©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - RS AGGARWAL MATHS
 (HINGLISH)

THE PLANE

Solved Examples

1. Find the vector equation of the plane passing thrugh the points (2,5,-3),(-2,-3,5),(5,3,-3).
2. Show that the four points
$A(1,-1,1), B(2,3,1), C(1,2,3)$
and
$D(0,-2,3)$ are coplanar. Find the equation of the plane containing them.

- Watch Video Solution

3. Find the equation of the plane which cuts off intercepts 3,6 and -4 from the axes of coordinates.

D
 Watch Video Solution

4. Reduce the equation of the plane
$2 x-3 y+z=6$ to intercept from and find its intercepts on the coordinates axes.

- Watch Video Solution

5. A plane meets the coordinate axes in A, B, C such that eh centroid of triangle $A B C$ is the point
(p, q, r). Show that the equation of the plane is $\frac{x}{p}+\frac{y}{q}+\frac{z}{r}=3$.

- Watch Video Solution

6. A variable plane moves in such a way that the sum of the reciprocals of its intercepts on the three coordinate axes is constant. Show that the plane passes through a fixed point.

- Watch Video Solution

7. Find the vector equation of a plane which is at a distance of 6 units from the origin and which is normal to the vector $(\hat{i}+2 \hat{j}-2 \hat{k})$.
8. Find the vector equation of a plane which is at a distance of 6 units from the origin and which is normal to the vector $(\hat{i}+2 \hat{j}-2 \hat{k})$.

- Watch Video Solution

9. Find the vector equation of a plane passing through a point having position vector $(2 \hat{i}-\hat{j}+\hat{k})$ and perpendicular to the vector $(4 \hat{i}+2 \hat{j}-3 \hat{k})$. Also, reduce it to Cartesian form.

- Watch Video Solution

10. Find a unit vector normal to the plane $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+6 \hat{k})+14=0$.

- Watch Video Solution

11. Find the direction cosines of the perpendicular from the origin to the plane

$$
\vec{r} \cdot(6 \hat{i}-3 \hat{j}-2 \hat{k})+3=0
$$

- Watch Video Solution

12. Find the Cartesian equation of a plane whose vector equation is $\vec{r} \cdot(2 \hat{i}+5 \hat{j}-4 \hat{k})=3$.

- Watch Video Solution

13. Find the vectors equation of a plane whose

Cartesian equation is $2 x-3 y+4 z+6=0$. Find the direction cosines of the normal to the plane and its distance from the origin.
14. Find the vector equation of the plane whose

Cartesian equation is $5 y+8=0$. Find the direction
cosines of the normal to the plane and its distance from the origin.

- Watch Video Solution

15. Find the Cartesian from the equation of the
plane

$$
\vec{r}=(s-2 t) \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k}
$$

16. Find the vector and Cartesian equations of the plane which passes through the point (5,2-4) and perpendicular to the line with direction ratios 2,3,-1.

- Watch Video Solution

17. The foot of the perpendicular drawn from the origin to a plane is $(4,-2,-5)$. Find the equation of the plane in (i) vector form, ii) Cartesian form.
18. Find the coordinates of the foot of the perpendicular drawn from the origin to the plane $3 y+4 z-6=0$.

- Watch Video Solution

19. Find the coordinates of the point where the line

$$
\begin{aligned}
& \frac{x+1 \backslash}{2}=\frac{y+2}{3}=\frac{\mathrm{z}+3}{4} \text { meets the plane } \\
& x+y+4 z=6 .
\end{aligned}
$$

20. Find the coordinates of the point where the line through the points $A(3,4,1)$ and $B(5,1,6)$ crosses the XY-plane.

- Watch Video Solution

21. Find the distance of the point
$P(-1,-5,-10)$ from the point of interesection
of the line joining the points $A(2,-1,2)$ and
$B(5,3,4)$ with the plane is $x-y+z=5$

- Watch Video Solution

22. Find the coordinates of the point where the line
through $(3,-4,-5)$ and $(2,-3,1)$ crosses the plane passing through the points (2,2,1),(3,0,1) and (4,-1,0).

- Watch Video Solution

23. Find the distance of the point $(1,-2,3)$ from the plane $x-y+z=5$ measured parallel to the
line $\frac{x-1}{2}=\frac{y-3}{3}=\frac{z+2}{-6}$.

D Watch Video Solution

24. Find the distance of the point $(3,4,5)$ from the plane $x+y+z=2$, measured parallel to the line $2 x=y=z$.

- Watch Video Solution

25. Find the distance of the point $(-2,3, \backslash-4)$
from the line $\frac{x+2}{3}=\frac{2 y+3}{4}=\frac{3 z+4}{5}$ measured parallel
$+1=0$.
$4 \mathrm{x}+12 \mathrm{y}-3 \mathrm{z}+1=0$.

- Watch Video Solution

26. Find the length and the foot of the perpendicular from the point $P(7,14,5)$ to the plane $(2 x+4 y-z=2)$. Also, find the image of the point P in the plane.

- Watch Video Solution

27. Find the image of the point $(1, \backslash 2, \backslash 3)$ in the
plane $x+2 y+4 z=38$

- Watch Video Solution

28. Find the distance of the point $(\hat{i}+2 \hat{j}-3 \hat{k})$ from the plane $\vec{r} \cdot(2 \hat{i}-5 \hat{j}-\hat{k})=4$.

- Watch Video Solution

29. Find the distance of the point $(2,3,4)$ from the
plane $\vec{r} \cdot(3 \hat{i}-6 \hat{j}+2 \hat{k})+11=0$.

- Watch Video Solution

30. Find the distance of the point $(2,3,-5)$ from the plane $x+2 y-2 z=9$.
31. If a plane has intercepts a, b, c on axes and is at a distance of p units from the origin then prove that $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$

- Watch Video Solution

32. Find the distance of the point $P(6,5,9)$ from the plane determined by the points

$$
A(3,-1,2), B(5,2,4) \text { and } C(-1,-1,6)
$$

33. Find the distance between the parallel planes $2 x-y+3 z+40$ and $6 x-3 y+9 z-3=0$.

- Watch Video Solution

34. Find the distance between the parallel planes

$$
\begin{aligned}
& \vec{r} \cdot(2 \hat{i}-3 \hat{j}+6 \hat{k})=5 \text { and } \\
& \vec{r} \cdot(6 \hat{i}-9 \hat{j}+18 \hat{k})+20=0
\end{aligned}
$$

- Watch Video Solution

35. Find the equations of the planes parallel to the plane $x-2 y+2 z-3=0$ which is at a unit
distance from the point $(1,2,3)$.

D Watch Video Solution

36. Find the equation of the plane passing through
the point $(2,-3,5)$ and parallel to the points $3 x-7 y-2 z=5$. Also, the find the distance between the two planes.

- Watch Video Solution

37. The equation of the plane through the intersection of the planes $\vec{r} \cdot(2 \hat{i}+6 \hat{j})+12=0$
and $\vec{r} \cdot(3 \hat{i}-\hat{j}+4 \hat{k})=0$ and at a unit distance from the origin, is

- Watch Video Solution

38. If the points $(1,1, p)$ and $(-3,0,1)$ be equidistant from the
plane
$\vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13$, find the values of p .

