

MATHS

BOOKS - RS AGGARWAL MATHS (HINGLISH)

FUNCTIONS

Solved Examples

1. Let $\mathsf{f}:\mathsf{N}\ o N{:}\, f(x)=2x$ for all $x\in N$

Show that f is one -one and into.

2. Show that the function $f\!:\!R o R$, defined as $f(x)=x^2$, is neither

one-one nor onto.

3. The modulus function $f\!:\!R o R$, given by f(x)=|x| is

A. One One

B. Many One

C. cant say

D. None of these

Answer: B

Watch Video Solution

4. Prove that the greatest integer function f:R o R, given by f(x)=[x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.

5. Show that the function $f: R_0 \to R_0$, defined as $f(x) = \frac{1}{x}$, is oneone onto, where R_0 is the set of all non-zero real numbers. Is the result true, if the domain R_0 is replaced by N with co-domain being same as R_0 ?

Watch Video Solution

6. function $f\!:\!R o R\!:\!f(x)=x^3$ is

A. One One

B. Many One

C. Not a function

D. None of these

Answer: A

7. Show that the function $f\!:\!R o R\!:\!f(x)=3-4x$ is one-one onto

and hence bijective.

8. Show that the function $f\colon N o N$ defined by

$$f(x) = \left\{egin{array}{ccc} x-1 & ext{if} & x\, is \, even \ x+1 & ext{if} & xis \, odd \end{array}
ight\}$$

is one-one and onto.

Watch Video Solution

9. Show that
$$f \colon N o N$$
 defined by

$$f(n) = \left\{ egin{array}{ccc} rac{n}{2} & ext{if} & n \, is \, even \ rac{n+1}{2} & ext{if} & n \, is \, odd \end{array}
ight\}$$

is a many -one onto function

10. Show that the signum function $f\colon R o R$ defined by

$$f(x) = \left\{egin{array}{ccc} -1 & ext{if} & x < 0 \ 0 & ext{if} & x = 0 \ 1 & ext{if} & x > 0 \end{array}
ight\}$$

is neither one-one nor onto.

Watch Video Solution

11. Let $A = R - \{3\}$ and B = R - [1]. Consider the function f: ABdefined by $f(x) = \left(\frac{x-2}{x-3}\right)$. Show that f is one-one and onto and hence find f^{-1}

Watch Video Solution

12. Let A and B be sets. Show that f : A imes B ,B imes A such that

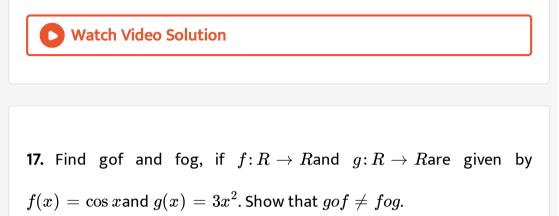
f (a, b) = (b, a) is bijective function.

13. Find the domain and range of the real function

$$f(x)=\sqrt{9-x^2}$$

Watch Video Solution

14. Find the domain and range of the real function defined by


$$f(x)=rac{1}{(1-x^2).}$$

Watch Video Solution

15. Let $f: X \to Y$ be a function. Define a relation R in X given by $R = \{(a, b): f(a) = f(b)\}$. Examine whether R is an equivalence relation or not.

16. If the functions f and g are given by $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(2, 3), (5, 1), (1, 3)\}$, find range of f and g. Also, write down *fog* and *gof* as sets of ordered pairs.

