©゙" doubtnut

India's Number 1 Education App

PHYSICS

COMPLETE CLASS 11TH + 12TH

VECTOR

Examples

1. Three vectors $\vec{A}, \vec{B}, \vec{C}$ are shown in the figure. Find angle between
(i) \vec{A} and \vec{B} (ii) \vec{B} and \vec{C} (iii) \vec{A} and \vec{C}.

- Watch Video Solution

2. A physical quantity ($m=3 \mathrm{~kg}$) is multiplied by a vector \vec{a} such that $\vec{F}=m \vec{a}$.find the magnitude and direction of \vec{F} if
(i) $\vec{a}=3 \mathrm{~m} / \mathrm{s}^{2}$ East wards.

- Watch Video Solution

3. A physical quantity ($m=3 \mathrm{~kg}$) is multiplied by a vector \vec{a} such that $\vec{F}=m \vec{a}$.find the magnitude and direction of \vec{F} if
(ii) $\vec{a}=-4 m / s^{2}$ North wards.

- Watch Video Solution

4. Two vectors of 10 units \& 5 units make an angle of 120° with each other.Find the magnitude \& angle of resultant with vector of 10 unit magnitude.

- Watch Video Solution

5. Two vectors of equal magnitude 2 are at an angle of 60° to each other find magnitude of thei. Sum \& difference .

- Watch Video Solution

6. Find $\vec{A}+\vec{B}$ and $\vec{A}-\vec{B}$ in the diagram shown in figure. Given $\mathrm{A}=4$ units and $\mathrm{B}=3$ units.

- Watch Video Solution

7. A unit vector along East is defined as \hat{i}. A force of 105 dynes acts west wards. Represent the force in terms of \hat{i}.

- Watch Video Solution

8. Resolve the vector $A=A_{x} \hat{i}+A_{y} \hat{j}$ along an perpendicular to the line which make angle 60° with x-axis.

- Watch Video Solution

9. Resolve a weight of 10 N in two directions which are parallel and perpendiular to a slope inclined at 30° to the horizontal.

- Watch Video Solution

10. Resolve horizontally and vertically a force $f=8 \mathrm{~N}$ which makes an angle of 45° with the horizontal.
11. Find the net displacement of a particle from its starting point if it undergoes two sucessive displacement given by $\vec{S}_{1}=20 \mathrm{~m}, 37^{\circ}$ North of West, $\vec{S}_{2}=50 \mathrm{~m}, 53^{\circ}$ North of East.

Watch Video Solution

12. Find magnitude of \vec{B} and direction of \vec{A}. If \vec{B} makes angle 37° and \vec{C} makes 53° with x axis and \vec{A} has magnitude equal to 10 and \vec{c} has 5 . $($ given $\vec{A}+\vec{B}+\vec{C}=0)$

- Watch Video Solution

13. Find the magnitude of F_{1} and F_{2}. If F_{1}, F_{2} make angle 30° and 45° with F_{3} and magnitude of F_{3} is $10 \mathrm{~N} .\left(\right.$ given $\left.\vec{F}_{1}+F_{2}=\vec{F}_{3}\right)$
14. If two vectors \vec{A} and \vec{B} make angle 30° and 45° with their resultant and \vec{B} has magnitude equal to 10 , then find magnitude of \vec{A}.

- Watch Video Solution

15. If \vec{A} and \vec{B} have angle between them equals to 60° and their resultant make, angle 45° with \vec{A} and \vec{A} have magnitude equal to 10 . Then Find magnitude of \vec{B}.

- Watch Video Solution

16. Obtain the magnitude of $2 \vec{A}-3 \vec{B}$ if $\vec{A}=\hat{i}+\hat{j}-2 \hat{k}$ and $B=2 \hat{i}-\hat{j}+\hat{k}$.

- Watch Video Solution

17. Find $\vec{A}+\vec{B}$ and $\vec{A}-\vec{B}$ if \vec{A} make angle 37° with positive x-axis and \vec{B} make angle 53° with negative x-axis as shown and magnitude of \vec{A} is 5 and of B is 10 .

- Watch Video Solution

18. If vector $\vec{P}=a \hat{i}+a \hat{j}+3 \hat{k}$ and $\vec{Q}=a \hat{i}-2 \hat{j}-\hat{k} \quad$ are perpendicular to each other , then the positive value of a is

- Watch Video Solution

19. What is the component of $(3 \hat{i}+4 \hat{j})$ along $(\hat{i}+\hat{j})$?

- Watch Video Solution

20. The angle between the two vectors $\vec{A}=3 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\vec{B}=3 \hat{i}+4 \hat{j}-5 \hat{k}$ will be :
21. For what value of m of vector $\vec{A}=2 \hat{i}+3 \hat{j}-6 \hat{k}$ is perpendicular to $\vec{B}=3 \hat{i}-m \hat{j}+6 \hat{k}$.

- Watch Video Solution

22. Find the component of vector $\vec{A}=2 \hat{i}+3 \hat{j}$ along the direction of $\hat{i}+\hat{j} ?$

- Watch Video Solution

23. The velocity of a particle is $\vec{v}=3 \hat{i}+2 \hat{j}+3 \hat{k}$. Find the vector component of the velocity along the line $\hat{i}-\hat{j}+\hat{k}$ and its magnitude.

- Watch Video Solution

24. A \vec{A} is East wards and \vec{B} is downwards. Find the direction of $\vec{A} \times \vec{B}$?

- Watch Video Solution

25. If $\vec{A} \cdot \vec{B}=|\vec{A} \times \vec{B}|$, find angle between \vec{A} and \vec{B}.

D Watch Video Solution

26. Find $\vec{A} \times \vec{B}$ if $\vec{A}=\hat{i}-2 \hat{j}+4 \hat{k}$ and $\vec{B}=2 \hat{i}-\hat{j}+2 \hat{k}$

- Watch Video Solution

27. \vec{A} is North-East and \vec{B} is down wards, find the direction of $\vec{A} \times \vec{B}$.

- Watch Video Solution

28. Find $\vec{B} \times \vec{A}$ if $\vec{A}=3 \hat{i}-2 \hat{j}+6 \hat{k}$ and $\vec{B}=\hat{i}-\hat{j}+\hat{k}$.

- Watch Video Solution

29. Suppose that the function f is defined for all real numbers r by the formula $f(r)=2(r-1)+3$. Evaluate f at the input values $0,2, x+2$, and $f(2)$.

- Watch Video Solution

30. A function $f(x)$ is defined as $f(x)=x^{2}+3$. Find $f(0), f(1), f\left(x^{2}\right), f(x+1)$ and $f(f(1))$.

- Watch Video Solution

31. Find the derivatives of $y=\left(x^{2}+1\right)\left(x^{3}+3\right)$.
32. Let $\mathrm{y}=\mathrm{uv}$ be the product of the functions u and v. Find $y^{\prime}(2)$ if $u(2)=3, u^{\prime}(2)=-4, v(2)=1$, and $v^{\prime}(2)=2$.

- Watch Video Solution

33. Find the derivative of $y=\frac{t^{2}-1}{t^{2}+1}$.

- Watch Video Solution

34. Find $d y / d x$ if $y=\tan x$.

- Watch Video Solution

35. The function $=6 x-10=2(3 x-5)$ is the composite of the functions $y=2 u$ and $u=3 x-5$. How are the derivatives of the derivaties of these three functions related?
36. Find the derivative of $y=\sqrt{x^{2}+1}$.
A. $x \vee \times 2+1$
B.
C. $=x /\left(\operatorname{sqrt}\left(x^{\wedge} 2+1\right)\right)^{\prime}$
D. $\operatorname{cdot} 2(x)=x /\left(\operatorname{sqrt}\left(x^{\wedge} 2+1\right)\right)^{\prime}$

Answer:

- Watch Video Solution

37. $\frac{d}{d x}(A x+B)^{n}$
A. $n(A x+B) n-1 A$
B. $n(A x+B) n-1 B$
C. $n(A x+B) n-2 A$
D. $n(A x+B) n-1$

Answer: A

- Watch Video Solution

38. $\frac{d}{d x} \sin (A x+B)=\cos (A x+B) . A$

- Watch Video Solution

39. $\frac{d}{d x} \log (A x+B)=\frac{1}{A x+B} \cdot A$

- Watch Video Solution

40. $\frac{d}{d x} \tan (A x+B)=\sec ^{2}(A x+B) \cdot A$

- Watch Video Solution

41. $\frac{d}{d x} e^{A x+B}=e^{A x+B} \cdot A$

- Watch Video Solution

42. If $f(x)=x \cos x$, find $f^{\prime}(x)$.

- Watch Video Solution

43. The area A of a circle is related to its diameter by the equation $A=\frac{\pi}{4} D^{2}$. How fast is the area changing with respect to the diameter when the diameter is 10 m ?

- Watch Video Solution

Physical Example

1. Boyle's Law state that when a sample of gas is compressed at a constant temperature, the product of the pressure and the volume remains constant : PV = C. Find the rate of change of volume with respect to pressure.

- Watch Video Solution

2. Find the average rate of change of the area of a circle with respect to its radius r as r changed from
(i) 2 to 3

- Watch Video Solution

3. Find the average rate of change of the area of a circle with respect to its radius r as r changed from
(ii) 2 to 2.5
4. Find the average rate of change of the area of a circle with respect to its radius r as r changed from
(iii) 2 to 2.1

- Watch Video Solution

5. Find the instantaneous rate of change of the area of a circle when $r=2$.

- Watch Video Solution

6. Show that thre rate of change of the area of a circle with respect to its radius (at any r) is equal to the circumference of the circle. Try to explain geometrically when this is true by drawing a circle whose radius is increased by an amount r. How can you approximate the resulting change in area ΔA if Δr is small ?

- Watch Video Solution

7. Find maximum or minimum values of the functions
(a) $y=25 x^{2}+5-10 x$
(b) $y=9-(x-3)^{2}$

- Watch Video Solution

8. Find the maximum or minimum values of the function.
$y=9-(x-3)^{2}$

- Watch Video Solution

9. Evaluate $\int 2 x d x$

- Watch Video Solution

10. Evaluate $\int \sqrt{x^{2}+2 x+5} d x$
11. Using an area to evaluate a definite integral.

Evaluate $\int_{z}^{b} x d x 0<a<b$.