- Watch Video Solution

39. Find the equation of the plane mid-parallel to the planes
$2 x-2 y+z+3=0$
and

$2 x-2 y+z+9=0$.

- Watch Video Solution

40. A variable plane which remains at a constant distance $3 p$ from the origin cuts the coordinate axes at A, B, C. Show that the locus of the centroid of
triangle $A B C$ is $\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{1}{p^{2}}$.

- Watch Video Solution

41. A variable plane is at a constant distance p from
the origin and meets the coordinate axes in
A, B, C. Show that the locus of the centroid of the tehrahedron $O A B C i s x^{-2}+y^{-2}+z^{-2}=16 p^{-2}$.

- Watch Video Solution

42. Find the vector equation of a plane which is parallel to the plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+2 \hat{k})=5$ and passes through the point whose position vector is $(\hat{i}+\hat{j}+\hat{k})$.

- Watch Video Solution

43. Find the vector equation of plane which is paralel to the plane $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+5 \hat{k})+2=0$ and passes through the point (3,4,-1).

- Watch Video Solution

44. Find the equation of the plane which is parallel to the plane $2 x-3 y+z+8=0$ and which passes through the point (-1,1,2).

- Watch Video Solution

45. Find the distance between the parallel planes $2 x-y+3 z+40$ and $6 x-3 y+9 z-3=0$.

D Watch Video Solution

46. Find the equation of the plane through the intersection of the planes
$3 x$
$y+2 z$
$4=0$
and
$x+y+z \quad 2=0$ and the point
$(2,2,1)$.
47. Find the equation of the plane through the line of intersection of the planes $x+y+z=1$ and
$2 x+3 y+4 z=5$, which is perpendicular to the plane $x-y+z=0$. Also find the distance of the plane so obtained from the origin.

- Watch Video Solution

48. Find the equation of the plane passing through
the line of intersection of the planes $2 x+y-Z=3,5 x$

- $3 y+4 z+9=0$ and parallel to the line

$$
\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{5}
$$

49. Find the equation of the plane passing through the line of intersection of the planes
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})+4=0$ and parallel to x-axis.

- Watch Video Solution

50. Find the equation of the plane passing through the line of intersection of the planes
$\vec{r} \cdot(\hat{i}+3 \hat{j})-6=0$ and $\vec{r} \cdot(3 \hat{i}-\hat{j}-4 \hat{k})=0$, whose perpendicular distance from the origin is unity.
51. Find the vector of the plane passing through the intersection of the planes
$\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=7, \vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9$ and the point ($2,1,3)^{\prime}$.

- Watch Video Solution

52. Find the equation of the plane which contains the line of intersection of the planes

$$
\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4=0, \vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0
$$

and which is perpendicular to the plane
$\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$

- Watch Video Solution

53. Find the vector equation of the plane passing thrugh the points $(2,5,-3),(-2,-3,5),(5,3,-3)$.

- Watch Video Solution

54. Find the vector equation of the plane passing through the points
$(1,1,1),(1,-1,1) \operatorname{and}(-7,-3,-5)$.

Watch Video Solution

55. Find the angle between the planes.
$\vec{r} \cdot(\hat{i}+\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})=8$.

- Watch Video Solution

56. Find the angle between the planes whose vector equations are $\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5 \quad$ and
$\vec{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=3$.

- Watch Video Solution

57. Find the value of λ for which the planes.

$$
\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})=13
$$

$\vec{r} \cdot(\lambda \hat{i}+2 \hat{j}-7 \hat{k})=9$, are perpendicular to each other.

- Watch Video Solution

58. Find the angle between the plane:
$7 x+5 y+6 z+30=0$ and $3 x-y-10 z+4=0$

- Watch Video Solution

59. Find the value of λ for which the planes
$2 x-4 y+3 z=7 \quad$ and $\quad x+2 y+\lambda z=18 \quad$ are perpendicular to each other.
60. Find the equation of the plane passing through the point $(-1,3,2)$ and perpendicular to each of the planes $x+2 y+3 z=5$ and $3 x+3 y+z=0$

D Watch Video Solution

61. Find the vector equation of the plane through the points (2,1,-1) and ($-1,3,4$) and perpendicular to the plane $x-2 y+4 z=10$.

- Watch Video Solution

62. Find the equation of the plane passing through the point $(1,3,2)$ and parallel to the plane is $3 x-2 y+2 z+33=0$.

- Watch Video Solution

63. The angle between the line

$$
\begin{aligned}
& \vec{r} \cdot(\hat{i}+\hat{j}-3 \hat{k})+\lambda(2 \hat{i}+2 \hat{j}+\hat{k}) \text { and the plane } \\
& \vec{r} \cdot(6 \hat{i}-3 \hat{j}+2 \hat{k})=5, \text { is }
\end{aligned}
$$

64. Find the value of m for which the line $\vec{r} .=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(2 \hat{i}+\hat{j}+2 \hat{k})$ is parallel to the plane $\vec{r} \cdot(3 \hat{i}-2 \hat{j}+m \hat{k})=12$

- Watch Video Solution

65.

Show
that
the
line
$\vec{r}=(2 \hat{i}-2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-\hat{j}+4 \hat{k})$ is parallel
to the plane $\vec{r} \cdot(\hat{i}+5 \hat{j}+\hat{k})=5$.
Also, find the distance between the given line and the given plane.

- Watch Video Solution

66. Find the vector equation of a line passing through the point $A(1,-1,2)$ and perpendicular to the plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+3 \hat{k})=5$.

D Watch Video Solution

67. Find the angle betweenthe line $\frac{x-2}{-1}=\frac{y+3}{2}=\frac{z+4}{3} \quad$ and the plane $2 x-3 y+z=5$.
68. Find the equations of the line passing through the point $(3,0,1)$ parallel to the planes $x+2 y=0$ and $3 y-z=0$.

- Watch Video Solution

69. Find the equation of the plane through the pont
$A(1,2,1)$ and perpendicular to the line joining the points $P(1,4,2)$ and $Q(2,3,5)$. Also find the distance of this plane from the line $\frac{x+3}{2}=\frac{y-5}{-1}=\frac{z-7}{-1}$

- Watch Video Solution

70. Find the Cartesian equation of the plane passing through the points $A(0,0,0)$ and $b(3,-1,2)$ and parallel to the line $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$

- Watch Video Solution

71. The plane passing through the point $(4,-1,2)$ and perallel to the lines $\frac{x+2}{3}=\frac{y-2}{-1}=\frac{z+1}{2}$ and $\frac{x-2}{1}=\frac{y-3}{2}=\frac{z-4}{3}$ also passes through the point
72. Find the equation of the plane passes through the point $(2,3,-4)$ and $(1,-1,3)$ and parallel to x-axis.

- Watch Video Solution

73. Find ten equation of the plane passing through the point $(0,7,-7)$ and containing the line

$$
\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}
$$

D Watch Video Solution

74. Find the equation of the plane passing through the line of intersection of the planes $2 x+y-Z=3,5 x$

- $3 y+4 z+9=0$ and parallel to the line $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{5}$

- Watch Video Solution

75. Show that the equation by $b y+c z+d=0$ represents a plane parallel to the x-axis. Find the equation of a plane which is parallel to the x-axis and passes through the points $\mathrm{A}(2,3,1)$ and $\mathrm{B}(4,-5,3)$.
76. Find the vector and Cartesian equations of the plane passing through the point ($1,2,-4$) and parallel to the lines
$\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})-\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k}) \quad$ and
$\vec{r}=(\hat{i}-3 \hat{j}+5 \hat{k})+\mu(\hat{i}+\hat{j}-\hat{k})$.