Watch Video Solution

18. Let R be the set of all real numbers let $f\!:\!R o R\!:\!f(x)=\sin x$

and

$$g\!:\!R o R\!:\!g(x)=x^2.$$
 Prove that g of eq fog

19. Find gof and gof when $f\!:\!R o R$ and $g\!:\!R o R$ is defined by

$$f(x)=8x^3$$
 and $g(x)=x^{1\,/\,3}$

Watch Video Solution

20. If $f \colon R o R$ is defined by $f(x) = x^2 - 3x + 2$, write $f\{f(x)\}$.

Watch Video Solution

21. Let
$$f\!:\!R o R\!:\!f(x)=\left(3-x^3
ight)^{1/3}$$
. Find f o f

Watch Video Solution

22. Let $f \colon A o B$, and let I_A and I_B be identity functions on A and B

respectively. Prove that $(\mathit{foI}_A) = \mathit{f}$ and $(\mathit{I}_B \mathit{of}) = \mathit{f}$

23. (Associativity) Let $f: A \to B, g: B \to C$ and $h: C \to$. Then prove that (h o g) o f = h o (g o f)`

24. Let $f: Z\overline{Z}$ be defined by f(n) = 3n for all $n \in Z$ and $g: Z^{\longrightarrow}$ be defined by

 $f(n)=igg\{rac{n}{3}, ext{ if } nisa \mu ltiple of 30, ext{ if } nis
ext \mu ltiple of 3f ext{ or } al \ln \in Z_1$

Show that $gof = I_Z$ and $fog
eq I_Z$

Watch Video Solution

25. Let
$$A = R - \left\{\frac{7}{5}\right\}$$
 and $B = R - \left\{\frac{3}{5}\right\}$
Let $f: A \to B: f(x) = \frac{3x+4}{5x-7}$ and $g: B \to A: g(x) = \frac{7x+4}{5x-3}$
Show that $(gof) = I_B$ and $(fog) = I_A$

26. If functions $f \colon A o B$ and $g \colon B o A$ satisfy $gof = I_A$, then

show that f is one-one and g is onto.

27. Let $f\colon R o R\colon f(x)=4x+3$ for all $x\in R.$ Show that f is invertible and find f^{-1}

Watch Video Solution

28. Consider $f: R_+ \to [4, \infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse f^{-1} of given f by $f^{-1}(y) = \sqrt{y-4}$ where R_+ is the set of all non-negative real numbers.

29. Let R^+ be the set of all positive real numbers. Let

 $f\!:\!R^+ o R^+\!:\!f(x)=e^x$ for all $x\in R^+$. Show that f is invertible and hence find f^{-1}

Watch Video Solution

30. let
$$A = \left\{x: -\frac{\pi}{2} \le x \le \frac{\pi}{2}\right\}$$
 and $B = \{x: -1 \le x \le 1\}$.
Show that the function $f: A \to B$ defined by, $f(x) = \sin x$ for all $x \in A$, is bijective . Hence, find a formula that defines f^{-1}

31. Let
$$f \colon N \to Y \colon f(x) = x^2$$
 where $Y = ext{range}$ (f). Show that

f is invertible and find f^{-1}

Watch Video Solution

32. Let
$$f: [-1,1] \to Y: f(x) = . \ rac{x}{(x+2)}, x \neq -2$$
 and $Y =$

range (f). Show that f is invertible and find f^{-1}

33. Let $f: N \to R$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f: N \to S$, where, S is the range of f, is invertible. Find the inverse of f.

Watch Video Solution

34. Let $f: R \to R: f(x) = 10x + 7$. Find the function

 $g{:}R
ightarrow R{:}gof = fog = I_g$

35. Let $f: W \to W: f(n) = \left\{ \begin{array}{l} (n+1) \ when \ n \ is \ even \\ (n-1) \ when \ n \ is \ odd \end{array} \right\}$

Show that f is invertible. Find $f^{\,-1}$

Watch Video Solution

36. Let
$$A = \{1, 2, 3\}$$
 and let $f \colon A o A$ defined by

$$f = \{(1,2),(2,3),(3,1)\}$$

Find f^{-1} if it exists .

