©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - ZEN MATHS (KANNADA ENGLISH)

TRIANGLES

Illustrative Examples

1. In the figure, $P R|\mid R C$ and $Q R| \mid B D$. Prove that $P Q|\mid C D$.

2. In the given figure $D E \| B C$ and $C D \| B F$ prove that $A C^{2}=A E \times A F$.

3. In the figure, $A B \perp B C$ and $D E \perp A C$. Prove that $\triangle A B C \sim \triangle A E D$.

- Watch Video Solution

4. In the given figure P is the midpoint of $B C$ and Q is the midpoint of $A P$. If $B Q$ when produced meets $A C$ at R, prove that $R A=\frac{1}{3} C A$.

- Watch Video Solution

5. In the given figure, $A D=3 \mathrm{~cm}, \mathrm{AE}=5 \mathrm{~cm}, \mathrm{BD}=4 \mathrm{~cm}, \mathrm{CE}=4 \mathrm{~cm}$, $C F=2 \mathrm{~cm}, \mathrm{BF}=2.5 \mathrm{~cm}$, then find the pair of parallel lines and hence their lengths.

6. In the $\triangle A B C$, altitudes $A D$ and $C E$ intersect each other at point P. Prove that

i] $\triangle A P E \sim \Delta C P D$

ii] $A P \times P D=C P \times P E$
iii] $\triangle A D B \sim \Delta C E B$
iv] $A B \times C E=B C \times A D$

- Watch Video Solution

7. In the figure $\left\lfloor Q P R=\left\lfloor U T S=90^{\circ}\right.\right.$ and $P R| | T S$. Prove that $\triangle P Q R \sim \triangle T U S$.

- Watch Video Solution

8. In the figure $\frac{A O}{O C}=\frac{B O}{O D}=\frac{1}{2}$ and $\mathrm{AB}=5 \mathrm{~cm}$. Find DC

- Watch Video Solution

9. If the area of two similar triangles is in the ratio $25: 64$, find the of their corresponding sides.
10. D, E and F are the mid-points of sides of $\Delta A B C . \mathrm{P}, \mathrm{Q}, \mathrm{R}$ are the mid-points of sides DEF. This process of marking the mid-points and forming a new triangle is continued. How are the areas of these triangles related?

- Watch Video Solution

11. In areas of two similar triangles $A B C$ and $P Q R$ are in the ratio 9
: 16. If $B C=4.5 \mathrm{~cm}$. Find the length of $Q R$.

- Watch Video Solution

12. $\triangle A B C$ and $\triangle B D E$ are two equilateral triangles and $B D=D C$. Find the ratio between areas of $\triangle A B C$ and $\triangle B D E$.

- Watch Video Solution

13. AD is altitude of equilateral $\triangle A B C$. On AD as base, another equilateral triangle ADE is constructed. Prove that $\frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle A B C}=\frac{3}{4}$.

- Watch Video Solution

14. The lengths of diagonals of a rhombus are 24 cm and 32 cm .

Calculate the altitide of the rhombus.

- Watch Video Solution

15. The sides AB and AC and the perimeter P_{1} of $\triangle A B C$ are respectively three times the corresponding sides DE and DF and the perimeter P_{2} of $\triangle D E F$. Are the two triangles similar? If yes, find $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}$.

- Watch Video Solution

16. In the rectangle $W X Y Z, X Y+Y Z=17 \mathrm{~cm}$ and $X Z+Y W=26$.

Calculate the length and breadth of the rectangle.
17. An insect 8 m away from the foot of a lamp post 6 m tall, crawls towards it. After moving through a distance, its distance from the top of the lamp post is equal to the distance it has moved. How far is the insect away from the foot of the lamp post?

- Watch Video Solution

18. In $\triangle A B C, \mathrm{C}$ is a point on BD such that $\mathrm{BC}: \mathrm{CD}=1: 2$ and $\triangle \mathrm{ABC}$ is an equilateral triangle Prove that $A D^{2}=7 A C^{2}$

- Watch Video Solution

19. In $\triangle A B C, C D \perp A B, C A=2 A D, B D=3 A D$. Prove that $\left\lfloor B C A=90^{\circ}\right.$.
20. In the figure, $A B \perp B C$ and $D E \perp A C$. Prove that $\triangle A B C \sim \triangle A E D$.

