

MATHS

BOOKS - RS AGGARWAL MATHS (HINGLISH)

SCALAR, OR DOT, PRODUCT OF VECTORS

Solved Examples

1. Let \overrightarrow{a} and \overrightarrow{b} be two given vectors such that $\left|\overrightarrow{a}\right| = 3$, $\left|\overrightarrow{b}\right| = 4$ and the angle between them is 60° . Find \overrightarrow{a} . \overrightarrow{b} .

Watch Video Solution

2. Find the angle between two vectors $\overrightarrow{a} and \overrightarrow{b}$ with magnitudes $\sqrt{3}$ and 2 respectively and such that $\overrightarrow{a} \overrightarrow{b} = \sqrt{6}$.

4. Write the projection of the vector $\hat{i}+3\hat{j}+7\hat{k}$ on the vector $2\hat{i}-3\hat{j}+6\hat{k}$.

Watch Video Solution

5. Write the projection of
$$\overrightarrow{b} + \overrightarrow{c}$$
 on \overrightarrow{a} , when
 $\overrightarrow{a} = 2\hat{i} - 2\hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{i} + 2\hat{j} - 2\hat{k} and \ \overrightarrow{c} = 2\hat{i} - \hat{j} + 4\hat{k}$.

6. Find λ , when the projection of $\vec{a} = \lambda \hat{i} + \hat{j} + 4\hat{k} \text{ on } \vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k} \text{ is 4 units.}$ Watch Video Solution 7. For what value λ are the vectors $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ perpendicular to each other? Watch Video Solution

8. The scalar product of the vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of the vectors $\vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\vec{c} = \lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to 1. Find the value of λ and hence find the unit vector along $\vec{b} + \vec{c}$.

9. Dot products of a vector with vectors $\hat{i} - \hat{j} + \hat{k}$, $2\hat{i} + \hat{j} - 3\hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$ are respectively 4, 0 and 2. Find the vector.

A.
$$ig(2\hat{i}-\hat{j}+\hat{k}ig)$$

B. $ig(3\hat{i}-2\hat{j}+4\hat{k}ig)$
C. $ig(3\hat{i}-5\hat{j}+\hat{k}ig)$
D. $ig(5\hat{i}-3\hat{j}+\hat{k}ig)$

Answer: A

10. Let
$$\overrightarrow{a} = \hat{i} + 4\hat{j} + 2\hat{k}, \ \overrightarrow{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$$
 and $\overrightarrow{c} = 2$

10. Let $\overrightarrow{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\overrightarrow{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\overrightarrow{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector \overrightarrow{p} which is perpendicular to both \overrightarrow{a} and \overrightarrow{b} and $\overrightarrow{p} \cdot \overrightarrow{c} = 18$.

Watch Video Solution

11. Find a vector whose magnitude is 3 units and which is perpendicular

to each of the vectors $\overrightarrow{a}=3\hat{i}+\hat{j}-4\hat{k}$ and $\overrightarrow{b}=6\hat{i}+5\hat{j}-2\hat{k}.$

Watch Video Solution

12. Find
$$\left| \overrightarrow{a} - \overrightarrow{b} \right|$$
, if two vectors \overrightarrow{a} and \overrightarrow{b} are such that $\left| \overrightarrow{a} \right| = 2$, and $\left| \overrightarrow{b} \right| = 3$ and $\left| \overrightarrow{a} \cdot \overrightarrow{b} \right| = 4$

Watch Video Solution

13. If \overrightarrow{a} makes equal angles with the coordinate axes and has magnitude 3,find the angle between \overrightarrow{a} and each of the three coordinate axes.

Watch Video Solution

14. If a unit vector \overrightarrow{a} makes angles $\cdot^{\pi}/_{4}$ with $\hat{i}, \cdot^{\pi}/_{3}$ with \hat{j} and an acute angle θ with \hat{k} then find the value of θ . Also, find the scalar and

18. Let
$$\overrightarrow{a}, \overrightarrow{b}, and \overrightarrow{c}$$
 are vectors such that $\left|\overrightarrow{a}\right| = 3$, $\left|\overrightarrow{b}\right| = 4and \left|\overrightarrow{c}\right| = 5$, $and \left(\overrightarrow{a} + \overrightarrow{b}\right)$ is perpendicular to $\overrightarrow{c}, \left(\overrightarrow{b} + \overrightarrow{c}\right)$ is perpendicular to $\overrightarrow{a} and \left(\overrightarrow{c} + \overrightarrow{a}\right)$ is perpendicular to \overrightarrow{b} . Then find the value of $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right|$.

19. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three mutually perpendicular vectors of equal magniltgude, prove that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is equally inclined with vectors \overrightarrow{a} , \overrightarrow{b} , and $\overrightarrow{\cdot}$ also find the angle.

