©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - ZEN MATHS (KANNADA

ENGLISH)

CONSTRUCTIONS

Textual Exercises Exercise 61

1. Draw a line segment of length 7.6 cm and
divide it in the ratio 5:8. Measure the two
parts.

- Watch Video Solution

2. Construct a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and

6 cm and then a triangle similar to it whose
sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.

- Watch Video Solution

3. Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$
and 7 cm and then another triangle whose
sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.

- Watch Video Solution

4. Construct an isoeceles triangle whose base
is 8 cm and altitude 4 cm and then another triangle whose sides $1 \frac{1}{2}$ times the corresponding sides of the isoeceles triangle.
5. Construct a circumcircle of the triangle $A B C$ where $\mathrm{AB}=5 \mathrm{~cm}, \angle B=75^{\circ}$ and $\mathrm{BC}=7 \mathrm{~cm}$

D Watch Video Solution

6. In each of the following, give the justification of the construction too.

Draw a triangle ABC with side $B C=7 \mathrm{~cm}$,
$B=45^{\circ}$, and $A=105^{\circ}$. Then, construct a
triangle whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle \mathrm{ABC}$.

D View Text Solution

7. In each of the following, give the justification of the construction too.

Draw a right-triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm . Then, construct another triangle whose 5 sides are $\frac{5}{3}$ times the corresponding sides of the given triangle.

Textual Exercises Exercise 62

1. Draw a circle of radius 6 cm . From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their
lengths.

- View Text Solution

2. Construct a tangent to a circle of radius

4 cm from a point on the concentric circle of radius 6 cm and measure its lengths. Also Verify the measurement by actual calculation.

- Watch Video Solution

3. Draw a line segment $A B$ of length 8 cm .

Taking A as centre, draw a circle of radius 4 cm
and taking B as centre, draw another circle of radius 3 cm . Construct tangents to each circle
from the centre of the other circle.

D View Text Solution

4. Let $A B C$ be a right-triangle in which $A B=6$ $\mathrm{cm}, \mathrm{BC}=8 \mathrm{~cm}$, and $B=90^{\circ} . \mathrm{BD}$ is the perpendicular from B on $A C$. A circle through B, C, D is drawn. Construct the tangent from A
to this circle.

D View Text Solution
5. Draw a circle of radius 3 cm . Take a point P outside the circle without using the centre of
the circle, draw to tangents to the circle from an external point P.

D Watch Video Solution

Zen Additional Questions Multiple Choice

 Questions1. Construct a triangle similar to a given $\triangle A B C$ with its sides equal to $\frac{3}{4}$ th of the corresponding sides of the $\Delta A B C$ For this
construction, which of the following statements are true?
A. The required $\triangle A^{\prime} B C^{\prime}$ is less than \triangle

ABC
B. The required $\triangle A^{\prime} B C^{\prime}$ is greater than
$\triangle \mathrm{ABC}$
C. The required $\triangle A^{\prime} B C^{\prime}$ is equal to
$\Delta A B C$
D. None of the above
2. Given a triangle with side $P Q=8 \mathrm{~cm}$. To get a line segment $P Q^{\prime}=\frac{3}{4}$ of PQ , we divide the line segment $P Q$ in the ratio
A. 1) $3: 4$
B. 2)4:3
C. 3)1:3
D. 4)3:1
3. In the construction of triangle similar and smaller to a given triangle as per the given scale factor $\mathrm{m}: \mathrm{n}$, the construction is possible only when
A. $m>n$
B. $m<n$
C. $m=n$
D. Independent of scale factor

Answer: B

- Watch Video Solution

4. To draw a pair of tangents to a circle inclined to each other at 40°, the angle at the centre of the circle between the two radii is

A. 40°
B. 90°
C. 140°
D. 180°

Answer: C

D Watch Video Solution

5. To divide a line segment $A B$ in the ratio 5:7,
first a ray $A X$ is drawn so that $B A X$ is an
acute angle and then at equal distances
points are marked on the ray $A X$ such that the minimum number of these points is
A. 1) 8
B. 2)10
C. 3)11
D. 4)12

Answer: D
(Watch Video Solution
6. To divide a line segment $A B$ in the ration

4:7, a ray AX is first drawn such that $B A X$ is
an acute angle and then points $A_{1}, A_{2}, A_{3}, \ldots$ located at equal distance on the ray $A X$ and the point B is joined to
A. 1) A_{12}
B. 2) A_{11}
C. 3) A_{10}
D. 4) A_{9}

Answer: B

- Watch Video Solution

7. To divide a line segment $A B$ in the ratio $5: 6$, draw a ray AX such that $B A X$ is an acute angle , drawn a ray BY parallel to AX with the points $\quad A_{1}, A_{2}, A_{3}, \ldots$ and $B_{1}, B_{2}, B_{3}, \ldots$ located at equal distances on ray AX and BY respectively. Then the points joined are
A. 1) A_{5} and B_{6}
B. 2) A_{6} and B_{5}
C. 3) A_{4} and B_{5}

