©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - RS AGGARWAL MATHS (HINGLISH)

FUNCTIONS

Solved Examples

1. Let $\mathrm{f}: \mathrm{N} \rightarrow N: f(x)=2 x$ for all $x \in N$

Show that f is one -one and into.

- Watch Video Solution

2. Show that the function $f: R \rightarrow R$, defined as $f(x)=x^{2}$, is neither one-one nor onto.
3. The modulus function $f: R \rightarrow R$, given by $f(x)=|x|$ is
A. One One
B. Many One
C. cant say
D. None of these

Answer: B

- Watch Video Solution

4. Prove that the greatest integer function $f: R \rightarrow R$, given by $f(x)=[x]$, is neither one-one nor onto, where $[x]$ denotes the greatest integer less than or equal to x.
5. Show that the function $f: R_{0} \rightarrow R_{0}$, defined as $f(x)=\frac{1}{x}$, is oneone onto, where R_{0} is the set of all non-zero real numbers. Is the result true, if the domain R_{0} is replaced by N with co-domain being same as R_{0} ?

D Watch Video Solution

6. function $f: R \rightarrow R: f(x)=x^{3}$ is
A. One One
B. Many One
C. Not a function
D. None of these

Answer: A

7. Show that the function $f: R \rightarrow R: f(x)=3-4 x$ is one-one onto and hence bijective.

- Watch Video Solution

8. Show that the function $f: N \rightarrow N$ defined by
$f(x)=\left\{\begin{array}{ccc}x-1 & \text { if } & \text { xis even } \\ x+1 & \text { if } & \text { xis odd }\end{array}\right\}$
is one-one and onto.

D Watch Video Solution

9. Show that $f: N \rightarrow N$ defined by
$f(n)=\left\{\begin{array}{ccc}\frac{n}{2} & \text { if } n \text { is even } \\ \frac{n+1}{2} & \text { if } & n \text { is odd }\end{array}\right\}$
is a many -one onto function
10. Show that the signum function $f: R \rightarrow R$ defined by $f(x)=\left\{\begin{array}{ccc}-1 & \text { if } & x<0 \\ 0 & \text { if } & x=0 \\ 1 & \text { if } & x>0\end{array}\right\}$
is neither one-one nor onto.

- Watch Video Solution

11. Let $A=R-\{3\}$ and $B=R-[1]$. Consider the function $f: A \vec{B}$ defined by $f(x)=\left(\frac{x-2}{x-3}\right)$. Show that f is one-one and onto and hence find f^{-1}

D Watch Video Solution

12. Let A and B be sets. Show that $f: A \times B, B \times A$ such that
$f(a, \quad b)=(b, a)$ is bijective function.
13. Find the domain and range of the real function
$f(x)=\sqrt{9-x^{2}}$

Watch Video Solution

14. Find the domain and range of the real function defined by
$f(x)=\frac{1}{\left(1-x^{2}\right)}$.

- Watch Video Solution

15. Let $f: X \rightarrow Y$ be a function. Define a relation R in X given by $R=\{(a, b): f(a)=f(b)\}$. Examine whether R is an equivalence relation or not.

- Watch Video Solution

16. If the functions f and g are given by $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(2,3),(5,1),(1,3)\}$, find range of f and g. Also, write down fog and gof as sets of ordered pairs.

(D) Watch Video Solution

17. Find gof and fog, if $f: R \rightarrow$ Rand $g: R \rightarrow$ Rare given by $f(x)=\cos x$ and $g(x)=3 x^{2}$. Show that $g \circ f \neq f o g$.