- Watch Video Solution

Exercise 1

1. A man walks 40 m North, then 30 m East and then 40 m South. Find the displacement from the starting point ?
A. 30m East
B. 60 m East
C. 30m West
D. 30 m West

Answer: A

2. Two forces $\overrightarrow{F_{1}}$ and $\overrightarrow{F_{2}}$ are acting at right angles to each other, find their resultant?
A. $\sqrt{F_{1}^{2}-F_{2}^{2}}$
B. $\sqrt{F_{1}^{2}+F_{2}^{2}}$
C. $\sqrt{\left(F_{1}+F_{2}\right)}$
D. $F_{1}+F_{2}$

Answer: B

- Watch Video Solution

3. A vector of magnitude 30 and direction eastwards is added with another vector of magnitude 40 and direction Northwards. Find the magnitude and direction of resultant with the east.
A. $53,53^{\circ}$ with East
B. $50,53^{\circ}$ with West
C. $50,53^{\circ}$ with East
D. $53,53^{\circ}$ with West

Answer: C

- Watch Video Solution

4. Two forces $\vec{F}_{1}=500 N$ due east and $\vec{F}_{2}=250 N$ due north have their common initial point. $\vec{F}_{2}-\vec{F}_{1}$ is
A. $200 \sqrt{5} N, \tan ^{-1}(2) W$ of N
B. $250 \sqrt{5} N, \tan ^{-1}(2) W$ of N
C. $150 \sqrt{5} N, \tan ^{-1}(2) W \operatorname{of} N$
D. $50 \sqrt{5} N, \tan ^{-1}(2) W$ of N

Answer: B

- Watch Video Solution

5. Vectors \vec{A}, \vec{B} and \vec{C} are shown in figure. Find angle between

\vec{A} and \vec{B}
A. 105°
B. 150°
C. 65°
D. 135°
6. Vectors \vec{A}, \vec{B} and \vec{C} are shown in figure. Find angle between

\vec{A} and \vec{C}
7. Vectors \vec{A}, \vec{B} and \vec{C} are shown in figure. Find angle between

\vec{B} and \vec{C}
A. 105°
B. 150°
C. 65°
D. 135°

Answer: A

8. Two vectors \vec{A} and \vec{B} lie in a plane, another vector \vec{C} lies outside this plane, then the resultant of these three vectors i.e. $\vec{A}+\vec{B}+\vec{C}$
A. can be zero
B. cannot be zero
C. lies in the plane of $\vec{A}+\vec{B}$
D. lies in the plane of $\vec{A}-\vec{B}$

Answer: B

- Watch Video Solution

9. Vector sum of two forces of 10 N and 6 N cannot be:
A. 2 N
B. 8 N
C. 18 N
D. 20 N

Answer: B

- Watch Video Solution

10. A set of vectors taken in a given order gives a closed polygon. Then the resultant of these vectors is a
A. scalar quantity
B. pseudo vector
C. unit vector
D. null vector

Answer: D

11. The vector sum of two force P and Q is minimum when the angle θ between their positive directions, is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. π

Answer: D

- Watch Video Solution

12. The vector sum of two vectors \vec{A} and \vec{B} is maximum, then the angle θ between two vector is
A. 0°
B. 30°
C. 45°
D. 60°

Answer: A

- Watch Video Solution

13. Given : $\vec{C}=\vec{A}+\vec{B}$. Also, the magnitude of \vec{A}, \vec{B} and \vec{C} are 12,5 and 13 units respectively. The angle between \vec{A} and \vec{B} is
A. 0°
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. π

Answer: C

- Watch Video Solution

14. If $|\vec{P}+\vec{Q}|=|\vec{P}-\vec{Q}|$ the angle between \vec{P} and \vec{Q} is
A. $\theta=0^{\circ}$
B. $\theta=90^{\circ}$
C. $P=0$
D. $Q=0$

Answer: B

- Watch Video Solution

15. Find the torque of a force $\vec{F}=-3 \hat{i}+2 \hat{j}+\hat{k}$ acting at the point $\vec{r}=8 \hat{i}+2 \hat{j}+3 \hat{k}$ about origin
A. $\sqrt{14}$
B. $\sqrt{10}$
C. $\sqrt{28}$
D. $\sqrt{5}$

Answer: A

- Watch Video Solution

16. What are the x and then y components of a 25 m displacement at an angle of 210° with the x -axis (clockwise) ?
A. $-25 \cos 30^{\circ}$ and $+25 \sin 30^{\circ}$
B. $25 \cos 30^{\circ}$ and $-25 \sin 30^{\circ}$
C. $25 \cos 30^{\circ}$ and $+25 \sin 30^{\circ}$
D. $-25 \cos 30^{\circ}$ and $-25 \sin 30^{\circ}$

Answer: D

- Watch Video Solution

17. One of the rectangular components of a velocity of $60 \mathrm{~km}^{-1}$ is $30 \mathrm{~km} h^{-1}$. Find other rectangular component?
A. $15 \sqrt{3} k m h^{-1}$
B. $30 \sqrt{6} k m h^{-1}$
C. $30 \sqrt{3} k m h^{-1}$
D. $15 \sqrt{6} k m h^{-1}$

Answer: C

- Watch Video Solution

18. If $\vec{A}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{B}=2 \hat{i}+\hat{j}$ find $\vec{A} \cdot \vec{B}$
A. 6
B. 3
C. 9
D. 12
19. If $\vec{A}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{B}=2 \hat{i}+\hat{j}$ find
$\vec{A} \times \vec{B}$
A. $-\hat{i}+2 \hat{j}+\hat{k}$
B. $-\hat{i}-2 \hat{j}-\hat{k}$
C. $-\hat{i}+2 \hat{j}-\hat{k}$
D. $\hat{i}+2 \hat{j}-\hat{k}$

Answer: C

- Watch Video Solution

20. If $|\vec{A}|=4,|\vec{B}|=3$ and $\theta=60^{\circ}$ in the figure. Find

$\vec{A} \cdot \vec{B}$
A. 6
B. 3
C. 9
D. 12
21. If $|\vec{A}|=4,|\vec{B}|=3$ and $\theta=60^{\circ}$ in the figure . Find

$|\vec{A} \times \vec{B}|$
A. $3 \sqrt{3}$
B. $2 \sqrt{3}$
C. $6 \sqrt{3}$
D. $3 \sqrt{6}$

Answer: C

- Watch Video Solution

22. If $0.5 \hat{i}+0.8 \hat{j}+C \hat{k}$ is a unit vector. Find the value of C.
A. $\sqrt{0.33}$
B. $\sqrt{0.22}$
C. $\sqrt{0.11}$
D. $\sqrt{0.44}$

Answer: C

- Watch Video Solution

23. The rectangular components of a vector are $(2,2)$. The corresponding rectangular components of another vector are $(1, \sqrt{3})$. Find the angle between the two vectors.
A. 15°
B. 30°
C. 60°
D. 45°

Answer: A

- Watch Video Solution

24. The x and y components of a a force are $2 N$ and $-3 N$. The force is
A. $2 \hat{i}-3 \hat{j}$
B. $2 \hat{i}+3 \hat{j}$
C. $-2 \hat{i}-3 \hat{j}$
D. $3 \hat{i}+2 \hat{j}$

Answer: A

- Watch Video Solution

25. Assertion: If three vectors \vec{A}, \vec{B} and \vec{C} satisfy the relation $\vec{A} \cdot \vec{B}=0 \& \vec{A} \cdot v e C=0$ then the vector \vec{A} may be parallel to $\vec{B} \times \vec{C}$.
A. \vec{B}
B. \vec{C}
c. $\vec{B} \cdot \vec{C}$
D. $\vec{B} \times \vec{C}$

Answer: D

- Watch Video Solution

26. The magnitude of scalar product of two vectors is 8 and of vector product is $8 \sqrt{3}$. The angle between them is:
A. 30°
B. 60°
C. 120°
D. 150°

Answer: B

- Watch Video Solution

27. Two forces of magnitude 1 N and 13 N resultant of magnitude $6 \sqrt{5} N$, then that is the angle between two forces.
A. $\frac{\cos ^{-1} .1}{13}$
B. $\frac{\cos ^{-1} .5}{13}$
C. $\frac{\cos ^{-1} .13}{5}$
D. $\frac{\cos ^{-1} .13}{7}$

Answer: B

- Watch Video Solution

28. The ratio of maximum and minimum magnitudes of the resultant of two vectors \vec{A} and \vec{b} is $3: 1$. Now, $|\vec{a}|$ is equal to :
A. $|\vec{b}|$
B. $2|\vec{b}|$
C. $3|\vec{b}|$
D. $4|\vec{b}|$

Answer: B

- Watch Video Solution

29. The angle made by the vector $\vec{A}=2 \hat{i}+3 \hat{j}$ with Y-axis is
A. $\tan ^{-1}(3 / 2)$
B. $\tan ^{-1}(2 / 3)$
C. $\sin ^{-1}(2 / 3)$
D. $\sin ^{-1}(3 / 2)$

Answer: B

- Watch Video Solution

30. The vector joining the points $A(1,1,-1)$ and $B(2,-3,4) \&$ pointing A to B is
A. $\hat{i}(-1)+4 \hat{j}-5 \hat{k}$
B. $\hat{i}+4 \hat{j}+5 \hat{k}$
C. $\hat{i}-4 \hat{j}+5 \hat{k}$
D. $\hat{i}(-1)-4 \hat{\hat{j}}-5 \hat{k}$

- Watch Video Solution

31. $y=x^{2}+x+8$
A. $\frac{d y}{d x}=2 x-1$
B. $\frac{d y}{d x}=x+1$
C. $\frac{d y}{d x}=x-1$
D. $\frac{d y}{d x}=2 x+1$

Answer: D

- Watch Video Solution

32. $s=5 t^{3}-3 t^{5}$
A. $\frac{d s}{d t}=15 t^{2}+15 t^{4}$
B. $\frac{d s}{d t}=15 t^{2}-5 t^{4}$
C. $\frac{d s}{d t}=15 t^{2}-15 t^{4}$
D. $\frac{d s}{d t}=15 t^{2}+5 t^{4}$

Answer: C

- Watch Video Solution

33. $y=5 \sin x$
A. $\frac{d y}{d x}=5 \cos x$
B. $\frac{d y}{d x}=\cos x$
C. $\frac{d y}{d x}=25 \cos x$
D. $\frac{d y}{d x}=10 \cos x$

Answer: A

34. Differentiate $\mathrm{x} \sin \mathrm{x}$
A. $\sin x-x \cos x$
B. $\sin x+2 x \cos x$
C. $\sin x+x \cos x$
D. $\sin 2 x-2 x \cos x$

Answer: C

- Watch Video Solution

35. $y=e^{x} \ln x$
A. $e^{x} \ln x-\frac{e^{x}}{x}$
B. $e^{x} \ln x-\frac{2 e^{x}}{x}$
C. $2 e^{x} \ln x-\frac{e^{x}}{x}$
D. $e^{x} \ln x+\frac{e^{x}}{x}$

