d'doubtnut

India's Number 1 Education App

MATHS

BOOKS - RS AGGARWAL MATHS (HINGLISH)

SCALAR, OR DOT, PRODUCT OF VECTORS

Solved Examples

1. Let \vec{a} and \vec{b} be two given vectors such that $|\vec{a}|=3,|\vec{b}|=4$ and the angle between them is 60°. Find $\vec{a} \cdot \vec{b}$.

- Watch Video Solution

2. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2 respectively and such that $\vec{a} \vec{b}=\sqrt{6 .}$
3. If \vec{a} and \vec{B} are two vectors such that $|\vec{a}|=|\vec{b}|=\sqrt{2}$ and $\vec{a} \cdot \vec{b}=-1$, find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

4. Write the projection of the vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $2 \hat{i}-3 \hat{j}+6 \hat{k}$.

- Watch Video Solution

5. Write the projection of $\vec{b}+\vec{c}$ on \vec{a}, when $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$.
6. Find λ, when the projection of
$\vec{a}=\lambda \hat{i}+\hat{j}+4 \hat{k}$ on $\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$ is 4 units.

- Watch Video Solution

7. For what value λ are the vectors
$\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$ perpendicular to each other?

Watch Video Solution

8. The scalar product of the vector $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of the vectors
$\vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\vec{c}=\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to 1 . Find the value of λ and hence find the unit vector along $\vec{b}+\vec{c}$.
9. Dot products of a vector with vectors $\hat{i}-\hat{j}+\hat{k}, 2 \hat{i}+\hat{j}-3 \hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$ are respectively 4,0 and 2 . Find the vector.
A. $(2 \hat{i}-\hat{j}+\hat{k})$
B. $(3 \hat{i}-2 \hat{j}+4 \hat{k})$
C. $(3 \hat{i}-5 \hat{j}+\hat{k})$
D. $(5 \hat{i}-3 \hat{j}+\hat{k})$

Answer: A

- Watch Video Solution

10. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$.

Find a vector \vec{p} which is perpendicular to both \vec{a} and \vec{b} and $\vec{p} \cdot \vec{c}=18$.
11. Find a vector whose magnitude is 3 units and which is perpendicular to each of the vectors $\vec{a}=3 \hat{i}+\hat{j}-4 \hat{k}$ and $\vec{b}=6 \hat{i}+5 \hat{j}-2 \hat{k}$.

- Watch Video Solution

12. Find $|\vec{a}-\vec{b}|$, if two vectors \vec{a} and \vec{b} are such that $|\vec{a}|=2$, and $|\vec{b}|=3$ and $|\vec{a} \cdot \vec{b}|=4$

- Watch Video Solution

13. If \vec{a} makes equal angles with the coordinate axes and has magnitude 3,find the angle between \vec{a} and each of the three coordinate axes.

- Watch Video Solution

14. If a unit vector \vec{a} makes angles $. \pi / 4$ with $\hat{i}, .^{\pi} / 3$ with \hat{j} and an acute angle θ with \hat{k} then find the value of θ. Also, find the scalar and
vector components of a along the axes.

- Watch Video Solution

15. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+\vec{b}$ is also a unit vector then find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

16. If sum of two unit vectors is a unit vector; prove that the magnitude of their difference is $\sqrt{3}$

- Watch Video Solution

17. If $\bar{a}, \mathrm{~b}, \mathrm{c}$ are three vectors such that $|\vec{a}|=5,|\vec{b}|=12$ and $|\vec{c}|=13$ and $\vec{a}+\vec{b}+\vec{c}=0$ then $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$
18. Let \vec{a}, \vec{b}, and \vec{c} are vectors such that $|\vec{a}|=3,|\vec{b}|=4 a n d|\vec{c}|=5$, and $(\vec{a}+\vec{b})$ is perpendicular to $\vec{c},(\vec{b}+\vec{c})$ is perpendicular to \vec{a} and $(\vec{c}+\vec{a})$ is perpendicular to \vec{b}. Then find the value of $|\vec{a}+\vec{b}+\vec{c}|$.

