©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - RS AGGARWAL MATHS (HINGLISH)

RELATIONS

Solved Examples

1. Let s be set of all in a plane and let R be a relation on s defined by
$\Delta_{1} S \Delta_{2} \Leftrightarrow \Delta_{11} \equiv \Delta_{2}$. then ,R is

- Watch Video Solution

2. Let A be the set of all lines in $x y$-plane and let R be relation in A, defind by
$R=\left\{\left(L_{1}, L_{2}\right): L_{1}| | L_{2}\right\}$.
show that R is an equivalence relation in A.
Find the set of all lines related to the line $Y=3 x+5$.

- Watch Video Solution

3. Let $R=\{(a, b): a, b \in Z$ and $(a-b)$ is even $\}$.

Then, show that R is an equivalence relation on Z.

- Watch Video Solution

4. Let L be the set of all lines in a plane and R be the relation in L defined as $R=\left\{\left(L_{1}, L_{2}\right):\left(L_{1}\right.\right.$ is perpendicular to $\left.\left.\mathrm{L}_{2}\right)\right\}$. Show that R is symmetric but neither reflexive nor transitive.

- Watch Video Solution

5. Let a relation R_{1} on the set R of real numbers be defined as $(a, b) \in R_{11}+a b>0$ for all $a, b \in R$. Show that R_{1} is reflexive and
symmetric but not transitive.

D Watch Video Solution

6. Let S be the set of all real numbers and let R be a relation in s, defined by
$R=\{(a, b): a \leq b\}$.

Show that R is reflexive and transitive but not symmetric .

- Watch Video Solution

7. Let S be the set of all real numbers and let R be a relation in s,defined
by
$R=\left\{(a, b): a \leq b^{2}\right\}$.
show that R satisfies none of reflexivity, symmetry and transitivity .

D Watch Video Solution

8. Let S be the set of all real numbers and let R be relation in S, defied by $R=\left\{(a, b): a \leq b^{3}\right\}$.

Show that R satisfies none reflexivity, symmetry and transitivity .

- Watch Video Solution

9. Let N be the set of all natural niumbers and let R be a relation in N, defined by
$R=\{(a, b): a$ is a factor of b$\}$.
then, show that R is reflexive and transitive but not symmetric .

- Watch Video Solution

10. Let N be the set of all natural numbers and let R be relation in N . Defined by
$R=\{(a, b): \mathrm{a}$ is a multiple of b$\}$.
show that R is reflexive transitive but not symmetric .
11. Let s be the set of all sets and let $R=\{(a, B): a \subset B\}$, i.e., . A is a proper subset of B . Show that R is (i) Transitive (ii) Not reflexive (iii) not symmetric .

- Watch Video Solution

12. Give an example of a relation which is
(i) Reflexive and transitive but not symmetric,
(ii) symmetric and transitive but not Reflexive,
(iii) reflexive and symmetric not transitive,
(iv) symmetric but neither reflexive nor transitive,
(v) transitive but neither reflexive nor symmetric.

- Watch Video Solution

13. Let N be the set of all natural numbers and let R be a relation on $N x N$
, defined by $(a, b) R(c, d) a d=b c$ for all $(a, b),(c, d) \in N x N$.

- Watch Video Solution

14. If R_{1} and R_{2} are equivalence relations in a set A , show that $R_{1} \cap R_{2}$ is also an equivalence relation.

- Watch Video Solution

15. Show that the union of two equivalence relations on a set is not necessarily an equivalence relation on the set.

- Watch Video Solution

16. On the set Z of all integers, consider the relation
$R=\{(a, b):(a-b)$ is divisible by 3$\}$.

Show that R is an equivalence relation on z .
Also find the partitioning of Z into mutually disjoint equivalence classes .

- View Text Solution

17. Let $A=\{x \in Z: 0 \leq x \leq 12\}$.
show that $R=\{(a, b):|a-b|$ is a multiple of 4 is
(i) reflexive, (ii) symmetric and (iii) transitive.

Find the set of elements related to 1 .