- Watch Video Solution

77. Find the Cartesian and vector equation of the plane passing through the point ($2,0,-1$) and parallel to to the lines.
$\frac{x}{-3}=\frac{y-2}{4}=z+1$ and $x-4=\frac{1-y}{2}=2 z$.
78. Show that the line
$\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(3 \hat{i}-\hat{j})$
$\vec{r}=(4 \hat{i}-\hat{k})+\mu(2 \hat{i}+3 \hat{k})$ are coplanar. Also
find the equation of plane in which these lines lie.

D Watch Video Solution

79. Show that the lines

$$
\frac{x+3}{-3}==\frac{z-5}{5} ; \frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}
$$

are coplanar. Also find the equation of the plane containing the lines.
80. Show that the lines
$\frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta}$ and
$\frac{x-b+c}{\beta-\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma}$ are coplanar.

- Watch Video Solution

81. Find the equation of the plane passing through
the
$\frac{x-3}{3}=\frac{y+4}{2}=\frac{z-1}{1}$
$\frac{x+1}{3}=\frac{y-2}{2}=\frac{z}{1}$.

- Watch Video Solution

Exercise 28 A

1. Find the equationof the plane passing through each group of points.
i) $A(2,2,-1), B(3,4,2)$ and $C(7,0,6)$
ii) $A(0,-1,-1), B(4,5,1)$ and $C(3,9,4)$
iii) $A(-2,6,-6), B(-3,10,-9)$ and $C(-5,0,-6)$.

- Watch Video Solution

2. Show that the four points $A(3,2,-5, B(-1,4,-3)$,
$C(-3,8,-5)$ and $D(-3,2,1)$ are coplanar. Find the equation
of the plane containing them.

- Watch Video Solution

3. Show that the four points $A(0,-1,0), B(2,1,-1), C(1,1,1)$

and $D(3,3,0)$ are coplanar. Find the equation of the plane containing them.

- Watch Video Solution

4. Write the equation of the plane whose intercepts on the coordinate axes are 2,-4 and 5 respectively.
5. Reduce the equation of the plane
$4 x-3 y+2 z=12$ to the intercept form, and hence find the intercepts made by the plane with the coordinate axes.

- Watch Video Solution

6. Find the equation of the plane which passes through the point $(2,-3,7)$ and makes equal intercepts on the coordinate axes.
7. A plane meets the coordinate axes at $A, B a n d C$ respectively such that the centroid of triangle $A B C$
is $(1,-2,3)$. Find the equation of the plane.

- Watch Video Solution

8. Find the vector and the Castresian equations o
the lane passing through the point (1,2,30 and perpendicular to the line with direction ratio 2,3,-4.
9. If O be the origin and the coordinates of P be $(1,2,-3)$ then find the equation of of the plane passing through P and perpendicular to OP .

- Watch Video Solution

Exercise 28 B

1. Find the vector and Cartesian equations of a plane which is at a distance of 5 units from the origin and which has \hat{k} as the unit vector normal to it.
2. Find the vector and Cartesian equations of a plane which is at a distance of 7 units from the origin and whose normal vector from the origin is $(3 \hat{i}+5 \hat{j}-6 \hat{k})$.

- Watch Video Solution

3. Find the vector equation of the plane which is at a distance of $\frac{6}{\sqrt{29}}$ from the origin and its normal vector from the origin is $2 \hat{i}-3 \hat{j}+4 \hat{k}$. Also find its

Cartesian equations
4. Find the vector and Cartesian equations of a plane which is at a distance of 6 units from the origin and which has a normal with direction ratios 2,-1,-2.

- Watch Video Solution

5. Find the vector and Cartesian equation of the plane that passes through the point $(1,4,6)$ and the normal vector to the plane is $\hat{i}-2 \hat{j}+\hat{k}$.
6. Find the length of perpendicular from the origin to the plane $\vec{r} \cdot(3 \hat{i}-12 \hat{j}-4 \hat{k})+39=0$. Also write the unit normal vector from the origin to the plane.

- Watch Video Solution

7. Find the Cartesian equation of the plane whose vector equation is $\vec{r} \cdot(3 \hat{i}+5 \hat{j}-9 \hat{k})=8$.
8. Find the vector equation of a plane whose Cartesian equation is $5 x-7 y+2 z+4=0$.

- Watch Video Solution

9. Find a unit vector normal to the plane is $x-2 y+2 z=6$.

- Watch Video Solution

10. Find the direction cosines of the normal to the plane is $(3 x-6 y+2 z=7$.
11. For each of the following planes, find the direction cosines of the normal to the plane and the distance of the plane from the origin:
i) $2 x+3 y-z=5$, ii) z=3, iii) $3 y+5=0$.

- Watch Video Solution

12. Find the vector and Cartesian equations of the plane passing throgh the point $(2,-1,1)$ and perpendicular to the line having direction ratios 4,2,-3.

D Watch Video Solution

13. Find the coordinates of the foot of the perpendicular drawn from the origin to the plane i) $2 x+3 y+4 z-12=0$, ii) $5 y+8=0$.

- Watch Video Solution

14. Find the co-ordinates of the foot of perpendicular and the length of perpendicular drawn from the point $(2,3,7)$ to the plane $3 x-y-z=7$.

15. Find the length of the foot of the perpendicular

 from the point $(1,1,2)$ to the plane $\vec{r} \cdot(2 \hat{i}-2 \hat{j}+4 \hat{k})+5=0$
- Watch Video Solution

16. From the point $P(1,2,4)$ a perpendicular is drawn on the plane $2 x+y-2 z+3=0$. Find the equation the length and the coordinates of the foot of perpendicular.
17. Find the coordinates of the foot of the perpendicular and the perpendicular distance from the point $\mathrm{P}(3,2,1)$ to the plane $2 x-y+z+1=0$.

- Watch Video Solution

18. Find the coordinates of the image of the point P
$(1,3,4)$ in the plane $2 x-y+z+3=0$.

- Watch Video Solution

19. Find the point where the line $\frac{x-1}{2}=\frac{y-2}{-3}=\frac{z+3}{4}$ meets the plane $2 x+4 y-z=1$.

D Watch Video Solution

20. find the coordinates of point where the line through $(3,-4,-5)$ and $(2,-3,1)$ crosses the plane $2 x+y+z=7$.

D Watch Video Solution

21. Find the distance of the point $(2,3,4)$ from the plane $3 x+2 y+2 z+5=0$ measured parallel to the line $\frac{x+3}{3}=\frac{y-2}{6}=\frac{z}{2}$.

D Watch Video Solution

22. Find the distance of the point $(0,-3,2)$ from the plane $3 x+2 y+2 z+5=0$, measured parallel
to the line $\frac{x+1}{3}=\frac{y+1}{2}=\frac{z}{3}$.

D
 Watch Video Solution

23. Find the equation of the line passing through
the point $\mathrm{P}(4,6,2)$ and the point of intersection of the line $\frac{x-1}{3}=\frac{y}{2}=\frac{z+1}{7}$ and the plane $\mathrm{x}+\mathrm{y}-\mathrm{z}=8$.