Watch Video Solution

Objective Questions

1. Let $f \colon \mathbb{N} o \mathbb{N} \colon f(x) = 2x$ for all $x \in \mathbb{N}$ then f is

A. one-one and onto

B. one - one and into

C. many -one and onto

D. many -one and into

Answer: B

Watch Video Solution

2.
$$f\!:\!N o N\!:\!f(x)=x^2+x+1$$
 is

A. one-one and onto

B. one - one and into

C. many -one and onto

D. many -one and into

Answer: B

3. $f\!:\!R o R\!:\!f(x)=x^2$ is

A. one-one and onto

B. one-one and into

C. many -one and onto

D. many -one and into

Answer: D

Watch Video Solution

4. Show that the function $f\!:\!R o R\!:\!f(x)=x^3$ is one -one and onto.

A. one-one and onto

B. one-one and into

C. many - one and onto

D. many -one and into

Answer: A

Watch Video Solution

5.
$$f\!:\!R^+ o R^+\!:\!f(x)=e^x$$
 is

A. many - one and into

B. many - one and onto

C. one - one and into

D. one - one and onto

Answer: D

6.
$$f \colon \left\lfloor rac{-\pi}{2}, rac{\pi}{2}
ight
ceil
ightarrow [-1,1] \colon f(x) = \sin x$$
 is

A. one-one and into

B. one-one and onto

C. many-one and into

D. many-one and onto

Answer: B

Watch Video Solution

7.
$$f\!:\!R o R\!:\!f(x)=\cos x$$
 is

A. one-one and into

B. one-one and onto

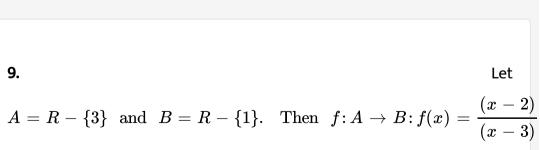
C. many- one and into

D. many-one and onto

Answer: C

8.
$$f\!:\!C o R\!:\!f(z)=|z|$$
 is

A. one-one and into


B. one -one and onto

C. many -one and into

D. many -one and onto

Watch Video Solution

Answer: C

A. one-one and into

B. one -one and onto

C. many-one and into

D. many -one and onto

Answer: B

Watch Video Solution

10. Let
$$f:N o N$$
: $f(n) = \begin{cases} rac{1}{2}(n+1), ext{ when n is odd} \\ rac{n}{2}, ext{ when n is even} \end{cases}$

Then f is

A. one-one and into

B. one-one and onto

C. many-one and into

D. many- one and into

Answer: D

11. Let A and B be two sets. Show that $f \colon A imes B o B imes A$ defined

by f(a, b) = (b, a) is

A. one-one and onto

B. one-one and into

C. many-one and onto

D. many -one and onto

Answer: A

12. Let
$$f: Q \to Q: f(x) = (2x+3)$$
. Then $f^{-1}(y) = ?$

A.
$$(2x-3)$$

B.
$$rac{1}{(2y-3)}$$

C. $rac{1}{2}(y-3)$

Answer: C

13. Let
$$f: R - \left\{-\frac{4}{3}\right\} \to R$$
 be a function as $f(x) = \frac{4x}{3x+4}$. The inverse of f is map, $g: Ran \ge f \to R - \left\{-\frac{4}{3}\right\}$ given by.(a)
 $g(y) = \frac{3y}{3-4y}$ (b) $g(y) = \frac{4y}{4-3y}$ (c) $g(y) = \frac{4y}{3-4y}$ (d)
 $g(y) = \frac{3y}{4-3y}$

