©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - ZEN MATHS (KANNADA

ENGLISH)

POLYNOMIALS

Illustrative Example

1. Find the zero of the polynomial in each of the
following cases.
(i) $p(x)=x+5$
(ii) $p(x)=x-5$
(iii) $p(x)=2 x+5$
(iv) $p(x)=3 x-2$
(v) $p(x)=3 x$
(vi) $p(x)=a x, a \neq 0$
(vii) $\quad p(x)=c x+d, c \neq 0, c, d \quad$ are real
numbers

D Watch Video Solution

2. If the zeroes of the polynomial $x^{3}-3 x^{2}+x+1$ are $a-b, a, a+b$, find a

D Watch Video Solution

3. Find the zeros of $\mathrm{f}(\mathrm{x})=x^{3}-5 x^{2}-2 x+24$
, if the product of its two zeros is 12 .

D Watch Video Solution

4. If zeros of $f(x)=x^{3}-12 x^{2}+39 x+k$ are in AP, find k.
5. Obtain all zeros of a polynomial
$f(x)=3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of
its zeros are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$

D Watch Video Solution

6. Using Division Algorithm prove that the
polynomial $g(x)=x^{2}+3 x+1$ is a factor of

$$
f(x)=3 x^{4}+5 x^{3}-7 x^{2}+2 x+2
$$

7. What must be (a) subtracted from (b) added
to $\mathrm{f}(\mathrm{x})=8 x^{4}+14 x^{3}-2 x^{2}+7 x-8$ so that resulting polynomial is exactly divisible by $4 x^{2}+3 x-2 ?$

D Watch Video Solution

8. Find k so that $x^{2}+2 x+k$ is a factor of $2 x^{4}+x^{3}-14 x^{2}+5 x+6$. Also find all the zeros of the two polynomials.

Textual Exercise Exercise 91

1. (i) The graphs of $y p(x)$ are given in Fig. below,
for some polynomials $p(x)$. Find the number of
zeroes of $p(x)$, in each case.

2. Find the zeroes of the following quadratic polynomials and varify the relationship between the zeroes and the coefficients. $t^{2}-25$

- Watch Video Solution

2. Find a quadratic polynomial each with the given number as the sum and product of its
zeroes re-spectively.
i] $\frac{1}{4},-1$
ii] $\sqrt{2}, \frac{1}{3}$
iii] $0, \sqrt{5}$
iv] 1,1
v] $-\frac{1}{4}, \frac{1}{4}$
vi] 4,1

- Watch Video Solution

Textual Exercise Exercise 93

1. Divide the polynomial $p(x)$ by the polynomial $\mathrm{g}(\mathrm{x})$ and find the quotient and remainder in each of the following :
i] $p(x)=x^{3}-3 x^{2}+5 x-3, g(x)=x^{2}-2$
ii]
$p(x)=x^{4}-3 x^{2}+4 x+5, g(x)=x^{2}+1-x$
iii] $p(x)=x^{4}-5 x+6 g(x)=2-x^{2}$

- Watch Video Solution

2. Check whether the first polynomial is a factor of the second polynomial by dividing :
$t^{2}-3,2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$

- Watch Video Solution

3. Obtain all other zeroes of
$3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its
zeroes are
$\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$

D Watch Video Solution

4. On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$, respectively. Find $g(x)$.

D Watch Video Solution

5. Give examples of polynomials $p(x), g(x), q(x)$ and $r(x)$, which satisfy the division algorithm and

$$
\operatorname{deg} p(x)=\operatorname{deg} q(x)
$$

Textual Exercise Exercise 94 Optional

1. Verify that the number given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case.
i] $2 x^{3}+x^{2}-5 x+2, \frac{1}{2}, 1,-2$
ii] $x^{3}-4 x^{2}+5 x-2,2,1,1$
2. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as $2,-7,-14$ respectively.

D Watch Video Solution

3. If the zeroes of the polynomial
$x^{3}-3 x^{2}+x+1$ are $a-b, a, a+b$, find a and b.
4. If the zeroes of the polynomial $x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $2 \pm \sqrt{3}$ Find other zeroes.

D Watch Video Solution

5.