- Watch Video Solution

24. Show that the distance of the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $(x-y+z=5)$ from the point $(-1,-5,-10)$ is 13 units.
25. Find the distance of the point
$(-1,-5,-10)$ from the point of the intersection of the line
$\vec{r}=2 \hat{i}-2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$.

- Watch Video Solution

26. Prove tht the normals to the planes $4 x+11 y+2 z+3=0$ and $3 x-2 y+5 z=8$ are perpendicular to each other.
27. Show that
the
line
$\vec{r}=(2 \hat{i}-2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-\hat{j}+4 \hat{k})$ is parallel
to the plane $\vec{r} \cdot(\hat{i}+5 \hat{j}+\hat{k})=7$.

- Watch Video Solution

28. Find the equation of a plane which is at a distance of $3 \sqrt{3}$ units from origin and the normal to which is equally inclined to the coordinate axes.
29. A vector $\vec{n} \mathrm{f}$ magnitude 8 units is inclined to x axis at $45^{\circ}, y$-axis at 60° and an acute angle with $z-$ axis. If a plane passes through a point $(\sqrt{2},-1,1)$ and is normal to \vec{n}, find its equation in vector form.

- Watch Video Solution

30. Find the equation of a line passing through the point $(2 \hat{i}-3 \hat{j}-5 \hat{k})$ and perpendicular to the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}+5 \hat{k})+2=0$. Also find the point of intersection of this line and the plane.

Exercise 28 C

1. Find the distance of the point $(2 \hat{i}-\hat{j}-4 \hat{k})$ from the plane $\vec{r} \cdot(3 \hat{i}-4 \hat{j}+12 \hat{k})=9$.

- Watch Video Solution

2. Find the distance of the point $(1,2,5)$ from the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})+17=0$
3. Find the distance of the point $(3,4,5)$ from the plane $\vec{r} \cdot(2 \hat{i}-5 \hat{j}+3 \hat{k})=13$

- Watch Video Solution

4. Find the distance of the point $(1,1,2)$ from the plane $\vec{r} \cdot(2 \hat{i}-2 \hat{j}+4 \hat{k})+5=0$.

- Watch Video Solution

5. Find the distance of the point $(21,0)$ from the plane $2 x+y+2 z+5=0$.
6. Find the distance of the point $(2,1,-1)$ is equidistant from the plane $x-2 y+4 z=9$.

- Watch Video Solution

7. Show that the point $(1,2,1)$ is equidistant from the planes $\quad \vec{r} \cdot(\hat{i}+2 \hat{j}-2 \hat{k})=5 \quad$ and $\vec{r} \cdot(2 \hat{i}-2 \hat{j}+\hat{k})+3=0$.
8. Show that the points $(-3,0,1)$ and $(1,1,1)$ are equidistant from the
plane $3 x+4 y-12 z+13=0$.

- Watch Video Solution

9. Distance between the two planes:
$2 x+3 y+4 z=4$ and $\quad 4 x+6 y+8 z=12$ is(A) $\quad 2$
units (B) 4 units (C) 8 units (D) $\frac{2}{\sqrt{29}}$ units
10. Find the distance between the parallel planes $x+2 y-2 z+4=0$ and $x+2 y-2 z-8=0$.

- Watch Video Solution

11. Find the equations of the planes parallel to the
plane $x-2 y+2 z-3=0$, each one of which is at a unit distance from the point ($1,1,1$). '
12. Find the equation of the plane which passes through the point $(3,4,-1)$ and is parallel to the plane $2 x-3 y+5 z+7=0 . \quad$ Also, find the distance between the two planes.

- Watch Video Solution

13. Find the equation of the plane mid-parallel to
the planes $2 x-3 y+6 z+21=0 \quad$ and
$2 x-3 y+6 z-14=0$.
14. Show that the planes $2 x-y+6 z=5$ and $5 x-2.5 y+15 z=12$ are parallel.

- Watch Video Solution

15. Find the vector equation of the plane through the point $(3 \hat{i}+4 \hat{j}-\hat{k})$ and parallel to the plane $\vec{r}(2 \hat{i}-3 \hat{j}+5 \hat{k})+5=0$.

- Watch Video Solution

16. Find the equation of the plane passing through
(a,b,c) and paralle toteh plne $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$.

D Watch Video Solution

17. Find the vector equation of a plane which is parallel to the plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+2 \hat{k})=5$ and passes through the point whose position vector is $(\hat{i}+\hat{j}+\hat{k})$.

- Watch Video Solution

18. Find the equation of the plane through the point
$(1,4,-2)$ and parallel to the plane $-2 x+y-3 z=7$.
19. Find the equation of the plane passing through the origin and parallel to the plane $5 x-3 y+7 z+13=0$.

- Watch Video Solution

20. Find the equation of the plane passing through the point ($-1,0,7$) and parallel to the plane $3 x-5 y+4 z=11$.
21. Find the equations of the planes parallel to the plane $x-2 y+2 z-3=0$ which is at a unit distance from the point $(1,2,3)$.

- Watch Video Solution

22. Find the distance between the planes
$x+2 y+3 z+7=0$ and $2 x+4 y+6 z+7=0$.

- Watch Video Solution

23. Find the equation of a plane containing the line
of intersection of the planes
$x+y+z-6=0 a n d 2 x+3 y+4 z+5=0$
passing through $(1,1,1)$.

- Watch Video Solution

24. Find the equation of the plane through the line
of intersection of the planes $x-3 y+z+6=0$ and $x+2 y+3 z+5=0$, and passing through the origin.
25. Find the equation of the plane passing through the intersection of the planes $2 x+3 y-z+1=0 a n d x+y-2 z+3=0 \quad$ and perpendicular to the plane $3 x-y-2 z-4=0$.

D Watch Video Solution

26. Find the equation of the plane passing through the line of intersection of the planes $2 x-y=0$ and $3 z-y=0$, and perpendicular to the plane $4 x+5 y-3 z=9$.
27. Find the vector equation of the plane passing through the intersection of the planes $x-2 y+z=1 a n d 2 x+y+z=8$ and parallel to the line with direction ratios proportional to $1,2,1$. Find also the perpendicular distance of $(1,1,1)$ from this plane.

- Watch Video Solution

28. Find the equation of the plane passing through the lineof intersection of the planes $x+2 y+3 z-5=0$ and $3 x-2 y-z+1=0$ and cutting off equal intercepts on the x-axis and z -axis.
29. Find the equation of the plane through the intersection of the planes $3 x-4 y+5 z=10$ and $2 x+2 y-3 z=4 \quad$ and parallel to the line $x=2 y=3 z$.

- Watch Video Solution

30. Find the vector equation to the plane through
the point $(2,1,-1)$ passing through the line of intersection of the
planes
$\vec{r} \cdot(\hat{i}+3 \hat{j}-\hat{k})=0 a d \vec{r} \cdot(\hat{j}+2 \hat{k})=0$
31. Find the vector equation of the plane passing through the point ($1,1,1$) and passing through the intersection of the
planes
$\vec{r} \cdot(\hat{i}-\hat{j}+3 \hat{k})+1=0$ and
$\vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})-5=0$.

