India's Number 1 Education App

## **MATHS**

## **BOOKS - RS AGGARWAL MATHS (HINGLISH)**

## **POLYNOMIALS**

## **Solved Examples**

**1.** Give reasons to show that none of the following expressions is a polynomial.

(i) 
$$f(x) = x + \frac{1}{x}$$

(ii) 
$$g(x) = \sqrt{x} - 3$$

(iii) 
$$h(y) = \sqrt[3]{y} - 6$$

(iv) 
$$p(x)=rac{(x-1)(x-3)}{x}$$

$$ext{(v)}\ q(x) = rac{1}{x+2}$$
  $ext{(vi)}\ r(x) = rac{x+3}{x+4}$ 



## **Watch Video Solution**

2. Which of the following expressions are polynomials? In case of a polynomial write its degree.

(i)  $x^3 - 5x + 2$ 

(ii) 
$$y^2+\sqrt{2}y-\sqrt{5}$$

(iii) 
$$2\sqrt{x}+7$$

(iv) 
$$-6$$
 (v)  $4t^2+rac{1}{6}t+2\sqrt{3}$ 

(v) 
$$4t^2 + \frac{1}{6}t + 2\sqrt{3}$$
  
(vi)  $z^2 + \frac{5}{z^2} + 1$ 

(viii) 
$$1-\sqrt{5x}$$

(vii)  $\frac{1}{3x}$ 

$$\sqrt{5x}$$

(vii)  $t^2$ 

## **Watch Video Solution**

(ix)  $\frac{1}{4x^{-2}} + 3x + 5$ 

- 3. Classify the following as constant, linear, quadratic, cubic and quartic polynomials.
  - (i)  $x-x^3$
  - (ii)  $y^4-y$
  - (iii)  $y+y^2+4$
  - (iv)  $\sqrt{2}x-1$ (v)  $5x^3$
- (vi) 3

(ix)  $5t - \sqrt{7}$ 

(viii) 2+x

Watch Video Solution

**4.** Write the coefficient of  $x^2$  in each of the following.

(i) 
$$(x-1)(3x-4)$$

(ii) 
$$(2x-5)(2x^2-3x+1)$$

(iii) 
$$5x-3$$

(iv) 
$$\frac{\pi}{2}x^2 + x$$
.



**5.** Give an example of a polynomial , which is (i) a monomial of degree 1 (ii) a monomial of degree 5 (iii) a binomial of degree 20 (iv) a trinomial of degree 3



**Watch Video Solution** 

**6.** For the polynomial  $\frac{x^3+2x+3}{5}-\frac{7}{2}x^2-x^6$  ,write (i) the degree of the polynomial ,

- (ii) the coefficient of  $x^3$ ,
- (iii) the coefficient of  $x^6$  ,
  - (iv) the constant term.



- **7.** Determine the degree of each of the following polynomials.
- (i) 2x-1 (ii) -10
- (iii)  $x^3-9x+3x^5$  (iv)  $y^3ig(1-y^4ig)$ 
  - Watch Video Solution

**8.** (i) If 
$$p(x)=3x^2-5x+6$$
, find  $p(2)$ .

(ii) If 
$$q(x)=x^2-2\sqrt{2}x+1$$
, find  $qig(2\sqrt{2}ig)$ .  
(iii) If  $r(x)=5x-4x^2+3$  find  $r(-1)$ .



. What do you conclude about the zeros of 
$$p(x)$$
 ? Is 0 a zero of  $p(x)$ ?

 $p(x) = x^3 + 2x^2 - 5x - 6$ , find p(2), p(-1), p(-3) and p(0)

If



**Watch Video Solution** 



9.

**10.** Check whether -2 and 2 are the zeros of the polynomial x+2.

## 11. Find a zero of the polynomial

- (i) p(x) = x 3
- (ii) q(x) = 3x + 2
  - Watch Video Solution

- **12.** Find a zero of the polynomial p(x)=ax+b, a 
  eq 0 and a , b are real numbers.
  - Watch Video Solution

**13.** If P(x)=x+3, then p(x)+p(-x) is equal to

B. -6

C. 6

D. 9

## **Answer: C**



**Watch Video Solution** 

**14.** Verify division algorithm for the polynomials  $p(x) = 3x^4 - 4x^3 - 3x - 1$  and g(x) = x - 2.

Find p(2). What do you observe?