Watch Video Solution

20. If \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c} are unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$, then find the value of \overrightarrow{a} . $\overrightarrow{b} + \overrightarrow{b}$. $\overrightarrow{c} + \overrightarrow{c}$. \overrightarrow{a}

21. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three vectors such that $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \cdot \overrightarrow{c}$ then show that $\overrightarrow{a} = 0$ or , $\overrightarrow{b} = c$ or $\overrightarrow{a} \perp \left(\overrightarrow{b} - \overrightarrow{c}\right)$.

Watch Video Solution

22. Let
$$\overrightarrow{a}$$
 and \overrightarrow{b} be two nonzero vector. Prove that

$$\overrightarrow{a}\perp\overrightarrow{b}\Leftrightarrow\left|\overrightarrow{a}+\overrightarrow{b}
ight|=\left|\overrightarrow{a}-\overrightarrow{b}
ight|.$$

Watch Video Solution

23. express the vector $\overrightarrow{a} = 5\hat{i} - 2\hat{j} + 5\hat{k}$ as sum of the two vectors such that one is parallel to the vector $\overrightarrow{b} = 3\hat{i} + \hat{k}$ and other is perpendicular to \overrightarrow{b} .

24. Find the values of λ for which the angle between the vectors $\overrightarrow{a} = 2\lambda^2\hat{i} + 4\lambda\hat{j} + \hat{k}$ and $\overrightarrow{b} = 7\hat{i} - 2\hat{j} + \lambda\hat{k}$ is obtuse.

Watch Video Solution

25. Let A(0, 1, 1), B(3, 1, 5) and C(0, 3, 3) be the vertices of a $\triangle ABC$. . Using vectors, show that $\triangle ABC$ is right angled at C.

Watch Video Solution

26. Show that the points, A, B and C having position vectors $(2\hat{i} - \hat{j} + \hat{k}), (\hat{i} - 3\hat{j} - 5\hat{k})$ and $(3\hat{i} - 4\hat{j} - 4\hat{k})$ respectively are the vertices of a rightangled triangle. Also, find the remaining angles of the triangle.

27. Let
$$(\hat{i} + \hat{j} + \hat{k})$$
, $(2\hat{i} + 5\hat{j})$, $(3\hat{i} + 2\hat{j} - 3\hat{k})$ and $(\hat{i} - 6\hat{j} - \hat{k})$ be
the position vectors of points A, B, C, D respectively. Find the angle

between AB and CD. Hence, show that $AB \mid CD$.

Watch Video Solution

Exercise 23

1. Find
$$\overrightarrow{a}$$
. \overrightarrow{b} when
(i) $\overrightarrow{a} = \hat{i} - 2\hat{j} + \hat{k}$ and $\overrightarrow{b} = 3\hat{i} - 4\hat{j} - 2\hat{k}$
(ii) $\overrightarrow{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\overrightarrow{b} = -2\hat{j} + 4\hat{k}$
(iii) $\overrightarrow{a} = \hat{i} - \hat{j} + 5\hat{k}$ and $\overrightarrow{b} = 3\hat{i} - 2\hat{k}$

Watch Video Solution

2. Find the value of λ for which \overrightarrow{a} and \overrightarrow{b} are perpendicular, where (i) $\overrightarrow{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\overrightarrow{b} = (\hat{i} - 2\hat{j} + 3\hat{k})$

(ii)
$$\overrightarrow{a} = 3\hat{i} - \hat{j} + 4\hat{k}$$
 and $\overrightarrow{b} = -lamnda\hat{i} + 3\hat{j} + 3\hat{k}$
(iii) $\overrightarrow{A} = 2\hat{i} + 4\hat{j} - \hat{k}$ and $\overrightarrow{b} = 3\hat{i} - 2\hat{j} + \lambda\hat{k}$
(iv) $\overrightarrow{a} = 3\hat{i} + 2\hat{j} - 5\hat{k}$ and $\overrightarrow{b} = -5\hat{j} + \lambda\hat{k}$

3. (i) If
$$\overrightarrow{a} = \hat{i} + 2\hat{j} - 3\hat{k}$$
 and $\overrightarrow{b} = 3\hat{i} - \hat{j} + 2\hat{k}$, show that $\left(\overrightarrow{a} + \overrightarrow{b}\right)$
is perpendicular to $\left(\overrightarrow{a} - \overrightarrow{b}\right)$.
(ii) If $\overrightarrow{a} = \left(5\hat{i} - \hat{j} - 3\hat{k}\right)$ and $\overrightarrow{b} = \left(\hat{i} + 3\hat{j} - 5\hat{k}\right)$ then show that $\left(\overrightarrow{a} + \overrightarrow{b}\right)$ and $\left(\overrightarrow{a} - \overrightarrow{b}\right)$ are orthogonal.