- Watch Video Solution

32. Find the equation of a plane passing through
the intersection
of
the
planes
$\vec{r} \cdot(2 \hat{i}-7 \hat{j}+4 \hat{k})=3$
$\vec{r} \cdot(3 \hat{i}-5 \hat{j}+4 \hat{k})+11-0$ and passes through
the point $(-2 \hat{i}+\hat{j}+3 \hat{k})$.

- Watch Video Solution

33. Find the equation of the plane through the line of intersection of the planes
$\vec{r} \cdot(2 \hat{i}-3 \hat{j}+4 \hat{k})=1$ and $\vec{r} \cdot(\hat{i}-\hat{j})+4=0$
and perpendicular to the plane
$\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})+8=0$.

- Watch Video Solution

34. Find the Cartesian and vector equation of the planes through the line of intersection of the planes
$\vec{r} \cdot(\hat{i}-\hat{j})+6=0$ and $\vec{r} \cdot(3 \hat{i}+3 \hat{j}-4 \hat{k})=0$, which are at a unit distance from the origin.

- Watch Video Solution

Exercise 28 F

1. Find the acute angle between the following planes: i) $\quad \vec{r} \cdot(\hat{i}+\hat{j}-2 \hat{k})=5$ and
$\vec{r} \cdot(2 \hat{i}+2 \hat{j}-\hat{k})=9 \quad$ ii) $\quad \vec{r} \cdot(\hat{i}+2 \hat{j}-\hat{k})=6$
and $\vec{r} \cdot(2 \hat{i}-\hat{j}-\hat{k})+3=0$
2. Show that the following planes are right angles:
i) $\quad \vec{r} \cdot(4 \hat{i}-7 \hat{j}-8 \hat{k})=5$ and
$\vec{r} \cdot(3 \hat{i}-4 \hat{j}+5 \hat{k})+10=0$
ii)

$$
\vec{r} \cdot(2 \hat{i}+6 \hat{j}+6 \hat{k})=13
$$

and
$\vec{r} \cdot(3 \hat{i}+4 \hat{j}-5 \hat{k})+7=0$

- Watch Video Solution

3. Find the value of λ for which the given planes are perpendicular to the each other:
i)

$$
\vec{r} \cdot(2 \hat{i}-\hat{j}-\lambda k)=7
$$

$\vec{r} \cdot(3 \hat{i}+2 \hat{j}+2 \hat{k})=9$
ii) $\quad \vec{r} \cdot(\lambda \hat{i}+2 \hat{j}+3 \hat{k})=5 \quad$ and
$\vec{r} \cdot(\hat{i}+2 \hat{j}-7 \hat{k})+11=0$

D Watch Video Solution

4. Find the acute angle between the following
planes: $2 x-y+z=5$ and $x+y+2 z=7$

$$
x+2 y+2 z=3 \text { and } 2 x-3 y+6 z=8
$$

- Watch Video Solution

5. Show that each of the following pairs of planes are at right angles:
i) $3 x+4 y-5 z=7$ and $2 x+6 y+6 z+7=0$
ii) $x-2 y+4 z=10$ and $18 x+17 y+4 z=49$

D Watch Video Solution

6. Prove that the plane $2 x+3 y-4 z=9$ is perpendicular to each of the planes $x+2 y+2 z-7=0$ and $5 x+6 y+7 z=23$.
7. Show that the planes $2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-1=0$ are parallel.

- Watch Video Solution

8. Find the value of λ for which the planes $x-4 y+\lambda z+3=0$ and $2 x+2 y+3 z=5$ are perpendicular to each other.

D Watch Video Solution

9. Write the equation of the plane passing through the origin and parallel to the plane

$5 x-3 y+7 z+11=0$.

- Watch Video Solution

10. Find the equation of the plane passing through
(a,b,c) and paralle toteh plne $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$.

- Watch Video Solution

11. Find the equation of the plane passing through the point $(1,-2,7)$ and parallel to the plane $5 x+4 y-11 z=6$.
12. Find the equation of the plane passing through the point $(-1,-1,2)$ and perpendicular to the planes $3 x+2 y-3 z=1$ and $5 x-4 y+z=5$.

- Watch Video Solution

13. Find the equation of a plane passes through the point $(0,0,0)$ and perpendicular to each to the planes $x+2 y-z=1$ and $3 x-4 y+z=5$.

- Watch Video Solution

14. Find the equation of the plane that contains the point $A(1,-1,2)$ and is perpendicular to both the planes $2 x+3 y-2 z=5$ and $x+2 y-3 z=8$. Hence, find the distance of the point $P(-2,5,5)$
from the plane obtained above

- Watch Video Solution

15. Find the equation of the plane passing through the points $A(1,-1,2)$ and $B(2,-2,2)$ and perpendicular to the plane $6 x-2 y+2 z=9$.
16. Find the equation of the plane passing through the points $(-1,1,1)$ and $(1,-1,1)$ and perpendicular to the plane $x+2 y+2 z=5$.

- Watch Video Solution

17. Find the equation of the plane through the points $A(3,4,2)$ and $B(7,0,6)$ and perpendicular to the plane $2 x-5 y=15$.

Hint: The given plane is $2 x-5 y+0 z=15$.
18. Find the equation of the plane through the
points $A(2,1,-1)$ and $B(-1,3,4)$ and perpendicular to the plane $x-2 y+4 z=10$. Also, show that the plane thus obtained contains the line
$\vec{r}=(-\hat{i}+3 \hat{j}+4 \hat{k})+\lambda(3 \hat{i}-2 \hat{j}-5 \hat{k})$.

- Watch Video Solution

Exercise 28 G

1. Find the angle between the line
$\vec{r}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$
and
$\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})=4$.
2. Find the angle between the line
$\vec{r}=(2 \hat{i}-\hat{j}+3 \hat{k})+\lambda(3 \hat{i}-\hat{j}+2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=3$.

- Watch Video Solution

3. Find the angle between the line
$\vec{r} \cdot(3 \hat{i}+\hat{k})+\lambda(\hat{j}+\hat{k}) \quad$ and the plane
$\vec{r} \cdot(2 \hat{i}-\hat{j}+2 \hat{k})=1$.

Watch Video Solution
4. Find the angle between the line $\frac{x-2}{3}=\frac{y+1}{-1}=\frac{z-3}{2}$ and the plane $3 x+4 y+z+5=0$.

- Watch Video Solution

5. Find the angle between the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 x+2 y 11 z=3$.
6. Find the anlge between the line joining the points
$A(3,-4,-2)$ and $B(12,2,0)$ and the plane $3 x-y+z=1$.

- Watch Video Solution

7. If the plane $2 x-3 y-6 z=13$ makes an angle $\sin ^{-1}$ with the x-axis, then the find the value of λ.

- Watch Video Solution

$$
\begin{aligned}
& \text { 8. } \begin{array}{l}
\text { Show } \\
\vec{r}
\end{array}=(2 \hat{i}+5 \hat{j}+7 \hat{k})+\lambda(\hat{i}+3 \hat{j}+4 \hat{k})
\end{aligned}
$$

Ine
parallel to the plane $\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=7$. Also, find the distance between them.

- Watch Video Solution

9. Find the value of m for which the line
$\vec{r} .=(\hat{i}+2 \hat{k})+\lambda(2 \hat{i}-m \hat{j}-3 \hat{k})$ is parallel to
the plane $\vec{r} \cdot(m \hat{i}+3 \hat{j}+\hat{k})=4$.