A.
$$\frac{4y}{(4-3y)}$$

B. $\frac{4y}{(4y+3)}$
C. $\frac{4y}{(3y-4)}$

Answer: A

Watch Video Solution

14. Let
$$f: N \to X: f(x) = 4x^2 + 12x + 15$$
. Then $f^{-1}(y) = ?$

A.
$$rac{1}{2}(\sqrt{y-4}+3)$$

B. $rac{1}{2}(\sqrt{y-6}-3)$
C. $rac{1}{2}(\sqrt{y-4}+5)$

D. none of these

Answer: B

15. If
$$f(x) = rac{(4x+3)}{(6x+4)}, x
eq rac{2}{3}$$
 then $(fof)(x) = ?$
A. x
B. $(2x-3)$

$$\mathsf{C}.\,\frac{4x-6}{3x+4}$$

Answer: A

Watch Video Solution

16. If
$$f(x) = (x^2 - 1)$$
 and $g(x) = (2x + 3)$ then $(gof)(x) = ?$

A. $(2x^2 + 3)$ B. $(3x^2 + 2)$ C. $(2x^2 + 1)$

D. none of these

Answer: C

17. If
$$f\left(x+rac{1}{x}
ight)=x^2+rac{1}{x^2}$$
 then $f(x)=$
A. x^2
B. $\left(x^2-1
ight)$

$$\mathsf{C.}\left(x^2-2\right)$$

D. none of these

Answer: C

18. If
$$f(x)=rac{1}{1-x}$$
 , then $f(f(f(x)))$ is equal to

A.
$$rac{1}{(1-3x)}$$

B. $rac{x}{(1+3x)}$

 $\mathsf{C}.\, x$

D. none of these

Answer: C

Watch Video Solution

19. Let
$$f\!:\!R o R\!:\!f(x)=\left(3-x^3
ight)^{1/3}$$
 . Find f o f

A. $x^{rac{1}{3}}$

 $\mathsf{B.}\,x$

C. `(1-x^(1/3))

D. none of these

Answer: B

20. If
$$f(x) = x^2 - 3x + 2$$
 then $(fof)(x) = ?$

A. x^4

 $\mathsf{B.}\,x^4-6x^3$

 ${\sf C.}\,x^4-6x^3+10x^2$

D. none of these

Answer: D

Watch Video Solution

21. Find
$$gof$$
 if $f(x) = 8x^3$ and $g(x) = x^{\frac{1}{3}}$

A. x

 $\mathsf{B.}\,2x$

C.
$$\frac{x}{2}$$

D. $3x^2$

Answer: B

Watch Video Solution

22. If f, g, h are real functions given by $f(x) = x^2, g(x) = \tan x \text{ and } h(x) = \log, x, \text{ then write the value}$ of $(hog \, of)\left(\sqrt{\frac{\pi}{4}}\right)$.

A. 0

 $\mathsf{B.1}$

C.
$$\frac{1}{x}$$

D. $\frac{1}{2}$ log. $\frac{\pi}{4}$

Answer: A

23. If the functions f and g are given by $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(2, 3), (5, 1), (1, 3)\}$, find gof as sets of ordered pairs.

```
A. \{(3, 1), (1, 3), (3, 4)\}
B. \{(1, 3), (3, 1), (4, 3)\}
C. \{(3, 4), (4, 3), (1, 3)\}
D. \{(2, 5), (5, 2), (1, 5)\}
```

Answer: B

Watch Video Solution

24. Let $f(x) = \sqrt{9 - x^2}$. then , domain (f) = ?

A. [-3, 3]B. $(-\infty, -3]$ $\mathsf{C}.\left[3,\infty\right)$

D.
$$(-\infty, -3] \cup (4,\infty)$$

Answer: A

D Watch Video Solution

25. Let
$$f(x)\sqrt{rac{x-1}{x-4}}$$
. Then dom (f) =?
A. $[1,4)$
B. $[1,4]$
C. $(-\infty,4]$
D. $(-\infty,1]\cup(4,\infty)$