- Watch Video Solution

21. In the given figure $\left\lfloor B A C=90^{\circ}\right.$.

Prove that:
a] $\Delta A G F \sim \Delta B D G$
b] $\triangle A G F \sim \Delta E F C$
c] $\Delta B D G \sim \Delta E F C$
d] $D E^{2}=B D \times E C$
22. $A B C$ is a right angled triangle. Points D and E trisect $B C$. Prove that $8 A E^{2}=3 A C^{2}+5 A D^{2}$.

- Watch Video Solution

23. In an equilateral triangle $\mathrm{ABC}, A D \perp B C$. Prove that $A D^{2}=3 B D^{2}$.

- Watch Video Solution

Textual Exercises Exercise 21

1. Fill in the blanks using the correct word given in brackets :

All circles are (congruent, similar)

- Watch Video Solution

2. Fill in the blanks using the correct word given in the brackets:

All squares are \qquad [Similar, Congruent]

- Watch Video Solution

3. Fill in the blanks using the correct word given in the brackets:

All _______triangles are similar. [isosceles, equilateral].

- Watch Video Solution

4. Two polygons of the same number of sides are similar, if

Their corresponding sides are \qquad
5. Two polygons of the same number of sides are similar, if Their corresponding angles are \qquad and

- Watch Video Solution

6. Give two different examples of a pair of different radii of different length:
i] Similar figures
ii] Non-similar figures.
7. State whether the following quadrilaterals are similar or not:

- Watch Video Solution

Textual Exercises Exercise 22

1. E and F are points on the sides $P Q$ and $P R$ respectively of a $\triangle P Q R$. For the following cases, state whether EF||QR.
i] $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}$, and $\mathrm{FR}=2.4 \mathrm{~cm}$.
ii] $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}, \mathrm{RF}=9 \mathrm{~cm}$
iii] $P Q=1.28 \mathrm{~cm}, P R=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$, and $\mathrm{PF}=0.36 \mathrm{~cm}$.
2. In Fig, if $L M \| C B$ and $L N \| C D$, prove that $\frac{A M}{A B}=\frac{A N}{A D}$

- Watch Video Solution

3. In Fig $D E\left|\mid A C\right.$ and $A E$. Prove that $\frac{B F}{F E}=\frac{B E}{E C}$

- Watch Video Solution

4. In the figure $D E \| O Q$ and $D F \| O R$. Show that $E F|\mid Q R$.

- Watch Video Solution

5. In Fig A, B and C are points on OP, OQ and OR respectively such that $A B|\mid P Q$ and $A C| \mid P R$. Show that $B C|\mid Q R$.

D Watch Video Solution

6. Prove that a line drawn through the midpoint of one side of a triangle parallel to another side bisects the third side (using BPT).

- Watch Video Solution

7. Prove that the line joining the midpoints of any two sides of a triangle is parallel to the third side.

- Watch Video Solution

8. $A B C D$ is a trapezium in which $A B|\mid D C$. Its diagonals intersect each other at 0 .

Show that $\frac{A O}{B O}=\frac{C O}{D O}$

- Watch Video Solution

9. The diagonals of a quadrilateral $A B C D$ intersect each other at the point O such that $\frac{A O}{B O}=\frac{C O}{D O}$.

Show that ABCD is a trapezium.

Textual Exercises Exercise 23

1. If the areas of two similar triangles are equal, prove that they are congruent.

- Watch Video Solution

2. If the areas of two similar triangles are equal, prove that they are congruent.
3. State which pairs of triangles in Fig are similar. Write the similarity criterion used by you for answering the question also write the pairs of similar triangles in the symbolic form:

- Watch Video Solution

4. If the areas of two similar triangles are equal, prove that they are congruent.

- Watch Video Solution

5.

