©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - RS AGGARWAL MATHS (HINGLISH)

FUNDAMENTAL CONCEPTS OF 3-DIMENSIONAL

GEOMETRY

Solved Examples

1. Find the direction of a line whose direction ratio are $2,-6,3$
2. Find the direction cosines of each of the following vectors:
(i) $2 \hat{i}+\hat{j}-2 \hat{k}$ (ii) $-\hat{i}-\hat{k}$ (iii) $-\hat{j}$

- Watch Video Solution

3. If a line makes angles $90^{\circ}, \quad 135^{\circ}, \quad 45^{\circ}$ with the x, y and z axes respectively, find its direction cosines.

D Watch Video Solution

4. If a line makes anles α, β, γ with the coordinate axes, porve that $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$

- Watch Video Solution

5. If a line makes angles α, β and γ with the coordinate axes, then prove that $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=-1$

- Watch Video Solution

6. Find the direction cosines of a line which makes equal angles with the coordinate axes.

D Watch Video Solution

7. A line make angle 60° and 45° with the positive direction of x-axis and y-axis repectively. What acute angle does it make with the z-axis?

- Watch Video Solution

8. Find the direction cosines of the vector $\vec{r}=(6 \hat{i}+2 \hat{j}-3 \hat{k})$.
A. $\frac{6}{7}, \frac{2}{7}, \frac{-3}{7}$
B. $\frac{6}{7}, \frac{2}{7}, \frac{3}{7}$
C. $\frac{6}{7}, \frac{-2}{7}, \frac{-3}{7}$
D. $\frac{-6}{7}, \frac{-2}{7}, \frac{-3}{7}$

Answer: A

D Watch Video Solution

9. Find the direction cosines of the line segment joining the points $A(7,-5,9)$ and $B(5,-3,8)$.
10. Find the angles made by vector $\vec{r}=(\hat{i}+\hat{j}-\hat{k})$ with the coordinate axes.

- Watch Video Solution

11. Find the angles between the lines whose direction ratios are

3,2,-6 and 1,2,2.

D Watch Video Solution

12. Find the angle between the vector

$$
\vec{r}_{1}=(4 \hat{i}-3 \hat{j}+5 \hat{k}) \text { and } \vec{r}_{2}=(3 \hat{i}+4 \hat{j}+5 \hat{k})
$$

13. The direction cosines of the line which is perpendicular to the lines with direction cosines proportional to
$(1,-2,-2),(0,2,1)$

- Watch Video Solution

14.

$$
A(8,2,0), B(4,6,-7), C(-3,1,2) \text { and } D(-9,-2,4)
$$

are four given point then find the angle between $\overrightarrow{A B}$ and $\overrightarrow{C D}$.

- Watch Video Solution

15. Find the angles of $\triangle A B C$ whose vertices are $A((-1,3,2), B(2,3,5)$ and $C(3,5,-2)$.

- Watch Video Solution

16. Show that the points $A(2,3,4), B(1,2,3)$ and $C(3,8,11)$ are collinear.

D Watch Video Solution

17. Find the coordinates of the foot of the perpendicular drawn from the point $A(1,2,1)$ to the line joining $B(1,4,6)$ andC $(5,4,4)$.

- Watch Video Solution

18. If l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are $m_{1} n_{2}-m_{2} n_{1}, n_{1} l_{2}-n_{2} l_{1}, l_{1} m_{2}-l_{2} m_{1}$.

D Watch Video Solution

19. Find the acute angle between the two straight lines whose direction cosines are given by $l+m+n=0$ and $l^{2}+m^{2}-n^{2}=0$

- Watch Video Solution

20. Find the direction cosines of the two lines which are connected
by th relations.
$l-5 m+3 n=0 a n d 7 l^{2}+5 m^{2}-3 n^{2}=0$
21. If the direction cosines of a variable line in two adjacent points be l, M, n and $l+\delta l, m+\delta m+n+\delta n$ the small angle $\delta \theta$ as between the two positions is given by

- Watch Video Solution

22. Prove that the straight lines whose direction cosines are given by the
relations
$a l+b m+c n=0$ and $f m n+g n l+h l m=0$ are
Perpendicular to each other if $\frac{f}{a}+\frac{g}{b}+\frac{h}{c}=0$, and parallel if $a^{2} f^{2}+b^{2} g^{2}+c^{2} h^{2}-2 b c g h-2 c a h f-2 a b f g=0$.