Answer: D

26. Let $f(x) = e^{\sqrt{x^2-1}}$. log (x-1) . Then dom (f) =?

A. $(-\infty, 1]$ B. $[-1, \infty)$ C. $(1, \infty)$ D. $(-\infty, -1] \cup (1, \infty)$

Answer: C

Watch Video Solution

27. Let
$$f(x)=rac{x}{(x^2-1)}$$
 Then dom (f) =?

A. R

B. $R - \{1\}$

 $C. R - \{ -1 \}$

D. $R - \{ -1, 1 \}$

Answer: D

28. Let
$$f(x) = \frac{\sin^{-1} x}{x}$$
. then dom $(f) = ?$
A. $(-1, 1)$
B. $[-1, 1]$
C. $[-1, 1] - [0]$

D. none of these

Answer: C

29. Let
$$f(x) = \cos^{-1} 2x$$
. Then dom (f)=?

A.
$$\left[-1, 1\right]$$

B. $\left[\frac{-1}{2}, \frac{1}{2}\right]$
C. $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
D. $\left[\frac{-\pi}{4}, \frac{\pi}{4}\right]$

Answer: B

Watch Video Solution

30. Let
$$f(x) = \cos^{-1}(3x - 1)$$
. Then , dom (f)=?

A.
$$\left(0, \frac{2}{3}\right)$$

B. $\left[0, \frac{2}{3}\right]$
C. $\left[\frac{-2}{3}, \frac{2}{3}\right]$

D. none of these

Answer: B

31. Let
$$f(x) = \sqrt{\cos x}$$
. Then dom (f) =?

A.
$$\left[0, \frac{\pi}{2}\right]$$

B. $\left[\frac{3\pi}{2}, 2\pi\right]$
C. $\left[0, \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2}, 2\pi\right]$

Answer: C

Watch Video Solution

32. Let
$$f(x) = \sqrt{\log \bigl(2x - x^2 \bigr) .}$$
 Then dom (f)=?

A. (0, 2)

 $\mathsf{B}.\,[1,\,2]$

 $\mathsf{C}.\,(\,-\infty,\,1]$

 $\mathsf{D}.\left\{1\right\}$

Answer: D

Watch Video Solution

33. Let $f(x) = x^2$. Then dom (f) and range (f) are respectively

A. R and R

- $\mathsf{B}.\,R^+ \quad \text{and} \quad R^+$
- C. R and R^+
- D. R and $R \{0\}$

Answer: C

34. Let $f(x) = x^3$. Then, dom (f) and range (f) are respectively

A. R and R

 $\mathsf{B}. R^+$ and R^+

C. R and R^+

 $\mathsf{D}. R^+$ and R

Answer: A

Watch Video Solution

35. Let $f(x) = \log(1-x) + \sqrt{x^2-1}$. Then dom (f)=?

A. $(1,\infty)$ B. $(-\infty, -1]$ C. [-1,1]D. (0,1)

Answer: B

36. Let
$$f(x)=rac{1}{(1-x^2).}$$
 Then range (f)=?
A. $(-\infty,1]$
B. $(-\infty,0)\cup [1,\infty)$
C. $[-1,1]$

D. none of these

Answer: B

37. Let
$$f(x)=rac{x^2}{(1+x^2)}$$
 .Then range (f) =?

A. $[1,\infty)$

 $\mathsf{B}.\,[0,\,1)$

 $\mathsf{C}.\,[\,-1,\,1]$

D.(0,1]

Answer: B

Watch Video Solution

38. The range of
$$f(x) = x + rac{1}{x}$$
 is

A. [-2,2]

 $\mathsf{B}.\left[2,\infty\right)$

 $\mathsf{C}.\,(\,-\infty,\,-2]$

D.
$$(-\infty, -2] \cup [2,\infty)$$

Answer: D

39. The range of $f(x) = a^x$, where a > 0 is

A. $]-\infty,0]$ B. $]-\infty,0)$ C. $[0,\infty)$ D. $(0,\infty)$

Answer: D

 Watch Video Solution

Exercise 2 A

1. Define a functions . What do you mean by the domain and range of a

function ? Give examples.