In
the
figure
$\triangle O D C \sim \triangle O B A,\left\lfloor B O C=125^{\circ}\right.$ and $\left\lfloor C D O=70^{\circ}\right.$. Find
$\lfloor D O C,\lfloor D C O$, and $\lfloor O A B$.

- Watch Video Solution

6. In Fig , if $\triangle A B E \angle \triangle A C D$, show that $\triangle A D E \sim \triangle A B C$

- Watch Video Solution

7. In the figure altitudes AD and CE of $\triangle A B C$ intersect each other at the point P. Show that

1] $\triangle A E P \sim \Delta C D P$

2] $\triangle A B D \sim \Delta C B E$

3] $\triangle A E P \sim \Delta A D B$

4] $\triangle P D C \sim \Delta B E C$

- Watch Video Solution

8. E is a point on the side AD produced, of a parallelogram $A B C D$ and BE intersects CD at F . Show that $\triangle A B E \sim \triangle C F B$.

- Watch Video Solution

9. In Fig, ABC and AMP are two right triangles, right angled at B and M respectively. Prove that :
$\frac{C A}{P A}=\frac{B C}{M P}$

- Watch Video Solution

10. CD and GH are respectively the bisectors of $\lfloor A C B$ and $\lfloor E G F$ such that D and H lie on sidea AB and FE of $\triangle A B C$ and $\triangle E F G$ respectively. If $\triangle A B C \sim \triangle F E G$, show that. i] $\frac{C D}{G H}=\frac{A C}{F G}$
ii] $\Delta C D B \sim \Delta H G E$
iii] $\Delta D C A \sim \Delta H G F$

- Watch Video Solution

11. In the figure, E is a point on side CB produced, of an isosceles triangle ABC , with $\mathrm{AB}=\mathrm{AC}$. If $A D \perp B C$ and $E F \perp A C$, prove that $\triangle A B D \sim \Delta E C F$.

- Watch Video Solution

12. Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $Q R$ and median $P M$ of $\triangle P Q R$. Show that $\triangle A B C \sim \triangle P Q R$.
13. D is a point on the side $B C$ of a triangle $A B C$ such that $\left\lfloor A D C=\left\lfloor B A C\right.\right.$. Show that $C A^{2}=C B . C D$.

- Watch Video Solution

14. Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $Q R$ and median $P M$ of $\triangle P Q R$. Show that $\triangle A B C \sim \triangle P Q R$.

- Watch Video Solution

15. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts shadow 28 m long.

Find the height of the tower.

- Watch Video Solution

16. If $A D$ and $P M$ are median of triangles $A B C$ and $P Q R$ respectively where $\triangle A B C-\triangle P Q R$, prove that $\frac{A B}{P Q}=\frac{A D}{P M}$.

- Watch Video Solution

1. Let $\triangle A B C \sim \triangle D E F$ and their areas be , respectively, $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=15.4 \mathrm{~cm}$, find BC

- Watch Video Solution

2. Diagonals of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point O. If $A B=2 C D$, find the ratio of the areas of triangle AOB and COD.

- Watch Video Solution

3. In the figure $A B C$ and $D B C$ are two triangles on the same base

BC . If AD intersects BC at 0 , show that $\frac{\operatorname{Area}(\triangle A B C)}{\operatorname{Area}(\triangle D B C)}=\frac{A O}{D O}$.
4. If the areas of two-similar triangles are equal, prove that the they are congruent.

- Watch Video Solution

5. $D, E a n d F$ are respectively the mid - points of sides $A B, B C$ and $C A$ of $\triangle A B C$. Find the ratio of the areas of $\triangle D E F$ and $\triangle A B C$.

- Watch Video Solution

6. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.
7. Prove that the area of an equilateral triangle described on one side of a square is equal of half the area of the equilateral triangle described on one of its diagonals.

