©゙" doubtnut

MATHS

BOOKS - ZEN MATHS (KANNADA ENGLISH)

REAL NUMBERS

Illustrative Examples

1. Express the following as the product of prime factors.
[A] 420 [B] 800 [C] 2120 [D] 7325

- Watch Video Solution

2. Determine the prime factorisation of each of the following.
[A] 20570 [B] 12673

- Watch Video Solution

3. Why is $3 \times 5 \times 7+7$ a composite number?

- Watch Video Solution

4. Show that the number of positive primes is infinite.
5. Find the missing numbers in the following factor trees.

- Watch Video Solution

6. Find the HCF of 96 and 404 by factorisation method.

- Watch Video Solution

7. Write 96 as the product of prime factors.

- Watch Video Solution

8. Find the HCF and LCM by prime factorisation method.
[A] $(336,54)[B](120,144)[C](170,408)$

- Watch Video Solution

9. Find the HCF of 275,225 , and 175.

D Watch Video Solution

10. Find the units place in the expansion of $(25)^{8}$
11. Find the units place in the expansion of $(67)^{7}$

- Watch Video Solution

12. Four bells toll at an interval of $8,12,15$, and 18 seconds respectively. All the four bells begin to toll together. How many times do they toll together in one hour excluding the one at the start?

- Watch Video Solution

13. An army contingent of 616 members is to march behind an army band of 32 members in a parade. The
two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?

D Watch Video Solution

Textual Exercises 81

1. Use Euclid's algorithm to find the HCF of:
[i] 135 and 225 [ii] 196 and 38220 [iii] 867 and 255
2. Show that any positive odd integer is of the form $6 q+1$, or $6 q+3$, or $6 q+5$, where q is some integer.

- Watch Video Solution

3. An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?
4. Use Euclid's division lemma to show that the square of any positive integer is either of the form $3 m$ or $3 m+1$ for some integer m.
(Hint : Let x be any positive integer then it is of the form $3 q, 3 q+1$ or $3 q+2$. Now square each of these and show that they can be rewritten in the form $3 m$ or $3 m+1$.]

D Watch Video Solution

5. Use Euclid's division lemma to show that the cube of any positive integer is of the form $9 m, 9 m+1$ or $9 m+8$.
6. Express each number as a product of prime factors

$$
\text { [i] } 140 \text { [ii] } 156 \text { [iii] } 3825 \text { [iv] } 5005 \text { [v] } 7429
$$

- Watch Video Solution

2. Find the LCM and HCF of the following pairs of integers and verify LCM \times HCF = product of two numbers.
[i] 26 and 91 [ii] 510 and 92 [iii] 336 and 54
3. Find the LCM and HCF of the following integers by applying the prime factorisation method.
[i] 12,15 and 21 [ii] 17,23 and 29 [iii] 8,9 and 25

- Watch Video Solution

4. Given that $\operatorname{HCF}(306,657)=9$, find LCM of $(306,657)$.

- Watch Video Solution

5. Check whether 6^{n} can end with the digit 0 for any natural number n .
6.

Explain
$(7 \times 11 \times 13)+13$ and $(7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1)+5$
are composite numbers.

D Watch Video Solution

7. There is a circular path around a sports field. Sonia takes 18 minutes to drive one round of the field, while Ravi takes 12 minutes for the same. Suppose they both start at the same point and at the same time, and go in the same direction. After how many minutes will they meet again at the start- ing point?

Textual Exercises 83

1. Prove that $\sqrt{75}$ is irrational.

D Watch Video Solution

2. Prove that $3+2 \sqrt{5}$ is irrational.

D Watch Video Solution
3. Prove that $3+2 \sqrt{5}$ is an irrational number.
4. Prove that the following are irrationals :
$\frac{1}{\sqrt{2}}$

- Watch Video Solution

5. Prove that $5+\sqrt{3}$ is an irrational number.

- Watch Video Solution

Textual Exercises 84

1. (i)Write down the decimal expansions of those rational
num- bers in Question 1 above which have terminating
decimal expansions.

13

$\overline{3125}$
(ii) Write down the decimal expansions of those rational num- bers in Question 1 above which have terminating decimal expansions.
(iii)Write down the decimal expansions of those rational num- bers in Question 1 above which have terminating decimal expansions.

64 $\overline{455}$ (iv)Write down the decimal expansions of those rational num- bers in Question 1 above which have terminating decimal expansions.

