat{k}$
(ii) $\vec{d}_{1}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{d}_{2}=3 \hat{i}+4 \hat{j}-\hat{k}$
(iii) $\vec{d}_{1}=\hat{i}-3 \hat{j}+2 \hat{k}$ and $\vec{d}_{2}=-\hat{i}+2 \hat{j}$.

- Watch Video Solution

17. Find the area of the trinagle whose two adjacent sides are determined by the vectors
(i) $\vec{a}=-2 \hat{i}-5 \hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}-\hat{k}$
(ii) $\vec{a}=3 \hat{i}+4 \hat{j}$ and $\vec{b}=-5 \hat{i}+7 \hat{j}$.

- Watch Video Solution

18. Using vectors, find the area of $\Delta \mathrm{ABC}$ whose vertices are
(i) $\mathrm{A}(1,1,2), \mathrm{B}(2,3,5)$ and $\mathrm{C}(1,5,5)$
(ii) $\mathrm{A}(1,2,3), \mathrm{B}(2,-1,4)$ and $\mathrm{C}(4,5,-1)$
(iii) $A(3,-1,2), B(1,-1,-3)$ and $C(4,-3,1)$
(iv) $\mathrm{A}(1,-1,2), \mathrm{B}(2,1,-1)$ and $\mathrm{C}(3,-1,2)$.
19. Using vector method, show that the given points A, B, C are collinear:
(i) $A(3,-5,1),(-1,0,8)$ and $C(7,-10,-6)$
(ii) $A(6,-7,-1), B(2,-3,1)$ and $C(4,-5,0)$.

- Watch Video Solution

20. Show that the points A, B, C with position vectors $(3 \hat{i}-2 \hat{j}+4 \hat{k}),(\hat{i}+\hat{j}+\hat{k})$ and $(-\hat{i}+4 \hat{j}-2 \hat{k})$ respectively are collinear.

- Watch Video Solution

21. Show that the points having position vectors $\vec{a}, \vec{b},(\vec{c}=3 \vec{a}-2 \vec{b})$ are collinear, whatever be $\vec{a}, \vec{b}, \vec{c}$.

- Watch Video Solution

22. Show that the points having position vectors $(-2 \vec{a}+3 \vec{b}+5 \vec{c}),(\vec{a}+2 \vec{b}+3 \vec{c}) \quad$ and $\quad(7 \vec{a}-\vec{c})$ are collinear, whatever be $\vec{a}, \vec{b}, \vec{c}$.

- Watch Video Solution

23. Find a unit vector perpendicular to the plane $A B C$, where the coordinates of are $A(3,-1,2), B(1,-1,-3)$ and $C(4,-3,1)$.

- Watch Video Solution

24. If $\vec{a}=(\hat{i}-2 \hat{j}+3 \hat{k})$ and $\vec{b}=(\hat{i}-3 \hat{k})$ then find $|\vec{b} \times 2 \vec{a}|$.

- Watch Video Solution

25. If $|\vec{a}|=2,|b|=5$ and $|\vec{a} x \vec{b}|=8$, find $\vec{a} \vec{b}$.

- Watch Video Solution

26.

$|\vec{a}|=2,|\vec{b}|=7$ and $(\vec{a} \times \vec{b})=(3 \hat{i}+2 \hat{j}+6 \hat{k})$, find the angle betr

- Watch Video Solution