If
the
polynomial
$x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by
another polynomial $x^{2}-2 x+k \quad$, the remainder comes out to be $\mathrm{x}+\mathrm{a}$, find k and a .

Zen Additional Questions Multiple Choice

 Questions Mcqs1. When a bi-quadratic polynomial is divided by a linear polynomial, the degrees of the quotient and remainder polynomials are .
A. 2,2
B. 3,1
C. 3,0
D. 1,1

(D) Watch Video Solution

2. The number of zeros that $f(x)=(x-2)^{2}+4$ can have is

A. 1
B. 2
C. 0
D. 3

Answer: B
3. The quadratic polynomial whose sum of zeros is 3 and product of zeros is -2 is
A. $x^{2}+3 x-2$
B. $x^{2}-2 x+3$
C. $x^{2}-3 x+2$
D. $x^{2}-3 x-2$

Answer: D
4. If $f(x)$ is a polynomial of degree
≥ 1 and $f(\alpha)=0, \alpha$ is called
A. Degree of $f(x)$
B. Zero of the polynomial
C. Constant of the polynomial
D. Value of the polynomial

Answer: B

5. A polynomial of degree n has

A. Only one zero
B. Exactly n zeros
C. Utmost n zeros
D. More than n zeros

Answer: B

D Watch Video Solution
6. If two zeros of a quadratic polynomial are equal in magnitude but opposite in sign and their product is -25 , the polynomial is

$$
\begin{aligned}
& \text { A. } x^{2}-25 \\
& \text { B. } x^{2}-5 \\
& \text { C. } x^{2}-25 x \\
& \text { D. } x^{2}+25
\end{aligned}
$$

Answer: A
7. If the graph of a polynomial $f(x)$ does not intersect the x-axis but cuts the y-axis at one point, number of zeros of $f(x)$ is
A. 0
B. 1
C. 0 or 1

D. None of these

Answer: A
8. The third zero of a polynomial
$f(x)=2 x^{3}+3 x^{2}-5 x+10$ whose product to two zeros is 5 .
A. 1
B. -1
C. 5
D. 0

Answer: B
9. If the zeros of $p(x)=8 z^{2}+15 x-k$ are reciprocals, the value of k is
A. 1
B. 0
C. -8
D. 8

Answer: C
(D) Watch Video Solution
10. α, β and γ are zeros of the cubic polynomial $k x^{3}-5 x+9$.
A. 1
B. 3
C. -1
D. 9

Answer: C
11. In the given graph of $y=P(x)$, the number of
zeros is

A. 4
B. 3
C. 2
D. 7

Answer: B

- Watch Video Solution

12. The degree of a linear polynomial is
A. 0
B. 1
C. 2
D. 3

Answer: B

D Watch Video Solution

Zen Additional Questions Very Short Answer Vsa

 Type Questions1. $x^{2}-5=1(x)$

D Watch Video Solution
2. $4 x^{2}-12 x+9=g(x)$

- Watch Video Solution

3. Identify the degree of the polynomial, given
that the following are graphs corresponding to
linear, quadratic, and cubic polynomials.
i]

ii]

iii]

iv]

v]

vi]

4. If one zero of $f(x)=4 x^{2}-8 k x-9$ is negative of the other, find k.

(D) Watch Video Solution

5. Write the quadratic polynomial whose zeros
are $-\frac{1}{4}$ and 1
(D) Watch Video Solution
6. If the product of zeros of a quadratic polynomial $\mathrm{p}(\mathrm{x})=x^{2}-4 x+k$ is 3 , find k ,

D Watch Video Solution

7. Write the number of real zeros of $f(x)$ depicted by graphs shown below:
i]

iii]

ii]

iv]

8. Given a quadratic polynomial whose sum of zeros is $2 \sqrt{3}$ and their product is 2 .

D Watch Video Solution

9. Find a quadratic polynomial whose zeros are
$3+\sqrt{2}$ and $3-\sqrt{2}$.

D Watch Video Solution
10. Find the zeroes of the polynomial $P(x)=$ $x^{2}-3$

D Watch Video Solution

11. Write the degree of the polynomial $P(x)=$ $2 x^{3}-x^{2}+5$
12. Write the degree of the polynomial $P(x)=x^{3}+2 x^{2}-5 x-6$

(D) Watch Video Solution

Zen Additional Questions Very Short Answer Vsa

 Type Questions Answer The Following Questions
1. Identify the polynomials from the 10 algebraic

equations given above. Give reason why some of them are not polynomials.

