© 'doubtnut

India's Number 1 Education App

CHEMISTRY

COMPLETE CLASS 11TH + 12TH

GOC

Example

1. Idenfity the compound showing $+M$ or $-M$ seperately

- View Text Solution

2. Compare the stability of the following free Radical.
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}$
(b) $\mathrm{CH}_{2}=\dot{\mathrm{C}} \mathrm{H}$
(c) $\mathrm{CH}=\mathrm{CH}$
3. Compare the stability of the following free Radicals
(b) $\mathrm{CH} \underset{s p^{2}}{=} \dot{C} H$
(c) $C H \equiv \dot{C}$
actual $s p$
\Rightarrow More repulsion \Rightarrow less stability
(Therefore this resonating structure is not possible)

- View Text Solution

4.

$\underset{\mid}{\mathrm{CH}_{3}-\underset{\mathrm{CH}}{\mathrm{CH}}} \mathrm{CH}-\mathrm{CH}_{3}$
(b) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(c) $\mathrm{CH}_{3}-\dot{\mathrm{C}} \mathrm{H}_{3}$
(a

Compare the ${ }^{C} H$ bond energy of the above compounds.

D Watch Video Solution

5. Compare the potential energy of the following compounds (above compounds)

View Text Solution

6. Compare the bond energies of $C-H$ bond (at $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, e and f position)

- View Text Solution

7. Compare the stability of the following free Radical

- View Text Solution

8.

Compare
the
potential
energy
of
$\mathrm{CH}_{3}-\mathrm{CH}_{3}, \mathrm{CH}_{2}=\mathrm{CH}_{2} \mathrm{CH} \equiv \mathrm{CH}$
9. Compare the stability of th following carbocation
(a) $\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$
(b) $\mathrm{CH}_{2}=\stackrel{+}{\downarrow}{ }_{\downarrow} H$
(c) $\mathrm{CH} \equiv \stackrel{+}{\substack{\downarrow \\ s p}} \stackrel{+}{\substack{ \\ \\\hline}}$

- Watch Video Solution

10. Compare the stability of the following compounds
(a) $\stackrel{+}{C} \mathrm{H}_{2}-\mathrm{CF}_{3}$
(b) $\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}-\mathrm{CCl}_{3}$
(c) $\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}-\mathrm{CBr}_{3}$
(d) $\stackrel{+}{C} H_{3}$

Watch Video Solution

11. Compare the stability of the following carbocation :
(a) ${ }^{+}{ }_{C}^{+} \mathrm{H}_{2}-\mathrm{F}$
(b) $\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}-\mathrm{Cl}$
(c) $\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}-\mathrm{Br}$
(d) $\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}-l$
12. Compare the stabilities of the following corbocation
(a) ${ }^{+}{ }^{+} \mathrm{H}_{2} \mathrm{NH}_{2}$
(b) ${ }^{+}{ }^{+} H_{2}-\ddot{O} H$
(c) $\stackrel{+}{C} H_{2}-\ddot{F}$:

Watch Video Solution

13. Compare the following corbocation in order of their stability.
(a) $\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}-\mathrm{Cl}$
(b) ${ }^{+}{ }_{C} \mathrm{H}_{2}-\mathrm{OH}$

- Watch Video Solution

14. Compare the stability of the following compounds
(a) $\mathrm{CH}_{3} \rightarrow \mathrm{CH}_{2}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$
(b) $\mathrm{CH}_{2}=\mathrm{CH}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$ (allylic)
(c) $\mathrm{ph} \leftarrow \mathrm{CH}_{2}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$

- Watch Video Solution

15. CH_{3},
$\mathrm{CH}_{3} \mathrm{CH}_{2}$
(a)
(b)
$a>b$ (stability)

- Watch Video Solution

16. Compare the stability of the following carbacation
(b) $C H \equiv \stackrel{+}{C}$
(c) $\mathrm{CH}_{2}=\stackrel{+}{\mathrm{C} p^{2}} \mathrm{H}$

- View Text Solution

17. Compare the stability of the following carbanion
(b)

$$
C H \underset{\substack{\downarrow \\ s p}}{\equiv} \stackrel{\ominus}{C}
$$

- vecharge is attracted by sp hybridised carbon
(most electrongegative)
(c) $C H_{2}=\stackrel{\ominus}{C p^{2}} C H \quad \Rightarrow$ become more stable

18. Compare the stability of the following carbanion
(a) $\stackrel{\ominus}{C} \mathrm{H}_{2}-C F_{3}$
(b) $\stackrel{\ominus}{C} \mathrm{H}_{2}-\mathrm{CCl}_{3}$
(c) $\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{2}-\mathrm{CBr}_{3}$

- Watch Video Solution

19. Arrange the following anion order of their stability
(a) Cl^{-},
(b) $B r^{-}$
(c) F^{-}
(d) I^{-}(maximum size)
\Rightarrow maximum dispersion of $-v e$ charge
\Rightarrow max stability

- Watch Video Solution

20. Compare the stability of the following
(a) $\stackrel{\ominus}{C} H_{3}$
(b) $\stackrel{\ominus}{N} H_{2}$
$(c) \stackrel{\ominus}{O} H$
$(d) \stackrel{\ominus}{F}$
21. Write the correct order of acidic strength of following compounds:
(a) $H-F$
(b) $\mathrm{H}-\mathrm{Cl}$
(c) $H-B r$
(d) $H-I$

- Watch Video Solution

22. Compare the Acidic strength of the following
(a) NH_{3}
(b) PH_{3}
(c) AsH_{3}
(d) SbH_{3}
(e) BiH_{3}

- Watch Video Solution

23. Compare the acidic strength of the following comounds
$\mathrm{CH}_{4}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HF}$
24. Compare the stability of the following carbanion.
25. compare the stability of the following carbocation
26. Compare the stability of the following carbocation.

- View Text Solution

27. Compare the stability of the following carbocation
28. Compare order of dehydration of the following alcohols:

(c) $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{OH}$

- Watch Video Solution

29. Compare the acidic strength of the following acids.
(a) $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{COOH}$
(b) $C=C-C-C O O H$
$(c) C \equiv C-C-C O O H$

- Watch Video Solution

30. Which is more acidic between the two
(a) CHF_{3}
(b) CHCl_{3}
31. Compare the acidic strength of the following
(a) CHF_{3}
(b) CHCl_{3}
(c) $\mathrm{CHBr}_{3}(p \pi-d \pi$ bonding in Br is not as much as effective as in Cl due

- Watch Video Solution

32. Compare the acidic strength of the following
(a) $\mathrm{CH}(\mathrm{CN})_{3}$
(b) $\mathrm{CH}\left(\mathrm{NO}_{2}\right)_{3}$
(c) CHCl_{3}

- Watch Video Solution

33. Compare the acidic strength of the following
(a) $\mathrm{CH} \equiv \mathrm{CH}$
(b) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
(c) $\mathrm{CH}_{3}-\mathrm{CH}_{3}$

(D) Watch Video Solution

34. Compare the acidic strength of the following :
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$
(b) $\mathrm{CH}_{3}-\underset{\mathrm{Cl}}{\mathrm{Cl}} \mathrm{H}-\mathrm{CH}-\mathrm{COOH}$
(c) $\mathrm{CH}_{3}-\underset{\mathrm{F}}{\mathrm{C}} \underset{\substack{\mathrm{CH} \\ \mathrm{CH}}}{\mathrm{CH}-\mathrm{COOH}}$
(d) $\mathrm{CH}_{3}-\underset{\substack{\mid \\ \mathrm{NO}_{2}}}{\mathrm{CH}}-\mathrm{CH}-\mathrm{COOH}$

- Watch Video Solution

35. Arrange the following in order of property indicated for each set:
(i) $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}, \mathrm{H}_{2} \mathrm{Te}$ - Increasing acidic character
(ii) $\mathrm{HF}, \mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}$-decreasing bond enthalpy

- Watch Video Solution

36. Compare the acidic strength of the following compound

- View Text Solution

37. Compare the reactivity of the following compounds with

1 mde of AgNO_{3}

- View Text Solution

38. Compare the acidic strength
39. Compare the basic strength of following

$$
\text { (a) } \mathrm{NH}_{3}(b) \mathrm{PH}_{3}(c) A s H_{3}(d) S b H_{3}(e) \mathrm{BiH}_{3}
$$

Watch Video Solution

40. Compare the stability of the following
(a) $\stackrel{\ominus}{C} H_{3}$
(b) $\stackrel{\ominus}{\mathrm{N}} \mathrm{H}_{2}$
(c) $\stackrel{\ominus}{O} H$
(d) $\stackrel{\ominus}{F}$

- Watch Video Solution

41. Which is more basic $\bar{O} H$ or $\overline{H S}$?

- Watch Video Solution

42. Correct order of basic strength in gas phase is
(I) $\mathrm{CH}_{3}-\mathrm{NH}_{2}$ (II) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
(III) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ (IV) NH_{3}
43. Compare the basic strength of the following

- View Text Solution

44. Compare the basic strength of the following

- View Text Solution

45. Compare the basic strength

- View Text Solution

46. Compare the basicity of the following compounds
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{NH}_{2}$
(b) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{\substack{\downarrow \\ s p^{3}}}{\mathrm{C}} \mathrm{H}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
(c) $\mathrm{CH} \equiv \underset{\substack{\downarrow \\ s p}}{\mathrm{C}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$

- Watch Video Solution

47. Compare the basicity of the numbered nitrogen atoms.
as L.P. is not in Resonance
(or in conjugation)

- View Text Solution

48. Compare the basic strength of the following
49. Compare the basic strength of the following :

- View Text Solution

50. Compare the basic strength of the following :

4

View Text Solution

Questions

1.
$a=e>b=d>c$

- Watch Video Solution

2. Write the stability order of conjugate structures:

(c) $\stackrel{\oplus}{C} H_{2}-\dot{N}=\underset{\ominus}{\underset{\sim}{N}}$
(d) $\stackrel{\ominus}{C} H_{2}-\ddot{N}=\stackrel{\oplus}{N}$

- Watch Video Solution

3.