- Watch Video Solution

36. $y=(x-1)\left(x^{2}+x+1\right)$
A. $\frac{d y}{d x}=2 x^{2}$
B. $\frac{d y}{d x}=3 x^{2}$
C. $\frac{d y}{d x}=5 x^{2}$
D. $\frac{d y}{d x}=3 x$

Answer: B

37. Differentiate $y=(\sin x) /(\cos x)^{\prime}$
A. $2 \sec ^{2} x$
B. $3 \sec ^{2} x$
C. $4 \sec ^{2} x$
D. $\sec ^{2} x$

Answer: D

- Watch Video Solution

38. $y=\frac{2 x+5}{3 x-2}$
A. $y^{\prime}=\frac{-19}{((3 x-2))^{2}}$
B. $y^{\prime}=\frac{19}{(3 x-2)^{2}}$
C. $y^{\prime}=\frac{19}{(3 x+2)^{2}}$
D. $y^{\prime}=\frac{-19}{(3 x+2)^{2}}$

Answer: A
39. If $y=\frac{\ln x}{x}$ "then" $\frac{d y}{d x}$ will be:
A. $\frac{1}{x^{2}}-\frac{\ln x}{x^{2}}$
B. $\frac{1}{x^{2}}+\frac{\ln x}{x^{2}}$
C. $\frac{1}{x^{2}}-\frac{2 \ln x}{x^{2}}$
D. $\frac{1}{x^{2}}-\frac{\ln x}{2 x^{2}}$

Answer: A

- Watch Video Solution

40. Find $\frac{d y}{d x}$ as a function of x
$y=(2 x+1)^{5}$

- Watch Video Solution

41. Find $\frac{d y}{d x}$ as a function of x $y=(4-3 x)^{9}$

D Watch Video Solution

42. Find $\frac{d y}{d x}$ as a function of x
$y=\left(1-\frac{x}{7}\right)^{-7}$

D Watch Video Solution

43. Particle 's position as a function of time is given by $x=-t^{2}+4 t+4$ find the maximum value of position coordinate of particle.
(Watch Video Solution
44. Find the maximum and minimum values of function $2 x^{3}-15 x^{2}+36+11$

Watch Video Solution

45. If velcotiy of a particle is given by $v=2 t-1$ then find the acceleration of particle at $\mathrm{t}=2 \mathrm{~s}$.
A. 2
B. 4
C. 8
D. 6

Answer: B
46. Position of a particle moving along a straight line is given by $x=2 t^{2}+t$. Find the velocity at $\mathrm{t}=2 \mathrm{sec}$.
A. 3
B. 6
C. 4
D. 9

Answer: D

- Watch Video Solution

47. If velocity of a particle is given by $v=2 t^{2}-2$ then find the acceleration of particle at $\mathrm{t}=2 \mathrm{~s}$.
A. 0
B. 2
C. 4
D. 8

Answer: D

- Watch Video Solution

48. The minimum value of $y=2 x^{2}-x+1$ is
A. $-\frac{3}{8}$
B. $-\frac{5}{8}$
C. $\frac{7}{8}$
D. $-\frac{9}{8}$

Answer: C

- Watch Video Solution

49. If $S=\frac{t^{3}}{3}-2 t^{2}+3 t+4$, then
A. at $t=1, S$ is minimum
B. at $t=1, S$ is maximum
C. at $\mathrm{t}=3, \mathrm{~S}$ is maximum
D. at $t=2, S$ is minimum

Answer: B

D Watch Video Solution

50. If $y=4 x^{2}-4 x+7$. Find the minimum value of y .
A. 6
B. 8
C. 2
D. 4

Answer: A

51. If $y=x^{3}-3 x$. Find the maximum value of y.
A. 8
B. 6
C. 4
D. 2

Answer: D

- Watch Video Solution

52. If $y=x^{3}-3 x$. Find the value of x at which we get minimum value of y.
A. 4
B. 1
C. 3

D. 2

Answer: B

- Watch Video Solution

53. Find interals of given functions
$2 x$

Watch Video Solution
54. Find interals of given functions
x^{2}

- Watch Video Solution

55. Find interals of given functions
$x^{2}-2 x+1$
56. Find interals of given functions
$-3 x^{-4}$

- Watch Video Solution

57. Find interals of given functions
x^{-4}

- Watch Video Solution

58. Find integral of given function
$x^{-4}+2 x+3$

- Watch Video Solution

59. Find integral of given function
$\frac{1}{x^{2}}$

- Watch Video Solution

60. Find interals of given functions
$\frac{5}{x^{2}}$

- Watch Video Solution

61. Find integral of given function
$2-\frac{5}{x^{2}}$

- Watch Video Solution

62. Find integral of given function

$\frac{3}{2} \sqrt{x}$

63. Find interals of given functions
$\frac{3}{2 \sqrt{x}}$

- Watch Video Solution

64. Find interals of given functions
$\sqrt{x}+\frac{1}{\sqrt{x}}$

- Watch Video Solution

65. Find interals of given functions
$\frac{4}{3} \sqrt[3]{x}$

- Watch Video Solution

66. Find integral of given function
$\frac{1}{3 \sqrt[3]{x}}$

- Watch Video Solution

67. Find interals of given functions
$\sqrt[3]{x}+\frac{1}{\sqrt[3]{x}}$

- Watch Video Solution

68. Find integral of given function
$\frac{1}{2} x^{-1 / 2}$

- View Text Solution

69. Find integral of given function
$-\frac{1}{2} x^{-3 / 2}$
70. Find integral of given function
$-\frac{3}{2} x^{-5 / 2}$

- View Text Solution

71. Find integral of given function
$\left(1-x^{2}-3 x^{5}\right)$

- Watch Video Solution

72. Find integral of given function $3 \sin x$
73. Find interals of given functions
$\frac{1}{3 x}$

- View Text Solution

74. Integrate by using the substitution suggested in bracket.
$\int_{-2}^{1} 5 d x$

- Watch Video Solution

75. Integrate by using the substitution suggested in bracket.
$\int_{-4}^{-1} \frac{\pi}{2} d t h \eta$

- Watch Video Solution

76. Integrate by using the substitution suggested in bracket.
$\int_{-2}^{4}\left(\frac{x}{2}+3\right) d x$

Exercise 2 Level I Objective Problems

1. Vector $\operatorname{vec}(\mathrm{A})$ points $\mathrm{N}-\mathrm{E}$ and its magnitude is $3 \mathrm{kgms}^{-1}$ it is multiplied by the scalar λ such that $\lambda=-4$ second. Find the magnitude of the new vector quantity.
A. 9
B. 12
C. 19
D. 15

Answer: B

- Watch Video Solution

2. A hall has the dimensions $10 m \times 12 m \times 14 m$. A fly starting at one corner ends up at a diagonally opposite corner. What is the magnitude of its displacement
A. 16 m
B. 17 m
C. 18 m
D. 21 m

Answer: D

- Watch Video Solution

3. A vector is not changed if
A. it is displaced parallel to itself
B. It is rotated through an arbitrary angle
C. It is cross - multiplied by a unit vector
D. It is multiplied by an arbitrary scalar

Answer: A

- Watch Video Solution

4. The angle θ between directions of forces \vec{A} and \vec{B} is 90° where $\mathrm{A}=8$ dyne and $\mathrm{B}=6$ dyne. If the resultant \vec{R} makes an angle α with \vec{A} then find the value of ' α ' ?
A. 47°
B. 27°
C. 37°
D. 12°

Answer: C

- Watch Video Solution

5. Find the resultant of three vectors $\vec{O} A, \vec{O} B, \vec{O} C$ each of magnitude r as shown in figure.

A. $r(1-\sqrt{2})$
B. $2 r(1+\sqrt{2})$
C. $r(1+\sqrt{2})$
D. $2 \mathrm{r}(1-\mathrm{sqrt}(2))^{\prime}$

Answer: C
6. If the angle between two forces increases, the magnitude of their resultant
A. decreases
B. increases
C. remains unchanged
D. first decreases and then increases

Answer: A

- Watch Video Solution

7. If $\vec{A}=3 \hat{i}+4 \hat{j}$ and $\vec{B}=\hat{i}+\hat{j}+2 \hat{k}$ then find out unit vector along $\vec{A}+\vec{B}$.
A. $\frac{4 \hat{i}+5 \hat{j}-2 \hat{k}}{\sqrt{45}}$
B. $\frac{4 \hat{i}-5 \hat{j}-2 \hat{k}}{\sqrt{45}}$
c. $\frac{2 \hat{i}+5 \hat{j}+2 \hat{k}}{\sqrt{45}}$
D. $\frac{4 \hat{i}+5 \hat{j}+2 \hat{k}}{\sqrt{45}}$

Answer: D

- Watch Video Solution

8. Vector \vec{A} is 2 cm long and is 60° above the x -axis in the first quadrant. Vector \vec{B} is 2 cm long and is 60° below the x -axis in the fourth quadrant. The sum $\vec{A}+\vec{B}$ is a vector of magnitudes
A. 2along + yaxis
B. 2along $+x-$ axis
C. 1along $+x$ - axis
D. 2along $-x$ - axis

Answer: B

9. Six forcees, 9.81 N each, acting at a point are coplaner. If the angles between neighbouring forces are equal, then the resultant is
A. 0 N
B. 9.81 N
C. $2 \times 9.81 N$
D. $3 \times 9.81 N$

Answer: A

- Watch Video Solution

10. If $\vec{a}=x_{1} \hat{i}+y_{1} \hat{j} \& \vec{b}=x_{2} \hat{i}+y_{2} \hat{j}$. The condition that would make $\vec{a} \& \vec{b}$ parallel to each other is \qquad .
A. $\frac{x_{1}}{x_{2}}=\frac{y_{1}}{y_{2}}$
B. $\frac{x_{1}}{x_{2}}<\frac{y_{1}}{y_{2}}$
C. $\frac{x_{1}}{x_{2}}>\frac{y_{1}}{y_{2}}$
D. $\frac{x_{1}}{x_{2}} \geq \frac{y_{1}}{y_{2}}$

Answer: A

- Watch Video Solution

11. A vector \vec{A} points vertically upward and \vec{B} points towards north. The vector produce $\vec{A} \times \vec{B}$ is
A. along west
B. along east
C. zero
D. none of these

Answer: D

12. Given : $\vec{A}=2 \hat{i}+3 \hat{j}$ and $\vec{B}=5 \hat{i}-6 \hat{j}$. The magnitude of $\vec{A}+\vec{B}$ is
A. 4 units
B. 10 units
C. $\sqrt{58}$ units
D. $\sqrt{61}$ units

Answer: C

13. Given : $\vec{A}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{B}=-\hat{i}-\hat{j}+\hat{k}$. The unit vector of $\vec{A}-\vec{B}$ is
A. $\frac{3 \hat{i}+\hat{k}}{\sqrt{10}}$
B. $\frac{3 \hat{i}}{\sqrt{10}}$
C. $\frac{3 \hat{k}}{\sqrt{10}}$
D. $\frac{3 \hat{i}-\hat{k}}{\sqrt{10}}$

Answer: A

Watch Video Solution

14. Find $\frac{d y}{d x}$ as a function of x
$y=\left(\frac{x}{2}-1\right)^{-10}$

- Watch Video Solution

15. Find $\frac{d y}{d x}$ as a function of x
$y=\sin 5 x$

(View Text Solution

16. If $y=\sin (x)+\operatorname{in}\left(x^{2}\right)+e^{2 x}$ then $\frac{d y}{d x}$ will be :

- Watch Video Solution

17. If $y=2 \sin (\omega t+\phi)$ where ω and ϕ constants then $\frac{d y}{d t}$ will be

- Watch Video Solution

18. Find the first derivative and second derivative of given function w.r.t the independent variable x .
$y=\ln x^{2}+\tan x$.