2. Pick the constant polynomials. Find the zeros

of this polynomials?

- View Text Solution

3. Mention the degrees of the polynomials given :

D View Text Solution
4. Find $\mathrm{h}(1)$ and $\mathrm{g}(2)$

- View Text Solution

5. Rewrite $\mathrm{p}(\mathrm{x})$ and $\mathrm{h}(\mathrm{x})$ in their standard form .

- View Text Solution

6. Find zeros of $\mathrm{l}(\mathrm{x}), \mathrm{g}(\mathrm{x}), \mathrm{q}(\mathrm{x}), \mathrm{m}(\mathrm{x})$.

7. Which is the leading term in $p(x)$ and $h(x)$?

D View Text Solution
8. What kind of a polynomial is $\mathrm{I}(\mathrm{x})$?

- View Text Solution

9. Write the coefficients present in the polynomial of degree 5 .
10. How many zeros does $q(x)$ have ?

D View Text Solution

Zen Additional Questions Short Answer Sa Type I

Questions

1. Find the zeros of these polynomials and verify
the relationship between zeros and coefficients.
i] $f(x)=x^{2}-(\sqrt{3}+1) x+\sqrt{3}$
ii] $f(v)=v^{2}+4 \sqrt{3} v-15$
iii] $q(y)=7 y^{2} \frac{11}{3} y-\frac{2}{3}$

- Watch Video Solution

2. If α and β are zeros of the quadratic polynomial $f(x)=x^{2}-p(x+1)-c$, show that $(\alpha+1)(\beta+1)=1-c$
3. If α and β are zeros of $x^{2}-2 x+3$, find a
polynomial whose zeros are :
i] $\alpha+2, \beta+2$
ii] $\frac{\alpha-1}{\alpha+1}, \frac{\beta-1}{\beta+1}$

D Watch Video Solution
4. If two zeros of a polynomial
$p(x)=x^{3}-4 x^{2}-3 x+12$ are $\sqrt{3}$ and $-\sqrt{3}$
, find its 3 rd zero .
5. Find the condition which must be satisfied by
the zeros of $f(x)=x^{3}-p x^{2}+q x-r$, when
the sum of its two zeros is zero .

- Watch Video Solution

6. (i) Verify that the numbers given alongside of
the cubic polynomials below are their zeroes.
Also verify the relationship between the zeroes
and the coefficients in this case:
$2 x^{2}+x^{2}-5 x+2, \frac{1}{2}, 1,-2$
(ii) Verify that the numbers given alongside of
the cubic polynomials below are their zeroes.
Also verify the relationship between the zeroes and the coefficients in this case:
$x^{3}-4 x^{2}+5 x-2,2,1,1$

- Watch Video Solution

7. If α and β are zeros of polynomial
$2 x^{2}+7 x+5$ find $\alpha+\beta+\alpha \beta$.

- Watch Video Solution

8. If α and β are zeros of
 $p(x)=4 x^{2}+3 x+7$, find $\frac{1}{\alpha}+\frac{1}{\beta}$.

- Watch Video Solution

9.

If
one
zero
of
$f(x)=\left(k^{2}+4\right) x^{2}+13 x+4 k$
is
the
reciprocal of the other, find k
10. If α, β, and γ are the zeroa od $f(x)=a x^{3}+b x^{2}+c x+d$, find $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$

(D) Watch Video Solution

11. If α, β, and γ are the zeros of
$2 x^{3}-4 x^{2}+6 x+9$, find value of $\alpha^{-1}+\beta^{-1}+\gamma^{-1}$
12. If zeros of a quadratic polynomial $x^{2}+(a+1) x+b$ are 2 and -3 , find \mathbf{a} and b.