**15.** Verify division algorithm for the polynomials

 $p(x) = x^3 + x^2 + 2x + 3$  and g(x) = x + 2.

Watch Video Solution

Find p(-2). What do you observe?

**16.** Find the remainder when the polynomial  $p(x) = x^4 + 2x^3 - 3x^2 + x - 1$  is divided by g(x) = x - 2.

17. Find the remainder when the polynomial



 $p(x)=x^3-3x^2+4x+50$  is divided by g(x)=x+3.

**18.**  $f(x) = 4x^3 - 12x^2 + 14x - 3$ , g(x) = 2x - 1

**19.** Find the remainder when the polynomial

$$p(x)=12x^3-13x^2-5x+7$$
 is divided by  $\operatorname{\mathsf{g}}(x)=(2+3x).$ 



**20.** Find the remainder when  $x^3+3x^2+3x+1$  is divided by  $(x+\pi)$ .

A. 
$$\pi^3 + 3\pi^2 - 3\pi + 1$$

B. 
$$-\pi^3 - 3\pi^2 - 3\pi + 1$$

$${\rm C.} - \pi^3 + 3\pi^2 - 3\pi + 1$$

$${\rm D.} - \pi^3 + 3\pi^2 - 3\pi - 1$$

## **Answer: C**

watch video Solution

**21.** Let  $p(x)=x^3-x+1$  and g(x)=2-3x, Check whether p(x) is a multiple of g (x) or not .



**22.** Check whether 7 + 3x is a factor of  $3x^3 + 7x$ .



23. If the polynomials  $(2x^3+ax^2+3x-5)$  and  $(x^3+x^2-2x+a)$  leave the same remainder when divided by (x-2), find the value of a .Also , find the remainder in each case.



**24.** If  $p(x)=8x^3-6x^2-4x+3$  and  $g(x)=\frac{x}{3}-\frac{1}{4}$  then check whether g (x) is a factor of p(x) or not.



**25.** Show that (2x-3) is a factor of  $(x+2x^3-9x^2+12)$ .



**26.** Use factor theorem to show that  $x^4+2x^3-2x^2+2x-3$  is exactly divisible by (x+3) .



**27.** If (x-a) is a factor of  $\left(x^3-ax^2+2x+a-1\right)$ , find the value of a.



**28.** For what value of m is  $\left(x^3-2mx^2+16\right)$  divisible by (x+2) ?



**29.** Without actual division , prove that  $\left(2x^4+3x^3-12x^2-7x+6\right)$  is exactly divisible by  $(x^2+x-6)$ .



**30.** Find the values of a and b so that  $\left(2x^3+ax^2+x+b\right)$  has (x+2) and (2x-1) as factors.



**31.** If  $\left(ax^3+bx^2-5x+2\right)$  has (x+2) as a factor and leaves a remainder 12 when divided by (x-2), find the values of a and b.



**32.** What must be added to  $\left(x^3-3x^2+4x-15\right)$  to obtain a polynomial which is exactly divisible by (x-3) ?

A. 2

B. 3

 $\mathsf{C.}-3$ 

#### **Answer: B**



**Watch Video Solution** 

**33.** What must be subtracted from  $\left(4x^4-2x^3-6x^2+2x+6\right)$  so that the result is exactly divisible by  $\left(2x^2+x-1\right)$  ?



**Watch Video Solution** 

## Exercise 2 A

- **1.** Which of the following expressions are polynomials? In case of a polynomial, write its degree.
- (i)  $x^5-2x^3+x+\sqrt{3}$

(ii) 
$$y^3+\sqrt{3}y$$

(iii) 
$$t^2-rac{2}{5}t+\sqrt{5}$$

(iv) 
$$x^{100}-1$$

$$\text{(v) } \frac{1}{\sqrt{2}}x^2 - \sqrt{2}x + 2$$

(vi) 
$$x^{-2} + 2x^{-1} + 3$$

$$\text{(viii)} \ \frac{-3}{5}$$
 
$$\text{(ix)} \ \frac{x^2}{2} - \frac{2}{x^2}$$

$$\frac{1}{2} - \frac{1}{x^2}$$

(x) 
$$\sqrt[3]{2}x^2-8$$

(xi) 
$$\frac{1}{2x^2}$$

$$2x^{2}$$

(xii) 
$$\dfrac{1}{\sqrt{5}}x^{1/2}+1$$
 (xiii)  $\dfrac{3}{5}x^2-\dfrac{7}{3}x+9$ 