(Watch Video Solution

19. If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular vectors of equal magniltgude, prove that $\vec{a}+\vec{b}+\vec{c}$ is equally inclined with vectors \vec{a}, \vec{b}, and \rightarrow also find the angle.

- Watch Video Solution

20. If \vec{a}, \vec{b}, and \vec{c} are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$, then find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$
21. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a} \vec{b}=\vec{a} \vec{c}$ then show that $\vec{a}=0$ or,$\vec{b}=c$ or $\vec{a} \perp(\vec{b}-\vec{c})$.

- Watch Video Solution

22. Let \vec{a} and \vec{b} be two nonzero vector. Prove that
$\vec{a} \perp \vec{b} \Leftrightarrow|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$.

(Watch Video Solution

23. express the vector $\vec{a}=5 \hat{i}-2 \hat{j}+5 \hat{k}$ as sum of the vectors such that one is parallel to the vector $\vec{b}=3 \hat{i}+\hat{k}$ and other is perpendicular to \vec{b}.

- Watch Video Solution

24. Find the values of λ for which the angle between the vectors $\vec{a}=2 \lambda^{2} \hat{i}+4 \lambda \hat{j}+\hat{k}$ and $\vec{b}=7 \hat{i}-2 \hat{j}+\lambda \hat{k}$ is obtuse.

- Watch Video Solution

25. Let $A(0,1,1), B(3,1,5)$ and $C(0,3,3)$ be the vertices of a $\triangle A B C$. Using vectors, show that $\triangle A B C$ is right angled at C .

- Watch Video Solution

26. Show that the points, A, B and C having position vectors $(2 \hat{i}-\hat{j}+\hat{k}),(\hat{i}-3 \hat{j}-5 \hat{k})$ and $(3 \hat{i}-4 \hat{j}-4 \hat{k})$ respectively are the vertices of a rightangled triangle. Also, find the remaining angles of the triangle.

- Watch Video Solution

27. Let $(\hat{i}+\hat{j}+\hat{k}),(2 \hat{i}+5 \hat{j}),(3 \hat{i}+2 \hat{j}-3 \hat{k})$ and $(\hat{i}-6 \hat{j}-\hat{k})$ be the position vectors of points A, B, C, D respectively. Find the angle between AB and CD . Hence, show that $A B|\mid C D$.

- Watch Video Solution

Exercise 23

1. Find $\vec{a} \cdot \vec{b}$ when
(i) $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}$ and $\vec{b}=3 \hat{i}-4 \hat{j}-2 \hat{k}$
(ii) $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{b}=-2 \hat{j}+4 \hat{k}$
(iii) $\vec{a}=\hat{i}-\hat{j}+5 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{k}$

Watch Video Solution

2. Find the value of λ for which \vec{a} and \vec{b} are perpendicular, where
(i) $\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\vec{b}=(\hat{i}-2 \hat{j}+3 \hat{k})$
(ii) $\vec{a}=3 \hat{i}-\hat{j}+4 \hat{k}$ and $\vec{b}=-$ lamnda $\hat{i}+3 \hat{j}+3 \hat{k}$
(iii) $\vec{A}=2 \hat{i}+4 \hat{j}-\hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+\lambda \hat{k}$
(iv) $\vec{a}=3 \hat{i}+2 \hat{j}-5 \hat{k}$ and $\vec{b}=-5 \hat{j}+\lambda \hat{k}$

- Watch Video Solution

3. (i) If $\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$, show that $(\vec{a}+\vec{b})$ is perpendicular to $(\vec{a}-\vec{b})$.
(ii) If $\vec{a}=(5 \hat{i}-\hat{j}-3 \hat{k})$ and $\vec{b}=(\hat{i}+3 \hat{j}-5 \hat{k})$ then show that $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ are orthogonal.

- Watch Video Solution

4. If $\vec{a}=\widehat{a}=\hat{i}-\hat{j}+7 \hat{k}$ and $\vec{b}=5 \hat{j}-\hat{j}+\lambda \hat{k}$, then find the value of λ, so that $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular vectors.