Watch Video Solution

4. If $\overrightarrow{a} = \widehat{a} = \widehat{i} - \widehat{j} + 7\widehat{k}$ and $\overrightarrow{b} = 5\widehat{j} - \widehat{j} + \lambda\widehat{k}$, then find the value of λ , so that $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$ are perpendicular vectors.

5. Show that the vectors

$$\overrightarrow{a} = \frac{1}{7} \Big(2\hat{i} + 3\hat{j} + 6\hat{k} \Big), \quad \overrightarrow{b} = \frac{1}{7} \Big(3\hat{i} - 6\hat{j} + 2\hat{k} \Big), \quad \overrightarrow{c} = \frac{1}{7} \Big(6\hat{i} + 2\hat{j} - 3\hat{k} \Big)$$

are mutually perpendicular unit vectors.

Watch Video Solution

6. Let
$$\overrightarrow{A} = 4\hat{i} + 5\hat{j} - \hat{k}$$
, $\overrightarrow{b} = \hat{i} - 4\hat{j} + 5\hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j} - \hat{k}$. Find
a vector \overrightarrow{d} which is perpendicular to both \overrightarrow{a} and \overrightarrow{b} , and is such that
 \overrightarrow{d} . $Vec(c) = 21$.

Watch Video Solution

7. Let
$$\overrightarrow{a} = (2\hat{i} + 3\hat{j} + 2\hat{k})$$
 and $\overrightarrow{b} = (\hat{i} + 2\hat{j} + \hat{k})$.
Find the projection of (i) \overrightarrow{a} on \overrightarrow{b} and (ii) \overrightarrow{b} on \overrightarrow{a} .

Find the projection of (i) \overrightarrow{a} on \overrightarrow{b} and (ii) \overrightarrow{b} on \overrightarrow{a} .

8. Find the projection of
$$\left(8\hat{i}+\hat{j}
ight)$$
 in the direction of $\left(\hat{i}+2\hat{j}-2\hat{k}
ight)$

9. Write the projection of vector $\hat{i} + \hat{j} + \hat{k}$ along the vector \hat{j} .

Watch Video Solution

10. (i) Find the projection of \vec{a} on \vec{b} if $\vec{a} \cdot \vec{b} = 8$ and $\vec{b} = \left(2\hat{i} + 6\hat{j} + 3\hat{k}\right)$. (ii) Write the projection of the vector $\left(\hat{i} + at(j)\right)$ on the vector $\left(\hat{i} - \hat{j}\right)$

Watch Video Solution

11. Find the angle between the vectors \overrightarrow{a} and \overrightarrow{b} , when

(i)
$$\overrightarrow{a} = \hat{i} - 2\hat{j} + 3\hat{k}$$
 and $\overrightarrow{b} = 3\hat{i} - 2\hat{j} + \hat{k}$

(ii)
$$\overrightarrow{a} = 3\hat{i} + \hat{j} + 2\hat{k}$$
 and $\overrightarrow{b} = 2\hat{i} - 2\hat{j} + 4\hat{k}$
(iii) $\overrightarrow{a} = \hat{i} - \hat{j}$ and $\overrightarrow{b} = \hat{j} + \hat{k}$.

12. If
$$\overrightarrow{a} = (\hat{i} + 2\hat{j} - 3\hat{k})$$
 and $\overrightarrow{b} = (3\hat{i} - \hat{j} + 2\hat{k})$ then calculate the angle between $(2\overrightarrow{a} + \overrightarrow{b})$ and $(\overrightarrow{a} + 2\overrightarrow{b})$.

Watch Video Solution

13. if
$$\overrightarrow{a}$$
 is a unit vector and $\left(\overrightarrow{x} - \overrightarrow{a}\right)$. $\left(\overrightarrow{x} + \overrightarrow{a}\right) = 8$ then $\left|\overrightarrow{x}\right|$

Watch Video Solution

14. Find the angles which the vector $\overrightarrow{a} = 3\hat{i} - 6\hat{j} + 2\hat{k}$ makes with the coordinate axes.

15. Show that the vector $\hat{i} + \hat{j} + \hat{k}$ is equally inclined with the coordinate axes.

16. Find a vector \overrightarrow{a} of magnitude $5\sqrt{2}$ making an angle $\frac{\pi}{4}$ with x-axis , $\frac{\pi}{2}$ with y-axis and an acute angle θ with z-axis

Watch Video Solution

17. Find the angle between
$$\left(\overrightarrow{a}+\overrightarrow{b}\right)$$
 and $\left(\overrightarrow{a}-\overrightarrow{b}\right)$, if $\overrightarrow{a} = \left(2\hat{i}-\hat{j}+3\hat{k}\right)$ and $\overrightarrow{b} = \left(3\hat{i}+\hat{j}+2\hat{k}\right)$.