- Watch Video Solution

18. Let R be the set of all real numbers let $f: R \rightarrow R: f(x)=\sin x$ and
$g: R \rightarrow R: g(x)=x^{2}$. Prove that gof $\neq \mathrm{fog}$

Watch Video Solution

19. Find gof and gof when $f: R \rightarrow R$ and $g: R \rightarrow R$ is defined by $f(x)=8 x^{3}$ and $g(x)=x^{1 / 3}$

D Watch Video Solution

20. If $f: R \rightarrow R$ is defined by $f(x)=x^{2}-3 x+2$, write $f\{f(x)\}$.

- Watch Video Solution

21. Let $f: R \rightarrow R: f(x)=\left(3-x^{3}\right)^{1 / 3}$. Find fof

- Watch Video Solution

22. Let $f: A \rightarrow B$, and let I_{A} and I_{B} be identity functions on A and B respectively. Prove that $\left(f o I_{A}\right)=f$ and $\left(I_{B} o f\right)=f$
23. (Associativity) Let $f: A \rightarrow B, g: B \rightarrow C$ and $h: C \rightarrow$. Then prove that ($\mathrm{h} \circ \mathrm{g}$) of $=\mathrm{h} \circ(\mathrm{g} \circ \mathrm{f})^{\prime}$

- Watch Video Solution

24. Let $f: Z \vec{Z}$ be defined by $f(n)=3 n$ for all $n \in Z$ and $g: Z \overrightarrow{ }$ be defined by
$f(n)=\left\{\frac{n}{3}\right.$, if nisaultipleof 30, if $n i s \neg \mu l t i p l e o f 3 f$ or al $\ln \in Z$. Show that $g \circ f=I_{Z}$ and $f o g \neq I_{Z}$

- Watch Video Solution

25. Let $A=R-\left\{\frac{7}{5}\right\} \quad$ and $\quad B=R-\left\{\frac{3}{5}\right\}$

Let $f: A \rightarrow B: f(x)=\frac{3 x+4}{5 x-7}$ and $g: B \rightarrow A: g(x)=\frac{7 x+4}{5 x-3}$ Show that $(g \circ f)=I_{B}$ and $(f o g)=I_{A}$
26. If functions $f: A \rightarrow B$ and $g: B \rightarrow A$ satisfy $g \circ f=I_{A}$, then show that f is one-one and g is onto.

- Watch Video Solution

27. Let $f: R \rightarrow R: f(x)=4 x+3$ for all $x \in R$. Show that f is invertible and find f^{-1}

- Watch Video Solution

28. Consider $f: R_{+} \rightarrow[4, \quad \infty)$ given by $f(x)=x^{2}+4$. Show that f is invertible with the inverse f^{-1} of given f by $f^{-1}(y)=\sqrt{y-4}$ where R_{+}is the set of all non-negative real numbers.

- Watch Video Solution

29. Let R^{+}be the set of all positive real numbers. Let $f: R^{+} \rightarrow R^{+}: f(x)=e^{x}$ for all $x \in R^{+}$. Show that f is invertible and hence find f^{-1}

(D) Watch Video Solution

30. let $A=\left\{x:-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\right\}$ and $B=\{x:-1 \leq x \leq 1\}$. Show that the function $f: A \rightarrow B$ defined by, $f(x)=\sin x$ for all $x \in A$, is bijective. Hence, find a formula that defines f^{-1}

- Watch Video Solution

31. Let $f: N \rightarrow Y: f(x)=x^{2}$ where $Y=$ range (f). Show that f is invertible and find f^{-1}

- Watch Video Solution

32. Let $f:[-1,1] \rightarrow Y: f(x)=\cdot \frac{x}{(x+2)}, x \neq-2$ and $Y=$ range (f). Show that f is invertible and find f^{-1}

- Watch Video Solution

33. Let $f: N \rightarrow R$ be a function defined as $f(x)=4 x^{2}+12 x+15$.

Show that $f: N \rightarrow S$, where, S is the range of f, is invertible. Find the inverse of f.