(xiv) 
$$x^4-x^{3/2}+x-3$$

(xv) 
$$2x^3 + 3x^2 + \sqrt{x} - 1$$



## **Watch Video Solution**

2. Identify constant, linear quadratic, cubic and biquadratic polynomials from the following. (i) -7+x (ii) 6y (iii)  $-z^3$  (iv)

 $1-y-y^3$  (v)  $x-x^3+x^4$  (vi)  $1+x+x^2$  (vii)  $-6x^2$  (viii) -13(ix) - p



## 3. Write

- (i) the coefficient of  $x^3$  in  $3x^2-5x^3+x^4$ .
- (ii) the coefficient of x in  $\sqrt{3}-2\sqrt{2}x+6x^2$ .
- (iii) the coefficient of  $x^2$  in  $2x 3 + x^3$ ,
- (iv) the coefficient of x in  $\frac{3}{8}x^2 \frac{2}{7}x + \frac{1}{8}$ .
- (v) the constant term in  $\frac{\pi}{2}x^2 + 7x \frac{2}{\pi}\pi$ .



**4.** Determine the degree of each of the following polynomials.

(i) 
$$\frac{4x - 5x^2 + 6x^3}{2x}$$

- (ii)  $y^2(y-y^3)$
- (iii)  $(3x-2)(2x^3+3x^2)$
- $(\mathsf{iv}) \frac{1}{2}x + 3$
- (v) 8
- (vi)  $x^{-2}ig(x^4+x^2ig)$



- 5. (i) Give an example of a monomial of degree 5.
- (ii) Give an example of a binomial of degree 8.
- (iii) Given an example of a trinomial of degree 4.
- (iv) Give an example of a monomial of degree 0.



6. Rewrite each of the following polynomials in standard form.

(i) 
$$x - 2x^2 + 8 + 5x^3$$

(ii) 
$$rac{2}{3} + 4y^2 - 3y + 2y^3$$

(iii) 
$$6x^3 + 2x - x^5 - 3x^2$$

(iv) 
$$2 + t - 3t^3 + t^4 - t^2$$



## Exercise 2 B

**1.** If 
$$p(x)=5-4x+2x^2$$
, find  $(i)p(0)\ (ii)p(3)\ (iii)p(-2)$ 



**2.** If 
$$p(y) = 4 + 3y - y^2 + 5y^3$$
, find

(ii) 
$$p(2)$$
, (iii)  $p(-1)$ .

(ii) f (4),

(iii) f(-5).



**3.** If 
$$f(t)=4t^2-3t+6$$
 , find



# **4.** If $p(x)=x^3-3x^2+2x$ , find p (0) , p(1) , p(2). What do you conclude?

**5.** If 
$$p(x)=x^3+x^2-9x-9$$
 , find p (0) , p (3) , p (-3) and p(-1).

What do you conclude about the zeros of p (x)? Is 0 a zero of p



(x)?

**6.** Verify that (i) 4 is a zero of the polynomial, p (x) = x -4. (ii) -3 is a zero of the polynomial, q (x) = x+3. (iii)  $\frac{2}{5}$  is a zero of the polynomial, f (x) =2 - 5x. (iv)  $\frac{-1}{2}$  is a zero of the polynomial, g (y) = 2y +1.



## 7. Verify that

- (i) 1 and 2 are the zeros of the polynomial ,  $p(x)=x^2-3x+2$ .
- (ii) 2 and -3 are the zeros of the polynomial ,  $q(x)=x^2+x-6$ .
- (iii) 0 and 3 are the zero of the polynomial ,  $r(x)=x^2-3x.$