D. 4) A_{5} and B_{4}

Answer: A

D Watch Video Solution

8. To construct a triangle similar to a given
$\triangle A B C$ with its sides $\frac{3^{t h}}{7}$ the corresponding sides of $\triangle A B C$, first draw a ray $B X$ such that
$C B X$ is an acute angle and X lies on the opposite side of A with respect to $B C$. Them,
locate points $B_{1}, B_{2}, B_{3}, \ldots$ on BX at equal distance and the next step is to join

A. 1) B_{10} to C

B. 2) B_{3} to C
C. 3) B_{7} to C
D. 4$) B_{4}$ to C

Answer: C

- Watch Video Solution

9. To construct a triangle similar to a given
$\triangle \mathrm{ABC}$ with its sides $\frac{8}{5}$ th the corresponding sides of $\triangle A, B, C$ draw a ray BX such that
$C B X$ is an acute angle and X is on the opposite side of A with respect to $B C$. The minimum number of points to be located at equal distances on the ray $B X$
A. 5
B. 2)8
C. 3)13

D. 4)3

Answer: B

D Watch Video Solution

10. To draw a pair of tangents to a circle inclined to each other at an angle of 60°, it is required to draw the two radii of the circle intersecting at an angle of
A. 1) 135°

B. 2) 90°

C. 3$) 60^{\circ}$
D. 4$) 120^{\circ}$

Answer: D

D Watch Video Solution

Zen Additional Questions Short Answer Sa Type 1

Questions

1. Draw a line segment $A B$ of length 7 cm .

Using compass and ruler, find the point P on
AB such that $\frac{A P}{A B}=\frac{3}{5}$.

D View Text Solution
2. Draw a line segment of length 7.6 cm and divide it in the ratio $3: 2$.

D Watch Video Solution

3. Draw a pair of tangents to a circle of radius

3 cm inclined to each other at an angle of 45°.

D View Text Solution

Zen Additional Questions Short Answer Sa Type 2
Questions

1. Construct a triangle PQR where $P Q=6 \mathrm{~cm}$
$Q R=7 \mathrm{~cm}$, and $P R=8 \mathrm{~cm}$. Then, construct another triangle whose sides are $\frac{4}{5}$ th the corresponding sides of $P Q R$.

- Watch Video Solution

2. Construct a triangle with sides $5 \mathrm{~cm}, 5.5 \mathrm{~cm}$, and 6.5 cm . Construct another triangle whose sides are $\frac{3}{5}$ times the corresponding sides of the given triangle.

- Watch Video Solution

3. Draw a circle of radius 3 cm . From a point P,

7 cm away from its centre, draw two tangents
to the circle. Measure the length of each tangent.

- Watch Video Solution

4. Draw a circle of radius 3.5 cm . Draw the tangents to the circle perpendicular to each other.

D View Text Solution
5. Construct a triangle ABC with sides $B C=3$
$\mathrm{cm}, A B=6 \mathrm{~cm}$ and $\mathrm{AC}=4.5 \mathrm{~cm}$. Then
construct a triangle whose sides are $4 / 3$ of the corresponding sides of the triangle $A B C$.

D Watch Video Solution

Zen Additional Questions Long Answer La Questions

1. Construct a $\triangle A B C$ where
$A B=6.5 \mathrm{~cm}, B=60^{\circ}$, and $B C=5.5 \mathrm{~cm}$.

Also construct $\triangle A B^{\prime} C$ similar to $\triangle A B C$, whose each side is $\frac{3}{2}$ times the corresponding side of $\triangle A B C$.

D Watch Video Solution

2. Construct a right-triangle where the sides
(other than the hypotenuse) are of lengths 5
cm and 7 cm . Then, construct another triangle whose sides are $\frac{4}{5}$ times the corresponding sides of the given triangle.
3. Draw a right-angled triangle where the sides other than the hypotenuse are of lengths 2.2 cm and 2.2 cm . Then, construct another triangle whose sides are $\frac{5}{3}$ times the corresponding sides of the given triangle.

D View Text Solution

4. Draw an isosceles $\triangle A B C$ where $B C=5.5$
cm and altitude $A L=3 \mathrm{~cm}$. Then, construct
another triangle whose sides are $\frac{3}{4}$ times the corresponding sides of $\triangle A B C$.
(Watch Video Solution
5. Draw a circle of radius 3 cm . Draw a tangent to this circle making an angle of 30° with a line passing through the centre.