- Watch Video Solution

19. Find the first derivative and second derivative of given function w.r.t the independent variable x .
$y=\sqrt[7]{x}+\tan x$

- Watch Video Solution

20. Find derivative of $e^{x} \tan x$
21. Find the derivative of given functions w.r.t the corresponding independent varible.
$y=x^{2} \sin ^{4} x+x \cos ^{-2} x$.

- Watch Video Solution

22. Find the derivative of given functions w.r.t the corresponding independent varible.
$y=\left(x+\frac{1}{x}\right)\left(x-\frac{1}{x}+1\right)$

- View Text Solution

23. Find the derivative of given functions w.r.t the corresponding independent varible.
$y=\frac{\cot x}{1+\cot x}$
24. Given $y=f(u)$ and $u=g(x)$ Find $\frac{d y}{d x}$ if $y=2 u^{3}, u=8 x-1$

- Watch Video Solution

25. Given $y=f(u)$ and $u=g(x)$. Find $\frac{d y}{d x}$.
$y=\sin u, u=3 x+1$

- Watch Video Solution

26. The displacement of body is given by $s=4+2 t^{4}$. The acceleration of the body at the end of 1 s from the start is :
A. $24 m / \sec ^{2}$
B. $10 \mathrm{~m} / \mathrm{sec}^{2}$
C. $15 \mathrm{~m} / \mathrm{sec}^{2}$
D. $12 \mathrm{~m} / \mathrm{sec}^{2}$

D Watch Video Solution

27. Momentum of a body moving in a straight line is $p=\left(2 t^{3}+t^{2}+1\right)$ $\mathrm{kg} \mathrm{m} / \mathrm{s}$. Force ($\mathrm{dp} / \mathrm{dt}$) acting on a body at $t=2 \mathrm{sec}$.
A. 6 N
B. 28 N
C. 4 N
D. 2 N

Answer: B

- Watch Video Solution

28. Momentum of a body moving in a straight line is $p=\left(2 t^{3}+t^{2}+2 t+1\right) \mathrm{kg} \mathrm{m} / \mathrm{s}$. Force acting on a body at $t=2 \mathrm{sec}$.
A. 16 N
B. 18 N
C. 20 N
D. 30 N

Answer: D

- Watch Video Solution

29. The charge flowing throug a conductor beginning with time to=0 is given by the formula $q=2 t^{2}+3 t+1$ (coulombs). Find the current $i=\frac{d q}{d t}$ at the end of the 5 th seconds.
A. $23 A$
B. $25 A$
C. $27 A$
D. 29 A

D Watch Video Solution

30. A body whose mass is 3 kg performs rectilinear motion according to the formula $s=1+t+t^{2}$, where s is measured the kinetic energy $\frac{1}{2} m v^{2}$ and t in second.
Determine the kinetic energy $\frac{1}{2} m v^{2}$ of the body in 5 sec after its start.
A. 1.815×10^{5} erg
B. 1.815×10^{7} erg
C. $1.715 \times 10^{15} \mathrm{erg}$
D. $1.815 \times 10^{8} \mathrm{erg}$

Answer: A

31. The angle θ through which a pulley turns with time t is specified by the function $\theta=t^{2}+3 t-5$. Find the angular velocity $\omega=\frac{d \theta}{d t}$ at $t=5 \mathrm{sec}$.
A. $15 \mathrm{Rad} / \mathrm{sec}$
B. 23 Rad / sec
C. 13 Rad $/ \mathrm{sec}$
D. 11Rad/sec

Answer: C

- Watch Video Solution

32. If the distance s travelled by a body in time t is given by $s=\frac{a}{t}+b t^{2}$ then the acceleration equals
A. $\frac{2 a}{t^{3}}+2 b$
B. $\frac{2 s}{t^{2}}$
C. $2 b-\frac{2 a}{t^{3}}$
D. $\frac{s}{t^{2}}$

Answer: A

- Watch Video Solution

33. If $v=3 t^{2}-2 t+1$, find the value of t for which $\frac{d v}{d t}=0$
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{3}{2}$
D. none

Answer: A

- Watch Video Solution

34. Find two positive numbers x \& y such that $x+y=60$ and xy is maximum.

Watch Video Solution

35. A sheet of area $40 m^{2}$ is used to make an open tank with square base.

Find the dimensions of the base such that the volume of this tank is maximum.

- Watch Video Solution

36. Find integrals of given functions
$\int\left(2 x^{3}-5 x+7\right) d x$

- View Text Solution

37. Find integrals of given functions
$\int\left(\frac{1}{5}-\frac{2}{x^{3}}+2 x\right) d x$

- View Text Solution

38. Find integrals of given functions
$\int(\sqrt{x}+\sqrt[3]{x}) d x$

(Watch Video Solution

39. Find integrals of given functions
$\int x^{-3}(x+1) d x$

- View Text Solution

40. Find integrals of given functions
$\int \frac{t \sqrt{t}+\sqrt{t}}{t^{2}} d t$
41. Find integrals of given functions
$\int \frac{4+\sqrt{t}}{t^{3}} d t$

- View Text Solution

42. Find integrals of given functions
$\int \cos \theta(\tan \theta+\sec \theta) d \theta$

- View Text Solution

43. Find integrals of given functions
$\int_{x}^{2 \pi} \theta d \theta$

- Watch Video Solution

44. Find integrals of given functions
$\int_{0}^{\sqrt[3]{7}} \theta d t h \eta$

- View Text Solution

45. Find integrals of given functions
$\int_{0}^{\pi} \cos x d x$

- Watch Video Solution

46. Find integrals of given functions
$\int_{0}^{1} \frac{d x}{3 x+2}$

- Watch Video Solution

47. Use a definite integral to find the area of the origin between the given curve and the x-axis on the interval [$0, b$]
$y=3 x^{2}$

- Watch Video Solution

Exercise 2 Level li Multiple Correct

1. Which of the arrangement of axes in fig . Can be labelled "right handed coordinate system" ? As usual, each axis lable indicates the positive side
(i)

(ii)

A. (i), (ii)
B. (iii) (iv)
C. (iv)
D. (v)

Answer: A::B::C

- Watch Video Solution

2. Vector $\vec{A}-\vec{B}$ represents -
A. Addition of vector \vec{A} and vector $-\vec{B}$.
B. Resultant of vector \vec{A} and \vec{B}
C. Resultant of vector \vec{A} and $-\vec{B}$
D. None of these

Answer: A:C

- Watch Video Solution

3. If \vec{a} and \vec{b} are two vector with $|\vec{a}|=|\vec{b}|$ and $|\vec{a}+\vec{b}|+2|\vec{a}|$,then angle between \vec{a} and \vec{b}.
A. 0°
B. 90°
C. 60°
D. 180°

Answer: A::D

- View Text Solution

4. A vector is euqally inclineed to all of the coordintates axes then the angle made by it with x - axis is theta then -
A. $\cos \theta=\frac{2}{\sqrt{3}}$
B. $\cos \theta=\frac{1}{\sqrt{3}}$
C. $\sin \theta=\frac{2}{\sqrt{3}}$
D. $\sin \theta=\frac{1}{\sqrt{3}}$

Answer: B

- Watch Video Solution

5. Vector \vec{R} is the resultant of the vetors \vec{A} and \vec{B}. Ratio of maximum value of $|\vec{R}|$ to the minimum value of $|\vec{R}|$ is $\frac{3}{1}$. The $\frac{|\vec{A}|}{|\vec{B}|}$ may be equal to-
A. $\frac{2}{1}$
B. $\frac{1}{2}$
C. $\frac{4}{1}$
D. $\frac{3}{1}$

Answer: A::B

6. A man is walking toward east with a velocity of $8 \mathrm{~km} / \mathrm{h}$. Wind is blowing toward north - east at angle of 45°. To the man wind appears to blow of angle of 60° north of west.
A. True velocity of wind is $\frac{8 \sqrt{6}}{1+\sqrt{3}} \mathrm{~km} / \mathrm{hr}$
B. Velocity of wind relative to man is $\frac{16}{1+\sqrt{3}} \mathrm{~km} / \mathrm{h}$
C. True velocity of wind is $\frac{\sqrt{6}}{1+\sqrt{3}} \mathrm{~km} / \mathrm{h}$
D. Velocity of wind relative to man is $\frac{8 \sqrt{3}}{1+\sqrt{3}} \mathrm{~km} / \mathrm{h}$

Answer: A::B

- Watch Video Solution

7. The magnitude of the vector product of two vectors \vec{A} and \vec{B} may not be:
A. greater than $A B$
B. equal to $A B$
C. less than $A B$
D. equal to zero

Answer: B::C::D

- Watch Video Solution

8. The magnitudes of vectors \vec{A}, \vec{B} and \vec{C} are 3,4 and 5 units respectively. If $\vec{A}+\vec{B}=\vec{C}$, the angle between \vec{A} and vec B^{\prime} is
A. 90° if $C 2=A^{2}+B^{2}$
B. Greater than 90° if $C^{2}>A^{2}+B^{2}$
C. Greater than 90° if $C^{2}>A^{2}+B^{2}$
D. Less than 90° if $C^{2}>A^{2}+B^{2}$

Answer: A::B::D

- Watch Video Solution

9. The x-component of the resultant of several vectors
A. is equal to the sum of the x-components of the vectors
B. may be smaller than the sum of the magnitudes of the vectors
C. may be greater than the sum of the magnitudes of the vectors
D. may be equal to the sum of the magnitudes of the vectors