- Watch Video Solution

5.

Show
that
the
$\vec{a}=\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k}), \vec{b}=\frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k}), \vec{c}=\frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k})$
are mutually perpendicular unit vectors.

- Watch Video Solution

6. Let $\vec{A}=4 \hat{i}+5 \hat{j}-\hat{k}, \vec{b}=\hat{i}-4 \hat{j}+5 \hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}-\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b}, and is such that $\vec{d} . V e c(c)=21$.

- Watch Video Solution

7. Let $\vec{a}=(2 \hat{i}+3 \hat{j}+2 \hat{k})$ and $\vec{b}=(\hat{i}+2 \hat{j}+\hat{k})$.

Find the projection of (i) \vec{a} on \vec{b} and (ii) \vec{b} on \vec{a}.

- Watch Video Solution

8. Find the projection of $(8 \hat{i}+\hat{j})$ in the direction of $(\hat{i}+2 \hat{j}-2 \hat{k})$

- Watch Video Solution

9. Write the projection of vector $\hat{i}+\hat{j}+\hat{k}$ along the vector \hat{j}.

- Watch Video Solution

10. (i) Find the projection of \vec{a} on \vec{b} if $\vec{a} \cdot \vec{b}=8$ and $\vec{b}=(2 \hat{i}+6 \hat{j}+3 \hat{k})$.
(ii) Write the projection of the vector $(\hat{i}+a t(j))$ on the vector $(\hat{i}-\hat{j})$

- Watch Video Solution

11. Find the angle between the vectors \vec{a} and \vec{b}, when
(i) $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+\hat{k}$
(ii) $\vec{a}=3 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}-2 \hat{j}+4 \hat{k}$
(iii) $\vec{a}=\hat{i}-\hat{j}$ and $\vec{b}=\hat{j}+\hat{k}$.

- Watch Video Solution

12. If $\vec{a}=(\hat{i}+2 \hat{j}-3 \hat{k})$ and $\vec{b}=(3 \hat{i}-\hat{j}+2 \hat{k})$ then calculate the angle between $(2 \vec{a}+\vec{b})$ and $(\vec{a}+2 \vec{b})$.

- Watch Video Solution

13. if \vec{a} is a unit vector and $(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8$ then $|\vec{x}|$

- Watch Video Solution

14. Find the angles which the vector $\vec{a}=3 \hat{i}-6 \hat{j}+2 \hat{k}$ makes with the coordinate axes.

- Watch Video Solution

15. Show that the vector $\hat{i}+\hat{j}+\hat{k}$ is equally inclined with the coordinate axes.

- Watch Video Solution

16. Find a vector \vec{a} of magnitude $5 \sqrt{2}$ making an angle $\frac{\pi}{4}$ with x-axis, $\frac{\pi}{2}$ with y -axis and an acute angle θ with z -axis

- Watch Video Solution

17. Find the angle between $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$, if
$\vec{a}=(2 \hat{i}-\hat{j}+3 \hat{k})$ and $\vec{b}=(3 \hat{i}+\hat{j}+2 \hat{k})$.

- Watch Video Solution

18. Express the vector $\vec{a}=(6 \hat{i}-3 \hat{j}-6 \hat{k})$ as sum of two vectors such that one is parallel to the vector $\vec{B}=(\hat{i}+\hat{j}+\hat{k})$ and the other is
perpendicular to \vec{b}.