- Watch Video Solution

8. $A B C$ and $B D F$ are two equilateral triangles such that D is the mid -point of $B C$. Ratio of the areas of triangles $A B C$ and BDF is
A. $2: 1$
B. 1:2
C. $4: 1$
D. 1: 4

Answer: C

9. Sides of two similar triangles are in the ratio 4:9 Areas of these triangles are in the ratio
A. $2: 3$
B. $4: 9$
C. $81: 16$
D. 16:81

Answer: D

- Watch Video Solution

Textual Exercises Exercise 25

1. Sides of triangles are given below. Determine which of them are right triangles.

In case of a right triangle , write the length of its hypotenuse.
$7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$

- Watch Video Solution

2. $P Q R$ is a triangle right angled at P and M is a point on $Q R$ such that $P M \perp Q R$. Show that $P M^{2}=Q M . M R$.

- Watch Video Solution

3. In the figure ABD is a triangle right-angled at A and $A C \perp B D$.

Show that
i] $A B^{2}=B C \cdot B D$
ii] $A C^{2}=B C . D C$
iii] $A D^{2}=B D \cdot C D$

- Watch Video Solution

4. $A B C$ is an isosceles triangle right-angled at C. Prove that $A B^{2}=2 A C^{2}$.

(Watch Video Solution

5. ABC is an isosceles triangle with $\mathrm{AC}=\mathrm{BC}$. If $A B^{2}=2 A C^{2}$, prove that $A B C$ is a right-angled triangle.
6. $A B C$ is an equilateral triangle of side $2 a$. Find each of its altitudes.

- Watch Video Solution

7. Prove that sum of the squares of the side of a rhombus is equal to the to the sum of the squares of its diagonals.

- Watch Video Solution

8. In the figure given below, O is point in the interior of a triangle $\mathrm{ABC}, O D \perp B C, O E \perp A C$ and $O F \perp A B$. Show that
(i)

$$
O A^{2}+O B^{2}+O C^{2}+O D^{2}-O E^{2}-O F^{2}=A R^{2}+B D^{2}+C E^{2}
$$

(ii) $A F^{2}+B D^{2}+C E^{2}=A E^{2}+C D^{2}+B F^{2}$

D Watch Video Solution

9. A ladder 10 m long reaches a window 8 m above the ground.

Find the distance of the foot of the ladder from base of the wall.
10. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

- Watch Video Solution

11. An aeroplane leaves an airport and files due north at a speed of 1000 km per hour. At the same time, another aeroplane leaves the same airpot and flies due west at a speed of 1200 km per hour .How far apart will be the two planes after $1 \frac{1}{2}$ hours ?

- Watch Video Solution

12. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m , find the
distance between their tops .

- Watch Video Solution

13. D and E are points on the sides $C A$ and $C B$ respectively of a triangle $A B C$ right angale at C prove that $A E^{2}+B D^{2}=A B^{2}+D E^{2}$.

- Watch Video Solution

14. The perpendicular from A on side BC of a $\triangle A B C$ intersects BC at D such that $\mathrm{DB}=3 \mathrm{CD}$. Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$.

- Watch Video Solution

15. In an equilateral triangle $A B C, D$ is a point on $B C$ such that $B D=\frac{1}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$.

- Watch Video Solution

16. In an equilateral triangle prove that three times the square of one side is four times the square of its altitude.

- Watch Video Solution

17. Tick the correct answer and justify : In
$\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, A C=12 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$
The angle B is :
A. 120°
B. 60°
C. 90°
D. 45°

Answer: C

- Watch Video Solution

Zee Additional Questions Multiple Choice Questions

1. $A B C$ is an isosceles triangle right-angled at C. Prove that $A B^{2}=2 A C^{2}$.
A. $A B^{2}=2 A C^{2}$
B. $B C^{2}=2 A B^{2}$
C. $A C^{2}=2 A B^{2}$
D. $A B^{2}=4 A C^{2}$

Answer: A

- Watch Video Solution

2. If $\triangle A B C$ is similar to $\triangle D E F$ such that $\left\lfloor D=47^{\circ}\right.$ and $\left\lfloor B=83^{\circ},\lfloor F\right.$ is
A. 80°
B. 60°
C. 40°
D. 50°

Answer: D

- Watch Video Solution

3. In $\triangle A B C, D E| | B C . \mathrm{AD}=(7 \mathrm{x}-4) \mathrm{cm}, \mathrm{AE}=(5 \mathrm{x}-2) \mathrm{cm}, \mathrm{DB}=$ $(3 x+4) c m$, and $E C=3 x \mathrm{~cm}$. The value of x is
A. 4
B. 3
C. 5
D. 2.5