- Watch Video Solution

18. Let $A=\{1,2,3, \ldots, 9\}$ and R be the relation on $A \times A$ defined by $(a, b) R(c, d)$ if $a+d=b+c$ for all $(a, b),(c, d) \in A \times A$. Prove that R is an equivalence relation and also obtain the equivalence class
$\left[\begin{array}{ll}2 & 5\end{array}\right]$.

- Watch Video Solution

1. Find the domain and range of the relation $R=\{(-1,1),(1,1),(-2,4),(2,4)\}$.

- Watch Video Solution

2. Let $R=\left\{\left(a, a^{3}\right): a\right.$ is a prime number less than 5$\}$.
find the range of R.

- Watch Video Solution

3. Let $R=\left\{\left(a, a^{3}\right): a\right.$ is a prime number less than 10$\}$.
find (i) R (ii) dom (R) (iii) Range (R).

- Watch Video Solution

4. Let $\mathrm{R}=\{x, y): x+2 y=8\}$ be a relation on N. write the range of R.

Watch Video Solution

5. Let $R=\{(a, b): a, b \in N$ and $a+3 b=12\}$.
find the domain and range of R.

- Watch Video Solution

6. Let $R=\{(a, b): b=|a-1|, a \in Z$ and $|a|<3\}$.

Find the domain and range of R.

- Watch Video Solution

7. Let $R=\left\{\left(a, \frac{1}{a}\right): A \in N\right.$ and $\left.1<a<5\right\}$.

Find the domain and range of R .
8. Let $R=\{(a, b): a, b \in N$ and $b=a+5, a<4\}$. find the domain and range of R.
A. domain $(R)=\{1,2,3\}$ and range $(R)=\{6,2,8\}$
B. domain $(R)=\{1,2,3\}$ and range $(R)=\{6,7\}$
C. domain $(R)=\{1,2,3\}$ and range $(R)=\{6,7,8\}$
D. domain $(R)=\{2,3\}$ and range $(R)=\{6,7,8\}$

Answer: C

- Watch Video Solution

9. Let S be the set of all sets and let $R=\{(A, B): A \subset B\}$,i.e.,.$A$ is a proper subset of B. Show that R is (i) Transitive (ii) Not reflexive (iii) not symmetric.
10. Let A be the set of all points in a plane and let O be the origin Let $R=\{(p, q): O P=O Q\}$. then, R is

- Watch Video Solution

11. Show that the relation geq on the set R of all real numbers is reflexive and transitive but not symmetric.

- Watch Video Solution

12.

$A=(1,2,3,4,5,6\}$ and $\operatorname{Let} R=\{(a, b): a, b \in A$ and $B=a+1\}$.
Show that R is (i) not reflexive (ii) not symmetric and (iii) not transititve .

- Watch Video Solution

Exercise 1 B

1. Let A and B be two nonempty sets.
(i) What do you mean by a relation from A to B ?
(ii) What do you mean by the domain and range of a relation?

- Watch Video Solution

2. Let A be the set of all triangles in a plane show that the relation $R=\left\{\left(\Delta_{1}, \Delta_{2}\right): \Delta_{1} \sim \Delta_{2}\right\}$ is an equivalence relation on A.

- Watch Video Solution

3. Let Z be the set of integers. Show that the relation
$R=\{(a, b): a, b \in Z$ and $a+b$ is even $\}$ is an equivalence relation on Z.

- Watch Video Solution

4. Let $R=\{(a, b): a, b$ in Z and $(a-b)$ is divisible by 5$\}$. Show that R is an equivalence relation on Z .

Watch Video Solution

5. show that R is an equivaence relation R defined on the set $S=\{1,2,3,4,5\}$ given by $R=\{(a, b):|a-b|$ is even $\}$ is an equivalence relation.

- Watch Video Solution

6. Prove that the relation R on the set $N \times N$ defined by $(a, b) R(c, d) a+d=b+c \quad$ for \quad all $\quad(a, b),(c, d) \in N \times N \quad$ is \quad an equivalence relation.

- Watch Video Solution

7. Let S be the set of all rest numbers and lets
$R=\{(a, b): a, b \in S$ and $a= \pm b\}$.
Show that R is an equivalence relation on S.

- Watch Video Solution

8. Let S be the set of all points in a plane and let R be a relation in S defined by $R=\{(a, b): d(A, B)<2$ units $\}$ where $d(A, B)$ is the distance between the points A and B.