$\downarrow-\mathrm{H}^{-}$
Stability
$<\quad \stackrel{\oplus}{\mathrm{C}} \stackrel{\mathrm{F}}{-\mathrm{F}}$
(back bonding)

- Watch Video Solution

(a) $\check{\mathrm{CH}_{2}}=\mathrm{CH} \mathscr{\stackrel { \mathrm { F } } { }}$:

4.

(b). ${ }^{\ominus} \mathrm{CH}_{2}-\mathrm{CH}=F^{+} \quad a>b$ (stability)

1. Bond formation is:
A. always exothermic
B. always endothermic
C. neither exothermic nor endothermic
D. sometimes exothermic and sometimes endothermic

Answer: A

- Watch Video Solution

2. $\mathrm{CH}_{3} \mathrm{H}_{2}=\underset{2}{\mathrm{CH}} \mathrm{H}-\underset{1}{\mathrm{CN}}$
$C l-C 2$ bond of this molecules is formed by:
A. $s p^{3}-s p^{2}$ overlap
B. $s p^{2}-s p^{3}$ overlap
C. $s p-s p^{2}$ overlap
D. $s p^{2}-s p^{2}$ overlap

Answer: C

- Watch Video Solution

3. Find out the hybridisation state of carbon atoms in given compounds from left to right.
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{C}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
A. $s p^{3} s p^{2} s p^{2} s p^{2} s p s p^{2} s p s p s p^{3}$
B. $s p^{3} s p^{2} s p^{2} s p s p s p s p s p s p^{3}$
C. $s p^{3} s p^{2} s p^{2} s p^{2} s p^{2} s p^{2} s p s p s p^{3}$
D. $s p^{3} s p s p s p^{2} s p s p^{2} s p s p s p^{3}$

Answer: A

4. Total number of σ and π-bonds are in naphthalene is
A. 5π and 18σ
B. 6π and 19σ
C. 5π and 19σ
D. 7π and 26σ

Answer: C

- Watch Video Solution

5. In which of the following molecules resonance takes place through out the entire system

A.
(B)

B.

C.
(C)

COOCH_{3}
D. \mid
COOCH_{3}

Answer: B

- Watch Video Solution

6. The inductive effect
A. implies the atom's ability to cause bond polarization
B. increases with increase of distance
C. implies the transfer of lone pair of electrons from more electronegative atom to the lesser electronegative atom in a molecule
D. implies the transfer of lone pair of electrons from lesser electronegative atom to the more electronegative atom in a molecule

Answer: A

- Watch Video Solution

 introduced on benzene ring then correct order of their inductive effect is

B. $\mathrm{CH}_{3}-\underset{\substack{\mathrm{CH}_{3} \\ \mathrm{CH}_{3}}}{\mathrm{C}}->\mathrm{CH}_{3}-\underset{\substack{\mathrm{C} \\ \mathrm{CH}}}{\mathrm{CH}}->\mathrm{CH}_{3}-$

D. $\mathrm{CH}_{3}-\underset{\substack{\mathrm{C} \\ \mathrm{CH}_{3}}}{\stackrel{\text { d }}{\mathrm{C}}}->\mathrm{CH}_{3}->\mathrm{CH}_{3}-\underset{\substack{\mathrm{L} \\ C H_{3}}}{\mathrm{CH}-}$

- Watch Video Solution

8. Express in decreasing order of $(+I)-$
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CH}_{2}-$
(b) $\mathrm{CH}_{3}-$
(c) $\mathrm{CH}_{3}-\stackrel{\mathrm{CH}_{3}}{\stackrel{\mathrm{C}}{\mathrm{C}}}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ (d) $\mathrm{CH}_{3}-\stackrel{\mathrm{CH}_{3}}{\stackrel{1}{\mathrm{C}}} \begin{gathered}\text { (} \\ \mathrm{CH}\end{gathered}-$
(e) $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2}-$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$

Correct answer is -
A. $(c)>(d)>(e)>(a)>(b)$
B. $(d)>(a)>(b)>(c)>(e)$
C. $(a)>(b)>(c)>(d)>(e)$
D. $(a)>(b)>(c)>(e)>(d)$

Answer: A

9. Consider the following carbanions
(i) $\mathrm{CH}_{3}-\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{2}$
$(i i) C H_{2}=\stackrel{\ominus}{C} H$
$(i i i) C H \equiv \stackrel{\ominus}{C}$

Correct order of stabilityof these carboanions in decreasing order is
A. $i>i i>i i i$
B. $i i>i>i i i$
C. $i i i>i i>i$
D. $i i i>i>i i$

Answer: C

- Watch Video Solution

10. In which of the following compounds is hydroxylic proton the most acidic?
(A)

A.

B.
(C)

C.
(D)

D.

Answer: D

- Watch Video Solution

11. Consider following acid

$\mathrm{ClCH}_{I} \mathrm{COOH}, \quad \mathrm{CH}_{3} \mathrm{COOH}, \quad \mathrm{CH}_{3} \mathrm{CH}_{I I I}^{\mathrm{H}_{2} \mathrm{COOH}}$

Correct order of their pH value
A. $I I I<I I<I$
B. $I<I I<I I I$
C. $I<I I I<I I$
D. $I I<I<I I I$

Answer: B

- Watch Video Solution

12. Which of the following acids has lowest $p K_{a}$ value?
A. Chloroacetic acid
B. Bromoacetic acid
C. Nitroacetic acid
D. Cyanoacetic acid

Answer: C

13. Arrange in decreasing $p K_{a}$
(a) $\mathrm{F}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
(b) $\mathrm{Cl}-\underset{\substack{\mathrm{Cl}}}{\mathrm{Cl}}-\mathrm{CH}_{2}-\mathrm{COOH}$
(c) $\mathrm{F}-\mathrm{CH}_{2}-\mathrm{COOH}$
(d) $\mathrm{Br}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$

Correct answer is
A. $b>d>a>c$
B. $a>c>d>b$
C. $d>a>b>c$
D. $d>b>a>c$

Answer: C

- Watch Video Solution

14. The correct order of increasing acid strength of the compounds
(a) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
(b) $\mathrm{MeOCH}_{2} \mathrm{CO}_{2} \mathrm{H}$
(c) $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$

(d) ${ }_{\mathrm{Me}}^{\mathrm{Me}}>-\mathrm{CO}_{2} \mathrm{H}$

A. $d<a<c<d$
B. $d<a<b \leq c$
C. $a<d<c<b$
D. $b<d<a<c$

Answer: B

- Watch Video Solution

15. Correct order of basic strength in gas phase is
(I) $\mathrm{CH}_{3}-\mathrm{NH}_{2}$ (II) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
(III) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ (IV) NH_{3}
A. $\mathrm{NH}_{3}<\mathrm{CH}_{3} \mathrm{NH}_{2}<\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
B. $\mathrm{CH}_{3} \mathrm{NH}_{2}<\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}<\mathrm{NH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{NH}_{2}<\mathrm{NH}_{3}<\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
D. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}<\mathrm{NH}_{3}<\mathrm{CH}_{3} \mathrm{NH}_{2}$

Answer: A

- Watch Video Solution

16. Arrange basicity of the given compounds in decreasing order -
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
(b) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{NH}_{2}$
(c) $\mathrm{CH} \equiv \mathrm{C}-\mathrm{NH}_{2}$
A. $a>b>c$
B. $a>c>b$
C. $c>b>a$
D. $b>c>a$
17. Which one of the following is the strongest base in aqueous solution?
A. Trimethylamine
B. Aniline
C. Dimethylamine
D. Methylamine

Answer: C

- Watch Video Solution

18. In which of the following molecules, all atoms are not coplanar ?

A.
(B)

B.

(C)

(D)

D.

Answer: C

- Watch Video Solution

19. (I) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
$(I I) \stackrel{\ominus}{C} H_{2}-\mathrm{CH}=\mathrm{CH}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}$
$(I I I) \stackrel{\oplus}{C} H_{2}-C H=C H-\stackrel{\ominus}{C} H_{2}$
Among, these, which are canonical structures ?
A. I and II
B. I and III
C. II and III
D. all

Answer: D

- Watch Video Solution

Among these canonical structures, the correct order of stability is
A. $I>I I>I I I$
B. $I I I>I I>I$
C. $I>I I I>I I$
D. $I I>I>I I I$

- Watch Video Solution

21.

Amongt these canonical structures which one is least stable ?
A. I
B. II
C. III
D. IV

- Watch Video Solution

22. For phenol which ofthe following resonating structure is the most stable?

A.