Answer: A

- Watch Video Solution

4. The lengths of the diagonals of a rhombus are 16 cm and 12 cm .

Then the length of the side of the rhombus is
A. 9 cm
B. 10 cm
C. 8 cm
D. 20 cm

Answer: B

- Watch Video Solution

5. If in two triangles ABC and $\mathrm{PQR}, \frac{A B}{Q R}=\frac{B C}{P R}=\frac{C A}{P Q}$, then
A. $\triangle P Q R \sim \triangle C A B$
B. $\triangle P Q R \sim \triangle A B C$
C. $\triangle C B A \sim \triangle P Q R$
D. $\triangle B C A \sim \triangle P Q R$

Answer: A

- Watch Video Solution

6. If in two triangles DEF and PQR, $\lfloor D=\lfloor Q$, and $\lfloor R=\lfloor E$ which of the following is not true?
A. $\frac{E F}{P R}=\frac{D F}{P Q}$
B. $\frac{D E}{P Q}=\frac{E F}{R P}$
C. $\frac{D E}{Q R}=\frac{D F}{P Q}$
D. $\frac{E F}{R P}=\frac{D E}{Q R}$

Answer: B
7. The altitude of an equilateral triangle having the length of its side 12 cm is
A. 12 cm
B. $6 \sqrt{2} \mathrm{~cm}$
C. 6 cm
D. $6 \sqrt{3} \mathrm{~cm}$

Answer: D

- Watch Video Solution

8.

$\triangle A B C \sim \Delta P Q R$.

$$
\left\lfloor A=40^{\circ},\left\lfloor C=60^{\circ}, A B=5 \mathrm{~cm}, A C=8 \mathrm{~cm} \text { and } P Q=7.5 \mathrm{~cm}\right.\right.
$$

, the correct statement among the following is
A. $P R=12 \mathrm{~cm},\left\lfloor R=60^{\circ}\right.$
B. $Q R=12 \mathrm{~cm},\left\lfloor R=80^{\circ}\right.$
C. $P Q=12 \mathrm{~cm},\left\lfloor R=80^{\circ}\right.$
D. $Q R=12 \mathrm{~cm},\left\lfloor P=40^{\circ}\right.$

Answer: C

- Watch Video Solution

9. In $\triangle D E F,\left\lfloor D=90^{\circ}\right.$, and $D L \perp E F$, then $\frac{E L}{L F}$ is
A. $\left(\frac{D E}{D F}\right)^{2}$
B. $\frac{D E}{D F}$
C. $\left(\frac{D E}{D L}\right)^{2}$
D. $\frac{D E}{D L}$

Answer: B

- Watch Video Solution

10. $\Delta A B C \sim \Delta D E F$. If $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{AC}=3.5 \mathrm{~cm}, \mathrm{BC}=3 \mathrm{~cm}$, and $\mathrm{EF}=6$ cm , the perimeter of $\triangle D E F$ is
A. 21 cm
B. 14 cm
C. 10.5 cm
D. 18 cm

Answer: A

11. In the figure, if $\triangle P O Q \sim \Delta S O R$ and $P Q: R S=1: 2$, then OP
: OS is
A. 1:2
B. 2:1
C. 3:1
D. 1:3

Answer: A

- Watch Video Solution

Zee Additional Questions Very Short Answer Questions

1. In $\triangle A B C$, D and E are points on AB and AC respectively, such that $D E\left|\mid B C\right.$. If $\frac{A D}{D B}=\frac{4}{13}$ and $\mathrm{AC}=20.4 \mathrm{~cm}$, find AE .

- Watch Video Solution

2. In $\Delta A B C, \mathrm{D}$ and E are points on AB and AC respectively, such that $D E \| B C$. If $A D=4, A E=8, D B=x-4$, and $E C=3 x-19$, find x.

- Watch Video Solution

3. Given $\triangle A B C \sim \triangle P Q R$. If $\frac{A B}{P Q}=\frac{1}{3}$, find $\frac{\text { Area } \triangle A B C}{\text { Area } \triangle P Q R}$.