- Watch Video Solution

10. Find the vector equation of a lie passing through the origin perpendicular to the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})=3$.

- Watch Video Solution

11. Find the vector equation of the line passing through the point with position vector $(\hat{i}-2 \hat{j}+5 \hat{k})$ and perpendicular to the plane $\vec{r} \cdot(2 \hat{i}-3 \hat{j}-\hat{k})=0$.
12. Show that the equation $a x+b y+d=0$ represents a plane parallel to the z-axis. Hence, find the equation of a plane which is parallel to the z axis. Hence, find the equation of a plane which is parallel to the z-axis nd passes through the points $A(2,-3,-1)$ and $B(-4,7,6)$.

- Watch Video Solution

13. Find the equation of the plane passing through
the points $(1,2,3)$ and $(0,-1,0)$ and parallel to the line

$$
\frac{x-1}{2}=\frac{y+2}{3}=\frac{z}{-3}
$$

14. Find the equation of a plane passing through the point $(2,-1,5)$, perpendicular to the plane $x+2 y-3 z=7$ and parallel to the linne $\frac{x+5}{3}=\frac{y+1}{-1}=\frac{z-2}{1}$.

- Watch Video Solution

15. Find the equation of the plane passing through
the intersection of the planes $4 x-y+z=0$ and $x+y-z=0$ and parallel to the line which direction ratios 2,1,1. Find also the perpendicular distance of $(1,1,1)$ from this plane.
16. Find the vector and Cartesian equations of the plane passing through the origin and parallel to the vectors $(\hat{i}+\hat{j}-\hat{k})$ and $(3 \hat{i}-\hat{k})$.

- Watch Video Solution

17. Find the vector and Cartesian quations of the plane passing through the point $(3,-1,2)$ and parallel to the lines $\vec{r}=(-\hat{j}+3 \hat{k})+\lambda(2 \hat{i}-5 \hat{j}-\hat{k})$ and $\vec{r} \cdot(\hat{i}-3 \hat{j}+\hat{k})+\mu(-5 \hat{i}+4 \hat{j})$.
18. Find the vector equation of a plane passing through the point ($1,2,3$) and parallel to the lines whose direction ratos are $(1,-1,-2)$ and $(-1,0,2)$.

D Watch Video Solution

19. Find the Cartesian and vector eqauations of a plane passing through the point $(1,2,-4)$ and parallel to the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+1}{6} \quad$ and $\frac{x-1}{1}=\frac{y+3}{1}=\frac{z}{-1}$.
20. Find the vector equation of the plane passing through the point $(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and parallel to the vectors $(\hat{i}+2 \hat{j}+3 \hat{k})$ and $(\hat{i}-\hat{j}+\hat{k})$.

- Watch Video Solution

Exercise 28 I

1. Show that the lines
$\vec{r}=(2 \hat{j}-3 \hat{k})+\lambda(\hat{i}+2 \hat{j}+3 \hat{k})$ and
$\vec{r}=(2 \hat{i}+6 \hat{j}+3 \hat{k})+\mu(2 \hat{i}+3 \hat{j}+4 \hat{k})$
are coplanar. Also the find the equation of the plane passing through these lines.

- Watch Video Solution

2. Find the vector and Cartesian forms of the equationi of the plane containing the two lines.
$\vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k}) \quad$ and
$\vec{r}=(9 \hat{i}+5 \hat{j}-\hat{k})+\mu(-2 \hat{i}+3 \hat{j}+8 \hat{k})$.

- Watch Video Solution

3. Find the vector and Cartesian equations of a plane containing the two lines

$$
\begin{aligned}
& \vec{r}=(2 \hat{i}+\hat{j}-3 \hat{k})+\lambda(\hat{i}+2 \hat{j}+5 \hat{k}) \quad \text { and } \\
& \vec{r}=(3 \hat{i}+3 \hat{j}+2 \hat{k})+\mu(3 \hat{i}-2 \hat{j}+5 \hat{k})
\end{aligned}
$$

- Watch Video Solution

4. Prove that the lines $\frac{x}{1}=\frac{y-2}{2}=\frac{z+3}{3}$ and $\frac{x-2}{2}=\frac{y-6}{3}=\frac{z-3}{4}$ are coplanar. Also find the equation of the plane containing these lines.

- Watch Video Solution

5. Prove that the lines $\frac{x-2}{1}=\frac{y-4}{4}=\frac{z-6}{7}$ and $\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{3}$ are coplanar. Also find the equation of the plane containing these lines.

- Watch Video Solution

6. Show that the lines $\frac{5-x}{-4}=\frac{y-7}{4}=\frac{z+3}{-5}$ and $\frac{x-8}{7}=\frac{2 y-8}{2}=\frac{z-5}{3}$ are coplaner. Find the equation of the plane containing these lines.

- Watch Video Solution

7. Show that the lines $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and $\frac{x}{1}=\frac{y-7}{-3}=\frac{z+7}{2}$ are coplanar. Find the equation of the plane containing these lines.

- Watch Video Solution

8. Show that the lines $\frac{x-1}{2}=\frac{y-3}{-1}=\frac{z}{-1}$ and $\frac{x-4}{3}=\frac{y-1}{-2}=\frac{z-1}{-1}$ are coplanar. Also find the equation of the plane containing these lines.

- Watch Video Solution

9. Find the equation of the plane which contains two parallel lines given by

$$
\begin{aligned}
& \frac{x-3}{1}=\frac{y+2}{-4}=\frac{z}{5} \\
& \frac{x-4}{1}=\frac{y-3}{-4}=\frac{z-2}{5}
\end{aligned}
$$

1. Find the direction ratios of the normal to the plane $x+2 y-3 z=5$.

2. Find the direction cosines of the normal to the

 plane $2 x+3 y-z=4$.
- Watch Video Solution

3. Find the direction cosines of the normal to the plane $y=3$.

- Watch Video Solution

4. Find the direction cosines of the normal to the plane $3 x+4=0$.
5. Write the equation of the plane parallel to XY plane and passing through the point (4,-2,3).

- Watch Video Solution

6. Write the equation of the plane parallel to YZplane and passing through the point $(-3,2,0)$.

D Watch Video Solution

7. The equation of a plane parallel to x-axis is
8. Write the intercept cut off by the plane $2 x+y-z=5$ on $x-a \xi s$.

- Watch Video Solution

9. Write the intercepts made by the plane $4 x-3 y+2 z=12$ on the coordinate axes.

-
 Watch Video Solution

10. Reduce the equation $2 x-3 y+5 z+4=0$ to intercept form and find the intercepts made by it on the coordinate axes.

- Watch Video Solution

11. Find the equation of a plane passing through the points $A(a, 0,0), B(0, b, 0)$ and $C(0,0, c)$.

- Watch Video Solution

12. Write the value of k for which the planes
$2 x-5 y+k z=4 \quad$ and $\quad x+2 y-z=6 \quad$ are
perpendicular to each other.

- Watch Video Solution

13. Find the angle between the planes
$2 x+y-2 z=5$ and $3 x-6 y-2 z=7 . \quad$ Using
vector method.
14. Find the angle between the planes $\vec{r} \cdot(\hat{i}+\hat{j})=1$ and $\vec{r} \cdot(\hat{i}+\hat{k})=3$.