Show that R is reflexive and symmetric but not transitive.

- View Text Solution

9. Let S be the set of all real numbers sjow that the relation $R=\left\{(a, b): a^{2}+b^{2}=1\right\}$ is symmetric but neither reflextive nor transitive.
10. Let $R=\left\{(a, b): a, b \in N\right.$ and $\left.a=b^{2}\right\}$, Show that R satisfies none of reflexivity, symmetry and transitivity.

- Watch Video Solution

11. Let $R=\{(a, b): a, b \in N, a>b\}$.

Show that R is a binary relation which is neither reflexive, nor symmetric.
Show that R is transitive.

- Watch Video Solution

12. Let $A=\{1,2,3\}$ and $R=\{(1,1),(2,2),(3,3),(1,2),(2,3)\}$. show that R is reflexive but neither symmetric nor transitive .

- Watch Video Solution

13.

$$
A=\{1,2,3,4\} \text { and } R=\{(1,1),(2,2),(3,3),(4,4),(1,2),(1,3),(3,2)\}
$$ show that R is reflexive and transitive but not symmetric .

- Watch Video Solution

Objective Questions

1.

$A=\{1,2,3\}$ and $\operatorname{Let} R=\{(1,1),(2,2),(3,3),(1,3),(3,2),(1,2)\}$
then R is
A. Reflexive and symmetric but transitive
B. Reflexive and transitive but not symmetric
C. symmetric and transitive but not reflexive
D. An equivalence relation

Answer: B

(D) Watch Video Solution

2. $\operatorname{Let} A=\{a, b, c\}$ and $\operatorname{Let} R=\{(a, a),(a, b),(b, a)\}$.then, Ris
A. Reflexive and symmetric but transitive
B. Reflexive and transitive but not symmetric
C. symmetric and transitive but not reflexive
D. An equivalence relation

Answer: C

- Watch Video Solution

3.

$A=\{1,2,3\}$ and $\operatorname{Let} R=\{(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2)\}$ then , R is
A. Reflexive and symmetric but transitive
B. symmetric and transitive but not reflexive
C. Reflexive and transitive but not symmetric
D. An equivalence relation

Answer: A

- Watch Video Solution

4. Let L be the set of all lines in a plane and let R be a relation defined on
L by the rule $(x, y) \varepsilon R \rightarrow x$ is perpendicular to y. Then
A. Reflexive
B. Symmetric
C. Transitive
D. An equivalence relation

Answer: B

5. Let S denote set of all integers. Define a relation R on $S: a R b$ if $a b \geq 0$ where $a, b \in S$. Then R is :
A. Reflexive and symmetric but not transitive
B. Reflexive and transitive but not symmetric
C. symmetric and transitive but not reflexive
D. An equivalence relation

Answer: D

- Watch Video Solution

6. Let \mathbb{Z} be the set of all integers and let R be a relation on \mathbb{Z} defined by $a R b \Leftrightarrow(a-b)$ is divisible by 3 . then.R is
A. Reflexive and symmetric but transitive
B. Reflexive and transitive but not symmetric
C. symmetric and transitive but not reflexive
D. An equivalence relation

Answer: D

- Watch Video Solution

7. Let R be a relation on the set N of naturalnumbers defined by $n R m \Leftrightarrow n$ is a factor of m (ie. nim$)$ Then R is
A. Reflexive and symmetric but transitive
B. Reflexive and transitive but not symmetric
C. symmetric and transitive but not reflexive
D. An equivalence relation

Answer: B

- Watch Video Solution

8. Let Z be the set of all integers and let R be a relation on Z defined by $a R b \Rightarrow a \geq b$. then R is
A. symmetric and transitive but not reflexive
B. Reflexive and symmetric but not transitive
C. Reflexive and transitive but not symmetric
D. An equivalence relation

Answer: C

- Watch Video Solution

9. Let S be the set of all real numbers and Let R be a relations on s defined by $a R B \Leftrightarrow|a| \leq b$. then , R is
A. Reflexive and symmetric but transitive
B. symmetric and transitive but not reflexive
C. Reflexive and transitive but not symmetric
D. None of these