B.

C.
D. All haveequal stability

Answer: C

- Watch Video Solution

23. The most stable resonating structure of following compound is

B.

C.

D.
(D) $\stackrel{\ominus}{\mathrm{O}}-\mathrm{N}=\square=\square$

Answer: D

- Watch Video Solution

24.

Among these canonical structures of pyridiine, the correct order of stability is
A. $(I=V)>(I I=I V)>I I I$
B. $(I I=I V)>(I=V)>I I I$
C. $(I=V)>I I I>(I I=I V)$
D. $I I I>(I I=I V)>(I=V)$

D Watch Video Solution

25. Write the stability order of Resonating Structures:

(I)

(II)
(III)

A. $(I I I=I V)>(I I=V)>I$
B. $I>(I I=V)>(I I I)=I V)$
C. $I>(I I I=I V)>(I I=V)$
D. $(I I=V)>(I I I=V)>I$

Answer: C

- Watch Video Solution

26. ' M ' effect is the resonance of
A. π electrons only
B. σ electrons only
C. π and σ both
D. (+) ve and (-) charge.

Answer: A

Watch Video Solution
27. Which of the following contain $+M$ but -l effect -
A. $\mathrm{O}=\mathrm{CH}-$
B. $-\mathrm{NO}_{2}$
C. $-C l$
D. CH_{3}

Answer: C

- Watch Video Solution

28.

In phenol, π-electron-density is maximum on
A. ortho and meta positions
B. ortho and para positions
C. meta and pera positions
D. none of these

Answer: B

- Watch Video Solution

29. Which of the following compounds has maximum electron density in ring ?

B.

C.

D.

Answer: C

- Watch Video Solution

30. In which of the following molecules pi-electron density in ring is mininmum?
A.
(A)

(B)
B.

(C)
 $\mathrm{H}_{2} \mathrm{~N}$
C.
(D)

D.

Answer: D

Watch Video Solution

Exercise 2 Level I

1. Rank the following free radicals in order of decreasing stability
$(I) C_{6} H_{5} \quad \mathrm{CHC}_{6} \mathrm{H}_{5}$
$(I I) C_{6} H_{5}-C H-C H=\mathrm{CH}_{2}$
$(\mathrm{III}) \mathrm{CH}_{3}-\dot{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3} \quad(\mathrm{IV}) \mathrm{C}_{6} \mathrm{H}_{5}-\dot{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}$
(V) $\mathrm{CH}_{3} \mathrm{CH} \quad \mathrm{CHCH}_{2} \mathrm{CH}_{2}$
$(\mathrm{VI}) \mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{\substack{\mathrm{C} \\ \mathrm{CH}}}{\dot{\mathrm{C}}}-\mathrm{CH}_{3}$
A. $I>I I>I V>V I>I I I>V$
B. $V I>V>I V>I I I>I I>I$
C. $I>I I>I I I>I V>V>V I$
D. $I>I V>V I>V>I I>I I I$

Answer: A

- Watch Video Solution

2. Rank thefollowing radicals in order of decreasing stability
(I)

(II)

(III)

(IV)

A. $I I I>I I>I>I V$
B. $I I I>I V>I>I I$
C. $I I>I I I>I>I V$
D. $I V>I I>I>I I I$

Answer: A

- Watch Video Solution

3. Select the most stable carboncation among the following -
A.
(A)
B.
(B)

C.
(C)
D.
(D)

Answer: C

- Watch Video Solution

4. Writecorrect order of stability of following carbocations:
(I)

(II)

(III)

(IV)

A. $I>I I>I I I>I V$
B. $I I I>I I>I>I V$
C. $I I I>I>I I>I V$
D. $I I I>I I>I V>I$

Answer: B

- Watch Video Solution

5. Arrange the following carbocations in the increasing order of their stability.
(I)

(II)

(III)

A. $I>I I>I I I$
B. $I>I I=I I I$
C. $I>I I I>I I$
D. $I I I>I>I I$

Answer: A

- Watch Video Solution

6. Which of the following carbocation will be most stable ?
A.

B.

C.
(C)

(D)

D.

Answer: A

7. Statement-1: $\mathrm{Me}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}$ is more stable than $\mathrm{MeO}-\mathrm{CH}_{2}^{\oplus}$

Statement-2: Me is a+ I group where as MeO is a $-I$ group.
A. Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
B. Statement-1 is true, statement-2 is true and statement-2 is NOT correct explanation for statement-1.
C. Statement 1 is false, statement-2 is true.
D. Statement 1 is true, statement-2 is false.

Answer: C

- Watch Video Solution

8. Ease of ionization to produce carbocation and bromide ion under the treatment of $A g^{\oplus}$ will be maximum in which of the following compounds?
(A)

A.
B.

(C)

C.
(D)

D.

Answer: D

Watch Video Solution
9. In which of the following pairs, first species is more stable than second ?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}$or $\mathrm{CH}_{3} \mathrm{CO}^{-}$

(D)

D.

Answer: D

D Watch Video Solution

10. The order of stability of the following carbanion is
${ }^{\ominus}$
(I) $\mathrm{CH}_{3} \mathrm{CH}_{2}$
(I) $\mathrm{CH}_{3} \stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{2}$

(III)

(IV)

A. $I>I I>I I I>I V$
B. $I>I I I>I I>I V$
C. $I V>I I I>I I>I$
D. $I I I>I V>I>I I$

Answer: D

- Watch Video Solution

11. Arrange the carbonions,
$\left(\mathrm{CH}_{3}\right)_{3} \bar{C}, \overline{\mathrm{C}} \mathrm{Cl}_{3},\left(\mathrm{CH}_{3}\right)_{2} \overline{\mathrm{C}} \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \overline{\mathrm{C}} \mathrm{H}_{2}$ in order of their decreasing stability
A. $\left(\mathrm{CH}_{3}\right)_{2} \overline{\mathrm{C}} \mathrm{H}>\overline{\mathrm{C}} \mathrm{Cl}_{3}>\mathrm{C}_{6} \mathrm{H}_{5} \stackrel{-}{\mathrm{C}} \mathrm{H}_{2}>\left(\mathrm{CH}_{3}\right)_{3} \bar{C}$
B. $\bar{C} C l_{3}>C_{6} H_{5} \bar{C} H_{2}>\left(\mathrm{CH}_{3}\right)_{2} \bar{C} H>\left(\mathrm{CH}_{3}\right)_{3} \bar{C}$
C. $\left(\mathrm{CH}_{3}\right)_{3} \bar{C}>\left(\mathrm{CH}_{3}\right)_{2} \bar{C} H>\mathrm{C}_{6} \mathrm{H}_{5} \overline{\mathrm{C}} \mathrm{H}_{2}>\overline{\mathrm{C}} \mathrm{Cl}_{3}$
D. $\mathrm{C}_{6} \mathrm{H}_{5} \overline{\mathrm{C}} \mathrm{H}_{2}>\overline{\mathrm{C}} \mathrm{Cl}_{3}>\left(\mathrm{CH}_{3}\right)_{3} \overline{\mathrm{C}}>\left(\mathrm{CH}_{3}\right)_{2} \overline{\mathrm{C}} H$

Answer: B

12.

There are three canonical structures of napthalene. Examine them and find correct statement among the following:
A. AllC $-C$ bonds are of some length
B. $C 1-C 2$ bond is shorter than $C 2-C 3$ bond.
C. $C 1-C 2$ bond is longer than $C 2-C 3$ bond
D. None .

Answer: B

- Watch Video Solution

13. Which of the following has longest $C-O$ bond:
(A)

A.
(B)

B.
(C)

C.
(D)

D.

Answer: B

- Watch Video Solution

14. Among the following molecules, the correct order of $C-C$ bond length is
A. $C_{2} H_{6}>C_{2} H_{4}>C_{6} H_{6}>C_{2} H_{2}$
B. $C_{2} H_{6}>C_{6} H_{6}>C_{2} H_{4}>C_{2} H_{2}\left(C_{6} H_{6}\right.$ is benzene $)$
C. $C_{2} H_{4}>C_{2} H_{6}>C_{2} H_{2}>C_{6} H_{6}$
D. $C_{2} H_{6}>C_{2} H_{4}>C_{2} H_{2}>C_{6} H_{6}$

Answer: B

- Watch Video Solution

15. In which of the following molecules π-electron density in ring is maximum.
(A)

A.

(B)

(C)

c.
(D)

D.

Answer: B

- Watch Video Solution

16.

(I)

(III)

Which of these cyclopropene systems is aromatic
A. I
B. II
C. III
D. all of these

Answer: C

- Watch Video Solution

17.

Which of these species is anti-aromatic?
A. I only
B. II only
C. III only
D. both II and III

Answer: A

18. Which of the following compouds is not aromatic
(A)

A.

(B)

B.

C.

D.

Answer: D

19.

The most stable canonical structure of this molecule is
A.

B.
(B)

C.
(C)

D. All are equally stable

Answer: C

20.

The most stable canonical structure of this molecule is
(A)

A.
(B)

B.
C.
(C)

(D)

D.

Answer: B

D Watch Video Solution

21.

The barrier for rotation about the indicated bonds

Will be maximum in which of these three compounds ?
A. I
B. II
C. III
D. same in all

Answer: B

- Watch Video Solution

22. Identify the odd species out Which of the species among the following is different from others?
A.

B.
(C)

C.