- Watch Video Solution

34. Let $f: R \rightarrow R: f(x)=10 x+7$. Find the function
$g: R \rightarrow R: g \circ f=f o g=I_{g}$

(D) Watch Video Solution

35. Let $f: W \rightarrow W: f(n)=\left\{\begin{array}{c}(n+1) \text { when } n \text { is even } \\ (n-1) \text { when } n \text { is odd }\end{array}\right\}$

Show that f is invertible. Find f^{-1}

- Watch Video Solution

36. Let $A=\{1,2,3\}$ and let $f: A \rightarrow A$ defined by
$f=\{(1,2),(2,3),(3,1)\}$
Find f^{-1} if it exists .

- Watch Video Solution

Objective Questions

1. Let $f: \mathbb{N} \rightarrow \mathbb{N}: f(x)=2 x$ for all $x \in \mathbb{N}$ then f is
A. one-one and onto
B. one - one and into
C. many -one and onto
D. many -one and into

Answer: B

- Watch Video Solution

2. $f: N \rightarrow N: f(x)=x^{2}+x+1$ is
A. one-one and onto
B. one - one and into
C. many -one and onto
D. many -one and into

Answer: B
3. $f: R \rightarrow R: f(x)=x^{2}$ is
A. one-one and onto
B. one-one and into
C. many -one and onto
D. many -one and into

Answer: D

- Watch Video Solution

4. Show that the function $f: R \rightarrow R: f(x)=x^{3}$ is one -one and onto.
A. one-one and onto
B. one-one and into
C. many - one and onto
D. many -one and into

Answer: A

- Watch Video Solution

5. $f: R^{+} \rightarrow R^{+}: f(x)=e^{x}$ is
A. many - one and into
B. many - one and onto
C. one - one and into
D. one - one and onto

Answer: D

- Watch Video Solution

6. $f:\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \rightarrow[-1,1]: f(x)=\sin x$ is
A. one-one and into
B. one-one and onto
C. many-one and into
D. many-one and onto

Answer: B

- Watch Video Solution

7. $f: R \rightarrow R: f(x)=\cos x$ is
A. one-one and into
B. one-one and onto
C. many- one and into
D. many-one and onto

Answer: C

8. $f: C \rightarrow R: f(z)=|z|$ is
A. one-one and into
B. one -one and onto
C. many -one and into
D. many -one and onto

Answer: C

- Watch Video Solution

9.

$A=R-\{3\}$ and $B=R-\{1\}$. Then $f: A \rightarrow B: f(x)=\frac{(x-2)}{(x-3)}$
is
A. one-one and into
B. one -one and onto
C. many-one and into
D. many -one and onto

Answer: B

- Watch Video Solution

10. Let $f: N \rightarrow N: f(n)=\left\{\begin{array}{c}\frac{1}{2}(n+1), \quad \text { when } \mathrm{n} \text { is odd } \\ \frac{n}{2}, \text { when } \mathrm{n} \text { is even }\end{array}\right.$

Then f is
A. one-one and into
B. one-one and onto
C. many-one and into
D. many- one and into

Answer: D

- Watch Video Solution

11. Let A and B be two sets. Show that $f: A \times B \rightarrow B \times A$ defined by $f(a, b)=(b, a)$ is
A. one-one and onto
B. one-one and into
C. many-one and onto
D. many -one and onto

Answer: A

- Watch Video Solution

12. Let $f: Q \rightarrow Q: f(x)=(2 x+3)$. Then $f^{-1}(y)=$?
A. $(2 x-3)$
B. $\frac{1}{(2 y-3)}$
C. $\frac{1}{2}(y-3)$
D. none of these

Answer: C

- Watch Video Solution

13. Let $f: R-\left\{-\frac{4}{3}\right\} \rightarrow R$ be a function as $f(x)=\frac{4 x}{3 x+4}$. The inverse of f is map, $g: R a n \geq f \rightarrow R-\left\{-\frac{4}{3}\right\}$ given by.(a)
$g(y)=\frac{3 y}{3-4 y}$
(b) $\quad g(y)=\frac{4 y}{4-3 y}$ (c) $\quad g(y)=\frac{4 y}{3-4 y}$
$g(y)=\frac{3 y}{4-3 y}$
A. $\frac{4 y}{(4-3 y)}$
B. $\frac{4 y}{(4 y+3)}$
C. $\frac{4 y}{(3 y-4)}$
D. none of these

Answer: A

- Watch Video Solution

14. Let $f: N \rightarrow X: f(x)=4 x^{2}+12 x+15$. Then $f^{-1}(y)=$?
A. $\frac{1}{2}(\sqrt{y-4}+3)$
B. $\frac{1}{2}(\sqrt{y-6}-3)$
C. $\frac{1}{2}(\sqrt{y-4}+5)$
D. none of these