Answer: A::B::D

- Watch Video Solution

10. The magnitude of the vector $\hat{i}+x \hat{j}+3 \hat{k}$ is half of the magnitude of vector $\hat{i}+x \hat{j}+3 \hat{k}$ The values of x are
A. $-2 / 3$
B. $1 / 3$
C. $2 / 3$
D. 2

- Watch Video Solution

11. A displacement vector of magnitude 10 m has its initial point $(4,3) \mathrm{m}$. They y - component of this vector has magnitude of 6 m . The coordinates of the final point of the vector may be
A. $(-4,9) m$
B. $(-4,-3) m$
C. $(12,9) m$
D. $(12,-3) m$

Answer: A::C

12. Which of the following statements is / are correct ?

A. the sign of the x -components of $v e x d_{1}$ is positive and that of \vec{d}_{2} is negative.
B. The signs of the y - components of \vec{d}_{1} and \vec{d}_{2} are positive and negative, respectively.
C. The signs of the x and y - components of $\vec{d}_{1}+\vec{d}_{2}$ are positive .
D. None of these

- Watch Video Solution

13. Two vectors \vec{A} and \vec{B} lie in a plane, another vector \vec{C} lies outside this plane, then the resultant of these three vectors i.e. $\vec{A}+\vec{B}+\vec{C}$
A. Cannot be zero
B. Can be zero
C. lies in the plane of \vec{A} or \vec{B}
D. Lies in a plane different from that of any of the three vectors

Answer: A::D

- Watch Video Solution

1. The resultant of two forces F_{1} and F_{2} is P. If F_{2} is reversed, then resultant is Q . Then the value of $\left(P^{2}+Q^{2}\right)$ in terms of F_{1} and F_{2} is

- View Text Solution

2. A man moves towards 3 m north then 4 m towards east and finally 5 m towards 37° south of west. His displacement from origin is :-

- Watch Video Solution

3. A body acted upon by 3 given forces is under equilibrium .
(a) If $\left|\vec{F}_{1}\right|=10 \mathrm{Nt}$., $\left|\vec{F}_{2}\right|=6 \mathrm{Nt}$ Find the values of $\left|\vec{F}_{3}\right| \&$ angle (θ).
(b) Express F_{2} in unit vector form

- Watch Video Solution

4. If the four forces as shown are in equilibrium Express $\vec{F}_{1} \& \vec{F}_{2}$ in unit vector form.

- View Text Solution

5. ABCDEF is a regular hexagon with point O as centre. The value of $\overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A D}+\overrightarrow{A E}+\overrightarrow{A F}$ is
6. In the regular hexagon shown in figure $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}+\overrightarrow{D E}+\overrightarrow{E F}+\overrightarrow{A F}$ can be expressed as :

- Watch Video Solution

7. Let O be the centre of the regular hexagon ABCDEF then find $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O D}+\overrightarrow{+}(O E)+\overrightarrow{O F}$

- Watch Video Solution

8. A particle is displaced from a position $2 \hat{i}-\hat{j}+\hat{k}(m)$ to another position $3 \hat{i}+2 \hat{j}-2 \hat{k}(m)$ under the action of a force $2 \hat{i}+\hat{j}-\hat{k}(N)$. The work done by the force is

- Watch Video Solution

9. Find derivative of given functions w.r.t the respective independent variable .
$y=\frac{\cos x}{x}+\frac{x}{\cos x}$
Find $\frac{d y}{d x}$ as a function of x

- Watch Video Solution

10. Find derivative of given functions w.r.t the respective independent variable .
$y=\sin ^{3} x+\sin 3 x$

- View Text Solution

11. Find derivative of given functions w.r.t the respective independent variable .
$q=\sqrt{2 r-r^{2}}$, find $\frac{d q}{d r}$
12. Find derivative of given functions w.r.t the respective independent variable .
$y=\left(\frac{x^{2}}{8}+x-\frac{1}{x}\right)^{4}$

- Watch Video Solution

13. Integrate by using the substitution suggested in bracket.
$\int_{\sqrt{2}}^{5 \sqrt{2}} r d r$

- Watch Video Solution

14. Integrate by using the substitution suggested in bracket. $\int_{0}^{2 \pi} \sin \theta d \theta$

- Watch Video Solution

15. Integrate by using the substitution suggested in bracket.
$\int_{0}^{1} e^{x} d x$

Watch Video Solution

Exercise 3 Level li Subjective

1. If the resultannt of two forces of magnitudes P and Q acting at a ponit at an angle of 60° is $\sqrt{7} Q$, then P / Q is

- Watch Video Solution

2. If particle is acted upon by the forces
$\vec{F}_{1}=2 \hat{i}+2 \hat{j}-3 \hat{k} \quad \vec{F}_{2}=5 \hat{i}+c \hat{j}-b \hat{k}$
$\vec{F}_{3}=b \hat{i}+5 \hat{j}-7 \hat{k}, \vec{F}_{4}=c \hat{i}+6 \hat{j}-a \hat{k}$. Find the values of the constant $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in ordre that the particle will be in equilibrium.
3. Find derivative of given functions w.r.t the corresponding independent variable.
$y=x^{\wedge} 2 \cos x-2 x \sin x-2 \cos x$

Watch Video Solution

4. Find derrivative of given functions w.r.t the corresponding independent variable.
$r=(1+\sec \theta) \sin \theta$.

- Watch Video Solution

5. Find two positive numbers x \& y such that $x+y=60$ and xy is maximum.

- Watch Video Solution

6. A sheet of area $40 m^{2}$ is used to make an open tank with square base. Find the dimensions of the base such that the volume of this tank is maximum.

- Watch Video Solution

7. Use a definite integral to find the area of the region between the given curve and the x-axis on the interval $[0, b]$
$y=2 x$

- Watch Video Solution

8. Use a definite integral to find the area of the region between the given curve and the x -axis on the interval $[0, b]$
$y=\frac{x}{2}+1$

- Watch Video Solution

1. Match the statements given in column-I with statements given in column-II

Column - I

Column - II

(A) If $|\vec{A}|=|\vec{B}|$ and $|\vec{A}+\vec{B}|=|\vec{A}|$
(p) 90°
then angle between \vec{A} and \vec{B} is
(B) Magnitude of resultant of two
(q) 120°
forces $\left|\overrightarrow{\mathrm{F}}_{1}\right|=8 \mathrm{~N}$ and $\left|\overrightarrow{\mathrm{F}}_{2}\right|=4 \mathrm{~N}$
may be
(C) Angle between $\overrightarrow{\mathrm{A}}=2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}$ \&
(r) 12 N
$\overrightarrow{\mathrm{B}}=3 \hat{\mathrm{k}}$ is
(D) Magnitude of resultant of
(s) $\sqrt{14}$
vectors $\vec{A}=2 \hat{i}+\hat{j} \& \vec{B}=3 \hat{k}$ is
2. Position of particle is given by $S=t^{3}-2 t^{2}+5 t+4$
(a) Find the position of particle at $t=1 \mathrm{sec}$
(b) Find the first derivative of S at $t=1 \mathrm{sec}$
(c) Find the second derivative of $\mathrm{S} t=1 \mathrm{sec}$

D View Text Solution

3. Two forces $\vec{F}_{1}=2 \hat{i}+2 \hat{j} N$ and $\vec{F}_{2}=3 \hat{i}+4 \hat{k} N$ are acting on a particle
(a) Find the resultant force acting on particle
(b) (b) Find the angle between $\overrightarrow{F_{1}} \& \overrightarrow{F_{2}}$
(c) Find the componant of force $\overrightarrow{F_{1}}$ along force $\overrightarrow{F_{2}}$.

- Watch Video Solution

4. Assertion: A vector qunatity is a quantity that has both magnitude and a direction and obeys the triangle law of addition or equivalentyly the parallelogram law of addition.

Reason: The magnitude of the resultant vector of two given vectors can never be less than the magnitude of any of the given vector.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer: C

- Watch Video Solution

5. Statement-1 : If the rectangular components of a force are 8 N and 6 N , then the magnitude of the force is 10 N .

Statement-2: If $|\vec{A}|=|\vec{B}|=1$ then $|\vec{A} \times \vec{B}|^{2}+|\vec{A} \cdot \vec{B}|^{2}=1$
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer: B

- Watch Video Solution

6. If three vectors \vec{A}, \vec{B} and \vec{C} satisfy the relation $\vec{A} \cdot \vec{B}=0 \& \vec{A} \cdot \vec{C}=0$ then the vector \vec{A} is parallel to $\vec{B} \times \vec{C}$. Statement-2 $: \vec{A} \perp \vec{B}$ and $\vec{A} \perp \vec{C}$ hence A is perpendicular to plane formed by \vec{B} and \vec{C}.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1
C. Statement- 1 is True, Statement-2 is False
D. Statement- 1 is False, Statement- 2 is True

Answer: A

D Watch Video Solution

7. Assertion: The minimum number of vectors of unequal magnitude required to produce zero resultant is three.

Reason: Three vectors of unequal magnitude which can be represented by the three sides of a triangle taken in order, produce zero resultant.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a
C. Statement-1 is True, Statement-2 is False
D. Statement- 1 is False, Statement- 2 is True

Answer: A

- Watch Video Solution

8. Statement-1 : The angle between the two vectors $(\hat{I}+\hat{J})$ and (\hat{k}) is $\frac{\pi}{2}$ radian.
Statement - 2 : Angle between two vectors \vec{A} and \vec{B} is given by $\theta=\cos ^{-1}\left(\frac{A \cdot B}{A B}\right)$
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer: A

- Watch Video Solution

9. Assertion : Distance is a scalar quantity.

Reason : Distance is the length of path traversed.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1
C. Statement- 1 is True, Statement-2 is False
D. Statement- 1 is False, Statement-2 is True

Answer: D

- Watch Video Solution

10. State true or false

If $\vec{A} \& \vec{B}$ are two force vectors $\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}$.

- Watch Video Solution

11. State true or false

If $\vec{A} \& \vec{B}$ are two force vectors then $\vec{A} \times \vec{B}=\vec{B} \times \vec{A}$.

(Watch Video Solution

12. State true or false

If the vector product of two non-zero vectors vanishes, the vectors are collinear

- Watch Video Solution

13. State true or false

If a function has maximum value at point P theh slope of tangent drawn
on function at point P is zero.

- Watch Video Solution

14. The scalar product of vector $\vec{A}=2 \hat{i}+5 \hat{k}$ and $\vec{B}=3 \hat{j}+5 \hat{k}$ is

(Watch Video Solution

15. If $\vec{A}=3 \hat{i}+4 \hat{j}$ and $\vec{B}=7 \hat{i}+24 \hat{j}$, find a vector having the same magnitude as \vec{B} and parallel and same direction as \vec{A}.