D.

Answer: B

- Watch Video Solution

23. Which of the following heterocyclic compounds would have aromatic character ?
(A)

A.

B.
(C)

C.
D.
(D)

Answer: D

- Watch Video Solution

24. Which one of the following carbonyl compound when treated with dilute acid forms the more stable carbocation ?
A. $\mathrm{CH}_{3}-\stackrel{\stackrel{O}{\mathrm{C}}}{\mathrm{C}}-\mathrm{CH}_{3}$

B.
(C)

c.

D. $C_{6} H_{5}-\stackrel{\stackrel{O}{\|}-C_{6} H_{5}}{ }$

Answer: C

- Watch Video Solution

25. The order of the rate of formation of carbocations from the following iodo compound is:
(I)

(II)

(III)

A. $I>I I>I I I$
B. $I>I I I>I I$
C. $I I I>I I>I$
D. $I I>I I I>I$

Answer: C

- Watch Video Solution

26. Write correct order of reactivity of following halogen derivatives towards AgNO_{3}.

(II) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Cl}$
(III) $E t_{3} C-C l$
(V) $P h_{3} C-C l$
A. $I>V>I V>I I I>I I$
B. $V>I V>I>I I I>I I$
C. $V>I>I V>I I I>I I$
D. $I>V>I I I>I V>I I$

Answer: A

- Watch Video Solution

27. Which of the following species is not aromatic ?

A.

B.
C.

(D)

D.

Answer: B

- Watch Video Solution

The aromatic character is maximum in which of these three compounds ?
A. I
B. II
C. III
D. Same in all

Answer: C

- Watch Video Solution

29. $\mathrm{CH}_{3} \mathrm{COOOH}_{(I)} \quad \underset{(I I)}{\mathrm{CH}_{3} \mathrm{COONa}} \quad \underset{\text { (III) }}{\mathrm{CH}_{3} \mathrm{CONH}_{2}}$

Among these compounds, the correct order of resonance energy is
A. $I>I I>I I I$
B. $I I I>I I>I$
C. $I I>I I I>I$
D. $I I>I>I I I$

Answer: C

(I)

(II)

(III)

(IV)

30.

Among these compounds, which one has maximum resonance energy ?
A. I
B. II
C. III
D. IV

Answer: C

31.

Which of the following orders is correct for the resonance energy of these two compounds?
A. $I>I I$
B. $I I>I$
C. $I=I I$
D. there is nothing like π-electron energy

Answer: B

Watch Video Solution

Exercise 2 Level li

1. Which of the following statements is (are) true about resonance.
(a) Resonance is an intramolecular process.
(b) Resonance involves delocalization of both σ and π electrons.
(c)Resonance involves delocalization of π electrons and lone pair only.
(d) Resonance decreases potential energy of a molecule. (e) Resonance has no effect on the potential energy of a molecule.
(f)Resonance is the only way to increase molecular stability.
(g) Resonance is not the only way to increase molecular stability.
(h) Any resonating molecule is always more stable than any nonresonating molecule.
(i) The canonical structure explains all features of a molecule.
(j) The resonance hybrid explains all features of a molecule.
(k)Resonating structures are real and resonance hybrid is imaginary.
(I) Resonance hybrid is real and resonating structures are imaginary.
(m) Resonance hybrid is always more stable than all canonical structures.

- Watch Video Solution

2. Resonance energy will be more if
(a) canonical structures are equivalent than if canonical structures are non-equivalent.
(b) molecule is aromatic than if molecule is not aromatic.

- Watch Video Solution

3. A canonical structure will be more stable if
(a) it has more number of π bonds than if it has less number of π bonds.
(b) the octate of all atoms are complete than if octate of all atoms are not complete.
(c) it involves cyclic delocalization of $(4 n+2) \pi-$ electrons than if it involves acyclic delocalization of $(4 n+2) \pi$ - electrons.
(d) it involves cyclic delocalization $(4 n) \pi$ - electrons than if it involves acyclic delocalizationof $(4 n) \pi$ - electrons.
(e) $+v e$ charge is on more electronegative atom than if $+v e$ charge is on less electronegative atoms.
(f) - ve charge is on more electronegative atom than if-ve charge is on less electronegative atom.

- Watch Video Solution

4. Consider structural formulas A, B and C :
$H_{2}{ }^{\ominus}-\stackrel{\oplus}{N} \equiv N:$
$H_{2} C=\stackrel{\oplus}{(B)} \stackrel{\oplus}{N}:$
$H_{2} \stackrel{\oplus}{C}-\underset{(C)}{\underset{\sim}{\sim}}=\stackrel{\ominus}{N}:$
(a) Are A, B and C constitutional isomers, or are they resonance forms?
(b) Which structures have a negatively charged carbon?
(c) Which structures have a positively charged carbon?
(d) Which structures have a positively charged nitrogen?
(e) Which structures have a negatively charged nitrogen?
(f) What is the net charge on each structure?
(g) Which is a more stable structure, A or B ? Why?
(h) Which is a more stable structure, B or C? Why?

- Watch Video Solution

5. How many of the following compounds give CO_{2} on reaction with
$\mathrm{NaHCO} \mathrm{S}_{3}$.

- Watch Video Solution

6. Identify more stable canonical structure in each of the following pairs :
(a)

- Watch Video Solution

7. Identify more stable canonical structure in each of the following pairs :

- Watch Video Solution

8. Identify more stable canonical structure in each of the following pairs :
(c)

9. Identify more stable canonical structure in each of the following pairs :
$\stackrel{\oplus}{C} H_{2}-\mathrm{CH}=\mathrm{CH}-\stackrel{\ominus}{\mathrm{O}} \Leftrightarrow \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{O}$

- Watch Video Solution

10. Identify more stable canonical structure in each of the following pairs

- Watch Video Solution

11. In the following sets of resonance forms, label the major and minor contributors and state which structures would be of equal energy. Add
any missing resonance forms.

$$
\left[C H_{3}-\stackrel{-}{C}-C \equiv N: \Leftrightarrow C H_{3}-C H=C=\ddot{N}:^{-}\right]
$$

- Watch Video Solution

12. In the following sets of resonance forms, label the major and minor contributors and state which structures would be of equal energy. Add any missing resonance forms.

$$
\left[\stackrel{\left.\stackrel{O^{-}}{\stackrel{-}{C}} \mathrm{CH}_{3}-\mathrm{CH}-\stackrel{+}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3} \Leftrightarrow \mathrm{CH}_{3}-\stackrel{\stackrel{O_{+}^{-}}{\mathrm{C}}}{+}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\right]}{ }\right.
$$

- Watch Video Solution

13. In the following sets of resonance forms, label the major and minor contributors and state which structures would be of equal energy. Add any missing resonance forms.
14. In the following sets of resonance forms, label the major and minor contributors and state which structures would be of equal energy. Add any missing resonance forms.

$$
\left[\mathrm{CH}_{3}-\overline{\mathrm{C}} \mathrm{H}-\mathrm{CH}=\mathrm{CH}-\mathrm{NO}_{2} \Leftrightarrow \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\overline{\mathrm{C}} \mathrm{H}-\mathrm{NO}_{2}\right]
$$

- Watch Video Solution

15. In the following sets of resonance forms, label the major and minor contributors and state which structures would be of equal energy. Add any missing resonance forms.

$$
\left[\stackrel{\left.\stackrel{N H_{2}}{\stackrel{~}{C}}-\mathrm{CH}_{3}-\mathrm{CH}_{2} \Leftrightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{\stackrel{N H_{2}}{\mathrm{C}}}{\mathrm{C}}=\stackrel{+}{\mathrm{NH}_{2}}\right]}{ }\right]
$$

- Watch Video Solution

16. Which of the following pairs has higher resonance energy:
(a). $\mathrm{CH}_{3} \mathrm{COOH} \& \mathrm{CH}_{3} \mathrm{COONa}$
(b). $\mathrm{CH}_{2}=\mathrm{CH}-\stackrel{\ominus}{\mathrm{O}} \& \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{OH}$

Watch Video Solution
17. Which of the following pairs has higher resonance energy :

$$
\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{OH} \text { and } \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{OH}
$$

- Watch Video Solution

18. Which of the following pairs has higher resonance energy:

- Watch Video Solution

19. Which of the following pairs has higher resonance energy:
(d)

- Watch Video Solution

20. Which of the following pairs has higher resonance energy:

and
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
21. Which of the following pairs has less resonance energy: CO_{3}^{2-} and HCOO^{-}

- Watch Video Solution

22. Which of the following pairs has less resonance energy:

Θ and $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}^{-}$

O
 Watch Video Solution

23. Which of the following pairs has less resonance energy:

and $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$

Watch Video Solution
24. Which of the following pairs has less resonance energy:

\oplus and $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}^{+}$

O
 Watch Video Solution

25. Which of the following pairs has higher resonance energy :
(a)

and

- Watch Video Solution

26. Which of the following pairs has higher resonance energy :
(b)
 and

27. Which of the following pairs has higher resonance energy :

and

- Watch Video Solution

28. Which of the following pairs has higher resonance energy :
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{OH}$ and $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{OH}$

- Watch Video Solution

29. Which of the following pairs has higher resonance energy :
(e)
 and

30. $H \underset{\text { (Cyanic acid) }}{-\mathrm{O}} \underset{\mathrm{C}}{\mathrm{C}} \equiv N \quad H \underset{\text { (Isocyanic acid) }}{\mathrm{N}} \mathrm{N}=\mathrm{C}=O$

Loss of proton from these two acids produces
A. same anion
B. different anions
C. same cation
D. different cations

Answer: A

- Watch Video Solution

31. Ease of ionization to produce carbocation and bromide ion under the treatment of $A g^{\oplus}$ will be maximum in whichof the following compounds
A.
(B)

B.
(C)

(D)

D.