- 2. Define each of the following:
- (i) injective function (ii) surjective function
- (iii) bijective function (iv) many -one function
- (v) into function

`Give an example of each type of functions.

Watch Video Solution

3. Give an example of a function which is

(i) one-one but not onto (ii) one-one and onto

(*iii*)neither one-one nor onto

(iv) onto but not one-one

4. Let $f\!:\!R o R$ be defined by

$$f(x) = \left\{egin{array}{c} 3x - 1 \ when \ x > 3 \ x^2 - 2 \ when \ -2 \le x \le 3 \ 2x + 3 \ when \ x < -2 \end{array}
ight\}$$

Find (i) f(2) (ii) f(4) (iii) f(-1) (iv) f(-3)

Watch Video Solution

5. show that the function $f\!:\!R o R\!:\!f(x)=1+x^2$ is many -one

into .

Watch Video Solution

6. show that the function $f\!:\!R o R\!:\!f(x)=x^4$ is many -one and

into

7. show that the function $f\!:\!R o Rf\!:\!(x)=x^5$ is one-one and onto .

8. Consider a function
$$f: \left[0, \frac{\pi}{2}\right] \to R$$
 given by $f(x) = \sin x$ and $g: \left[0, \frac{\pi}{2}\right] \to R$ given by $g(x) = \cos x$. Show that f and g are one-one, but $f + g$ is not one-one.

Watch Video Solution

9. show that the function

 $(i)f\!:\!N o N\!:\!f(x)=x^2$ is one-one into

(ii) $f\!:\!Z o Z\!:\!f(x)=x^2$ is many -one into .

10. Show that the function (i) $f\!:\!N o N\!:\!f(x)=x^3$ is one -one into

(ii) $f\!:\!Z o Z\!:\!f(x)=x^3$ is one-one into

11. Show that the function $f\!:\!R o R\!:\!f(x)=\sin x$ is neither one-one

nor onto

Watch Video Solution

12. Prove that the function $f\!:\!N o N$, defined by $f(x)=x^2+x+1$

is one-one but not onto.

13. show that the function $f\colon N o Z$ defined by

$$f(n) = egin{cases} rac{1}{2}(n-1), & ext{when n is odd} \ & -rac{1}{2}n, & ext{when n is even} \end{cases}$$

is both one-one and onto

1

Watch Video Solution

14. find the domain and range of the function

$$f\!:\!R o R\!:\!f(x)=x^2+1$$

Watch Video Solution

15. Which of the following relations are functions ? Give reasons . In case of a functions find its domain and range .

(i)
$$f = \{(-1, 2), (1, 8)(2, 11), (3, 14)\}$$

(ii) $g = \{(1, 1), (1, -1), (4, 2), (9, 3), (16, 4)\}$
(iii) $h = \{(a, b), (b, c), (c, d), (d, c)\}$

16. Find the domain and range of the real function defined by

$$f(x)=rac{x^2}{(1+x^2)}$$

Show that f is many -one

17. Show that the function

$$f\!:\!R o R\!:\!f(x)=egin{cases} -1 & ext{if} & x\, is\, irrational \ 1 & ext{if} & x\, is\, rational \end{pmatrix}$$

is many-one into.

Find
$$(i)f\left(rac{1}{2}
ight)(ii)f(\sqrt{2})~(iii)f(\pi)~(iv)f\left(2+\sqrt{3}
ight)$$

1. Let $A=\{1,2,3,4\}.$ Let $f\colon A o A$ and $g\colon A o A$ defined by $f\colon=\{(1,4),(2,1),(3,3),(4,2)\}$ and $g=\{(1,3),(2,1),(3,2),(4,4)\}$

Find (i) g o f (ii) f o g (iii) f o f.

Watch Video Solution

2. Let
$$f = \{(3, 1), (9, 3), (12, 4)\}$$
 and

 $g = \{(1,3), (3,3), (4,9), (5,9)\}$. Show that gofandfog are both

defined. Also, find fogandgof.