- Watch Video Solution

16. If $\vec{A}|\mid \vec{B}$ then $\vec{A} \times \vec{B}=$

D Watch Video Solution

17. The magnitude of area of the parellelogram formed by the adjacent sides of vectors $\vec{A}=3 \hat{i}+2 \hat{j}$ and $\vec{B}=2 \hat{i}-2 \hat{k}$ is

- Watch Video Solution

18. A force is represented by $2 \hat{i}+3 \hat{j}+6 \hat{k}$. The magnitude of the force is

- Watch Video Solution

19. The unit vector along vector $\hat{i}+\hat{j}+\hat{k}$ is \qquad

- Watch Video Solution

20. If \vec{A} isto \vec{B}, then $\vec{A} \cdot \vec{B}=0$

- Watch Video Solution

21. The angle made by the vector $\vec{A}=\hat{i}+\hat{j}$ with x-axis is

- Watch Video Solution

22. If $\vec{A}+\vec{B}+\vec{C}=\overrightarrow{0}$, then $\vec{A} \cdot(\vec{B} \times \vec{C})=$

- Watch Video Solution

Exercise 4 Level li Previous Year

1. Three forces P, Q and R are acting at a point in the plane. The angle between $\mathrm{P} \& \mathrm{Q}$ and $\mathrm{Q} \& \mathrm{R}$ are $150^{\circ} \& 120^{\circ}$ respectively, then for equilibrium, forces $P, Q \& R$ are in the ratio
A. 1:2:3
B. 1:2: $\sqrt{3}$
C. 3:2:1
D. $\sqrt{3}: 2: 1$

Answer: D

- Watch Video Solution

2. A man rows a boat with a speed of $18 \mathrm{~km} / \mathrm{hr}$ in northwest direction. The shoeline makes an angle of 15° south of west. Obtain the component of the velocity of the boat along the shoreline:
A. $9 \mathrm{~km} / \mathrm{hr}$
B. $18 \frac{\sqrt{3}}{2} k m / h r$
C. $18 \cos 15^{\circ} k \frac{m}{h} r$
D. $18 \cos 75^{\circ} \mathrm{km} / \mathrm{hr}$

Answer: A

- Watch Video Solution

3. A bird moves from point $(1,-2,3)$ to $(4,2,3)$. If the speed of the bird id $10 \mathrm{~m} / \mathrm{s}$, then the velocity of the bird is :-
A. $5(\hat{i}-2 \hat{j}+3 \hat{k})$
B. $5(4 \hat{i}+2 \hat{j}+3 \hat{k})$
C. $0.6 \hat{i}+0.8 \hat{j}$
D. $6 \hat{i}+8 \hat{j}$

Answer: D

- Watch Video Solution

4. The resultant of two forces, one double the other in magnitude is perpendicular to the smaller of the two forces. The angle between the two forces is \qquad ?
A. 150°
B. 90°
C. 60°
D. 120°

Answer: D

- Watch Video Solution

5. If the angle between the unit vectors \widehat{a} and \hat{b} is 60°, the $|\widehat{a}-\hat{b}|$ is:-
A. 0
B. 1
C. 2
D. 4

Answer: B

- Watch Video Solution

6. For a particle moving in a straight line, the displacement of the particle at time t is given by
$S=t^{3}-6 t^{2}+3 t+7$
What is the velocity of the particle when its acceleration is zero?
A. $-9 m s^{-1}$
B. $-12 m s^{-1}$
C. $3 m s^{-1}$
D. $42 m s^{-1}$

Answer: A

- Watch Video Solution

7. Two forces each numerically equal to 10 dynes are acting as shown in the following figure, then their resultant is -
A. 10 dynes
B. 20 dynes
C. $10 \sqrt{3}$ dynes
D. 5 dynes

Answer: A

- Watch Video Solution

8. Two vectors \vec{A} and \vec{B} are such that $\vec{A}+\vec{B}=\vec{A}-\vec{B}$. Then
A. 0
B. $\pi / 3$
C. $\pi / 2$
D. π

Answer: C

- Watch Video Solution

9. A particle moves throught angular displacement θ on a circlur path of radius r. The liner displacement wil be
A. $2 r \sin (\theta / 2)$
B. $2 r \cos (\theta / 2)$
C. $2 r \tan (\theta / 2)$
D. $2 r \cot (\theta / 2)$

Answer: A

10. The vector \vec{P} makes 120° with the x -axis and vector Q makes 30° with the y -axis. What is their resultant?
A. $P+Q$
B. $P-Q$
C. $\sqrt{P^{2}+Q^{2}}$
D. $\sqrt{P^{2}-Q^{2}}$

Answer: A

- Watch Video Solution

11. A man travels 1 mile due east. Then 5 miles due south, then 2 miles due east and finally 9 miles due north. His displacement is
A. 3 miles
B. 5 miles
C. 4 miles
D. between 5 and 9 miles

Answer: B

- Watch Video Solution

12. If $3 \hat{i}+2 \hat{j}+8 \hat{k}$ and $2 \hat{i}+x \hat{j}+\hat{k}$ are at right angles then $\mathrm{x}=$
A. 7
B. -7
C. 5
D. -4

Answer: B

13. $a_{1} \hat{i}+a_{2} \hat{j}$ is a unit vector perpendicular to $4 \hat{i}-3 \hat{j}$ if -
A. $a_{1}=6, a_{2}=8$
B. $a_{1}=3, a_{2}=4$
C. $a_{1}=8, a_{2}=6$
D. $a_{1}=4, a_{2}=3$

Answer: A

- Watch Video Solution

14. If $\operatorname{vec}(a)$ is a vector and x is a non-zero scalar, then
A. $x \vec{a}$ is a vector in the direction of \vec{a}
B. $x \vec{a}$ is a vector collinear to \vec{a}
C. $x \vec{a}$ and \vec{a} have independent directions
D. none of these

Answer: B

D Watch Video Solution

15. Two vectors \vec{A} and \vec{B} are defined as $\vec{A}=a \hat{i}$ and $\vec{B}=a(\cos \omega \hat{i}+\sin \omega \hat{j})$, were a is a constant and $\omega=\pi / 6 \mathrm{rads}^{-1}$. If $|\vec{A}+\vec{B}|=\sqrt{3}|\vec{A}-\vec{B}|$ at time $t=\tau$ for the first time, the value of τ, in seconds , is \qquad

- Watch Video Solution

Example

1. Two forces of magnitudes 3 N and 4 N respectively are acting on a body.

Calculate the resultant force if the angle between them is-
(i) 0°
(ii) 180°
(iii) 90°
2. Two vectors having equal magnitude of 5 units, have an angle of 60° between them. Find the magnitude of their resultant vector and its angle from one of the vectors.

Watch Video Solution

3. A vector \vec{A} and \vec{B} make angles of 20° and 110° respectively with the X-axis. The magnitudes of these vectors are $5 m$ and $12 m$ respectively.

Find their resultant vector.

- Watch Video Solution

4. If $\vec{P}=3 \hat{i}+4 \hat{j}+12 \hat{k}$ then find
(i) $|\vec{P}|$ and
(ii) the direction cosines of the \vec{P}.

- Watch Video Solution

5. Find out the angle made by $(\hat{i}+\hat{j})$ vector from X and Y axes respectively.

- Watch Video Solution

6. Find out the angle made by $\vec{A}=\hat{i}+\hat{j}+\hat{k}$ vector from X, Y and Z axes respectively.

- Watch Video Solution

7. A force of 4 N is inclined at an angle of 60° from the vertical. Find out its components along horizontal and vertical directions.

- Watch Video Solution

8. A force is inclined at an angle of 60° from the horizontal. If the horizontal component of the force is 40 N, calculate the vertical component.

- Watch Video Solution

9. Determine that vector which when added to the resultant of $\vec{P}=2 \hat{i}+7 \hat{j}-10 \hat{k}$ and $\vec{Q}=\hat{i}+2 \hat{j}+3 \hat{k}$ gives a unit vector along X axis.

- Watch Video Solution

10. $A B C$ is an equilateral triangle. Length of each side is 'a' and centroid is point O.Find
(i) $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=$?
(ii) $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=$?
(iii) If $|\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{A C}|=$ na then $\mathrm{n}=$?

(iv) If $\overrightarrow{A B}+\overrightarrow{A C}=n \overrightarrow{A O}$ then $\mathrm{n}=$?

- Watch Video Solution

11. Add vectors \vec{A}, \vec{B} and \vec{C} which have equal magnitude s of 50 unit and are inclined at angles of $45^{\circ}, 135^{\circ}$ and 315° respectively from x -axos.

12. The sum of three vectors shown in figure, is zero.
(i) What is the magnitude of vector $\overrightarrow{O B}$?

(ii) What is the magnitude of vector $\overrightarrow{O C}$?

- Watch Video Solution

13. Can scalar product be ever negative?

- Watch Video Solution

14. If $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$, then the angle between \vec{A} and \vec{B} will be
15. If $\vec{A}=4 \hat{i}+n \hat{j}-2 \hat{k}$ and $\vec{B}=2 \hat{i}+3 \hat{j}+\hat{k}$, then findt the value of n so that $\vec{A} \perp \vec{B}$.

- Watch Video Solution

16. If $\vec{F}=(4 \vec{i}-10 \vec{j})$ and $\vec{r}=(5 \vec{i}-3 \vec{j})$, then calculate torque.

- Watch Video Solution

17. Find a unit vector perpendicular to both the vectors $2 \hat{i}+3 \hat{j}+\hat{k})$ and $(\hat{i}-\hat{j}+2 \hat{k})$.

- Watch Video Solution

18. The diagonals of a parallelogram are vectors \vec{A} and \vec{B}. If $\vec{A}=5 \hat{i}-4 \hat{j}+3 \hat{k}$ and $\vec{B}=3 \hat{i}-2 \hat{j}-\hat{k}$. Calculate the magnitude of
area of this parallelogram.

- Watch Video Solution

19. Given that $P=Q=R$. If $\vec{P}+\vec{Q}=\vec{R}$ then the angle between $\vec{P} \& \vec{R}$ is θ_{1}. If $\vec{P}+\vec{Q}+\vec{R}=\overrightarrow{0}$ then the angle between $\vec{P} \& \vec{R}$ is θ_{2}.