Answer: A

- Watch Video Solution

32.

Complete
the
following
reaction

A.
B.
(B) $2+2 \mathrm{SbCl}_{6}$

D. mixture of (a) and (b)

Answer: B

- Watch Video Solution

33.

A.

(B)

B.
C. mixture of $(A) \&(B)$
D. none of these

Answer: B

- Watch Video Solution

34. Which one of the following statements is True:
(1)

(2)

A. PhLi adds to both compound with equal ease
B. PhLi does not add to either of the compound
C. PhLi react readily with 1 but does not add to 2
D. PhLi react readility with 2 but does not add to 1

Answer: C

- Watch Video Solution

35. Correct order of rate of hydrolysis or rate of reaction toward AgNO_{3} for following compounds is
(I)

(II)

(III)

(IV)

A. $I I I>I I>I V>I$
B. $I>I I>I I I>I V$
C. $I I I>I>I I>I V$
D. $I I I>I I>I>I V$

Answer: A

- Watch Video Solution

36.

Complete
the
following
reaction

(A)

A.
(B)

B.
(C)

C.
D. Mixture of (A) \& (B)

Answer: A

- Watch Video Solution

37.

Complete
the
following
reaction

(B)

B.
C. Mixture of (A) \& (B)
D. None of these

Answer: A

- Watch Video Solution

38. Aromatic compounds are:
A.

B.

(C)

C. H
D.

Answer: ABD

- Watch Video Solution

39. Which of the following reactions give aromatic compound ?
B.
(B)

(C)

C.
(D)

D.

Answer: ABC

- Watch Video Solution

40. Write stability order of following intermediates:
(a) $\mathrm{CH}_{3}-\stackrel{\oplus}{C} \mathrm{H}_{2}$
(b) $\mathrm{CH}_{3}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}$
$(c) \mathrm{CH}_{3}-\stackrel{\mathrm{CH}_{\mathrm{C}}^{\mathrm{CH}}}{\stackrel{+}{\mathrm{C}}} \oplus+$

- Watch Video Solution

41. Write stability order of following intermediates:
CH_{3}
(c) $\mathrm{CH}_{3}-\mathrm{C} \oplus$ $\stackrel{+}{C} \mathrm{CH}_{3}$
(ii)
(a)

(b)

(c)

- Watch Video Solution

42. Write stability order of following intermediates:
(iii)
(a)

(b)

(c)

43. Write stability order of following intermediates:
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}$
(b) $\mathrm{CH}_{3}-\dot{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}$
(c) $\mathrm{CH}_{3}-\mathrm{C} \stackrel{\mathrm{CH}_{3}}{!}{ }_{\mathrm{CH}}$

- Watch Video Solution

44. Write stability order of following intermediates:
(v)
(a)

(b)

(c)

- Watch Video Solution

45. Write stability order of following intermediates:
(vi)
(a)

(b)

(c)

46. Write stability order of following intermediates:
(a) $H C \equiv \stackrel{\ominus}{C}$
(b) $\mathrm{CH}_{3}-\stackrel{\ominus}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}$
(c) $\mathrm{CH}_{3}-\mathrm{C} \stackrel{\stackrel{\mathrm{CH}_{3}}{\Theta}}{\stackrel{\mathrm{CH}}{ }}$

- Watch Video Solution

47. Write stability order of following intermediates:
(viii)
(a)

(b)

(c)

- Watch Video Solution

48. Write stability order of following intermediates:
(ix)
(a)

(b)

(c)

49. Write stability order of following intermediates:
(x)
(a)

(b)

(c)

(d)

- Watch Video Solution

50. Arrange the following in correct order of their stability ?
$(I) C H \equiv \stackrel{\ominus}{C}$
$(I I) C H_{2}=\stackrel{\ominus}{C} H$
(III) $\mathrm{CH}_{3}-\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{2}$

- Watch Video Solution

51. Compare the stability of the following free Radical.
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}$
(b) $\mathrm{CH}_{2}=\mathrm{CH}$
(c) $\mathrm{CH}=\mathrm{CH}$

- Watch Video Solution

52. Write stability order of following intermediates:
(i)

(b)

(c)

- Watch Video Solution

53. Write stability order of following intermediates:
(ii)
(a)

(b)

(d)

- Watch Video Solution

54. Write stability order of following intermediates:
(iii)

- Watch Video Solution

55. Write stability order of following intermediates:
(iv)

(b)

-
 Watch Video Solution

56. Write stability order of following intermediates:
(a) $\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{2}-\underset{\substack{\mathrm{Cl} \\ \\ \\ \\ \hline}}{ }$
(b) $\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{2}-\mathrm{CH}_{3}$
57. Write stability order of following intermediates:
(vi)
(a)

(b)

(c)

- Watch Video Solution

58. Write stability order of following intermediates:
(vii)

(c)

- Watch Video Solution

59. Write stability order of following intermediates:
(viii)
(a)

(b)

(c)

60. Write stability order of following intermediates:
(ix)
(a)

(b)

- Watch Video Solution

61. Write stability order of following intermediates:
(x)
(a)

(b)

(c)

(d)

Watch Video Solution
62. Write stability order of following intermediates:
(a)

(b)

(c)

Watch Video Solution

63. Write stability order of following intermediates:
(xii)

(b)

- Watch Video Solution

64. Write stability order of following intermediates:
(xiii)

(b)

$\mathrm{CH}_{2} \mathrm{Me}$

CH Me 2
(d)

CMe_{3}
65. In which of the following pairs, indicated bond is of greater strength :
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Br}$ and $\mathrm{CH}_{3}-\mathrm{CH}_{2} \underset{\uparrow}{-} \mathrm{Cl}$

- Watch Video Solution

66. In which of the following pairs, indicated bond is of greater strength :

- Watch Video Solution

67. In which of the following pairs, indicated bond is of greater strength :

and
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Cl}$

- Watch Video Solution

68. In which of the following pairs, indicated bond is of greater strength :

$$
\mathrm{CH}_{2}=\mathrm{CH} \underset{\uparrow}{-} \mathrm{CH}=\mathrm{CH}_{2} \text { and } \mathrm{CH}_{2}=\mathrm{CH}_{\uparrow}-\mathrm{CH}_{2}-\mathrm{CH}_{3}
$$

Watch Video Solution

69. In which of the following pairs, indicated bond is of greater strength :
(e)

- Watch Video Solution

70. In which of the following pairs, indicated bond having less bond dissociation energy :

$$
\mathrm{CH}_{2}=\mathrm{CH}_{\uparrow}
$$

-
 Watch Video Solution

71. In which of the following pairs, indicated bond having less bond dissociation energy :

$$
C H_{3}-C \underset{\uparrow}{\equiv C H} \text { and } H C \equiv C H
$$

Watch Video Solution
72. In which of the following pairs, indicated bond having less bond dissociation energy :

$\mathrm{CH}_{2} \mp \mathrm{CH}$
 CH_{2}

$\mathrm{CH}_{2}=\mathrm{CH}$

Watch Video Solution
73. In which of the following pairs, indicated bond having less bond dissociation energy :
(d)

74. In which of the following pairs, indicated bond having less bond dissociation energy :
(e)

- Watch Video Solution

75. In which of the following pairs, indicated bond having less bond dissociation energy :
(f)

76. Compare the $\mathrm{C}-\mathrm{N}$ bond-length in the following species:
(i)

(ii)

(iii)

- Watch Video Solution

77. Which of the following statements would be true about this compound:

A. All three $\mathbf{C}-\mathbf{N}$ bonds are of same length.
B. C1 - N and C3 - N bonds are of same length but shorter than C5 - N bond
C. C1 - N and C3 - N bonds are of same length but longer than C5 - N bond
D. C1 - N and C3 - N bonds are of different length but bot are longer than $\mathrm{C} 5-\mathrm{N}$ bond.

Answer: C

- Watch Video Solution

78. Choose the more stable alkene in each of the following pairs. Explain your reasoning.

1-Methylcyclohexene or 3-methylcyclohexene
79. Choose the more stable alkene in each of the following pair. Explain your reasoning.
(a). 1-Methylcyclohexene or 3-methylcyclohexene
(b). Isopropenylcyclopentane or allylcyclopentane.

- Watch Video Solution

80. Choose the more stable alkene in each of the following pairs. Explain your reasoning.
(c)

81. Consider the given reaction :

$+3 \mathrm{H}_{2} \xrightarrow{\mathrm{Pd} / \mathrm{C}}$

In the above reaction which one of the given ring will undergo reduction?