**Watch Video Solution** 

## 8. Find the zero of the polynomial:

$$p(x) = x - 5$$

(ii) 
$$q(x) = x + 4$$

(iii) 
$$r(x) = 2x + 5$$

(iv) 
$$f(x) = 3x + 1$$

$$(v) g(x) = 5 - 4x$$

$$(\mathsf{vi})\ h(x) = 6x - 2$$

(vii) 
$$p(x)=ax, a 
eq 0$$

(viii) 
$$q(x)=4x$$

**9.** If 2 and 0 are the zeros of the polynmial 
$$f(x)=2x^3-5x^2+ax+b$$
 then find the values of a and b.

A. 
$$a = -2$$
,  $b = 0$ 

B. 
$$a = 2$$
,  $b = 1$ 

C. 
$$a = 2$$
,  $b = 0$ 

## **Answer: C**



**Watch Video Solution** 

- **1.** By actual division, find the quotient and the remainder when the first polynomial is divided by the second polynomial  $x^4+1 \ {
  m and} \ x-1$  .
  - Watch Video Solution

**2.** Verify the division algorithm for the polynomials  $p(x)=2x^4-6x^3+2x^2-x+2$  and g(x)=x+2.

$$p(x) = 2x^3 - 7x^2 + 9x - 13, g(x) = x - 3.$$

 $p(x) = x^3 - 6x^2 + 9x + 3, q(x) = x - 1.$ 

Watch Video Solution

- **3.** Using the remainder theorem , find the remainder , when p (x) is divided by g (x) , where
  - Watch Video Solution

**4.** Using the remainder theorem , find the remainder , when p (x)

is divided by g (x), where

$$p(x) = 2x^3 - 7x^2 + 9x - 13, g(x) = x - 3.$$



**5.** Using the remainder theorem , find the remainder , when p (x) is divided by g (x) , where

$$p(x) = 3x^4 - 6x^2 + 8x - 2, g(x) = x - 2.$$



**6.** Using the remainder theorem , find the remainder , when p(x) is divided by g(x) , where  $p(x)=2x^3-9x^2+x+15,\ g(x)=2x-3.$ 

**7.** Using the remainder theorem, find the remainder, when p(x)

is divided by g (x), where

$$p(x) = x^3 - 2x^2 - 8x - 1, g(x) = x + 1.$$

A. 3

B. 4

C. 2

D. 1

#### **Answer: B**



Watch Video Solution

**8.** Using the remainder theorem , find the remainder , when p (x)

is divided by g(x), where

$$p(x) = 2x^3 + x^2 - 15x - 12, g(x) = x + 2.$$



**9.** Using the remainder theorem , find the remainder , when p(x) is divided by g(x) , where

$$p(x) = 6x^3 + 13x^2 + 3, g(x) = 3x + 2.$$



10. Using the remainder theorem , find the remainder , when  $p\left(x\right)$  is divided by  $g\left(x\right)$  , where

$$p(x) = x^3 - 6x^2 + 2x - 4, g(x) = 1 - \frac{3}{2}x.$$

**11.** Using the remainder theorem, find the remainder, when p(x) is divided by g(x), where

$$p(x) = 2x^3 + 3x^2 - 11x - 3, g(x) = \left(x + rac{1}{2}
ight).$$



**12.** Using the remainder theorem , find the remainder , when p (x) is divided by g (x) , where  $p(x)=x^3-ax^2+6x-a, g(x)=x-a.$ 



**13.** The polynomials  $\left(2x^3+x^2-ax+2\right)$  and  $\left(2x^3-3x^2-3x+a\right)$  when divided

by (x-2) leave the same remainder . Find the value of a.



**14.** The polynomials  $f(x)=x^4-2x^3+3x^2-ax+b$  when divided by (x-1) and (x+1) leaves the remainders 5 and 19 respectively. Find the values of a and b.. Hence, find the remainder when f(x) is divided by (x-2)`.