15
 1600

(v)Write down the decimal expansions of those rational
num- bers in Question 1 above which have terminating
decimal expansions.
29
343
(vi)Write down the decimal expansions of those rational
num- bers in Question 1 above which have terminating
decimal expansions.
$\frac{23}{2^{3} 5^{2}}$
(vii)Write down the decimal expansions of those rational
num- bers in Question 1 above which have terminating
decimal expansions.
129
$\overline{2^{2} 5^{7} 7^{5}}$
(viii) Write down the decimal expansions of those
rational num- bers in Question 1 above which
(ix)Write down the decimal expansions of those rational
num- bers in Question 1 above which have terminating decimal expansions.
(x)Write down the decimal expansions of those rational num- bers in Question 1 above which have terminating decimal expansions.
$\frac{35}{50}$

- Watch Video Solution

2. (i)Write down the decimal expansions of those rational num- bers in Question 1 above which have terminating decimal expansions.

13

$\overline{3125}$
(ii) Write down the decimal expansions of those rational num- bers in Question 1 above which have terminating decimal expansions.
(iii) Write down the decimal expansions of those rational num- bers in Question 1 above which have terminating decimal expansions.
$\frac{64}{455}$ (iv)Write down the decimal expansions of those rational num- bers in Question 1 above which have terminating decimal expansions.

15
 $\frac{1500}{}$

(v)Write down the decimal expansions of those rational
num- bers in Question 1 above which have terminating decimal expansions.
$\frac{29}{343}$
(vi)Write down the decimal expansions of those rational
num- bers in Question 1 above which have terminating decimal expansions.
(vii)Write down the decimal expansions of those rational
num- bers in Question 1 above which have terminating decimal expansions.

129
$\frac{129}{2^{2} 5^{7} 7^{5}}$
(viii) Write down the decimal expansions of those rational num- bers in Question 1 above which
(ix)Write down the decimal expansions of those rational num- bers in Question 1 above which have terminating decimal expansions.

35
$\overline{50}$
(x)Write down the decimal expansions of those rational num- bers in Question 1 above which have terminating decimal expansions.
$\frac{35}{50}$

D Watch Video Solution

3. The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they are rational, and of the form, $\frac{p}{q}$ what can you say about the prime factors of q ?
43.123456789

- Watch Video Solution

Additional Questions Mcq

1. When 'a' is divided by 3 , the values of ' r ' are
A. $0,1,2$
B. , , , 2, 3,
C. 0,1,2
D. 0,1

Answer: c

- Watch Video Solution

2. What is the value of ' q ' and ' r ' when 10 is divided by 3 ?
A. $q=3, r=3$
B. $=3, r=1$
C. $q=1, r=3$
D. $q=I, r=1$

Answer: b

D Watch Video Solution

3. For some integer n every odd integer is of the form
A. $2 q+1$
B. $2 q$
C. q
D. $q+1$

Answer: a
4. If'm ' is any integer, an even integer will be of the form
A. 2 m
B. $2 m+1$
C. m
D. $m+1$

Answer: a

- Watch Video Solution

5. For any integer $n, 6^{n}$ always ends with
A. 2
B. 1
C. 4
D. 6

Answer: d

- Watch Video Solution

6. if p_{1} and p_{2} are odd prime numbers such that $p_{1}>p_{2}$
then $P_{1}^{2}-P_{2}^{2}$ is always
A. even
B. odd
C. negative odd
D. negative even

Answer: a

D Watch Video Solution

7. $n^{2}-1$ is divisible by 8 , if n is
A. an even natural number
B. an odd natural number
C. an integer
D. a nutural number

Answer: b

- Watch Video Solution

8. Show that square of any odd integer is of the form 4q
+1 for some integer q.

- Watch Video Solution

9. The factors of 32 (expressed as a product of prime
factors) are
A. 2^{5}
B. 4×2^{3}
C. 16×2
D. 4×8

Answer: a

- Watch Video Solution

10. If $80=2^{P} \times 5^{q}$, then $\mathrm{p}+\mathrm{q}=$
A. 7
B. 4
C. 6
D. 5

Answer: d

- Watch Video Solution

11. The exponent of 2 in the prime factorisation of 144 is
A. 3
B. 4
C. 5
D. 6

Answer: b
12. In the following factorisation, value of ' b ' is

A. 18
B. 6
C. 24
D. 3
13. For any ' n ', $6^{n}-5^{n}$ ends with
A. 1
B. 6
C. 5
D. 4

Answer: a

D Watch Video Solution
14. The units place in the expansion of 6^{35} is
A. 1
B. 2
C. 8
D. 6

Answer: d

- Watch Video Solution
$15.2+\sqrt{3}$ is
A. irrational
B. rational
C. natural

D. integer

Answer: a

D Watch Video Solution

16. If a and b are any two positive integers then $\operatorname{HCF}(a, b)$
$\times \operatorname{LCM}(a, b)$ is equal to
A. $a+b$
B. $a-b$
C. $a x b$
D. $a \div b$
17. If the HCF of 72 and 120 is 24 , then their LCM is
A. 36
B. 720
C. 360
D. 72