- Watch Video Solution

82. Compare heat of hydrogenation (Decreasing order)
heat of hydrogenation
(i)

A

C

B

D

83. Compare heat of hydrogenation (Decreasing order)

- Watch Video Solution

84. Compare heat of hydrogenation (Decreasing order)
(c)

and

85. Compare heat of hydrogenation (Decreasing order)
(d)

and

- Watch Video Solution

86. Compare heat of hydrogenation (Decreasing order)
(e) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}<\mathrm{CH}_{3}$ and

$$
\mathrm{CH}_{2}=\mathrm{C}<{ }_{\mathrm{CH}_{2}-\mathrm{CH}_{3}}^{\mathrm{CH}_{3}}
$$

87. (I) Stability order and (II) heat of hydrogenation orders.
(A) (i)

(ii)

(iii)

(iv)

Watch Video Solution
88. (I) Stability order and (II) heat of hydrogenation orders.

(iii)

- Watch Video Solution

89. Among the following pairs identify the one which gives higher heat of hydrogenation :

- Watch Video Solution

90. Among the following pairs identify the one which gives higher heat of hydrogenation :

(c) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$
91. Among the following pairs identify the one which gives higher heat of hydrogenation :
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$ and $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$

- Watch Video Solution

92. Among the following pairs identify the one which gives higher heat of hydrogenation :

- Watch Video Solution

93. Match each alkene with the appropriate heat of combustion:

Heats of combustion (kJ/mol) : $5293,4658,4650,4638,4632$
1-Heptene
94. Match each alkene with the appropriate heat of combustion:

Heats of combustion (kJ/mol) : 5293, 4658, 4650, 4638, 4632
2, 4 - Dimethyl-1-pentene

- View Text Solution

95. Match each alkene with the appropriate heat of combustion:

Heats of combustion (kJ/mol) : 5293, 4658, 4650, 4638, 4632
2, 4 - Dimethyl-2-pentene , 4, 4- Dimethyl-2-pentene , 2, 4, 4-
Trimethyl-2-pentene, 2,4-Dimethyl-1-pentene, 1-Heptene

- View Text Solution

96. Match each alkene with the appropriate heat of combustion:

Heats of combustion (kJ/mol) : 5293, 4658, 4650, 4638, 4632

2, 4 - Dimethyl-2-pentene , 4,4-Dimethyl-2-pentene , 2,4,4-Trimethyl-2-pentene, 2,4-Dimethyl-1-pentene, 1-Heptene

- Watch Video Solution

97. Match each alkene with the appropriate heat of combustion:

Heats of combustion (kJ/mol) : 5293, 4658, 4650, 4638, 4632
2, 4 - Dimethyl-2-pentene , 4, 4 - Dimethyl-2-pentene , 2, 4, 4 -Trimethyl-2-pentene, 2,4-Dimethyl-1-pentene, 1-Heptene

- View Text Solution

98. Write increasing order of heat of hydrogenation :
(i) (a)

(b)

99. Write increasing order of heat of hydrogenation :
(iii) (a) $\bar{\square}$
(b) \mp
(c)

(d)

(e)

- Watch Video Solution

100. Write increasing order of heat of hydrogenation :
(iv)
(a)

(b)

(c)

- Watch Video Solution

101. Write increasing order of heat of hydrogenation :
(v)
(a)

(b)

(c)

(HOH per π bond)
102. Write increasing order of heat of hydrogenation :
(vii)
(a)

(b)

- Watch Video Solution

103. Write increasing order of heat of hydrogenation :
(viii)

(b)

- Watch Video Solution

104. Give decreasing order of heat of combustion (HOC):
(ii)
(a)

(b)

(c)

(d)

- Watch Video Solution

105. Give decreasing order of heat of combustion (HOC):
(iii)

(b) $=$

- Watch Video Solution

106. Give decreasing order of heat of combustion (HOC):
(iv)
(a)

(b)

(c)

107. Arrange in order of C-H bond energy

- Watch Video Solution

108. Use the following data to answer the questions below:

$$
\Delta \mathrm{H}=-28.6 \mathrm{Kcal} \mathrm{~mol}^{-1}
$$

$\Delta H=-116.2 \mathrm{Kcal} \mathrm{mol}^{-1}$ Anthracene Calculate the resonance energy of anthracene in $\mathrm{kcal} / \mathrm{mol}$.

- Watch Video Solution

109. Arrange the given phenols in their decreasing order of acidity:
(I) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{OH}$
(I) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{OH}$
(II) $\mathrm{F}-\mathrm{OH}$
(III)

(IV)

Select the correct answer from the given code:
A. $I V>I I I>I>I I$
B. $I V>I I>I I I>I$
C. $I V>I I I>I I>I$
D. $I V>I>I I I>I I$

Answer: C

- Watch Video Solution

110. Which one of the following is the most acidic?
(A)
A.

B.

D. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{3}$

Answer: B

- Watch Video Solution

111. Which one of the following phenols will show highest acidity?

A.
(B)

B.

C.

D.

Answer: C

Watch Video Solution
112. Which of the following is weakest acid?

COOH
 A.

COOH

- OH

D.

113. Arrange pH of the given compounds in decreasing order:
(1) Phenol
(2) Ethyl alcohol
(3) Formic acid
(4). Benzoic acid
A. $1>2>3>4$
B. $2>1>4>3$
C. $3>2>4>1$
D. $4>3>1>2$

Answer: B

114. Consider the following compound :

Which of the above compounds reacts with NaHCO_{3} giving CO_{2}
A.

B.

$\stackrel{O}{\| 1}$
c. $\mathrm{CH}_{3} \mathrm{COOOH}$
D.

Answer: ABCD

- View Text Solution

Exercise 3

1. Write the correct order of acidic strength of following compounds:
(a) $H-F$
(b) $\mathrm{H}-\mathrm{Cl}$
(c) $H-B r$
(d) $H-I$

- Watch Video Solution

2. Write the correct order of acidic strength of following compounds:
(a) CH_{4}
(b) NH_{3}
(c) $\mathrm{H}_{2} \mathrm{O} \quad(d) \mathrm{H}-\mathrm{F}$

- Watch Video Solution

3. Write the correct order of acidic strength of following compounds:
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{H}$
(b) $\mathrm{CH}_{3}-\underset{\substack{\mathrm{C} \\ \mathrm{CH}_{3}}}{\mathrm{C}} \mathrm{H}-\mathrm{O}-\mathrm{H}$
(c) $\mathrm{CH}_{3}-\stackrel{\mathrm{CH}_{3}}{\stackrel{\mathrm{C}}{\mathrm{C}}} \underset{\substack{\mathrm{C} \\ \mathrm{CH}_{3}}}{ }-\mathrm{O}-\mathrm{H}$
4. Write the correct order of acidic strength of following compounds:
(a) $\mathrm{F}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{H}$
(b) $\mathrm{NO}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{H}$
(c) $\mathrm{Br}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{H}$
(d) $\stackrel{\oplus}{\mathrm{NH}_{3}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{H}$

- Watch Video Solution

5. Write the correct order of acidic strength of following compounds:
(a) $\mathrm{CH}_{3} \mathrm{COOH}$
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
(d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}$

- Watch Video Solution

6. Write correct order of acidic strength of following compounds:
(a) $\mathrm{Cl}-\stackrel{\stackrel{O}{\|}-\mathrm{CH}_{2}-\stackrel{+}{\mathrm{C}}-\mathrm{O}-\mathrm{H}}{ }$
(b) $\mathrm{Cl}-\stackrel{\stackrel{O}{\mid+}}{\substack{\mathrm{C} \\ \mathrm{Cl} \\ \mathrm{Cl}}}-\mathrm{O}-\mathrm{H}$

7. Write correct order of acidic strength of following compounds:
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{\mathrm{I}}{\mathrm{C}} \mathrm{C}-\stackrel{\stackrel{\text { I }}{\mathrm{C}}}{\mathrm{C}}-\mathrm{O}-\mathrm{H}$
(b) $\mathrm{CH}_{3}-\mathrm{CH}-{\stackrel{O}{\mathrm{CH}} \mathrm{CH}_{2}-\stackrel{\text { - }}{\mathrm{C}}-\mathrm{O}-\mathrm{H}}^{\text {(}}$
$\underset{\substack{ \\\text { (c) } \\ \mathrm{C}_{\mathrm{F}}}}{\stackrel{O}{\mathrm{O}} \mathrm{H}_{2}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{O}$

- Watch Video Solution

8. Write correct order of acidic strength of following compounds:
(a) $\mathrm{NO}_{2}-\stackrel{O}{\|}_{\mathrm{C}}^{\mathrm{C}} \mathrm{H}_{2}-\mathrm{O}-\mathrm{H}$
(b) $\mathrm{F}-\mathrm{CH}_{2}-\stackrel{\stackrel{O}{\mathrm{C}}}{\mathrm{C}}-\mathrm{O}-\mathrm{H}$

(d) $\mathrm{CH}_{3}-\stackrel{\stackrel{O}{\mathrm{II}} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{H}}{\mathrm{C}}-\mathrm{O}$
9. Record the following sets of compounds according to increasing
$p K_{a}(=-\log K a)$
1-butyne, 1-butene, butane

- Watch Video Solution

10. Record the following sets of compounds according to increasing
$p K_{a}(=-\log K a)$
Propanoic acid, 3-bromopropanoic acid, 2-nitropropanoic acid

- Watch Video Solution

11. Record the following sets of compounds according to increasing $p K_{a}(=-\log K a)$

Phenol,o-nitrophenol, o-cresol
12. Record the following sets of compounds according to increasing
$p K_{a}(=-\log K a)$
Hexylamine, aniline, methylamine

- Watch Video Solution

13. Explain which is a stronger acid
$\mathrm{CH}_{3} \mathrm{CH}_{3} \& \mathrm{BrCH}_{2} \mathrm{NO}_{2}$

- Watch Video Solution

14. Explain which is a stronger acid.
$\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}}-\mathrm{CH}_{3} \& \mathrm{CH}_{3}-\stackrel{O}{\mathrm{C}}-\mathrm{CH}_{2} \mathrm{CN}$
15. Explain which is a stronger acid.

$$
\mathrm{CH}_{3}-\mathrm{CHO} \quad \mathrm{CH}_{3}-\mathrm{NO}_{2}
$$

- Watch Video Solution

16. Which of the following would you predict to be the stronger acid?
(a) Benzoic acid or para-nitrobenzoic acid
(b) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$ or $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{OH}$
(c) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OH}$ or $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{OH}$.