- Watch Video Solution

15. Find the angle between the planes

$$
\begin{aligned}
& \vec{r} \cdot(3 \hat{i}-4 \hat{j}+5 \hat{k})=0 \\
& \vec{r} \cdot(2 \hat{i}-\hat{j}-2 \hat{k})=7
\end{aligned}
$$

16. Find the angle between the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 x+2 y 11 z=3$.

- Watch Video Solution

17. Find the angle between the line

$$
\begin{aligned}
& \vec{r}=(\hat{i}+\hat{j}-2 \hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}) \text { and the plane } \\
& \vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})=4
\end{aligned}
$$

18. Find the value of λ such that the line $\frac{x-2}{6}=\frac{y-1}{\lambda}=\frac{z+5}{4}$ is perpendicular to the planes $3 x-y+2 z=7$.

- Watch Video Solution

19. Find the equation of the plane passing through
(a,b,c) and paralle toteh plne $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$.

D
 Watch Video Solution

20. Find the length of the perpendicular drawn from the origin to the plane $2 x 3 y+6 z+21=0$.

- Watch Video Solution

21. Find the direction cosines of the perpendicular from the origin to the plane

$$
\vec{r} \cdot(6 \hat{i}-3 \hat{j}-2 \hat{k})+1=0
$$

- Watch Video Solution

22. Show that the line
$\vec{r}=(4 \hat{i}-7 \hat{k})+\lambda(4 \hat{i}-2 \hat{j}+3 \hat{k})$ is parallel to
the plane $\vec{r} \cdot(5 \hat{i}+4 \hat{j}-4 \hat{k})=7$.

- Watch Video Solution

23. Find the length of perpendicular from the origin to the plane $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+6 \hat{k})+14=0$.
24. Find the value of λ for which the line $\frac{x-1}{2}=\frac{y-1}{3}=\frac{z-1}{\lambda}$ is parallel to the plane $\vec{r} \cdot(2 \hat{i}+3 \hat{j}+4 \hat{k})=4$.

D Watch Video Solution

25. Write the angle between the line $\frac{x-1}{2}=\frac{y-2}{1}=\frac{z+3}{-2} \quad$ and the plane $x+y+4=0$.

- Watch Video Solution

26. Write the equation of a plane passing through the point $(2,-1,0)$ and parallel to the plane $3 x+2 y-z=7$

- Watch Video Solution

Objective Questions

1. The direction cosines of the perpendicular from the origin to the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}-2 \hat{k})+1=0$ are

$$
\text { A. } \frac{6}{7}, \frac{3}{7},-\frac{2}{7}
$$

B. $\frac{6}{7},-\frac{3}{7}, \frac{2}{7}$
C. $-\frac{6}{7}, \frac{3}{7}, \frac{2}{7}$
D. none of these

Answer: c

- Watch Video Solution

2. The direction cosines of the normal to the plane $5 y+4=0$ are
A. $0,-\frac{4}{5}, 0$
B. $0,1,0$
C. $0,-1,0$

D. none of these

Answer: c

- Watch Video Solution

3. The length of perpendicular from the origin to
the plane $\vec{r} \cdot(-3 \hat{i}-4 \hat{j}-12 \hat{k})+39=0$ is
A. 3 units
B. $\frac{13}{5}$ units
C. $\frac{5}{3}$ units

D. none of these

Answer: A

D Watch Video Solution

4. The equation of a plane passing through the point $A(2,-3,7)$ and making equal intercepts on the axes,is
A. $x+y+z=3$
B. $x+y+z=6$
C. $x+y+z=9$
D. $x+y+z=4$

Answer: b

- Watch Video Solution

5. A plane cuts off intercepts $3,-4,6$ on the coordinate axes. The length of perpendicular from the origin to this plane is

$$
\begin{aligned}
& \text { A. } \frac{5}{\sqrt{29}} \text { units } \\
& \text { B. } \frac{8}{\sqrt{29}} \text { units } \\
& \text { C. } \frac{6}{\sqrt{29}} \text { units }
\end{aligned}
$$

D. $\frac{12}{\sqrt{29}}$ units

Answer: d

- Watch Video Solution

6. If the line $\frac{x+1}{3}=\frac{y-2}{4}=\frac{z+6}{5}$ is parallel to the planes $2 x-3 y+k z=0$, then the value of k is
A. $\frac{5}{6}$
B. $\frac{6}{5}$
C. $\frac{3}{4}$
D. $\frac{4}{5}$

Answer: b

- Watch Video Solution

7. यदि O मूल बिंदु तथा P के निर्देशांक $(1,2,-3)$ है तो बिंदु P

से जाने वाले तथा $O P$ के "लंबवत " तल का समीकरण ज्ञात कीजिए।
A. $x+2 y-3 z=14$
B. $x-2 y+3 z=12$
C. $x-2 y-3 z=14$
D. none of these

Answer: a

- Watch Video Solution

8. The line $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ lies exactly on
the plane $2 x=4 y+z=7$ then the value of k is (A)
7 (B) -7 (C) 1 (D) none of these
A. -7
B. 7
C. 4
D. -4

Answer: b

- Watch Video Solution

9. The plane $2 x+3 y+4 z=12$ meets the coordinate axes in A, B and C. The centroid of $\triangle A B C$ is
A. ${ }^{`}(2,3,4)$
B. $(6,4,3)$
C. $\left(2, \frac{4}{3}, 1\right)$
D. none of these

Answer: c

- Watch Video Solution

10. If a plane meets the coordinate axes in A, B and C such that the centroid of $\triangle A B C$ is $(1,2,4)$, then the equation of the plane is

$$
\text { A. } x+2 y+4 z=6
$$

B. $4 x+2 y+3 z=12^{`}$
C. $x+2 y+4 z=7$
D. $4 x+2 y+z=7$

Answer: b

- Watch Video Solution

11. The equation of a plane through the point
$A(1,0,-1)$ and perpendicular to the line $\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+7}{-3}$ is
A. $2 x+4 y-3 z=3$
B. $2 x-4 y+3 z=5$
C. $2 x+4 y-3 z=5$
D. $x+3 y+7 z=-6$

Answer: c

- Watch Video Solution

12. The line $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ meets the plane $2 x+3 y-z=14$ in the point
A. $(2,5,7)$
B. $(3,5,7)$
C. $(5,7,3)$
D. $(6,5,3)$

- Watch Video Solution

13. Find the equation of the plane through the points
$(2,2,1)$
and
$(9,3,6)$
and perpendicar \rightarrow thepla $\neq 2 \mathrm{x}+6 \mathrm{y}+6 \mathrm{z}=\mathbf{1}^{`}$
A. $x+2 y-3 z+5=0$
B. $2 x-5 y+4 z-8=0$
C. $4 x+5 y-6 z+3=0$
D. $3 x+4 y-5 z-9=0$

Answer: d
14. Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z-2=0$ and the point $(2,2,1)$.
A. $7 x+5 y-4 z-8=0$
B. $7 x-5 y+4 z-8=0$
C. $5 x-7 y+4 z-8=0$
D. $5 x+7 y-4 z+8=0$