Watch Video Solution

3. Let $f \colon R o R \colon f(x) = x^2$ and $g \colon R o R \colon g(x) = (x+1)$

Show that $(gof) \neq (fog)$

$$f\!:\!R o R\!:\!f(x)=(2x+1) \hspace{0.2cm} ext{and}\hspace{0.2cm} g\!:\!R o R\!:\!g(x)=\left(x^2-2
ight)$$

Write down the formulae for

(i)
$$(gof)(ii)(fog)(iii)(fof)(iv)(gof)$$

Watch Video Solution

5.

$$f\!:\!R o R\!:\!f(x)=ig(x^2+3x+1ig) ext{ and } g\!:\!R o R\!:\!g(x)=(2x-3).$$

Write down the formulae for

(i) g o f (ii) f o g (iii) g o g

Watch Video Solution

6. Let $f\!:\!R o R\!:\!f(x)=|x|$ prove that <code>f</code> o <code>f</code> =f

Watch Video Solution

Let

7. Let $f:R o R:f(x)=x^2,g:R o R:g(x)= an x$, and h:R o R:h(x)= log x find a formula for ho(gof) Show that `[ho(gof)] sqrt($\pi/(4)$) = 0

Watch Video Solution

o

b.

$$f:R o R: f(x) = (2x-3) ext{ and } g:R o R: g(x) = rac{1}{2}(x+3)$$
show that (f \circ g) $= I_R = (gof)$

Watch Video Solution

9. If $f\colon Z o Z$ be defined by f(x)=2x for all $x\in Z$. Find $g\colon Z o Z$

such that $gof = I_Z$.

10. Let $f: N \to N: f(x) = 2x, g: N \to N: g(y) = 3y + 4$ and $h: N \to N: h(z) = \sin z$ Show that h o (g o f) = (h o g) o f. Watch Video Solution

11. If f be a greatest integer function and g be an absolute value function, find the value of $(f \circ g)\left(-\frac{3}{2}\right) + (g \circ f)\left(\frac{4}{3}\right)$.

Watch Video Solution

Let

$$f\!:\!R o R\!:\!f(x)=x^2+ ext{2and} \quad g\!:\!R o R\!:\!g(x)=rac{x}{x-1}, x
eq 1.$$

Find f o g and g o f and hence find (f o g) (2) and (g o f) (-3)

1. Prove that the function $f\!:\!R o R$, given by f(x)=2x, is one-one

and onto.

Watch Video Solution

2. Prove that the function $f\!:\!N o N\!:\!f(x)=3x$ is one-one and into.

Watch Video Solution

3. Show that the function $f\!:\!R o R$, defined as $f(x)=x^2$, is

neither one-one nor onto.

4. show that the function

 $(i)f\!:\!N o N\!:\!f(x)=x^2$ is one-one into

(ii) $f\!:\!Z o Z\!:\!f(x)=x^2$ is many -one into .

5. Show that the fucntion $f\!:\!R o R\!:\!f(x)=x^4$ is neither one-one

not noto.

Watch Video Solution

6. Show that the function

(i)
$$f\!:\!N o N\!:\!f(x)=x^3$$
 is one -one into

(ii)
$$f\!:\!Z o Z\!:\!f(x)=x^3$$
 is oen-one into

7. Show that the function $f:R_0 o R_0$, defined as $f(x)=rac{1}{x}$, is oneone onto, where R_0 is the set of all non-zero real numbers. Is the result true, if the domain R_0 is replaced by N with co-domain being same as R_0 ?

Watch Video Solution

8. show that the function $f\!:\!R o R\!:\!f(x)=1+x^2$ is many -one

into.