Watch Video Solution

18. Express the vector $\overrightarrow{a} = (6\hat{i} - 3\hat{j} - 6\hat{k})$ as sum of two vectors such that one is parallel to the vector $\overrightarrow{B} = (\hat{i} + \hat{j} + \hat{k})$ and the other is

20. If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$$
, $\left|\overrightarrow{a}\right| = 3$, $\left|\overrightarrow{b}\right| = 5$, $\left|\overrightarrow{c}\right| = 7$, then find the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

21. Find the angle between \overrightarrow{a} and \overrightarrow{b} , when

(i)
$$\left| \overrightarrow{a} \right| = 2$$
, $\left| \overrightarrow{b} \right| = 1$ and $\overrightarrow{A} \cdot \overrightarrow{B} = \sqrt{3}$ (ii) $\left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right| = \sqrt{2}$ and $\overrightarrow{a} \cdot \overrightarrow{b} = -1$.

22. Find $| \to a - \to b|$, if two vector $\to a$ and $\to b$ are such that $| \to a| = 2, | \to b| = 3$ and $\to a \xrightarrow{\cdot} b | = 4$.

23. Find
$$\left| \overrightarrow{a} \right| and \left| \overrightarrow{b} \right|$$
, if: $\left(\overrightarrow{a} + \overrightarrow{b} \right) \overrightarrow{a} - \overrightarrow{b} = 8 and \left| \overrightarrow{a} \right| = 8 \left| \overrightarrow{b} \right|$

Watch Video Solution

24. If \widehat{a} and \widehat{b} are unit vectors inclined at an angle θ then prove that

$$rac{\cos heta}{2} = rac{1}{2} ig| \widehat{a} + \widehat{b} ig| \, rac{ an heta}{2} = rac{ig| \widehat{a} - \widehat{b} ig|}{ig| \widehat{a} + \widehat{b} ig|} \; .$$

25. Dot product of a vector with $\hat{i} + \hat{j} - 3\hat{k}$, $\hat{i} + 3\hat{j} - 2\hat{k}$ and $2\hat{i} + \hat{j} + 4\hat{k}$ are 0, 5 and 8 respectively. Find the vector. Dot products of a vector with vectors $\hat{i} - \hat{j} + \hat{k}$, $2\hat{i} + \hat{j} - 3\hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$ are respectively 4, 0 and 2. Find the vector.

Watch Video Solution

26. If
$$\overrightarrow{AB}=\left(3\hat{i}-\hat{j}+2\hat{k}
ight)$$
 and the coordinates of A are $(0,\ -2,\ -1)$,

find the coordinates of B.

Watch Video Solution

27. If A(2, 3, 4), B(5, 4, -1), C(3, 6, 2) and D(1, 2, 0) be four points, show that \overrightarrow{AB} is perpendicular to \overrightarrow{CD} .

28. Find the value of λ_{\cdot} If the vectors $2\hat{i} + \lambda\hat{j} + 3\hat{k}$ and $3\hat{i} + 2\hat{j} - 4\hat{k}$

are perpendicular to each other.

C(5, 7, 1). Show that it is a right-angled triangle. Also find its other two angles.

31. If the position vectors of the vertices a, B and C of a $Tri \angle ABC$ be (1, 2, 3), (-1, 0, 0) and (0, 1, 2) respectively then find $\angle ABC$.

32. If \overrightarrow{a} and \overrightarrow{b} are two non-collinear unit vectors such that $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \sqrt{3}$, find $\left(2\overrightarrow{a} - 5\overrightarrow{b}\right)3\overrightarrow{a} + \overrightarrow{b}$.

Watch Video Solution

33. If \overrightarrow{a} , \overrightarrow{b} , are two vectors such that $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \left|\overrightarrow{a}\right|$, then prove that $2\overrightarrow{a} + \overrightarrow{b}$ is perpendicular to \overrightarrow{b} .

34. If
$$\overrightarrow{a} = 3\hat{i} - \hat{j}$$
 and $\overrightarrow{b} = 2\hat{i} + \hat{j} - 3\hat{k}$, then express \overrightarrow{b} in the from $\overrightarrow{b} = \overrightarrow{b}_1 + \overrightarrow{b}_2$, where $\overrightarrow{b}_1 \mid |\overrightarrow{a}|$ and $\overrightarrow{b}_2 \perp \overrightarrow{a}$.