Answer: c

- Watch Video Solution

Additional Questions Very Short Answer Questions

1. What is the HCF of two prime numbers

- Watch Video Solution

2. What are coprimes?

D Watch Video Solution

3. What are twin primes?
4. How many prime factors are there in the prime factorisation of 120 ?

- Watch Video Solution

5. Find the product of LCM and HCF of numbers 5 and 25

- Watch Video Solution

6. Express $0 . \overline{6}$ as a rational number.

7. Express $0 . \overline{47}$ as a rational number

- Watch Video Solution

8. Write the decimal expansion of $\frac{241}{2^{3} \times 5^{2}}$

- Watch Video Solution

9. After how many places of decimal does the decimal
expansion of the rational number $\frac{43}{2^{4} \times 5^{3}}$ terminate?
10. Find ' n ' if $n=2 A^{3} \times 3^{3}$

- Watch Video Solution

11. State Euclid's Division lemma.

- Watch Video Solution

12. State the fundamental theorem of arithmetic
13. Write the condition to be satisfied by q so that the rational number $\frac{p}{q}$ has a terminating decimal expansion.

D Watch Video Solution

14. Write the exponent of 2 in the prime factorisation of

144

D Watch Video Solution

15. If $\operatorname{HCF}(p, q)=1$, what is the LCM of p and q ?
16. $17=6 \times 2+5$ is compared with Euclid's Division lemma
$a=b q+r$ then which number is representing the remainder

D Watch Video Solution

17. Express the denominator of $23 / 20$ the form of $2^{n} \times 5^{m}$ and state whether the given fraction is terminating or non-terminating repeating decimal.

D Watch Video Solution

Additional Questions Short Answer Type 1 Questions

1. Express the following as the product of prime factors.
[A] 96 [B] 720 [C 1867 [D] 1771 [E] 10626 [F] 21252 [G]

25935

- Watch Video Solution

2. Find the missing numbers in the following factor trees.

32760

$\square 16380$

3. Find the LCM and HCF of the following numbers by prime factorisation method.
[A] 6 and 20 [B] 90 and 144 [C] 26 and 91 [D] 92 and 510 [E] 105 and 1515

- Watch Video Solution

4. Find the HCF of these numbers by prime factorisation.
[A] 6,72, and 120 [B] 90 and 144 [C] 40,36,126 [D] 92 and 510 [E] 105 and 1515
5. Find the units-place digit in the expansion of the following:
$[\mathrm{A}](38)^{20}[B](56)^{74}[C](57)^{40}[D](291)^{2018}$

D Watch Video Solution
6. Find the LCM of 65 and 117

- Watch Video Solution

Additional Questions Short Answer Type 2 Questions

1. In a school, the duration of a period in junior section is

45 minutes and senior section is 1 hour. If the first bell
for each section rings at 10:00 a.m., when do the two bells ring together again?

Watch Video Solution

2. A rectangular field is $150 \mathrm{~m} \times 60 \mathrm{~m}$. Cyclists Joe and Jim
start together cycling at speeds $21 \mathrm{~m} / \mathrm{min}$ and $28 \mathrm{~m} / \mathrm{min}$
respectively. They cycle along the track around the field
at the same moment. After how many minutes do they
meet again at the starting point?
3. On a morning walk, three persons walk with steps measuring $45 \mathrm{~cm}, 42 \mathrm{~cm}$, and 40 cm respectively. What is the minimum distance each should walk to cover the same distance in complete steps?

D Watch Video Solution

4. Prove that the product of any two consecutive positive integers is divisible by 2.

D Watch Video Solution

5. $n^{2}-1$ is divisible by 8 , if n is
6. For any positive integer n , prove that $\left(n^{3}-n\right)$ is divisible by 6.

D Watch Video Solution

7. Find the HCF of 24 and 40 by using Euclids division algorithm. Hence find the LCM of $\operatorname{HCF}(24,40)$ and 20.

D Watch Video Solution

Additional Questions Long Answer Type Questions

1. Show that the square of any odd integer is of the form
$4 q+1$ for any integer q.

- Watch Video Solution

2. Show that the square of any positive odd integer is of the form $4 q+1$ for any integer q.

- Watch Video Solution

3. Prove that $\mathrm{n}+\mathrm{n}$ is divisible by 2 for any positive integer n .
4. Prove that $n^{2}-n$ is divisible by 2 for every positive integer n.

- Watch Video Solution

5. Prove that the square of any positive integer of the form $5 q+1$ will be in the same form.

- Watch Video Solution