Watch Video Solution

9. Let
$$f\!:\!R o R\!:\!f(x)=rac{2x-7}{4}$$
 be an invertible function . Find f^{-1}

Watch Video Solution

10. Let $f\!:\!R o R\!:\!f(x)=10x+3$.Find f^{-1}

11.
$$f \colon R o R \colon f(x) = egin{cases} 1 ext{ is x is rational} \ -1, ext{ if x is rational} \end{cases}$$

show that f is many -one and into.

Watch Video Solution

12. If $f(x)=x+7\,\, ext{and}\,\,g(x)=x-7$, $x\in R$ find (fog) (7).

Watch Video Solution

13. Let $f \colon R o R \colon f(x) = x^2$ and $g \colon R o R \colon g(x) = (x+1)$

Show that $(gof) \neq (fog)$

14. Let $f\!:\!R o R\!:\!f(x)=\left(3-x^3
ight)^{1/3}$. Find f o f

15. If $f\!:\!R o R$ is defined by f(x)=3x+2 , find f(f(x)) .

Watch Video Solution

16. Let $f: \{1, 3, 4\} \rightarrow \{1, 2, 5\}$ and $g: \{1, 2, 5\} \rightarrow \{1, 3\}$ be given by $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(1, 3), (2, 3), (5, 1)\}$. Write down gof

Watch Video Solution

17. Let $A = \{1, 2, 3, 4\}$ and $f = \{(1, 4), (2, 1), (3, 3), (4, 2)\}.$

Write down (f o f)

18. Find gof and gof when $f\!:\!R o R$ and $g\!:\!R o R$ is defined by $f(x)=8x^3$ and $g(x)=x^{1/3}$

Watch Video Solution

19. Let
$$f \colon R o R \colon f(x) = 10x + 7$$
. Find the function

$$g\!:\!R o R\!:\!gof = fog = I_g$$

Watch Video Solution

20. Let $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$ and let

 $f = \{(1,4), \ (2,5), \ (3,6)\}$ be a function from A to B . State whether f is one-one or not.

1. Let $A = \{2, 3, 4, 5\}$ and $B = \{7, 9, 11, 13\}$ and

let f = {(2,7),(3,9) ,(4,11),(5,13)}

Show that f is invertible and find f^{-1}

Watch Video Solution

2. show that the function $f\!:\!R o R\!:\!f(x)=2x+3$ is invertible and

find $f^{\,-1}$

Watch Video Solution

3. Let $f \colon Q o Q \colon f(x) = 3x - 4$ show that f is invertible and find f^{-1}

4. Let $f\colon R o R\colon f(x)=rac{1}{2}(3x+1)$.Show that f is invertible and find f^{-1}

Watch Video Solution

5. If
$$f(x)=rac{4x+3}{6x-4},\ x
eq rac{2}{3},\ ext{show that}\ fof(x)=x\ ext{for all}\ x
eq rac{2}{3}.$$

What is the inverse of f?

Watch Video Solution

6. show that the function f in A = R - $\{\frac{2}{3}\}$ defined as f(x) = $\frac{4x+3}{6x-4}$ is

one one and onto. Hence find f^{-1}

7. show that the function f on $A=R-\left\{rac{-4}{3}
ight\}$ onto itself defined

by

$$f(x) = rac{4x}{(3x+4)}$$
 is one-one and onto. Hence find f^{-1}

Watch Video Solution

8. Consider
$$f: R \to \infty$$
 given by $f(x) = 9x^2 + 6x - 5$. Show that f is invertible with $f^{-1}(y) = \left(\frac{\sqrt{y+6}-1}{3}\right)$.

Watch Video Solution

9. Let $f:N \to R$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f:N \to S$, where, S is the range of f, is invertible. Find the inverse of f.

10. Let $A=R-\{2\}$ and $B=R-\{1\}$. If $f\colon A o B$ is a mapping defined by $f(x)=rac{x-1}{x-2}$, show that f is bijective.

Watch Video Solution

11. Let f and g be two functions from R into R defined by f(x)

|x|+x and g(x)=x for all $x\in R$. Find fog and gof