Answer: B
15. The equation of the plane passing through the points $A(0,-1,0), B(2,1,-1)$ and $C(1,1,1)$ is given by

$$
\text { A. }(4 x+3 y-2 z-3)=0
$$

B. $4 x-3 y+2 z+3=0$
C. $4 x-3 y+2 z-3=0$
D. none of these

Answer: c

- Watch Video Solution

16. If the plane $2 x-y+z=0$ is parallel to the line $\frac{2 x-1}{2}=\frac{2-y}{2}=\frac{z+1}{a}$, then the value of a is
A. -4
B. -2
C. 4
D. 2

Answer: a

- Watch Video Solution

17. The angle between the line $\frac{x+1}{1}=\frac{y}{2}=\frac{z-1}{1}$ and a normal to the plane $x-y+z=0$ is

A. 0°
B. 30°
C. 45°
D. 90°

Answer: d

- Watch Video Solution

18. The point of intersection of the line

$$
\begin{aligned}
& \frac{x-1}{3}=\frac{y+2}{4}=\frac{z-3}{-2} \quad \text { and the plane } \\
& 2 x-y+3 z-1=0, \text { is }
\end{aligned}
$$

A. $(-10,10,3)$
B. $(10,10,-3)$
C. $(10,-10,3)$
D. $(10,-10,-3)$

Answer: b

- Watch Video Solution

19. The equation of a plane passing throgh the points $A(a, 0,0), B(0, b, 0)$ and $\mathrm{C}(0,0, \mathrm{c})$ is given by
A. $a x+b y+c z=0$
B. $a x+b y+c z=1$
C. $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0$
D. $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$

Answer: d
20. If θ is the angle between the planes
$2 x-y+2 z=3 \quad$ and $\quad 6 x-2 y+3 z=5, \quad$ then $\cos \theta=?$

> A. $\frac{11}{20}$
> B. $\frac{12}{23}$
> C. $\frac{17}{25}$
> D. $\frac{20}{21}$

Answer: d
21. The angle between the planes $2 x-y+z=6$
and $x+y+2 z=7$, is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: c

- Watch Video Solution

22. The angles between the planes

$$
\begin{aligned}
& \vec{r} \cdot(3 \hat{i}-6 \hat{j}+2 \hat{k})=4 \\
& \vec{r} \cdot(2 \hat{i}-\hat{j}+2 \hat{k})=3, \text { is }
\end{aligned}
$$

A. $\cos ^{-1}\left(\frac{16}{21}\right)$
B. $\cos ^{-1}\left(\frac{4}{21}\right)$
C. $\cos ^{-1}\left(\frac{3}{4}\right)$
D. $\cos ^{-1}\left(\frac{1}{4}\right)$

Answer: a

- Watch Video Solution

23. The equation of a plane through the point
$(2,3,1)$ and $(4,-5,3)$ and parallel to x-axis
A. $x+y-3 z=2$
B. $y+4 z=7$
C. $y+3 z=6$
D. $x+5 y-3 z=4$

Answer: b

- Watch Video Solution

24. A variable plane moves so that the sum of the reciprocals of its intercepts on the coordinate axes is $(1 / 2)$. Then, the plane passes through the point
A. $(0,0,0)$
B. $(1,1,1)$
C. $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
D. $(2,2,2)$

Answer: d

- Watch Video Solution

25. The equation of a plane which is perpendicular to $(2 \hat{i}-3 \hat{j}+\hat{k})$ and at a distance of 5 units from the origin is

$$
\begin{aligned}
& \text { A. } 2 x-3 y+z=5 \\
& \text { B. } 2 x-3 y+z=5 \sqrt{14} \\
& \text { C. } \frac{x}{2}-\frac{y}{3}+\frac{z}{1}=5 \\
& \text { D. } \frac{x}{2}-\frac{y}{3}+\frac{z}{1}=\frac{5}{\sqrt{14}}
\end{aligned}
$$

Answer: b

- Watch Video Solution

26. The equation of the plane passing through the point $A(2,3,4)$ and parallel to the plane

$$
5 x-6 y+7 z=3 \text {, is }
$$

A. $5 x-6 y+7 z=20$
B. $7 x-6 y+5 z=72$
C. $20 x-18 y+14 z=11$
D. $10 x-18 y+28 z=13$

Answer: a

- Watch Video Solution

27. The foot of the perpendicular from the point
$\mathrm{A}(7,14,5)$ to the plane $2 x+4 y-z=2$ is
A. $(3,1,8)$
B. $(1,2,8)$
C. $(3,-3,5)$
D. $(5,-3,-4)$

Answer: b

- Watch Video Solution

28. The equation of the plane which makes with coordinate axes, a triangle witih centroid (α, β, γ)
is given by
A. $\alpha x+\beta y+\gamma z=1$
B. $\alpha x+\beta y+\gamma z=3$
C. $\frac{x}{\alpha}+\frac{y}{\beta}=\frac{z}{\gamma}=1$
D. $\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=3$

Answer: d

- Watch Video Solution

29. The intercepts made by the plane $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+4 \hat{k})=12$ are
A. $2,-3,4$
B. 2,-3,-6
C. $-6,-4,3$
D. $-6,4,3$

Answer:

30. The angle between the line

$$
\frac{x-2}{1}=\frac{y+3}{-2}=\frac{z+4}{-3} \quad \text { and } \quad \text { the plane }
$$

$2 x-3 y+z=5$ is

$$
\begin{aligned}
& \text { A. } \cos ^{-1}\left(\frac{5}{14}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{5}{14}\right) \\
& \text { C. } \cos ^{-1}\left(\frac{3}{7}\right) \\
& \text { D. } \sin ^{-1}\left(\frac{3}{7}\right)
\end{aligned}
$$

Answer: b

31. The angle between the line $\vec{r}=(\hat{i}+\hat{j}-3 \hat{k})+\lambda(2 \hat{i}+2 \hat{j}+\hat{k})$ and the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}+2 \hat{k})=5$, is

$$
\begin{aligned}
& \text { A. } \cos ^{-1}\left(\frac{5}{14}\right) \\
& \text { B. } \cos ^{-1}\left(\frac{5}{21}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{5}{21}\right) \\
& \text { D. } \sin ^{-1}\left(\frac{8}{21}\right)
\end{aligned}
$$

Answer: d

- Watch Video Solution

32. Find the distance of the point $(1,2,5)$ from the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})+17=0$
A. $\frac{25}{\sqrt{2}}$ units
B. $\frac{25}{\sqrt{3}}$ units
C. $25 \sqrt{2}$ units
D. $25 \sqrt{3}$ units

Answer: b
33. The distance between the parallel planes
$2 x-3 y+6 z=5$ and $6 x-9 y+18 z+20=0$, is
A. $\frac{5}{3}$ units
B. $5 \sqrt{3}$ units
C. $\frac{8}{5}$ units
D. $8 \sqrt{5}$ units

Answer: a

- Watch Video Solution

34. The distance between the planes
$x+2 y-2 z+1=0$ and $2 x+4 y-4 z+5=0$, is
A. 4 units
B. 2 units
C. $\frac{1}{2}$ units
D. $\frac{1}{4}$ units

Answer: C

- Watch Video Solution

35. The image of the point $(1,3,4)$ in the plane $2 x-y+z+3=0$ is $(3,5,2)$ b. $(-3,5,2)$ c.
$(3,5,-2)$ d. $(3,-5,2)$
A. $(3,-5,2)$
B. $(3,5,-2)$
C. $(3,5,2)$
D. $(-3,5,2)$

Answer: d

- Watch Video Solution