- Watch Video Solution

4. Find the perimeter of the square whose diagonal is $5 \sqrt{2} \mathrm{~cm}$.
5. $\triangle A B C \sim \Delta D E F$. If area $(\triangle A B C)=2.89 m^{2}$, area $(\triangle D E F)=2.25 m^{2}$, and $A B=1.5 \mathrm{~m}$, find $D E$.

- Watch Video Solution

6. If $\triangle A B C \sim \Delta P Q R, \mathrm{AB}=7 \mathrm{~cm}, \mathrm{PQ}=12.5 \mathrm{~cm}$, and the perimeter of $\triangle A B C=70 \mathrm{~cm}$, find the perimeter of $\triangle P Q R$.

D View Text Solution

7. A vertical stick 1 m long casts a shadow 80 cm long. At the same time a tower casts a shadow 30 m long. Determine the height of the tower.
8. In an isosceles triangle $A B C$, if $A B=A C=25 \mathrm{~cm}$ and altitude from A on $B C$ is 24 cm , find $B C$.

- Watch Video Solution

9. Find the length of the chord of a circle of radius 8 cm which subtends a right angle at the centre.

- Watch Video Solution

10. State and prove Basic proportionality theorem

- Watch Video Solution

1. Legs of a right triangle are of lengths 16 cm and 8 cm . Find the length of the side of the largest square that can be inscribed in the triangle.

- Watch Video Solution

2. In the figure $\left\lfloor D=\left\lfloor E\right.\right.$ and $\frac{A D}{D B}=\frac{A E}{E C}$. Prove that BAC is an isosceles triangle.

- Watch Video Solution

3. Diagonals of trapezium PQRS intersect each other at the point
$\mathrm{O}, \mathrm{PQ} \| \mathrm{RS}$, and $\mathrm{PQ}=3 \mathrm{RS}$. Find the ratio of the areas of triangles

(-) Watch Video Solution

4. In the given figure $\mathrm{PQ} \| \mathrm{RS}$, prove that $\triangle P O Q \sim \Delta S O R$.

- Watch Video Solution

5. In the triangle PQR , is a point on PR such that $Q N \perp P R$. If PN .
$\mathrm{NR}=Q N^{2}$, prove that $\left\lfloor P Q R=90^{\circ}\right.$.

- Watch Video Solution

6. If in a $\triangle P Q R, X Y| | Q R, P X=22 x, X Q=3 x, P Y=x$, and $Y R=9 x$, find the value of x.

D View Text Solution

7. In a rectangle $A B C D, E$ is the mid point of $A B$. If $A B=16 \mathrm{~cm}$ and $A D=6 \mathrm{~m}$, find $E D$.

- Watch Video Solution

8. In the given figure, $\left\lfloor A C B=90^{\circ}\right.$ and $C D \perp A B$. Prove that $\frac{B C^{2}}{A C^{2}}=\frac{B D}{A D}$.
9. In an isosceles $\triangle A B C, A B=A C$ and $B D \perp A C$. Prove that $B D^{2}-C D^{2}=2 C D . A D$.

- Watch Video Solution

10. In a quadrilateral $\mathrm{ABCD}, \quad\left\lfloor B=90^{\circ}\right.$. If
$A D^{2}=A B^{2}+B C^{2}+C D^{2}$, prove that $\left\lfloor A C D=90^{\circ}\right.$.

- Watch Video Solution

11. P and Q are the points on sides $A B$ and $A C$ respectively of
$\triangle A B C$. If $\mathrm{AP}=3 \mathrm{~cm}, \mathrm{~PB}=6 \mathrm{~cm}, \mathrm{AQ}=5 \mathrm{~cm}$ and $\mathrm{QC}=10 \mathrm{~cm}$, show that $B C=3 P Q$.