Answer: D

- Watch Video Solution

10. Let S be set of all real numbers and let R be relation on S, defined by
$a R b \Leftrightarrow|a-b| \leq 1$. then R is
A. Reflexive and symmetric but transitive
B. Reflexive and transitive but not symmetric
C. symmetric and transitive but not reflexive
D. An equivalence relation

Answer: A

- Watch Video Solution

11. Let S be the set of all real numbers. Then the relation $R=$ $\{(a, b): 1+a b>0\}$ on S is
A. Reflexive and symmetric but transitive
B. Reflexive and transitive but not symmetric
C. symmetric and transitive but not reflexive
D. None of these

Answer: A

- Watch Video Solution

12. Let s be set of all Δ in a plane and let R be a relation on s defined by
$\Delta_{1} S \Delta_{2} \Leftrightarrow \Delta_{1} \equiv \Delta_{2}$. then, R is
A. Reflexive and symmetric but transitive
B. Reflexive and transitive but not symmetric
C. symmetric and transitive but not reflexive
D. An equivalence relation

Answer: D

- Watch Video Solution

13. Let S be set of all numbers and let R be a relation on S defined by
$a R b \Leftrightarrow a^{2}+b^{2}=1$ then, R is
A. symmetric and transitive but not reflexive
B. Reflexive and symmetric but transitive
C. Reflexive and transitive but not symmetric
D. None of these

Answer: D

D Watch Video Solution

14. Let R be a relation over the set $N \times N$ and it is defined by $(a, b) R(c, d) \Rightarrow a+d=b+c$. Then R is
A. Reflexive and symmetric but transitive
B. Reflexive and transitive but not symmetric
C. symmetric and transitive but not reflexive
D. An equivalence relation

Answer: D

- Watch Video Solution

15. Let A be the set of all points in a plane and let O be the origin Let
$R=\{(p, q): O P=O Q\}$. then, R is
A. Reflexive and symmetric but not transitive
B. Reflexive and transitive but not symmetric
C. symmetric and transitive but not reflexive
D. An equivalence relation

Answer: D

- Watch Video Solution

16. Let Q be the set of all rational numbers and * be the binary operation , defined by $a^{*} b=a+a b$ for all $a, b \in Q$. then ,
A. * is commutative but not associative
B. *is Associative but not commmutative
C. * is neither commutative nor associative
D. *is both commutative and associative

Answer: C

- Watch Video Solution

17. Let $a^{*} b=a+a b$ for all $a, b \in Q$. then
A. * is not a binary composition
B. * is not commutative
C. * is commutative but not associative '
D. * is both commutative and associative

Answer: B

D Watch Video Solution

18. Let Q^{+}be the set of all positive rationals then the operation * on Q^{+} defined by a*b $=\frac{a b}{2}$ for all $a, b \in Q^{+}$is
A. Commutative but not associative
B. Associative but not commmutative
C. Neiter commutative nor associative
D. Both commutative and accociative

Answer: D

- Watch Video Solution

19. Let Z be the set of all integers and let $a * b=a-b+a b$. Then * is
A. Commutative but not associative
B. Associative but not commmutative
C. Neiter commutative nor associative
D. Both commutative and associative

Answer: C

- Watch Video Solution

20. Let Z be the set of all integers, then, the operation * on Z defined by
$a * b=a+b-a b$ is
A. Commutative but not associative
B. Associative but not commmutative
C. Neiter commutative nor associative
D. Both commutative and accociative

Answer: D

- Watch Video Solution

21. Let Z^{+}be the set of all positive integers, then the operation * on Z^{+} defined by $a^{*} b=a^{b}$ is
A. Commutative but not associative
B. Associative but not commutative
C. Neither commutative nor associative
D. Both commutative and associative

Answer: C

22. Define * on $Q-\{-1\}$ by a * $\mathrm{b}=\mathrm{a}+\mathrm{b}+\mathrm{ab}$ then ,*on $\mathrm{Q}-\{-1\}$ is
A. Commutative but not associative
B. Associative but not commmutative
C. Neiter commutative nor associative
D. Both commutative and accociative

Answer: D

- Watch Video Solution

