

MATHS

BOOKS - RS AGGARWAL MATHS (HINGLISH)

FUNDAMENTAL CONCEPTS OF 3-DIMENSIONAL GEOMETRY

Solved Examples

1. Find the direction of a line whose direction ratio are $2,\ -6,3$

2. Find the direction cosines of each of the following vectors:

(i)
$$2\hat{i}+\hat{j}-2\hat{k}$$
 (ii) $-\hat{i}-\hat{k}$ (iii) $-\hat{j}$

Watch Video Solution

4. If a line makes anles α , β , γ with the coordinate axes, porve

that $\sin^2 lpha + \sin^2 eta + \sin^2 \gamma = 2$

5. If a line makes angles α, β and γ with the coordinate axes,

then prove that $\cos 2lpha + \cos 2eta + \cos 2\gamma = -1$

6. Find the direction cosines of a line which makes equal angles

with the coordinate axes.

7. A line make angle 60° and 45° with the positive direction of x-axis and y-axis repectively. What acute angle does it make with the z-axis?

8. Find the direction cosines of the vector

$$\vec{r} = (6\hat{i} + 2\hat{j} - 3\hat{k}).$$

A. $\frac{6}{7}, \frac{2}{7}, \frac{-3}{7}$
B. $\frac{6}{7}, \frac{2}{7}, \frac{3}{7}$
C. $\frac{6}{7}, \frac{-2}{7}, \frac{-3}{7}$
D. $\frac{-6}{7}, \frac{-2}{7}, \frac{-3}{7}$

Answer: A

9. Find the direction cosines of the line segment joining the

points A(7, -5, 9) and B(5, -3, 8).

10. Find the angles made by the vector $\overrightarrow{r}=\left(\hat{i}+\hat{j}-\hat{k}
ight)$ with

the coordinate axes.

$$\overrightarrow{r}_1 = \left(4\hat{i}-3\hat{j}+5\hat{k}
ight) ext{ and } \overrightarrow{r}_2 = \left(3\hat{i}+4\hat{j}+5\hat{k}
ight).$$

13. The direction cosines of the line which is perpendicular to the lines with direction cosines proportional to (1, -2, -2), (0, 2, 1)

Watch Video Solution

14.

A(8, 2, 0), B(4, 6, -7), C(-3, 1, 2) and D(-9, -2, 4)are four given point then find the angle between \overrightarrow{AB} and \overrightarrow{CD} .

If

Watch Video Solution

15. Find the angles of $\triangle ABC$ whose vertices are A((-1, 3, 2), B(2, 3, 5) and C(3, 5, -2).

16. Show that the points A(2, 3, 4), B(1, 2, 3) and C(3, 8, 11) are collinear.

0	Watch Video Solution

17. Find the coordinates of the foot of the perpendicular drawn

from the point A(1,2,1) to the line joining B(1,4,6) and C(5,4,4).

Watch Video Solution

18. If l_1 , m_1 , n_1 and l_2 , m_2 , n_2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are $m_1n_2 - m_2n_1$, $n_1l_2 - n_2l_1$, $l_1m_2 - l_2m_1$.

$$l^2 + m^2 - n^2 = 0$$

Watch Video Solution

20. Find the direction cosines of the two lines which are connected by th relations. l-5m+3n=0 and $7l^2+5m^2-3n^2=0$

21. If the direction cosines of a variable line in two adjacent points be l, M, n and $l + \delta l, m + \delta m + n + \delta n$ the small angle $\delta \theta$ as between the two positions is given by

22. Prove that the straight lines whose direction cosines are given by the relations al + bm + cn = 0 and fmn + gnl + hlm = 0 are Perpendicular to each other if $\frac{f}{a} + \frac{g}{b} + \frac{h}{c} = 0$, and parallel if $a^2f^2 + b^2g^2 + c^2h^2 - 2bcgh - 2cahf - 2abfg = 0$.

23. Show that the straight lines whose direction cosines are

given by the equations

$$al + bm + cn = 0$$
 and $(-) 2 + zm^2 = vn^2 + wn^2 = 0$ are
parallel or perpendicular as
 $\frac{a^2}{u} + \frac{b^2}{v} + \frac{c^2}{w} = 0$ or $a^2(v + w) + b^2(w + u) + c^2(u + v) = 0$.
(Vatch Video Solution

24. If the edges of a rectangular parallelepiped are a,b, c, prove that the angles between the four diagonals are given by $\cos^{-1}\left(\frac{\pm a^2 \pm b^2 \pm c^2}{a^2 + b^2 + c^2}\right)$. Watch Video Solution 25. Show that the angle between two diagonals of a cube is

$$\cos^{-1}\sqrt{\frac{1}{3}}$$

Watch Video Solution

26. A line makes angles α , β , γ and δ with the diagonals of a cube, prove that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3}$

Watch Video Solution

1. Find the direction of a line segment whose direction ratios

are:

2,-6, 3

2, -1, -2

-9, 6, -2

2. Find the direction ratios and the direction cosines of the line segment joining the points:

A(1,0,0) and B(0,1,1)

A(5,6,-3) and B(1,-6,3)

A(-5,7,-9) and B(-3,4,-6)

Watch Video Solution

3. Show that the line joining the point A(1,-1,2) and B(3, 4, -2) is perpendicular to the line joining the points C(0,3,2) and D(3,5,6).

4. Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, -1)and (4, 3, -1).

Watch Video Solution

5. Find the value of p for which the line through the points A(4, 1, 2) and B(5, p, 0) is perpendicular to the line through the points C(2, 1, 1) and D(3, 3, -1).

Watch Video Solution

6. If O be the origin and P(2,3,4) and $Q(1,\ -2,1)$ be any two

points, show that OPOQ.

7. Show that the line segment joining the points A(1, 2, 3) and B(4, 5, 7) is parallel to the line segment joining the points C(-4, 3, -6) and D(2, 9, 2).

8. If the line segment joining the points A(7, p, 2) and B(q, -2, 5) be parallel to the line segment joining the points C(2, -3, 5) and D(-6, -15, `11), find the value of p and q.

9. Show that the points (2,3,4), (-1,-2,1), (5,8,7) are

collinear.

12. Find the angle between the two lines whose direction cosines are: 2 -1 -2, 3 2 6

$$\frac{2}{3}, \frac{1}{3}, \frac{2}{3}$$
 and $\frac{3}{7}, \frac{2}{7}, \frac{3}{7}$

2, -3, 4 and 1, 2, 1.

Watch Video Solution

15. Find the angle between two lines whose direction ratios are

proportional to $1,1,2andig(\sqrt{3}-1ig),ig(-\sqrt{3}-1ig),4$.

16. Find the angle between the vectors

$$\vec{r}_1 = \left(3\hat{i} - 2\hat{j} + \hat{k}\right)$$
 and $\hat{r}_2 = \left(4\hat{i} + 5\hat{j} + 7\hat{k}\right)$.
Watch Video Solution

17. Find the angle made by the following vector with the coordinates axes:

$$egin{aligned} & \left(\hat{i}+\hat{j}+\hat{k}
ight) \ & \left(\hat{j}-\hat{k}
ight) \ & \left(\hat{i}-4\hat{j}+8\hat{k}
ight) \end{aligned}$$

Watch Video Solution

18. Find the coordinates of the foot of perpendicular drawn from th point A(1,8,4) to the line joining the points

$$B(0,\ -1,3) and C(2-3,\ -1) \cdot$$