D Watch Video Solution

13. Find zeros of polynomials by the algebraic method and verify the relationship between the zeros and coefficient of the polynomial

$$
t^{3}-2 t^{2}-15 t
$$

14. Given $f(x+1)=3 x+5$, evaluate $f(-2)$ and $f(x)$

D Watch Video Solution

15. If the product of the zeros of a polynomial $\left(a x^{2}-6 x-6\right)$ is 4 , find the value of a.

D Watch Video Solution

16. If α and β are the zeros of the quadratic polynomial $4 x^{2}+4 x+1$,find the quadratic polynomial whose zeros are 2α and 2β.

- Watch Video Solution

17. Find values of p for which the quadratic polynomial $4 x^{2}+p x+3$ has equal zeros.
(D) Watch Video Solution
18. Find a if one zero of $\left(a^{2}+9\right) x^{2}+13 x+6 a$ is a reciprocal of the other.

- Watch Video Solution

19.

$f(x)=x^{3}-4 x^{2}-3 x+12$ are $\sqrt{3}$ and $-\sqrt{3}$
, find its third zero.

D Watch Video Solution

20. Without solving, find the value of m for which the zeros are equal for
$f(x)=x^{2}+2(m-1) x+m+5$

D Watch Video Solution
21. Find values of k for which
$(k+4) x^{2}+(k+1) x+1$ has equal zeros.

D Watch Video Solution

22. The sum and product of the zeroes an a quadratic polynomial $\mathbf{P}(\mathbf{x})=a x^{2}+b x+c$ are -3 and 2 respectively, Show that $b+c=5 a$.

- Watch Video Solution

23. Find the quotient and the remainder when P $(\mathbf{x})=3 x^{3}+x^{2}+2 x+5$ is divided by $\mathrm{g}(\mathbf{x})=x^{2}$ $+2 x+1$.

D Watch Video Solution
24. Sum and product of the zeroes of a quadratic polynomial
$P(x)=a x^{2}+b x-4 \operatorname{are} \frac{1}{4}$ and -1 respectively. Then find the values of a and b.
25. Find the value of k of polynomial $P(x)=x^{2}-x-(2 k+2)$ in which one of its
zeroes is - 4
(D) Watch Video Solution
26. If one zero of the polynomial
$p(x)=x^{2}-6 x+k$ is twice the other then find the value of k.

D Watch Video Solution
27. Find the polynomial of least degree that should be subtracted from
$p(x)=x^{3}-2 x^{2}+3 x+4$ so that it is exactly divisible by $g(x)=x^{2}-3 x+1$

D Watch Video Solution

Zen Additional Questions Short Answer Sa Type li Questions

1. Find a quadratic polynomial whose sum and product, respectively, of zeros are given. Also
find the zeros.
i] $-\frac{3}{2 \sqrt{15}},-\frac{1}{2}$
ii] $\frac{21}{8}, \frac{5}{16}$
D Watch Video Solution
2. If α and β are zeros of $f(x)=6 x^{2}+x=2$
find the value fo $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$.
3. If α and β are zeros of polynomial $f(x)=x^{2}+p x+q$, form a polynomial whose
zeros are $(\alpha+\beta)^{2} \operatorname{are}(\alpha-\beta)^{2}$.

(D) Watch Video Solution

4. Find a cubic polynomial with sum, sum of product of its zeros taken two at a time, and product of its zeros being $3,-1$, and -3 respectively.
5. If zeros of a polynomial
$f(x)=a x^{3}+3 b x^{2}+3 c x+d$ are in AP prove
that $2 b^{3}-3 a b c+a^{2} d=c$.

- Watch Video Solution

6. If $f(x)=x^{3}+x^{2}-a x+b$ is divisible by $x^{2}-x$, find values of \mathbf{a} and \mathbf{b}.
7. If two of the zeros of a cubic polynomial $a x^{3}+b x^{2}+c x+d$ are each equal to zero, find the third zero. What can you say of c and d ?

D Watch Video Solution

8. If α and β are zeros of the quadratic polynomial $x^{2}-(k+6) x+2(2 k-1)$, find \mathbf{k} if $\alpha+\beta=\frac{\alpha \beta}{2}$
9. If 1 is one of the zeros of the polynomial
$7 x-x^{3}-6$, find its other zeros.