- Watch Video Solution

17. Which of the following would you predict to be the stronger acid ? $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OH}$ or $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{OH}$

- Watch Video Solution

18. Write increasing order of basic strength of following:
(a) F^{Θ}
(b) $C l^{\ominus}$
(c) $B r^{\ominus}$
$(d) I^{\Theta}$

Watch Video Solution

19. Write increasing order of basic strength of following:
(a) $\mathrm{CH}_{3}{ }^{\Theta}$
(b) $\mathrm{NH}_{2}{ }^{\Theta}$
(c) $O H^{\Theta}$
$(d) F^{\Theta}$

- Watch Video Solution

20. Write increasing order of basic strength of following:
(a) $\mathrm{CH}_{3}{ }^{\ominus}$
(b) $\mathrm{NH}_{2}{ }^{\ominus}$
(c) $O H^{\Theta}$
$(d) F^{\Theta}$

- Watch Video Solution

21. Correct order of basic strength in gas phase is
(I) $\mathrm{CH}_{3}-\mathrm{NH}_{2}$ (II) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
(III) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ (IV) NH_{3}

- Watch Video Solution

22. Write increasing order of basic strength of following:
(a) NH_{3}
(b) MeNH_{2}
(c) $\mathrm{Me}_{2} \mathrm{NH} \quad$ (d) $\mathrm{Me}_{3} \mathrm{~N}\left(\mathrm{inH}_{2} \mathrm{O}\right)$

- Watch Video Solution

23. Write increasing order of basic strength of following:
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
(b) $\mathrm{CH}_{3}-\mathrm{CH}=\stackrel{\mathrm{N}}{\mathrm{N}}$
(c) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{N}$

- Watch Video Solution

24. Write increasing order of basic strength of following:
(a) $\mathrm{CH}_{3}-\underset{\substack{\| \\ \mathrm{C}}}{\mathrm{C}}-\ddot{\mathrm{N}} \mathrm{H}_{2} \quad$ (b) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\ddot{\mathrm{N}} \mathrm{H}_{2}$
(c) $\mathrm{CH}_{3}-\underset{\|}{\mathrm{C}}-\underset{\mathrm{N}}{\mathrm{N}} \mathrm{H}_{2}$
$(d) N H_{2}-\underset{\substack{| | \\ N H}}{C}-\ddot{\mathrm{N}} \mathrm{H}_{2}$

Watch Video Solution

25. Arrange the following compound in decreasing order of their basicity.
(a) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHNa} \quad$ (b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Na}$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{ONa} \quad$ (d) $\mathrm{HC} \equiv \mathrm{CNa}$

- Watch Video Solution

26. Arrange the following compound in decreasing order of their basicity.
(a) HO^{-}
(b) NH_{3}
(c) $\mathrm{H}_{2} \mathrm{O}$

Watch Video Solution

27. Consider the following bases:
(I) o-nitroaniline
(II) m-nitroaniline
(III) p-nitroaniline

The decreasing order of basicity is:
A. $I I>I I I>I$
B. $I I>I>I I I$
C. $I>I I>I I I$
D. $I>I I I>I I$

Answer: A

- Watch Video Solution

28. Consider the basicity of the following aromatic amines:
(I) aniline
(II) p-nitroaniline
(III) p-methoxyaniline
(IV) p-methylaniline

The correct order of decreasing basicity is:
A. $I I I>I V>I>I I$
B. $I I I>I V>I I>I$
C. $I>I I>I I I>I V$
D. $I V>I I I>I I>I$

Answer: A

- Watch Video Solution

29. Which one of the following is least basic in character?
A.
B.
c.
D.

Answer: A
30. In each of the following pair of compounds, which is more basic in aqueous solution? Give an explanation for your choice:
$\mathrm{CH}_{3} \mathrm{NH}_{2}$ or $\mathrm{CF}_{3} \mathrm{NH}_{2}$

- Watch Video Solution

31. In each of the following pair of compounds, which is more basic in aqueous solution? Give an explanation for your choice:
$n-\mathrm{PrNH}_{2}$ or $\mathrm{CH}_{3} \mathrm{CN}$

- Watch Video Solution

32. In each of the following pair of compounds, which is more basic in aqueous solution? Give an explanation for your choice:
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$ or 2,6-dimethyl- N - N -dimethylaniline
33. In each of the following pair of compounds, which is more basic in aqueous solution? Give an explanation for your choice: m-nitroaniline or p-nitroaniline

- Watch Video Solution

34. From the following pair, select the stronger base:
p-methoxy aniline or p-cyanoaniline

-
 Watch Video Solution

35. From the following pair, select the stronger base: pyridine or pyrrole
36. From the following pair, select the stronger base: $\mathrm{CH}_{3} \mathrm{CN}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$

Watch Video Solution

37. Explain which compound is the weaker base.
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}^{-}$or $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}^{-}$

- Watch Video Solution

38. Explain which compound is the weaker base.

- Watch Video Solution

39. Arrange the basic strength of the following compounds.
OH^{-}
(i)
$\mathrm{CH}_{3} \mathrm{COO}^{-}$
(ii)

Watch Video Solution

40. The basic strength of
$\mathrm{CH} \underset{\text { I }}{\equiv} \mathrm{C}, \mathrm{CH}_{2} \underset{\text { II }}{ } \mathrm{CH}, \mathrm{CH}_{\mathrm{III}^{2} \mathrm{CH}_{2}^{-}}$
will be in order

- Watch Video Solution

41. Arrange the basic strength of the following compounds.
(i) $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NH}_{2}$
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(iii) $\mathrm{CH} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{NH}_{2}$

- Watch Video Solution

42. Arrange the following compounds in order of increaing basicity.
(a). $\mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{\oplus}, \mathrm{CH}_{3} \mathrm{NH}^{-}$
(b) $\mathrm{CH}_{3} \mathrm{O}^{-}, \mathrm{CH}_{3} \mathrm{NH}^{-}, \mathrm{CH}_{3} \mathrm{CH}_{2}^{-}$.

- Watch Video Solution

43. Arrange the following compounds in order of increaing basicity.
(a). $\mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{\oplus}, \mathrm{CH}_{3} \mathrm{NH}^{-}$
(b) $\mathrm{CH}_{3} \mathrm{O}^{-}, \mathrm{CH}_{3} \mathrm{NH}^{-}, \mathrm{CH}_{3} \mathrm{CH}_{2}^{-}$.

- Watch Video Solution

44. Arrange the following compounds in order of increasing basicity.

$$
\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}^{-}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}^{-}, \mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}^{-}
$$

- Watch Video Solution

Exercise 4 Level I

1. Amongst the following the most basic compound is :
A. aniline
B. benzylamine
C. p-nitroaniline
D. acetanilide

Answer: B

- Watch Video Solution

2. The number and type of bonds between two carbon atoms in calcium carbide are
A. two sigma, two pi
B. two sigma, one pi
C. one sigma, two pi
D. one sigma, one pi
3. Due to the presence of an unpaired electron, free radicals are:
A. cations
B. anions
C. chemically inactive
D. chemically reactive

Answer: D

- Watch Video Solution

4. Among the following acids which has the lowest $p K_{a}$ value-
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
B. $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}-\mathrm{COOH}$
C. HCOOH
D. $\mathrm{CH}_{3} \mathrm{COOH}$

Answer: C

Watch Video Solution

5. The increasing order of stability of the following free radicals is:
A. $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \dot{\mathrm{C}}<\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \dot{\mathrm{C}} \mathrm{H}<\left(\mathrm{CH}_{3}\right)_{3} \dot{\mathrm{C}}<\left(\mathrm{CH}_{3}\right)_{2} \dot{\mathrm{C}} H$
B. $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \dot{\mathrm{C}} \mathrm{H}<\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \dot{\mathrm{C}}<\left(\mathrm{CH}_{3}\right)_{3} \dot{\mathrm{C}}<\left(\mathrm{CH}_{3}\right)_{2} \dot{\mathrm{C}} \mathrm{H}$
C. $\left(\mathrm{CH}_{3}\right)_{2} \dot{C} H<\left(\mathrm{CH}_{3}\right)_{3} \dot{\mathrm{C}}<\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \dot{\mathrm{C}}<\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \dot{\mathrm{C}} \mathrm{H}$
D. $\left(\mathrm{CH}_{3}\right)_{2} \dot{\mathrm{C}} \mathrm{H}<\left(\mathrm{CH}_{3}\right)_{3} \dot{\mathrm{C}}<\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \dot{\mathrm{C}} \mathrm{H}<\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \dot{\mathrm{C}}$