Answer: B

- Watch Video Solution

15. If $f(x)=\frac{(4 x+3)}{(6 x+4)}, x \neq \frac{2}{3}$ then $(f o f)(x)=$?
A. x
B. $(2 x-3)$
C. $\frac{4 x-6}{3 x+4}$
D. none of these

Answer: A

- Watch Video Solution

16. If $f(x)=\left(x^{2}-1\right)$ and $g(x)=(2 x+3)$ then $(g \circ f)(x)=$?
A. $\left(2 x^{2}+3\right)$
B. $\left(3 x^{2}+2\right)$
C. $\left(2 x^{2}+1\right)$
D. none of these

Answer: C

Watch Video Solution
17. If $f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}$ then $f(x)=$
A. x^{2}
B. $\left(x^{2}-1\right)$
C. $\left(x^{2}-2\right)$
D. none of these

Answer: C

(D) Watch Video Solution
18. If $f(x)=\frac{1}{1-x}$, then $f(f(f(x)))$ is equal to
A. $\frac{1}{(1-3 x)}$
B. $\frac{x}{(1+3 x)}$
C. x
D. none of these

Answer: C

Watch Video Solution
19. Let $f: R \rightarrow R: f(x)=\left(3-x^{3}\right)^{1 / 3}$. Find f o f
A. $x^{\frac{1}{3}}$
B. x
C. ${ }^{\prime}\left(1-x^{\wedge}(1 / 3)\right)$
D. none of these
20. If $f(x)=x^{2}-3 x+2$ then $(f o f)(x)=$?
A. x^{4}
B. $x^{4}-6 x^{3}$
C. $x^{4}-6 x^{3}+10 x^{2}$
D. none of these

Answer: D

- Watch Video Solution

21. Find $g \circ f$ if $f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$
A. x
B. $2 x$
C. $\frac{x}{2}$
D. $3 x^{2}$

Answer: B

- Watch Video Solution

22. If f, g, h are real functions given by
$f(x)=x^{2}, g(x)=\tan x$ and $h(x)=\log , x$, then write the value of $($ hog of $)\left(\sqrt{\frac{\pi}{4}}\right)$.
A. 0
B. 1
C. $\frac{1}{x}$
D. $\frac{1}{2} \log \cdot \frac{\pi}{4}$
23. If the functions f and g are given by $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(2,3),(5,1),(1,3)\}$, find $g \circ f$ as sets of ordered pairs.
A. $\{(3,1),(1,3),(3,4)\}$
B. $\{(1,3),(3,1),(4,3)\}$
C. $\{(3,4),(4,3),(1,3)\}$
D. $\{(2,5),(5,2),(1,5)\}$

Answer: B

- Watch Video Solution

24. Let $f(x)=\sqrt{9-x^{2}}$. then , domain $(f)=$?
A. $[-3,3]$
B. $(-\infty,-3]$
C. $[3, \infty)$
D. $(-\infty,-3] \cup(4, \infty)$

Answer: A

- Watch Video Solution

25. Let $f(x) \sqrt{\frac{x-1}{x-4}}$. Then dom $(\mathrm{f})=$?
A. $[1,4)$
B. $[1,4]$
C. $(-\infty, 4]$
D. $(-\infty, 1] \cup(4, \infty)$

Answer: D

26. Let $f(x)=e^{\sqrt{x^{2}-1}} \cdot \log (\mathrm{x}-1)$. Then $\operatorname{dom}(\mathrm{f})=$?
A. $(-\infty, 1]$
B. $[-1, \infty)$
C. $(1, \infty)$
D. $(-\infty,-1] \cup(1, \infty)$

Answer: C

Watch Video Solution

27. Let $f(x)=\frac{x}{\left(x^{2}-1\right)}$ Then dom (f) =?
A. R
B. $R-\{1\}$
C. $R-\{-1\}$
D. $R-\{-1,1\}$

Answer: D

Watch Video Solution
28. Let $f(x)=\frac{\sin ^{-1} x}{x}$. then dom $(f)=$?
A. $(-1,1)$
B. $[-1,1]$
C. $[-1,1]-[0]$
D. none of these