- Watch Video Solution

23. Show that the straight lines whose direction cosines are
given
by the equations
$a l+b m+c n=0 a n d$ - $2+z m^{2}=v n^{2}+w n^{2}=0 \quad$ are
parallel
or
perpendicular as
$\frac{a^{2}}{u}+\frac{b^{2}}{v}+\frac{c^{2}}{w}=0$ or $a^{2}(v+w)+b^{2}(w+u)+c^{2}(u+v)=0$.

- Watch Video Solution

24. If the edges of a rectangular parallelepiped are a, b, c, prove that the angles between the four diagonals are given by $\cos ^{-1}\left(\frac{ \pm a^{2} \pm b^{2} \pm c^{2}}{a^{2}+b^{2}+c^{2}}\right)$.

(D) Watch Video Solution

25. Show that the angle between two diagonals of a cube is $\cos ^{-1} \sqrt{\frac{1}{3}}$.

D Watch Video Solution

26. A line makes angles α, β, γ and δ with the diagonals of a cube, prove that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$

- Watch Video Solution

Exercise

1. Find the direction of a line segment whose direction ratios are:
$2,-6,3$
$2,-1,-2$
$-9,6,-2$

- Watch Video Solution

2. Find the direction ratios and the direction cosines of the line segment joining the points:
$A(1,0,0)$ and $B(0,1,1)$
$A(5,6,-3)$ and $B(1,-6,3)$
$A(-5,7,-9)$ and $B(-3,4,-6)$

D Watch Video Solution

3. Show that the line joining the point $A(1,-1,2)$ and $B(3,4,-2)$ is perpendicular to the line joining the points $C(0,3,2)$ and $D(3,5,6)$.
4. Show that the line joining the origin to the point $(2,1,1)$ is perpendicular to the line determined by the points $(3,5,-1)$ and $(4,3,-1)$.

- Watch Video Solution

5. Find the value of p for which the line through the points $A(4,1,2)$ and $B(5, p, 0)$ is perpendicular to the line through the points $C(2,1,1)$ and $D(3,3,-1)$.

- Watch Video Solution

6. If O be the origin and $P(2,3,4)$ and $Q(1,-2,1)$ be any two points, show that $O P O Q$.
7. Show that the line segment joining the points $A(1,2,3)$ and $B(4,5,7)$ is parallel to the line segment joining the points $C(-4$,3, -6) and $D(2,9,2)$.

(D) Watch Video Solution

8. If the line segment joining the points $A(7, p, 2)$ and $B(q,-2,5)$ be parallel to the line segment joining the points $C(2,-3,5)$ and $D\left(-6,-15,{ }^{1} 11\right)$, find the value of p and q.

- Watch Video Solution

9. Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.

- Watch Video Solution

10. Show that the point $A(-2,4,7), B(3,-6,-8)$ and $C(1,-2,-2)$ are collinear.

- Watch Video Solution

11. Find the value of p for which the points $A(-1,3,2), B(-4,2,-2)$, and $C(5,5, p)$ are collinear.

- Watch Video Solution

12. Find the angle between the two lines whose direction cosines are:
$\frac{2}{3}, \frac{-1}{3}, \frac{-2}{3}$ and $\frac{3}{7}, \frac{2}{7}, \frac{6}{7}$.

- Watch Video Solution

13. Find the angle between the lines whose direction ratios are $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and $b c, c a, a b$.

- Watch Video Solution

14. Find the angle between the lines whose direction ratios are:
$2,-3,4$ and $1,2,1$.

- Watch Video Solution

15. Find the angle between two lines whose direction ratios are proportional to $1,1,2 \operatorname{and}(\sqrt{3}-1),(-\sqrt{3}-1), 4$.
16. Find the angle between the vectors
$\vec{r}_{1}=(3 \hat{i}-2 \hat{j}+\hat{k})$ and $\hat{r}_{2}=(4 \hat{i}+5 \hat{j}+7 \hat{k})$.

- Watch Video Solution

17. Find the angle made by the following vector with the coordinates axes:
$(\hat{i}+\hat{j}+\hat{k})$
$(\hat{j}-\hat{k})$
$(\hat{i}-4 \hat{j}+8 \hat{k})$

D Watch Video Solution

18. Find the coordinates of the foot of perpendicular drawn
from th point $A(1,8,4)$ to the line joining the points

$$
B(0,-1,3) \text { and } C(2-3,-1)
$$

Watch Video Solution