What is the relation between θ_{1} and θ_{2} ?
A. $\theta_{1}=\theta_{2}$
B. $\theta_{1}=\frac{\theta_{2}}{2}$
C. $\theta_{1}=2 \theta_{2}$
D. None of the above

Answer: B

- Watch Video Solution

20. Given that $\vec{A}+\vec{B}+\vec{C}=\overrightarrow{0}$. Out of three vectors, two are equal in magnitude and the magnitude of the third vectors is $\sqrt{2}$ times that of either of the two having equal magnitude. Find the angles between the vectors.
A. $30^{\circ}, 60^{\circ}, 90^{\circ}$
B. $45^{\circ}, 45^{\circ}, 90^{\circ}$
C. $45^{\circ}, 60^{\circ}, 90^{\circ}$
D. $90^{\circ}, 135^{\circ}, 135^{\circ}$

Answer: D

- Watch Video Solution

21. The resultant of two vectors \vec{P} and $\vec{Q} i s \vec{R}$. If the magnitude of \vec{Q} is doudled, the new resultant becomes perpendicuar to \vec{P}. Then the magnitude of \vec{R} is:
A. $\left(\frac{P^{2}-Q^{2}}{2 P Q}\right)$
B. Q
C. $\frac{P}{Q}$
D. $\frac{P+Q}{P-Q}$

Answer: B

- Watch Video Solution

Exercise 1

1. A force of 6 kg another of 8 kg can be applied together to produce the effect of a single force fo
A. 1 kg
B. 11 kg
C. 15 kg
D. 20 kg

- Watch Video Solution

2. If the magnitudes of the vectors A, B and C are $6,8,10$ units respectively and if $A+B=C$, then the angle between A and C is -
A. $\pi / 2$
B. $\arccos (0.6)$
C. $\arctan (0.75)$
D. $\pi / 4$

Answer: B

- Watch Video Solution

3. The angles between $P+Q$ and $P-Q$ will be
A. 0° only
B. 90° only
C. 180° only
D. between 0° and 180° (both the values inclusive)

Answer: D

- Watch Video Solution

4. What is the resultant of three coplanar forces: 300 N at $0^{\circ}, 400 \mathrm{~N}$ at 30° and 400 N at 150° ?
A. 500 N
B. 700 N
C. 1100 N
D. 300 N
5. The value of a unit vector in the direction of vector $A=5 \hat{i}-12 \hat{j}$
A. \hat{i}
B. \hat{j}
C. $(\hat{i}+\hat{j}) / 13$
D. $(5 \hat{i}-12 \hat{j}) / 13$

Answer: D

- Watch Video Solution

6. Two forces of 4 dyne and 3 dyne act upon a body. The resultant force on the body can only be -
A. more than 3 dynes
B. more than 4 dynes
C. between 3 and 4 dynes
D. between 1 and 7 dynes

Answer: D

- Watch Video Solution

7. Two vectors have magnitudes 3 unit and 4 unit respectively. What should be the angle between them if the magnitude of the resultant is -
(i) 1 unit (ii) 5 unit (iii) 7 unit
A. $180^{\circ}, 90^{\circ}, 0^{\circ}$
B. $80^{\circ}, 70^{\circ}, 0^{\circ}$
C. $80^{\circ}, 70^{\circ}, 0^{\circ}$
D. $90^{\circ}, 170^{\circ}, 50^{\circ}$

Answer: A

8. A blind person after walking each 10 steps in one direction, each of length 80 cm , turns randomly the left or to right by 90°. After walking a total of 40 steps the maximum possible displacement the person from his starting position could be (A) 320 m (B) 32 m (C) $\frac{16}{\sqrt{2}} \mathrm{~m}$ (D) $16 \sqrt{2} \mathrm{~m}$
A. 320 m
B. 32 m
C. $16 / \sqrt{2} m$
D. $16 \sqrt{2} m$

Answer: D

- Watch Video Solution

9. If the angle between the vectors \vec{a} and \vec{b} is an acute angle, then the diffrence $\vec{a}-\vec{b}$ is
A. the main diagonal of the parallelogram
B. the minor diagonal of the parallelogram
C. any of the above
D. none of the above

Answer: B

- Watch Video Solution

10. For the figure -

A. $A+B=C$
B. $B+C=A$
C. $C+A=B$
D. $A+B+C=0$

Answer: C

- Watch Video Solution

11. The resultant of two vectors A and B is perpendicular to the vector A and its magnitude is equal to half the magnitude of vector B. The angle between A and B is -

A. 120°
B. 150°
C. 135°
D. None of these

Answer: B

- Watch Video Solution

12. Which of the sets given below may represent the magnitudes of three vectors adding to zero?
A. $2,4,8$
B. $4,8,16$
C. $1,2,1$
D. $0.5,1,2$

Answer: C

13. The forces, each numerically equal to 5 N , are acting as shown in the

Figure. Find the angle between forces?

A. 60
B. 120
C. 30
D. 150

Answer: B

14. Rain is falling vertically down wards with a speed $5 \mathrm{~m} / \mathrm{s}$. If unit vector along upward is defined as \hat{j}, represent velocity of rain in vector form.
A. $-5 \hat{j}$
B. $5 \hat{j}$
C. $5 \hat{i}$
D. $-5 \hat{i}$

Answer: A

- Watch Video Solution

15. Two forces \vec{F}_{1} and \vec{F}_{2} are acting at right angles to each other, find their resultant ?
A. $\sqrt{F_{1}^{2}+F_{2}^{2}}$
B. $\sqrt{F_{1}^{2}-F_{2}^{2}}$
C. $F_{1}+F_{2}$
D. $F_{1}-F_{2}$

Answer: A

- Watch Video Solution

16. Two forces F_{1} and F_{2} are acting on a body. One force is double that of the other force and the resultant is equal to the greater force. Then the angle between the two forces is
A. $\cos ^{-1}(1 / 2)$
B. $\cos ^{-1}(-1 / 2)$
C. $\cos ^{-1}(-1 / 4)$
D. $\cos ^{-1}(1 / 4)$

Answer: C

17. Two forces $\vec{F}_{1}=500 \mathrm{~N}$ due east and $\vec{F}_{2}=250 \mathrm{~N}$ due north have their common initial point. $\vec{F}_{2}-\vec{F}_{1}$ is
A. $250 \sqrt{5} \mathrm{~N}$
B. 250 N
C. 625 N
D. 750 N

Answer: A

- Watch Video Solution

18. The vector sum of the forces of 10 newton and 6 newton can be:
A. 2 N
B. 8 N
C. 18 N
D. 20 N

Answer: B

- Watch Video Solution

19. The vector sum of two force P and Q is minimum when the angle θ between their positive directions, is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. π

Answer: D

- Watch Video Solution

20. The vector sum of two vectors \vec{A} and \vec{B} is maximum, then the angle θ between two vector is
A. 0°
B. 30°
C. 45°
D. 60°

Answer: A

- Watch Video Solution

21. if $\vec{P}+\vec{Q}=\vec{P}-\vec{Q}$, then
A. $\theta=0^{\circ}$
B. $\theta=90^{\circ}$
C. $P=0$
D. $Q=0$

Answer: B

- Watch Video Solution

22. The sum and difference of two perpendicular vectors of equal length are ...
A. of equal lengths and have an acute angle between them
B. of equal lengths and have an obtuse angle between them
C. also perpendicular to each other and are of different lengths
D. also perpendicular to each other and are of equal lengths

Answer: D

D Watch Video Solution

23. A child pulls a box with a force of 200 N at an angle of 60° above the horizontal. Then the horizontal and vertical components of the force are-

A. 173.2 N, 175 N
B. $86.6 \mathrm{~N}, 100 \mathrm{~N}$
C. $100 \mathrm{~N}, 86.6 \mathrm{~N}$
D. $100 \mathrm{~N}, 0 \mathrm{~N}$

Answer: A

Watch Video Solution

24. In a two dimensional motion of a particle, the particle moves from point A, with position vector \vec{r}_{1} to point B , with position vector \vec{r}_{2}. If
the magnitudes of these vectors are, respectively, $r_{1}=3$ and $r_{2}=4$ and the angles they make with the x-axis are $\theta_{1}=75^{\circ}$ and $\theta_{2}=15^{\circ}$, respectively, then find the magnitude of the displacement vector.

A. $\sqrt{3}$
B. $\sqrt{13}$
C. $\sqrt{5}$
D. $\sqrt{1}$

Answer: B

25. Two vectors A and B lie in $X-Y$ plane. The vector B is perpendicular to vector A . If $A=\hat{i}+\hat{j}$, then B may be -
A. $\hat{i}-\hat{j}$
B. $-\hat{i}+\hat{j}$
C. $-2 \hat{i}+2 \hat{j}$
D. Any of the above

Answer: D

- Watch Video Solution

26. Two constant forces $F_{1}=2 \hat{i}-3 \hat{j}+3 \hat{k}(N)$ and $F_{2}=\hat{i}+\hat{j}-2 \hat{k}(N)$ act on a body and displace it from the position $r_{1}=\hat{i}+2 \hat{j}-2 \hat{k}(m)$ to the position $r_{2}=7 \hat{i}+10 \hat{j}+5 \hat{k}(m)$. What is the work done
A. 9 Joule
B. 41 Joule
C. -3 Joule
D. None of these

Answer: A

D Watch Video Solution

27. The two vectors $A=2 \hat{i}+\hat{j}+3 \hat{k}$ and $B=7 \hat{i}-5 \hat{j}-3 \hat{k}$ are -
A. parallel
B. perpendicular
C. anti-parallel
D. none of these

Answer: B

28. The angle made by the vector $\vec{A}=2 \hat{i}+3 \hat{j}$ with Y-axis is
A. $\tan ^{-1} 3 / 2$
B. $\tan ^{-1} 2 / 3$
C. $\sin ^{-1} 2 / 3$
D. $\cos ^{-1} 3 / 2$

Answer: B

- Watch Video Solution

29. A vector perpendicular to $(4 \hat{i}+3 \hat{j})$ is -
A. $4 \hat{i}-3 \hat{j}$
B. $7 \hat{k}$
C. $6 \hat{i}$
D. $3 \hat{i}-4 \hat{j}$

Answer: C

- Watch Video Solution

30. The vectors $P=2 \hat{i}+b \hat{j}+2 \hat{k}$ and $Q=\hat{i}+\hat{j}+\hat{k}$ will be perpendicular if -
A. $b=0$
B. $b=1$
C. $b=2$
D. $b=-4$

Answer: D

- Watch Video Solution

31. A vector \vec{A} points vertically upward and \vec{B} points towards north. The vector produce $\vec{A} \times \vec{B}$ is
A. along west
B. along east
C. zero
D. vertically downward