Answer: C

- Watch Video Solution

29. Let $f(x)=\cos ^{-1} 2 x$. Then $\operatorname{dom}(\mathrm{f})=$?
A. $[-1,1]$
B. $\left[\frac{-1}{2}, \frac{1}{2}\right]$
C. $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
D. $\left[\frac{-\pi}{4}, \frac{\pi}{4}\right]$

Answer: B

- Watch Video Solution

30. Let $f(x)=\cos ^{-1}(3 x-1)$. Then, $\operatorname{dom}(\mathrm{f})=$?
A. $\left(0, \frac{2}{3}\right)$
B. $\left[0, \frac{2}{3}\right]$
C. $\left[\frac{-2}{3}, \frac{2}{3}\right]$
D. none of these
31. Let $f(x)=\sqrt{\cos x}$. Then $\operatorname{dom}(\mathrm{f})=$?
A. $\left[0 . \frac{\pi}{2}\right]$
B. $\left[\frac{3 \pi}{2}, 2 \pi\right]$
C. $\left[0, \frac{\pi}{2}\right] \cup\left[\frac{3 \pi}{2}, 2 \pi\right]$
D. none of these

Answer: C

- Watch Video Solution

32. Let $f(x)=\sqrt{\log \left(2 x-x^{2}\right)}$. Then $\operatorname{dom}(\mathrm{f})=$?
A. $(0,2)$
B. $[1,2]$
C. $(-\infty, 1]$
D. $\{1\}$

Answer: D

- Watch Video Solution

33. Let $f(x)=x^{2}$. Then dom (f) and range (f) are respectively
A. R and R
B. R^{+}and R^{+}
C. R and R^{+}
D. R and $R-\{0\}$

Answer: C

- Watch Video Solution

34. Let $f(x)=x^{3}$. Then, dom (f) and range (f) are respectively
A. R and R
B. R^{+}and R^{+}
C. R and R^{+}
D. R^{+}and R

Answer: A

D Watch Video Solution

35. Let $f(x)=\log (1-x)+\sqrt{x^{2}-1}$. Then $\operatorname{dom}(\mathrm{f})=$?
A. $(1, \infty)$
B. $(-\infty,-1]$
C. $[-1,1]$
D. $(0,1)$

Answer: B

Watch Video Solution
36. Let $f(x)=\frac{1}{\left(1-x^{2}\right) .}$ Then range (f)=?
A. $(-\infty, 1]$
B. $(-\infty, 0) \cup[1, \infty)$
C. $[-1,1]$
D. none of these

Answer: B

- Watch Video Solution

37. Let $f(x)=\frac{x^{2}}{\left(1+x^{2}\right)}$.Then range (f) $=$?
A. $[1, \infty)$
B. $[0,1)$
C. $[-1,1]$
D. $(0,1]$

Answer: B

Watch Video Solution
38. The range of $f(x)=x+\frac{1}{x}$ is
A. $[-2,2]$
B. $[2, \infty)$
C. $(-\infty,-2]$
D. $(-\infty,-2] \cup[2, \infty)$

Answer: D

39. The range of $f(x)=a^{x}$, where $a>0$ is
A.] $-\infty, 0]$
B.] $-\infty, 0)$
C. $[0, \infty)$
D. $(0, \infty)$

Answer: D

- Watch Video Solution

Exercise 2 A

1. Define a functions. What do you mean by the domain and range of a function ? Give examples.

- Watch Video Solution

2. Define each of the following:
(i) injective function
(ii) surjective function
(iii) bijective function
(iv) many -one function
(v) into function
`Give an example of each type of functions.