**15.** If  $p(x)=x^3-5x^2+4x-3$  and g(x)=x-2 show that p(x) is not a multiple of g(x).



**16.** If  $p(x) = 2x^3 - 11x^2 - 4x + 5$  and g(x) = 2x + 1, show that g(x) is not a factor of p(x).



## Exercise 2 D

- **1.** Using factor theorem , show that g (x) is a factor of p(x) , when  $p(x)=x^3-8, \, g(x)=x-2$ 
  - Watch Video Solution

- **2.** Using factor theorem , show that g (x) is a factor of p(x) , when  $p(x) = 2x^3 + 7x^2 24x 45, g(x) = x 3$ 
  - Watch Video Solution

**3.** Using factor theorem , show that g(x) is a factor of p(x) , when

$$p(x) = 2x^4 + 9x^3 + 6x^2 - 11x - 6, g(x) = x - 1$$



**4.** Using factor theorem , show that g(x) is a factor of p(x) , when

$$p(x) = x^4 - x^2 - 12, g(x) = x + 2$$



**5.** Using factor theorem , show that g(x) is a factor of p(x) , when

$$p(x) = 69 + 11x - x^2 + x^3, g(x) = x + 3$$



**6.** Using factor theorem , show that g(x) is a factor of p(x) , when

$$p(x) = 2x^3 + 9x^2 - 11x - 30, g(x) = x + 5$$



**7.** Using factor theorem , show that g (x) is a factor of p(x) , when  $p(x)=2x^4+x^3-8x^2-x+6,$  g(x)=2x-3



**8.** Using factor theorem , show that g (x) is a factor of p(x) , when  $p(x)=3x^3+x^2-20x+12,$  g(x)=3x-2



**9.** Using factor theorem , show that g(x) is a factor of p(x) , when

$$p(x) = 7x^2 - 4\sqrt{2}x - 6, g(x) = x - \sqrt{2}$$



10. Using factor theorem , show that g(x) is a factor of p(x) , when

$$p(x) = 2\sqrt{2}x^2 + 5x + \sqrt{2}, q(x) = x + \sqrt{2}$$



**11.** Show that (p-1) is a factor of  $\left(p^{10}-1
ight)$  and also of  $\left(p^{11-1}
ight)$ 

Watch Video Solution

**12.** Find the value of k for which ( x-1) is a factor of  $(2x^3+9x^2+x+k)$ .



**13.** Find the value of a for which (x-4) is a factor of  $\left(2x^3-3x^2-18x+a\right)$ .

#### **Answer: C**



**14.** Find the value of a for which (x +1 ) is a factor of  $(ax^3+x^2-2x+4a-9)$ .



**15.** Find the value of a for which ( x+2a) is a factor of  $\left(x^5-4a^2x^3+2x+2a+3\right)$ .



**16.** Find the value of m for which (2x-1) is a factor of  $(8x^4+4x^3-16x^2+10x+m)$ .



**17.** Find the value of a which the polynomial  $\left(x^4-x^3-11x^2-x+a\right)$  is divisible by (x+3).



**18.** Without actual division, prove that  $x^4+2x^3-2x^2+2x-3$  is exactly divisible by  $x^2+2x-3$ .



**19.** If  $\left(x^3+ax^2+bx+6\right)$  has (x-2) as a factor and leaves a remainder 3 when divided by (x-3), find the values of a and b.



**20.** Find the values of a and b so that the polynomial  $\left(x^3-10x^2+ax+b\right)$  is exactly divisible by (x -1) as well as (x -2).



**21.** Find the values of a and b so that the polynomial  $\left(x^3-10x^2+ax+b\right)$  is exactly divisible by (x-1) as well as (x-2).



**22.** If both ( x- 2 ) and  $\left(x-\frac{1}{2}\right)$  are factor of  $px^2+5x+r$  , then the relation between p and r

A. 
$$p=r^2$$

B. 
$$p=rac{1}{r}$$

$$C. -p = r$$

$$D.p = r$$

#### **Answer: D**



**Watch Video Solution** 

23. Without actual division , prove that

 $2x^4 - 5x^3 + 2x^2 - x + 2$  is divisible by  $x^2 - 3x + 2$ .



**24.** What must be added to  $2x^4-5x^3+2x^2-x-3$  so that the result is exactly divisible by ( x-2 ) ?

A. -5

- B. 4
- C. 5
- D. -4

### **Answer: C**



**Watch Video Solution** 

**25.** What must be subtracted from  $\left(x^4+2x^3-2x^2+4x+6\right)$  so that the result is exactly divisible by  $\left(x^2+2x-3\right)$ ?