- Watch Video Solution

19. Prove that $(\rightarrow a+\rightarrow b) \rightarrow a \dot{+} \rightarrow c|\rightarrow a|^{2}+|\rightarrow b|^{2}$, if and only if $\rightarrow a, \rightarrow b$ are perpendicular, given $\rightarrow a \neq \rightarrow 0, \rightarrow b \neq \rightarrow 0$

- Watch Video Solution

20. If $\vec{a}+\vec{b}+\vec{c}=0,|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$, then find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

21. Find the angle between \vec{a} and \vec{b}, when
(i) $|\vec{a}|=2,|\vec{b}|=1$ and $\vec{A} \cdot \vec{B}=\sqrt{3}$
(ii) $|\vec{a}|=|\vec{b}|=\sqrt{2}$ and
$\vec{a} \cdot \vec{b}=-1$.
22. Find $|\rightarrow a-\rightarrow b|$, if two vector $\rightarrow a$ and $\rightarrow b$ are such that $|\rightarrow a|=2,|\rightarrow b|=3$ and $\rightarrow a \longrightarrow b \mid=4$.

- Watch Video Solution

23. Find $|\vec{a}|$ and $|\vec{b}|$, if : $(\vec{a}+\vec{b}) \vec{a}-\vec{b}=8$ and $|\vec{a}|=8|\vec{b}|$

- Watch Video Solution

24. If \widehat{a} and \hat{b} are unit vectors inclined at angle θ then prove that $\frac{\cos \theta}{2}=\frac{1}{2}|\widehat{a}+\hat{b}| \frac{\tan \theta}{2}=\frac{|\widehat{a}-\hat{b}|}{|\widehat{a}+\hat{b}|}$

- Watch Video Solution

25. Dot product of a vector with $\hat{i}+\hat{j}-3 \hat{k}, \hat{i}+3 \hat{j}-2 \hat{k}$ and $2 \hat{i}+\hat{j}+4 \hat{k}$ are 0,5 and 8 respectively. Find the vector. Dot products of a vector with vectors $\hat{i}-\hat{j}+\hat{k}, 2 \hat{i}+\hat{j}-3 \hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$ are respectively 4,0 and 2 . Find the vector.

- Watch Video Solution

26. If $\overrightarrow{A B}=(3 \hat{i}-\hat{j}+2 \hat{k})$ and the coordinates of A are $(0,-2,-1)$, find the coordinates of B.

- Watch Video Solution

27. If $A(2,3,4), B(5,4,-1), C(3,6,2)$ and $D(1,2,0)$ be four points, show that $\overrightarrow{A B}$ is perpendicular to $\overrightarrow{C D}$.

- Watch Video Solution

28. Find the value of λ. If the vectors $2 \hat{i}+\lambda \hat{j}+3 \hat{k}$ and $3 \hat{i}+2 \hat{j}-4 \hat{k}$ are perpendicular to each other.

- Watch Video Solution

29. Show that
$\vec{a}=3 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{i}-3 \hat{j}+5 \hat{k}, \vec{c}=2 \hat{i}+\hat{j}-4 \hat{k}$ form a right angled triangle.

- Watch Video Solution

30. Three vertices of a triangle are $A(0,-1,-2), B(3,1,4)$ and $C(5,7,1)$. Show that it is a right-angled triangle. Also find its other two angles.

- Watch Video Solution

31. If the position vectors of the vertices a, B and C of a $\operatorname{Tri} \angle A B C$ be $(1,2,3),(-1,0,0)$ and $(0,1,2)$ respectively then find $\angle A B C$.

- Watch Video Solution

32. If \vec{a} and \vec{b} are two non-collinear unit vectors such that $|\vec{a}+\vec{b}|=\sqrt{3}$, find $(2 \vec{a}-5 \vec{b}) 3 \vec{a}+\vec{b}$.

- Watch Video Solution

33. If \vec{a}, \vec{b}, are two vectors such that $|\vec{a}+\vec{b}|=|\vec{a}|$, then prove that $2 \vec{a}+\vec{b}$ is perpendicular to \vec{b}.

- Watch Video Solution

34. If $\vec{a}=3 \hat{i}-\hat{j}$ and $\vec{b}=2 \hat{i}+\hat{j}-3 \hat{k}$, then express \vec{b} in the from $\vec{b}=\vec{b}_{1}+\vec{b}_{2}$, where $\vec{b}_{1}| | \vec{a}$ and $\vec{b}_{2} \perp \vec{a}$.