- Watch Video Solution

10. If zeros of $x^{3}-3 x^{2}+x+1$ are $\mathbf{a}-\mathbf{b}, \mathbf{a}, \mathbf{a}+\mathbf{b}$,
find a and b.

D Watch Video Solution
11. Find the other two zeroes of the polynomial $y^{4}+y^{3}-9 y^{2}-3 y+18$ if the zeroes are $\sqrt{3}$ and $-\sqrt{3}$

- Watch Video Solution

12. If one of the zeros of $x^{3}+a x^{2}+b x+c$ is
(-1), find the product of the other two zeros in terms of $\mathbf{a}+\mathbf{b}$
13. If a and b are the zeros of the quadratic polynomial $f(x)=k x^{2}+4 x+4$ such that $a^{2}+b^{2}=24$, find \mathbf{k}.

- Watch Video Solution

14. Obtain the zeros of the quadratic polynomial $\sqrt{3} x^{2}-8 x+4 \sqrt{3}$ and verify the relation between its zeros and coefficients.
15. Find a quadratic polynomial whose zeros are 1 and -3. Verify the relation between its coefficients and zeros.

- Watch Video Solution

16. What real number should to subtracted from the polynomial $3 x^{3}+10 x^{2}-14 x+9$ so that ($3 x-2$) divides it exactly ?
17. If $f(x)=6 x^{4}+8 x^{3}+17 x^{2}+21 x+7$ is divided by $g(x)=3 x^{2}+4 x+1, \quad$ the remainder is $\mathrm{ax}+\mathrm{b}$. Find a and b .

D Watch Video Solution

Zen Additional Questions Long Answer La Type Questions

1. What must be added to
$f(x)=x^{4}+2 x^{3}-2 x^{2}+x-1$ so that the
polynomial is exactly divisible by
$g(x)=x^{2}+2 x-3 ?$

- Watch Video Solution

2. Check if $g(x)=x^{3}-3 x+1$ is a factor of
$p(x)=x^{5}-4 x^{3}+x^{2}+3 x+1$.

D Watch Video Solution
3. Divide $6+19 x+x^{2}-6 x^{3} b y 2+5 x-3 x^{2}$ and verify division algorithm.

- Watch Video Solution

4. On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$, respectively. Find $g(x)$.

D Watch Video Solution

> 5. What must be added to
> $f(x)=x^{4}+2 x^{3}-2 x^{2}+x-1$ so that the
resulting polynomial is a multiple of
$x^{2}+2 x-3 ?$

(D) Watch Video Solution

6. Divide $30 x^{4}+11 x^{3}-82 x^{2}-12 x+48$ by (
$\left.3 x^{2}+2 x-4\right)$ and verify the result by division algorithm.

- Watch Video Solution

7. Find the other
$2 x^{4}-10 x^{3}+5 x^{2}+15 x-12$ given of that
$\sqrt{\frac{3}{2}}$ and $-\sqrt{\frac{3}{2}}$ are two of its zeros.
8. If the zeroes of the polynomial $x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $2 \pm \sqrt{3}$ Find other zeroes.

D Watch Video Solution

9. If the remainder on dividing $x^{3}+2 x^{2}+k x+3$ by $x-3$ is 21 , find the quotient and the value of k. Hence find the zeros of the polynomial $x^{3}+2 x^{2}+k x-18$.

D Watch Video Solution

10.

If
the
polynomial
$x^{4}-6 x^{3}+16 x^{2}-25 x+10$, is divided by
another polynomial $x^{2}-2 x+k$, the reminder comes out to be $x+a$, find k and a.

(Watch Video Solution

11. If α and β be the two zeroes of the quadratic polynomial $p(x)=2 x^{2}-3 x+7$, evaluate .
i] $\alpha^{3}+\beta^{3}$
ii] $\frac{1}{2 \alpha-3}+\frac{1}{2 \beta-3}$

D Watch Video Solution
12. For which values of 'a' and ' b ' are the zeroes
of $q(x)=x^{3}+2 x^{2}+a$ also the zeroes of the
polynomial
$p(x)=x^{5}-x^{4}-4 x^{3}+3 x^{2}+3 x+b$
?