- Watch Video Solution

12. In $\Delta \mathrm{ABC}, \mathrm{AD} \perp \mathrm{BC}$ and $A D^{2}=B D \times C D$. Prove that $A B^{2}+A C^{2}=(B D+C D)^{2}$

- Watch Video Solution

13. In $\Delta \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$. If $\mathrm{AD}=5 \mathrm{~cm}, \mathrm{BD}=7 \mathrm{~cm}$ and $\mathrm{AC}=18 \mathrm{~cm}$, find the length of AE.

- Watch Video Solution

14. $\triangle A B C \sim \triangle D E F$ and their areas are $64 \mathrm{~cm}^{2}$ and $100 \mathrm{~cm}^{2}$ respectively. If $E F=12 \mathrm{~cm}$ then find the measure of BC .

- Watch Video Solution

15. The diagonal $B D$ of parallelogram $A B C D$ intersect $A E$ at F as shown in the figure. If E is any point on $B C$, then prove that $D F \times E F=F B=F A$.

Zee Additional Questions Short Answer Type 2 Questions

1. Prove that if the area of similar triangles are equal, they are congruent.

- Watch Video Solution

2. In the figure, $A B C$ is a right-angled triangle, right-angled at C. D is a midpoint of BC . Prove that $A B^{2}=4 A D^{2}-3 A C^{2}$.

- Watch Video Solution

3. In Fig, $A B C$ and $D B C$ are two triangles on the same base $B C$. If

AD intersects BC ,at O , show that $\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(D B C)}=\frac{A O}{D O}$

- Watch Video Solution

4. In the given figure, $D E \| B C$ and $A D: D B=5: 4$. Find $\operatorname{ar}(\triangle D E F): \operatorname{ar}(\triangle C F B)$.

- Watch Video Solution

5. In the given figure, PA, QB, and RC each is perpendicular to AC such that $P A=x, R C=y, Q B=z, A B=a$, and $B C=b$. Prove that $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$.

- Watch Video Solution

6. A girl of height 100 cm is walking away from the base of a lamp post at a speed of $1.9 \mathrm{~m} / \mathrm{s}$. If the lamp post is 5 m above the ground, find the length of her shadow after 4 seconds.

- Watch Video Solution

7. In a right-angled $\triangle A B C$ right-angled at C, P and Q are the midpoints of BC and AC . Prove that $A P^{2}+B Q^{2}=5 P Q^{2}$.

Zee Additional Questions Long Answer Type Questions

1. Throught the mid-point M of the sides of a parallelogram $A B C D$, the line $B M$ is drawn intersecting $A C$ at L, and $A D$ produced to E. Prove that $E L=2 B L$.

2. A 5 m long ladder is placed leaning towards a vertical wall such that it reaches the wall at a point 4 m high. If the foot of the ladder is moved 1.6 m towards the wall, find the distance by which the top of the ladder would slide upwards on the wall.

- Watch Video Solution

3. In the figure, $O B$ is the perpendicular bisector of the line segment DE. $F A \perp O B$ and FE intersects OB at point C . Prove that $\frac{1}{O A}+\frac{1}{O B}=\frac{2}{O C}$.

- Watch Video Solution

4. In triangle $A B C, A P, B Q$ and $C R$ are the medians. Prove that $3\left[A B^{2}+B C^{2}+A C^{2}\right]=4\left[A P^{2}+B Q^{2}+C R^{2}\right]$.

D Watch Video Solution

5. If A is the area of a right angled triangle and b is one of the sides containing the right angle. Prove that the length of the altitude on the hypotenuse is $\frac{2 A b}{\sqrt{b^{4}+4 A^{2}}}$.

- Watch Video Solution

6. In the given figure, $A D$ is the median of $\triangle A B C$ and $A E \perp B C$. Prove that : $b^{2}+c^{2}=2 p^{2}+\frac{1}{2} a^{2}$.

- Watch Video Solution

7. In an equilateral triangle $A B C, D$ is a point of $B C$ such that $4 B D=$ $B C$. Prove that $16 A D^{2}=13 B C^{2}$.

- Watch Video Solution

8. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

- Watch Video Solution

9. In a right angled triangle, square on the hypotenuse is equal to sum of the squares on the other sides. Prove the statement.
10. State and prove pythagoras theorem .

- Watch Video Solution