- A. 2x+9
- B. 9x+2
- $\mathsf{C.}-x^2+5$
- D. None of these

### **Answer: A**



**Watch Video Solution** 

**26.** Use factor theorem to prove that (x+a) is a factor of  $(x^n+a^n)$  for any odd positive integer n .



**Watch Video Solution** 

# **Multiple Choice Questions Mcq**

**1.** Which of the following expressions is a polynomial in one variable ?

A. 
$$x + \frac{2}{x} + 3$$

$$\texttt{B.}\,3\sqrt{x}+\frac{2}{\sqrt{x}}+5$$

C. 
$$\sqrt{2}x^2-\sqrt{3}x+6$$

D. 
$$x^{10} + y^5 + 8$$

### **Answer: C**



**Watch Video Solution** 

## 2. Which of the following expressions is a polynomial?

A. 
$$\sqrt{x}-1$$

$$\mathsf{B.}\,\frac{x-1}{x+1}$$

C. 
$$x^2 - \frac{2}{x^2} + 5$$

D. 
$$x^2 + rac{2x^{3/2}}{\sqrt{x}} + 6$$

#### **Answer: D**



3. Which of the following is a polynomial?

A. 
$$\sqrt[3]{y}+4$$

B. 
$$\sqrt{y}-3$$

$$\mathsf{C}.\,y$$

D. 
$$\dfrac{1}{\sqrt{y}}+7$$

#### **Answer: C**



**Watch Video Solution** 

**4.** Which of the following is a polynomial?

A. 
$$x-rac{1}{x}+2$$

B. 
$$\frac{1}{x} + 5$$

C.  $\sqrt{x} + 3$ 

D.-4

### **Answer: D**



Watch Video Solution

## 5. Which of the following is a polynomial?

A. 
$$x^{\,-2} + x^{\,-1} + 3$$

B. 
$$x + x^{-1} + 2$$

C. 
$$x^{-1}$$

D. 0

### **Answer: D**



**6.** Which of the following is a quadratic polynomial?

A. 
$$x+4$$

B. 
$$x^3 + x$$

C. 
$$x^3 + 2x + 6$$

D. 
$$x^2 + 5x + 4$$

### **Answer: D**



**Watch Video Solution** 

7. Which of the following is a linear polynomial?

A. 
$$x + x^2$$

B. 
$$x + 1$$

C. 
$$5x^2 - x + 3$$

$$\mathsf{D}.\,x+\frac{1}{x}$$

### **Answer: B**



# Watch Video Solution

## 8. Which of the following is a binomial?

A. 
$$x^2 + x + 3$$

B. 
$$x^2+4$$

$$\mathsf{C}.\,2x^2$$

D. 
$$x + 3 + \frac{1}{x}$$

### **Answer: B**



- **9.**  $\sqrt{3}$  is a polynomial of degree
  - A.  $\frac{1}{2}$
  - B.2
  - **C**. 1
  - D.0

### **Answer: D**



- **10.** Degree of the zero polynomial is
  - A. 1
  - B. 0

C. not defined D. none of these **Answer: C Watch Video Solution** 11. Zero of the zero polynomial is A. 0 B. 1 C. every real number D. not defined **Answer: C Watch Video Solution** 