Which zeroes of $p(x)$ are not the zeroes of $q(x)$?
13. Given that zeros of the cubic polynomial
$f(x)=x^{3}-6 x^{2}+3 x+10$ are the form \mathbf{a}, \mathbf{a} $+b, a+2 b$ for some $a, b \in R$, find a and b and the zeros of $f(x)$.

D Watch Video Solution

Zen Additional Questions Higher Order Thinking Skills Hots

1. ($\mathrm{x}-2$) is a factor of $2 x^{3}+a x^{2}+b x-14$ and
when divided by $x-3$, the remainder is 52 . Find
the values of a and b.

D Watch Video Solution

2. If 1 is a zero of the polynomial $p(x)=a x^{2}-3(a-1) s-1$,find value of a.

D Watch Video Solution

3. Find the values of a and b for which zeros of

$q(x)=x^{3}+2 x^{2}+a$ are also the zero of
$p(x)=x^{5}-x^{4}-4 x^{3}+3 x^{2}+3 x+b p$. Also, find zeros of $p(x)$ which are not zeros of $q(x)$.

- Watch Video Solution

4. If zeros of $f(x)=x^{3}-12^{2}+39 x+k$ are in

A.P., find k.

D Watch Video Solution
5. Given that zeros of the cubic polynomial $f(x)=x^{3}-6 x^{2}+3 x+10$ are the form \mathbf{a}, \mathbf{a}
$+b, a+2 b$ for some $a, b \in R$, find a and b and the zeros of $f(x)$.

- Watch Video Solution

6. If α and β are zeros of $f(t)=t^{2}-4 t+3$,
find the value of $\alpha^{4} \beta^{3}+\beta^{4} \alpha^{3}$.

D Watch Video Solution
7. If the square of the difference of the zeros of
the quadratic polynomial $f(x)=x^{2}+p x+45$
is equal to 144 , find p.

- Watch Video Solution

8. If α and β are zeros of the quadratic polynomial $f(x)=x^{2}-p x+q$, prove that $\frac{\alpha^{2}}{\beta^{2}}+\frac{\beta^{2}}{\alpha^{2}}=\frac{p^{4}}{q^{2}}-\frac{4 p^{2}}{q}+2$.

- Watch Video Solution

9. Find a quadratic polynomial whose sum and product of zeros are respectively
$-2 \sqrt{3}$ and -9

- Watch Video Solution

10. Find the zeros of $f(x)=6 x^{2}-3$ and verify
the relationship between zeros and coefficients.

- Watch Video Solution

Zen Additional Questions Competitive Exam Questions

1. What should be multiplied with $2 x^{2}+3 x-4$
to get $4 x^{4}-9 x^{2}+24 x-16$?

Watch Video Solution
2. If LCM of $f(x)$ and $g(x)$ is $a^{6}-b^{6}$, theri HCF
can be-
A. a-b
B. $a^{2}+a b+b^{2}$
C. $a^{2}-a b+b^{2}$

D. All of these

Answer: D

- Watch Video Solution

3. The LCM of polynomials
 $12\left(x^{3}+27\right)$ and $18\left(x^{2}-9\right)$ is

A. $6(x+3)$
B. $36\left(x^{2}-9\right)\left(x^{2}+3 x=9\right)$
C. $36(x+3)^{2}\left(x^{2}+3 x+9\right)$

$$
\text { D. } 36\left(x^{2}-9\right)\left(x^{2}-3 x+9\right)
$$

Answer: D

D Watch Video Solution

4.

The
HCF
of
polynomials
$\left(x^{2}-4 x+4\right)(x+3)$ and $\left(x^{2}+2 x-3\right)(x-2)$
is
A. $(x+3)$
B. $(x-2)$

C. $(x+3)(x-2)$

$$
\text { D. }(x+3)(x-2)^{2}
$$

Answer: C

- Watch Video Solution

5. If the zeros of $(a x+b)(3 x+2)$ are $-\frac{2}{3}$ and $\frac{1}{2}$, $a+b=$
A. -1
B. 0
C. $-b$
D. $-a$

Answer: B

- Watch Video Solution