- Watch Video Solution

3. Give an example of a function which is
(i) one-one but not onto
(ii) one-one and onto
(iii) neither one-one nor onto
(iv) onto but not one-one

Watch Video Solution

4. Let $f: R \rightarrow R$ be defined by
$f(x)=\left\{\begin{array}{c}3 x-1 \text { when } x>3 \\ x^{2}-2 \text { when }-2 \leq x \leq 3 \\ 2 x+3 \text { when } x<-2\end{array}\right\}$
Find (i) $f(2)$ (ii) $f(4)$ (iii) $f(-1)$ (iv) $f(-3)$

- Watch Video Solution

5. show that the function $f: R \rightarrow R: f(x)=1+x^{2}$ is many -one into .

Watch Video Solution

6. show that the function $f: R \rightarrow R: f(x)=x^{4}$ is many -one and into
7. show that the function $f: R \rightarrow R f:(x)=x^{5}$ is one-one and onto .

- Watch Video Solution

8. Consider a function $f:\left[0, \frac{\pi}{2}\right] \rightarrow R \quad$ given by $f(x)=\sin x$ and $g:\left[0, \frac{\pi}{2}\right] \rightarrow R$ given by $g(x)=\cos x$. Show that f and g are one-one, but $f+g$ is not one-one.

- Watch Video Solution

9. show that the function
(i) $f: N \rightarrow N: f(x)=x^{2}$ is one-one into
(ii) $f: Z \rightarrow Z: f(x)=x^{2}$ is many -one into.

- Watch Video Solution

10. Show that the function (i) $f: N \rightarrow N: f(x)=x^{3}$ is one -one into
(ii) $f: Z \rightarrow Z: f(x)=x^{3}$ is one-one into

- Watch Video Solution

11. Show that the function $f: R \rightarrow R: f(x)=\sin x$ is neither one-one nor onto

D Watch Video Solution

12. Prove that the function $f: N \rightarrow N$, defined by $f(x)=x^{2}+x+1$ is one-one but not onto.

D Watch Video Solution

13. show that the function $f: N \rightarrow Z$ defined by
$f(n)=\left\{\begin{array}{c}\frac{1}{2}(n-1), \quad \text { when } \mathrm{n} \text { is odd } \\ -\frac{1}{2} n, \text { when } \mathrm{n} \text { is even }\end{array}\right.$
is both one-one and onto

- Watch Video Solution

14. find the domain and range of the function
$f: R \rightarrow R: f(x)=x^{2}+1$

- Watch Video Solution

15. Which of the following relations are functions ? Give reasons. In case of a functions find its domain and range .
(i) $f=\{(-1,2),(1,8)(2,11),(3,14)\}$
(ii) $g=\{(1,1),(1,-1),(4,2),(9,3),(16,4)\}$
(iii) $h=\{(a, b),(b, c),(c, d),(d, c)\}$
16. Find the domain and range of the real function defined by
$f(x)=\frac{x^{2}}{\left(1+x^{2}\right)}$
Show that f is many -one

Watch Video Solution

17. Show that the function
$f: R \rightarrow R: f(x)=\left\{\begin{array}{rll}-1 & \text { if } & x \text { is irrational } \\ 1 & \text { if } & x \text { is rational }\end{array}\right\}$
is many-one into.
Find $(i) f\left(\frac{1}{2}\right)(i i) f(\sqrt{2})(i i i) f(\pi)(i v) f(2+\sqrt{3})$

- Watch Video Solution

1. Let $A=\{1,2,3,4\}$. Let $f: A \rightarrow A$ and $g: A \rightarrow A$
defined by $f:=\{(1,4),(2,1),(3,3),(4,2)\}$ and
$g=\{(1,3),(2,1),(3,2),(4,4)\}$
Find (i) g of (ii) $f o g$ (iii) $f o f$.

- Watch Video Solution

2. Let $f=\{(3,1),(9,3),(12,4)\}$
and
$g=\{(1,3),(3,3),(4,9),(5,9)\}$. Show that gofandfog are both defined. Also, find fogandgof.

D Watch Video Solution

3. Let $f: R \rightarrow R: f(x)=x^{2}$ and $g: R \rightarrow R: g(x)=(x+1)$

Show that $(g \circ f) \neq(f o g)$
4.
$f: R \rightarrow R: f(x)=(2 x+1)$ and $g: R \rightarrow R: g(x)=\left(x^{2}-2\right)$
Write down the formulae for
(i) $(g \circ f)(i i)(f o g)(i i i)(f o f)(i v)(g \circ f)$

(D) Watch Video Solution

5.