Answer: D

- Watch Video Solution

6. Which one of the following is the strongest base in aqueous solution?
A. Trimethylamine
B. Aniline
C. Dimethylamine
D. Methylamine

Answer: C

- Watch Video Solution

7. Presence of a nitro group in a benzene ring.
A. activates the ring towards electrophilic substitution
B. renders the ring basic
C. deactivates the ring towards nucleophilic substitution
D. deactivates the ring towards electrophilic substitution

Answer: D

8. Arrange the carbonions,

$\left(\mathrm{CH}_{3}\right)_{3} \bar{C}, \overline{\mathrm{C}} \mathrm{C} l_{3},\left(\mathrm{CH}_{3}\right)_{2} \overline{\mathrm{C}} \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \overline{\mathrm{C}} \mathrm{H}_{2}$ in order of their decreasing stability
A. $\left(\mathrm{CH}_{3}\right)_{2} \overline{\mathrm{C}} \mathrm{H}>\overline{\mathrm{C}} \mathrm{Cl}_{3}>\mathrm{C}_{6} \mathrm{H}_{5} \overline{\mathrm{C}} \mathrm{H}_{2}>\left(\mathrm{CH}_{3}\right)_{3} \bar{C}$
B. $\bar{C} C l_{3}>C_{6} H_{5} \bar{C} H_{2}>\left(\mathrm{CH}_{3}\right)_{2} \bar{C} H>\left(\mathrm{CH}_{3}\right)_{3} \bar{C}$
c. $\left(\mathrm{CH}_{3}\right)_{3} \bar{C}>\left(\mathrm{CH}_{3}\right)_{2} \bar{C} H>\mathrm{C}_{6} \mathrm{H}_{5} \overline{\mathrm{C}} \mathrm{H}_{2}>\overline{\mathrm{C}} \mathrm{Cl}_{3}$
D. $\mathrm{C}_{6} \mathrm{H}_{5} \overline{\mathrm{C}} \mathrm{H}_{2}>\overline{\mathrm{C}} \mathrm{Cl}_{3}>\left(\mathrm{CH}_{3}\right)_{3} \bar{C}>\left(\mathrm{CH}_{3}\right)_{2} \bar{C} H$

Answer: B

- Watch Video Solution

9. The correct order of increasing basicity of the given conjugate bases
($R=C H_{3}$) is
A. $R C O \bar{O}<H C=\bar{C}<R^{-}<\bar{N} H_{2}$
B. $\bar{R}<H C \equiv \bar{C}=<R C O \bar{O}<\bar{N} H_{2}$
c. $\mathrm{RCO} \bar{O}<\overline{\mathrm{N}} \mathrm{H}_{2}<\mathrm{HC} \equiv \overline{\mathrm{C}}<\mathrm{R}^{-}$
D. $R C O \bar{O}<H C \equiv \bar{C}<\bar{N} H_{2}<\bar{R}$

Answer: D

- Watch Video Solution

10. The correct order of acid strength of the following compounds
A. Phenol
B. p-Cresol
C. m-Nitrophenol
D. p-Nitrophenol.
A. $D>C>A>B$
B. $B>D>A>C$
C. $A>B>D>C$
D. $C>B>A>D$
11. The non aromatic compound among the following is -
A.

B.

C.

D.

Answer: D

Watch Video Solution
12. Considering the basic strength of amines in aqueous solution, which one has the smallest $p K_{b}$ value?
A. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
B. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
C. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
D. $\mathrm{CH}_{3} \mathrm{NH}_{2}$

Answer: C
13. Which of the following molecules is least resonance stabilised?
A.
B.
.
c.
D.

Answer: C

- Watch Video Solution

Exercise 4 Level li

1. For 1-methoxy-1, 3-butadiene, which of the following resonating structure is least stable?

$$
\text { A. } H_{2} \stackrel{\ominus}{C}-\stackrel{\oplus}{C} H-C H=C H-O-C H_{3}
$$

B. $\mathrm{H}_{2} \stackrel{\ominus}{\mathrm{C}}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\stackrel{\oplus}{\mathrm{O}}-\mathrm{CH}_{3}$
c. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}=\stackrel{\oplus}{\mathrm{C}} \mathrm{H}-\stackrel{\ominus}{\mathrm{C}} \mathrm{H}-\mathrm{O}-\mathrm{CH}_{3}$
D. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\stackrel{\ominus}{\mathrm{C}} \mathrm{H}-\mathrm{CH}=\stackrel{\oplus}{\mathrm{O}}-\mathrm{CH}_{3}$

Answer: C

- Watch Video Solution

2. Predict whether the following molecules are isostructural or not. Justify your answer.
(i) $N M e_{3}$ (ii) $N\left(\mathrm{SiMe}_{3}\right)_{3}$

- Watch Video Solution

3. When benzene sulfonic acid and p-nitrophenol are treated with NaHCO_{3}, the gases released respectively are
A. $\mathrm{SO}_{2}, \mathrm{NO}_{2}$
B. $\mathrm{SO}_{2}, \mathrm{NO}$
C. $\mathrm{SO}_{2}, \mathrm{CO}_{2}$
D. $\mathrm{CO}_{2}, \mathrm{CO}_{2}$

Answer: D

- Watch Video Solution

4. (I) 1,2-dihydroxy benzene
(II), 1,3-dihydroxy benzene
(III)1,4-dihydroxy benzene
(IV) Hydroxy benzene

The increasing order of boiling points of above mentioned alcohols is
A. $I<I I<I I I<I V$
B. $I<I I<I V<I I I$
C. $I V<I<I I<I I I$
D. $I V<I I<I<I I I$

Answer: C

- Watch Video Solution

5. Among the following, the least stable resonance structure is :
A.
B.
c.
D.

Answer: A

 Watch Video Solution}6. Statement-1: p-Hydroxybenzoic acid has a lower boiling point then ohydroxybenzoic acid.

Statement-2: o-Hydroxybenzoic acid has a intramoleculer hydrogen bonding.
A. Statement-1 is true, statement-2 is true and statement-2 is correct
explanation for statement-1.
B. Statement-1 is true, statement-2 is true and statement-2 is NOT correct explanation for statement-1.
C. Statement 1 is true, statement- 2 is false.
D. Statement 1 is false, statement-2 is true.

Answer: D

Watch Video Solution

7. Hyperconjugation involves overlap of the following orbitals :
A. $\sigma-\sigma$
B. $\sigma-p$
C. $p-p$
D. $\pi-\pi$

Answer: B

- Watch Video Solution

8. The correct stability order of the following resonance structures is
(I) $H_{2} C=\stackrel{+}{N}=\bar{N} \quad(I I) H_{2} \stackrel{+}{C}-N=\bar{N}$
$(I I I) H_{2} \bar{C}-\stackrel{+}{N}=N \quad(I V) H_{2} \bar{C}-N=\stackrel{+}{N}$
A. $I>I I>I V>I I I$
B. $I>I I I>I I>I V$
C. $I I>I>I I I>I V$
D. $I I I>I>I V>I I$

Answer: B

9. In the following carbocation, $\mathrm{H} / \mathrm{CH}_{3}$ that is most likely to migrate to the positively charged carbon is

A. CH_{3} at $\mathrm{C}-4$
B. H at $C-4$
C. CH_{3} at $\mathrm{C}-2$
D. H at $C-2$

Answer: D

- Watch Video Solution

10. Among the following compounds, the most acidic is:
A. p-nitrophenol
B. p-hydroxybenzoic acid
C. o-hydroxybenzoic acid
D. p-toluic acid

Answer: C

- Watch Video Solution

11. In Allen $\left(C_{3} H_{4}\right)$, the type (\mathbf{s}) of hybridisation of the carbon atoms is (are
A. sp and $s p^{3}$
B. sp and $s p^{2}$
C. only $s p^{2}$
D. $s p^{2}$ and $s p^{3}$

Answer: B

12. Which of the following molecules in pure from is (are) unstable at room temperature
A.
B.
c.
D.

Answer: B

- View Text Solution

13. The compound that does not liberate CO_{2}, on treatment with aqueous sodium bicarbonate is
A. Benzoic acid
B. Benzenesulphonic acid
C. Salicylic acid
D. Carbolic acid (Phenol)

Answer: D

Watch Video Solution

14. The hyperconjugative stabilities of tert-butyl cation and 2-butene, respectively, are due to
A. $\sigma \rightarrow p$ (empty) and $\sigma \rightarrow \pi^{*}$ electron delocalisations
B. $\sigma \rightarrow \sigma$ and $\sigma \rightarrow \pi^{*}$ electron delocalisations
C. $\sigma \rightarrow p$ (filled) and $\sigma \rightarrow \pi^{*}$ electron delocalisations
D. p (filled) $\rightarrow \sigma$ and $\sigma \rightarrow \pi^{*}$ electron delocalisations

Answer: A

- Watch Video Solution