D View Text Solution

Zen Additional Questions Hots Higher Order Thinking Skills Questions

1. Two line segments $A B$ and $A C$ include an angle of 60°, where $A B=5 \mathrm{~cm}$ and $A C=7 \mathrm{~cm}$.

Locate points P and Q on $A B$ and $A C$ respectively
such that

AP
$=\frac{3}{4} A B$ and $A Q=\frac{1}{4} A C$. Join P and Q and measure $P Q$.

D Watch Video Solution

2. Draw an isosceles $\triangle A B C$ where
$A B=A C=6 \mathrm{~cm}$ and $B C=5 \mathrm{~cm}$.

Construct a triangle PQR similar to $\triangle A B C$ in which $P Q=8 \mathrm{~cm}$. Also justify the construction.

D View Text Solution

Zen Additional Questions Hots Higher Order Thinking Skills Questions lit Olympiad Imo

1. Given below are the steps of construction of
a pair of tangents to a circle of radius 4 cm
from a point on the concentric circle of radius

6 cm . Find which of the following steps is wrong.
(P) Step 1: Take a point O on the plane paper and draw a circle of radius $\mathrm{OA}=4 \mathrm{~cm}$. Also draw a concentric circle of radius $O B=6 \mathrm{~cm}$.
(Q) Step 2: Find the midpoint C of $O B$ and draw a circle of radius $B A=A O$. Suppose this circle intersects the circle of radius 4 cm at P and Q .
(R) Step 3: Join BP and BQ to get the desired tangents.
A. Only (P)
B. Only Q
C. Both (P) and (Q)
D. Both Q and R

Answer: B

D View Text Solution

2. Given below are the steps of construction of a pair of tangents to a circle of radius 5 cm inclined to each other at an angle of 60°. Find which of the following steps is wrong.

Step 1: Take a point O on the paper and draw a circle of radius $\mathrm{OA}=5 \mathrm{~cm}$.

Step 2: Produce $O A$ to B such that $O A=A B=$ 5 cm .

Step 3: Taking B as centre draw a circle of radius $A O=A B=5 \mathrm{~cm}$. Suppose it cuts the circle drawn in step 1 at P and Q.

Step 4: Join BP and BQ to get the desired
tangents.

A. Only step 1
B. Only step 2
C. Only step 3
D. Only step 4

Answer: C

D View Text Solution

3. Draw a circle of radius 2 cm with centre O and take a point P outside the circle such that
$\mathrm{OP}=4.5 \mathrm{~cm}$. From P, draw two tangents to the circle. Given below are the steps of constructing the tangents from P. Find which of the following steps is wrong.

Step 1: Draw a circle with O as centre and radius 2 cm .

Step 2: Mark a point P outside the circle such that $\mathrm{OP}=4.5 \mathrm{~cm}$.

Step 3: Join OP and bisect it at M.

Step 4: Draw a circle with P as centre and radius $=$ MP to intersect the given circle .at the points R and Q.

Step 5: Join PR and PQ.
A. 1)Step 2 only
B. 2)Step 3 only
C. 3)Step 4 only
D. 4)Step 5 only

Answer: C
4. Let $A B C$ be a right-triangle where $A B=6 \mathrm{~cm}$,
$\mathrm{BC}=8 \mathrm{~cm}$, and $B=90^{\circ} . \mathrm{BD}$ is the perpendicular from B on $A C$. The circle through B, C, and Dis drawn. Given below are the steps of construction of a pair of tangents from A to this circle. Which of the following steps is incorrect?

Step 1: Draw a line segment $A B=6 \mathrm{~cm}$ and $B C=$ 8 cm perpendicular to each other. Join AC.

Step 2: Draw the perpendicular bisector of BC
which meets $B C$ at O.

Step 3: With O as centre and $O B$ as radius. draw a circle which intersects AC at D. Thus
$B D \perp A C$.

Step 4: With A as centre and $A O$ as radius draw an arc cutting the circle at M.

Step 5: Join $A M$. Thus $A B$ and $A M$ are the required tangents.
A. Step 2 only
B. Step 3 only
C. Step 4 only

D. Step 5 only

Answer: C

D View Text Solution

5. Divide a line segment 6 cm long in the ratio

4 : 3. Given below are steps of construction.

Which of the following steps is incorrect?
Step 1: Draw a line segment $A B=6 \mathrm{~cm}$.

Step 2 : Draw a ray AX making an acute angle
$B A X$

Step 3: Along AX mark 4 points
A_{1}, A_{2}, A_{3}, and A_{4} such that
$A A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}$.
Step 4: Join $A_{4} B$.
Step 5: From A_{3} drawn $A_{3} C| | A_{4} B$ meeting
$A B$ at C.
A. Step 3 only
B. Step 4 only
C. Step 3 and 4
D. Step 3, 4, and 5

Watch Video Solution