Let
$f: R \rightarrow R: f(x)=\left(x^{2}+3 x+1\right)$ and $g: R \rightarrow R: g(x)=(2 x-3)$.
Write down the formulae for
(i) $g \circ f$ (ii) $f \circ g$ (iii) $g \circ g$

- Watch Video Solution

6. Let $f: R \rightarrow R: f(x)=|x|$ prove that f o $\mathrm{f}=\mathrm{f}$
7. Let $\quad f: R \rightarrow R: f(x)=x^{2}, g: R \rightarrow R: g(x)=\tan x \quad$ and $h: R \rightarrow R: h(x)=\log \mathrm{x}$ find a formula for ho(gof) Show that '[ho(gof)] sqrt($\pi /(4))=0$

- Watch Video Solution

8.

$f: R \rightarrow R: f(x)=(2 x-3)$ and $g: R \rightarrow R: g(x)=\frac{1}{2}(x+3)$
show that $(\mathrm{f} \circ \mathrm{g})=I_{R}=(g \circ f)$

- Watch Video Solution

9. If $f: Z \rightarrow Z$ be defined by $f(x)=2 x$ for all $x \in Z$. Find $g: Z \rightarrow Z$ such that $g \circ f=I_{Z}$.

- Watch Video Solution

10. Let $f: N \rightarrow N: f(x)=2 x, g: N \rightarrow N: g(y)=3 y+4$ and $h: N \rightarrow N: h(z)=\sin z$

Show that $\mathrm{h} \circ(\mathrm{g} \circ \mathrm{f})=(\mathrm{h} \circ \mathrm{g}) \circ \mathrm{f}$.

- Watch Video Solution

11. If f be a greatest integer function and g be an absolute value function, find the value of $(f \circ g)\left(-\frac{3}{2}\right)+(g \circ f)\left(\frac{4}{3}\right)$.

- Watch Video Solution

12.

$f: R \rightarrow R: f(x)=x^{2}+2$ and $g: R \rightarrow R: g(x)=\frac{x}{x-1}, x \neq 1$.
Find $f \circ g$ and g of and hence find ($f \circ g$) (2) and ($g \circ f$) (-3)

1. Prove that the function $f: R \rightarrow R$, given by $f(x)=2 x$, is one-one and onto.

- Watch Video Solution

2. Prove that the function $f: N \rightarrow N: f(x)=3 x$ is one-one and into.

- Watch Video Solution

3. Show that the function $f: R \rightarrow R$, defined as $f(x)=x^{2}$, is neither one-one nor onto.

- Watch Video Solution

4. show that the function
(i) $f: N \rightarrow N: f(x)=x^{2}$ is one-one into
(ii) $f: Z \rightarrow Z: f(x)=x^{2}$ is many -one into .

(D) Watch Video Solution

5. Show that the fucntion $f: R \rightarrow R: f(x)=x^{4}$ is neither one-one not noto.

- Watch Video Solution

6. Show that the function
(i) $f: N \rightarrow N: f(x)=x^{3}$ is one -one into
(ii) $f: Z \rightarrow Z: f(x)=x^{3}$ is oen-one into

Watch Video Solution

7. Show that the function $f: R_{0} \rightarrow R_{0}$, defined as $f(x)=\frac{1}{x}$, is oneone onto, where R_{0} is the set of all non-zero real numbers. Is the result true, if the domain R_{0} is replaced by N with co-domain being same as R_{0} ?

- Watch Video Solution

8. show that the function $f: R \rightarrow R: f(x)=1+x^{2}$ is many -one into.

- Watch Video Solution

9. Let $f: R \rightarrow R: f(x)=\frac{2 x-7}{4}$ be an invertible function. Find f^{-1}

- Watch Video Solution

10. Let $f: R \rightarrow R: f(x)=10 x+3$.Find f^{-1}
11. $f: R \rightarrow R: f(x)=\left\{\begin{array}{l}1 \text { is } \mathrm{x} \text { is rational } \\ -1, \text { if } \mathrm{x} \text { is rational }\end{array}\right.$
show that f is many -one and into.