**12.** If 
$$p(x) = x + 4$$
 then  $p(x) + p(-x) = ?$ 

**A.** 0

B.4

 $\mathsf{C.}\,2x$ 

D. 8

#### **Answer: D**



Watch Video Solution

**13.** If  $P(x)=x^2-2\sqrt{2}x+1$  then  $pig(2\sqrt{2}ig)$  is equal to?

A. 0

B. 1

C.  $4\sqrt{2}$ 

D. -1

### **Answer: B**



Watch Video Solution

# **14.** If $p(x) = 5x - 4x^2 + 3$ then p(-1) = ?

A. 2

B.-2

**C**. 6

D.-6

### **Answer: D**



**15.** If  $\left(x^{51}+51
ight)$  is divided by (x+1) then the remainder is

**A.** 0

**B.** 1

 $\mathsf{C.}\,49$ 

D. 50

### **Answer: D**



**Watch Video Solution** 

**16.** If ( x+1) is a factor of the polynomial  $\left(2x^2+kx
ight)$  then k = ?

A. 4

B.-3

C. 2

D.-2

### **Answer: C**



Watch Video Solution

**17.** When  $p(x)=x^4+2x^3-3x^2+x-1$  is divided by (x-2), the remainder is

A. 0

B.-1

C. -15

D. 21

### **Answer: D**

**18.** When 
$$p(x)=x^3-3x^2+4x+32$$
 is divided by  $(x+2)$ , the remainder is

B. 32

C.36

D. 4

#### **Answer: D**



# **Watch Video Solution**

**19.** When  $p(x)=4x^3-12x^2+11x-5$  is divided by (2x - 1 ) , the remainder is

B.-5

 $\mathsf{C.}-2$ 

D. 2

# **Answer: C**



# **Watch Video Solution**

**20.** When  $p(x) = x^3 - ax^2 + x$  is divided by (x-a) , the remainder is

A. 0

B. a

C. 2a

D. 3a

### **Answer: B**



**Watch Video Solution** 

**21.** When  $p(x) = x^3 + ax^2 + 2x + a$  is divided by (x+a) , the remainder is

A. 0

B. a

 $\mathsf{C}.-a$ 

D. 2a

#### **Answer: C**



**22.** (x+1) is a factor of the polynomial

A. 
$$x^3+x^2-x+1$$

B. 
$$x^3 + 2x^2 - x - 2$$

C. 
$$x^3 + 2x^2 - x + 2$$

D. 
$$x^4 + x^3 + x^2 + 1$$

### Answer: B



# **23.** Zero of the polynomial p(x)=2x+5 is

A. 
$$\frac{-2}{5}$$

$$\mathsf{B.}\,\frac{-5}{2}$$

$$\frac{2}{5}$$

$$\mathsf{D.}\;\frac{5}{2}$$

### **Answer: B**



**Watch Video Solution** 

# **24.** The zeros of the polynomial $p(x)=x^2+x-6$ are

A. 2, 3

B. -2, 3

C. 2, -3

D. -2, -3

### **Answer: C**



**25.** The zeros of the polyomial  $p(x)=2x^2+5x-3$  are

A. 
$$\frac{1}{2}$$
, 3

B. 
$$\frac{1}{2}, -3$$

$$\mathsf{C.}\,\frac{-1}{2},3$$

D. 1, 
$$\frac{-1}{2}$$

### Answer: B



Watch Video Solution

**26.** The zeros of the polynomial  $p(x)=2x^2+7x-4$  are

A. 
$$4, \frac{-1}{2}$$

B. 4, 
$$\frac{1}{2}$$

C. 
$$-4, \frac{1}{2}$$

D. 
$$-4, \frac{-1}{2}$$

### **Answer: C**



**Watch Video Solution** 

# **27.** If (x+5) is a factor of $p(x)=x^3-20x+5k$ then $k=\ ?$

A. - 5

B. 5

**C**. 3

D.-3

## **Answer: B**



**28.** If (x+2) and (x-1) are factors of the polynomial  $p(x)=x^3+10x^2+mx+n$  then

A. 
$$m = 5$$
,  $n = -3$ 

B. 
$$m = 7$$
,  $n = -18$ 

$$C. m = 17, n = -8$$

D. 
$$m = 23$$
,  $n = -19$ 

#### **Answer: B**



## **Watch Video Solution**

**29.** If  $\left(x^{100}+2x^{99}+k
ight)$  is divisible by (x+1) then the value of k is

**A.** 1

$$\mathsf{C.}-2$$

$$\mathsf{D.}-3$$

### Answer: A



# Watch Video Solution

**30.** For what value if k is the polynomial

$$p(x)=2x^3-kx^2+3x+10$$
 exactly divisible by (x+2) ?

$$\mathsf{A.} - \frac{1}{3}$$

B. 
$$\frac{1}{3}$$

$$D.-3$$

### **Answer: D**



**Watch Video Solution** 

**31.** The zeros of the polynomial  $p(x)=x^2-3x$  are

A. 0, 0

B.O,3

C. 0, -3

D. 3, -3

#### **Answer: B**



A. 
$$\frac{1}{3}$$
 and 3

B. 
$$\frac{1}{\sqrt{3}}$$
 and  $\sqrt{3}$ 

C. 
$$\frac{-1}{\sqrt{3}}$$
 and  $\sqrt{3}$ 

D. 
$$\frac{1}{\sqrt{3}}$$
 and  $\frac{-1}{\sqrt{3}}$ 

### Answer: D