- Watch Video Solution

12. If $f(x)=x+7$ and $g(x)=x-7, x \in R$ find (fog) (7).

- Watch Video Solution

13. Let $f: R \rightarrow R: f(x)=x^{2}$ and $g: R \rightarrow R: g(x)=(x+1)$

Show that $(g o f) \neq(f o g)$

Watch Video Solution
14. Let $f: R \rightarrow R: f(x)=\left(3-x^{3}\right)^{1 / 3}$. Find f o f

- Watch Video Solution

15. If $f: R \rightarrow R$ is defined by $f(x)=3 x+2$, find $f(f(x))$.

- Watch Video Solution

16. Let $f:\{1,3,4\} \rightarrow\{1,2,5\}$ and $g:\{1,2,5\} \rightarrow\{1,3\}$ be given by $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(1,3),(2,3),(5,1)\}$. Write down gof.

- Watch Video Solution

17. Let $A=\{1,2,3,4)$ and $f=\{(1,4),(2,1),(3,3),(4,2)\}$.

Write down ($\mathrm{f} \circ \mathrm{f}$)
18. Find gof and gof when $f: R \rightarrow R$ and $g: R \rightarrow R$ is defined by $f(x)=8 x^{3}$ and $g(x)=x^{1 / 3}$

- Watch Video Solution

19. Let $f: R \rightarrow R: f(x)=10 x+7$. Find the function $g: R \rightarrow R: g o f=f o g=I_{g}$

- Watch Video Solution

20. Let $\quad A=\{1,2,3\}, B=\{4,5,6,7\} \quad$ and let
$f=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. State whether f is one-one or not.
21. Let $A=\{2,3,4,5\}$ and $B=\{7,9,11,13\}$ and let $f=\{(2,7),(3,9),(4,11),(5,13)\}$

Show that f is invertible and find f^{-1}

- Watch Video Solution

2. show that the function $f: R \rightarrow R: f(x)=2 x+3$ is invertible and find f^{-1}

- Watch Video Solution

3. Let $f: Q \rightarrow Q: f(x)=3 x-4$ show tha t f is invertible and find f^{-1}
4. Let $f: R \rightarrow R: f(x)=\frac{1}{2}(3 x+1)$.Show that f is invertible and find f^{-1}

- Watch Video Solution

5. If $f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$, show that $f o f(x)=x$ for all $x \neq \frac{2}{3}$. What is the inverse of f ?

- Watch Video Solution

6. show that the function f in $\mathrm{A}=\mathrm{R}-\left\{\frac{2}{3}\right\}$ defined as $\mathrm{f}(\mathrm{x})=\frac{4 x+3}{6 x-4}$ is one one and onto. Hence find f^{-1}

- Watch Video Solution

7. show that the function f on $A=R-\left\{\frac{-4}{3}\right\}$ onto itself defined by
$f(x)=\frac{4 x}{(3 x+4)}$ is one-one and onto. Hence find f^{-1}

- Watch Video Solution

8. Consider $f: \overrightarrow{R-5, \infty}$ given by $f(x)=9 x^{2}+6 x-5$. Show that f is invertible with $f^{-1}(y)=\left(\frac{\sqrt{y+6}-1}{3}\right)$.

(D) Watch Video Solution

9. Let $f: N \rightarrow R$ be a function defined as $f(x)=4 x^{2}+12 x+15$.

Show that $f: N \rightarrow S$, where, S is the range of f , is invertible. Find the inverse of f.

(D) Watch Video Solution

10. Let $A=R-\{2\}$ and $B=R-\{1\}$. If $f: A \rightarrow B$ is a mapping defined by $f(x)=\frac{x-1}{x-2}$, show that f is bijective.

- Watch Video Solution

11. Let f and g be two functions from R into R defined by $f(x)$ $=|x|+x$ and $g(x)=x$ for all $x \in R$. Find $\mathrm{f} \circ \mathrm{g}$ and g of f

(D) Watch Video Solution