Answer: A

- Watch Video Solution

32. The linear velocity of a rotating body is given by $v=\omega \times r$, where ω is the angular velocity and r is the radius vector. The angular velocity of a $\operatorname{body} \omega=\hat{i}-2 \hat{j}+2 \hat{k}$ and their radius vector $r=4 \hat{j}-3 \hat{k},|v|$ is -
A. $\sqrt{29}$ units
B. 31 units
C. $\sqrt{37}$ units
D. $\sqrt{41}$ units

Answer: A

- Watch Video Solution

33. Vectors \vec{A}, \vec{B} and \vec{C} are shown in figure. Find angle between

(i) \vec{A} and \vec{B}
(ii) \vec{A} and \vec{C}
(iii) \vec{B} and \vec{C}.
34. The magnitude of scalar product of two vectors is 8 and of vector product is $8 \sqrt{3}$. The angle between them is:
A. 30°
B. 60°
C. 120°
D. 150°

Answer: B

- Watch Video Solution

35. Which of the following sets of displacements might be capable of bringing a car to its returning point ?
A. 5, 10, 30 and 50 km
B. 5, 9, 9 and 16 km
C. $40,40,90$ and 200 km
D. $10,20,40$ and 90 km

Answer: B

- Watch Video Solution

36. Match the statements given in column-I with statements given in column-II

> Column - I
(A) If $|\vec{A}|=|\vec{B}|$ and $|\vec{A}|$ then angle between \vec{A} and \vec{B} is
(B) Magnitude of resultant of two forces
(q) 120°
$\left|\vec{F}_{1}\right|=8 N$ and $\left|\vec{F}_{2}\right|=4 N$ may be
(C) Angle between $\vec{A}=2 \hat{i}+2 \hat{j} \& \vec{B}=3 \hat{k}$ is $\quad(r) 12 N$
(D) Magnitude of resultant of vectors
(s) $\sqrt{14}$
$\vec{A}=2 \hat{i}+\hat{j} \& \vec{B}=3 \hat{k}$ is

- Watch Video Solution

1. A vector is not changed if -
A. It is rotated through an arbitrary angle
B. It is multiplied by an arbitrary scale
C. It is cross multiplied by a unit vector
D. It is a slide parallel to itself

Answer: D

- Watch Video Solution

2. If the resultant of two forces of magnitudes P and Q acting at a point at an angle of 60° is $\sqrt{7} Q$, then P / Q is
A. 1
B. $3 / 2$
C. 2
D. 4

Answer: C

- Watch Video Solution

3. The resultant of \vec{A} and \vec{B} makes an angle α with \vec{A} and $\vec{\beta}$ with \vec{B}, then -
A. $\alpha<\beta$
B. $\alpha<\beta$ if $A<B$
C. $\alpha<\beta$ if $A>B$
D. $\alpha<\beta$ if $A=B$

Answer: C

- Watch Video Solution

4. A person moves 30 m north. Then 30 m east, then $30 \sqrt{2} \mathrm{~m}$ south-west.

His displacement from the original position is
A. 14 m south-west
B. 28 m south
C. 10 m west
D. 15 m East

Answer: C

- Watch Video Solution

5. A man moves towards 3 m north then 4 m towards east and finally 5 m towards 37° south of west. His displacement from origin is :-
A. $5 \sqrt{2} \mathrm{~m}$
B. 0 m
C. 1 m
D. 12 m

Answer: B

6. I started walking down a road to day-break facing the sun. After walking for some-time, I turned to my left, then I turned to the right once again. In which direction was I going then ?
A. East
B. North-west
C. North-east
D. South

Answer: A

- Watch Video Solution

7. How many minimum number of vectors in different planes can be added to give zero resultant?
A. 2
B. 3
C. 4
D. 5

Answer: C

D Watch Video Solution

8. What are minmum number or unequal fores whose vector sum is zero ?
A. two
B. three
C. four
D. any

Answer: B

9. If $|\vec{A}-\vec{B}|=|\vec{A}|=|\vec{B}|$, the angle between \vec{A} and \vec{B} is
A. 60°
B. 0°
C. 120°
D. 90°

Answer: C

- Watch Video Solution

10. Two vectors \vec{A} and \vec{B} are such that $\vec{A}+\vec{B}=\vec{A}-\vec{B}$. Then
A. $\vec{A}+\vec{B}=0$
B. $\vec{A}-\vec{B}=0$
C. $\vec{A}=0$
D. $\vec{B}=0$

Answer: D

- Watch Video Solution

11. Find the vector sum of N coplanar forces, each of the magnitude F ,when each force makes an angle of $2 \pi / N$ with that preceding it.
A. F
B. NF
C. $\frac{N F}{2}$
D. Zero

Answer: D

- Watch Video Solution

12. Three forces P, Q and R are acting at a point in the plane. The angle between $P \& Q$ and $Q \& R$ are $150^{\circ} \& 120^{\circ}$ respectively, then for equilibrium, forces $P, Q \& R$ are in the ratio
A. 1:2:3
B. 1:2: $\sqrt{3}$
C. 3:2:1
D. $\sqrt{3}: 2: 1$

Answer: D

- Watch Video Solution

13. Two forces, each of magnitude F have a resultant of the same magnitude F. The angle between the two forces is
A. 45°
B. 120°
C. 150°
D. 60°

Answer: B

- Watch Video Solution

14. The resultant of two forces, one double the other in magnitude is perpendicular to the smaller of the two forces. The angle between the two forces is
A. 150°
B. 90°
C. 60°
D. 120°

Answer: D

15. A particle is moving on a circular path with constant speed v then the change in its velocity after it has desceibed an angle of 60° will be
A. $v \sqrt{2}$
B. $v \sqrt{3}$
C.v
D. 2 v

Answer: C

- Watch Video Solution

16. A man moves towards 3 m north then 4 m towards east and finally 5 m towards 37° south of west. His displacement from origin is :-
A. $5 \sqrt{2} \mathrm{~m}$
B. 0 m
C. 1 m
D. 12 m

Answer: B

D Watch Video Solution

17. A particle is acted upon by the forces
$\vec{F}_{1}=2 \hat{i}+a \hat{j}-3 \hat{k}, \vec{F}_{2}=5 \hat{i}+c \hat{j}-b \hat{k}, \vec{F}_{3}=b \hat{i}+5 \hat{j}-7 \hat{k}, \vec{F}_{4}=c \hat{i}+$
. Find the values of the constants a, b, c in order that the particle will be in equilibrium.

- Watch Video Solution

18. A vector \vec{A} of length 10 units makes an angle of 60° with a vector \vec{B} of length 6 units. Find the magnitude of the vector difference $\vec{A}-\vec{B}$ \& the angles with vector \vec{A}.
19. The component of a vector is
A. always less than its magnitude
B. always greater than its magnitude
C. always equal to its magnitude
D. none of these

Answer: D

- Watch Video Solution

20. The magnitude of the vector product of two vectors \vec{A} and \vec{B} may be -
(a) Greater than $A B$
(b) Equal to $A B$
(c) Less than $A B$
(d) Equal to Zero
A. a, b, c
B. b, c, d
C. a, c, d
D. $\mathrm{a}, \mathrm{b}, \mathrm{d}$

Answer: B

- Watch Video Solution

21. Three vectors \vec{A}, \vec{B} and \vec{C} satisfy the relation $\vec{A} \cdot \vec{B}=0$ and $\vec{A} \cdot \vec{C}=0$. The vector \vec{A} is parallel to
A. \vec{B}
B. \vec{C}
c. $\vec{B} \cdot \vec{C}$
D. $\vec{B} \times \vec{C}$

Answer: D

22. The angle between the two vectors
$-2 \hat{i}+3 \hat{j}+\hat{k}$ and $\hat{i}+2 \hat{j}-4 \hat{k}$ is -
A. 0°
B. 90°
C. 180°
D. None

Answer: B

- Watch Video Solution

23. A body constrained to move in y direction is subjected to a force given by $\vec{F}=(-2 \hat{i}+15 \hat{j}+6 \hat{k}) \mathrm{N}$. What is the work done by this force in moving the body through a distance of 10 m along y -axis ?
A. 190 J
B. 160 J
C. 150 J
D. 20 J

Answer: C

- Watch Video Solution

24. If the angle between the unit vectors \widehat{a} and \hat{b} is 60°, the $|\widehat{a}-\hat{b}|$ is:-
A. 0
B. 1
C. 2
D. 4

Answer: B

25. A vector \vec{A} points vertically upward and \vec{B} points towards north. The vector produce $\vec{A} \times \vec{B}$ is
A. along west
B. along east
C. zero
D. vertically downward

Answer: A

Watch Video Solution

26. What is the angle between $(\vec{P}+\vec{Q})$ and $(\vec{P} \times \vec{Q})$
A. 0
B. $\frac{\pi}{2}$
C. $\frac{\pi}{4}$
D. π

D Watch Video Solution

27. Which of the following is not true ? If $\vec{A}=3 \hat{i}+4 \hat{j}$ and $\vec{B}=6 \hat{i}+8 \hat{j}$ where A and B are the magnitudes of \vec{A} and \vec{B} ?
A. $\vec{A} \times \vec{B}=0$
B. $\frac{A}{B}=\frac{1}{2}$
C. $\vec{A} \cdot \vec{B}=48$
D. $A=5$

Answer: C

- Watch Video Solution

28. For the any two vecrtors \vec{A} and \vec{B}, if $\vec{A} \cdot \vec{B}=|\vec{A} \times \vec{B}|$, the magnitude of $\vec{C}=\vec{A}+\vec{B}$ is equal to
A. $\sqrt{A^{2}+B^{2}}$
B. $A+B$
C. $\sqrt{A^{2}+B^{2}+\frac{A B}{\sqrt{2}}}$
D. $\sqrt{A^{2}+B^{2}+\sqrt{2} A B}$

Answer: D

Watch Video Solution

29. If vector $\vec{A}=\hat{i}+2 \hat{j}+4 \hat{k}$ and $\vec{B}=5 \hat{i}$ represent the two sides of a triangle, then the third side of the triangle can have length equal to
A. $\sqrt{56}$
B. $\sqrt{21}$
C. 5
D. 6
30. A vector \vec{F}_{1} is along the positive X-axis. If its vectors product with another vector \vec{F}_{2} is zero then \vec{F}_{2} could be
A. $4 \hat{j}$
B. $-(\hat{i}+\hat{j})$
C. $(\hat{j}+\hat{k})$
D. $(-4 \hat{i})$

Answer: D

- Watch Video Solution

31. The unit vector along vector $\hat{i}+\hat{j}+\hat{k}$ is
A. $\sqrt{3}$
B. $\sqrt{2}$
C. 1
D. 0

Answer: C

- Watch Video Solution

32. When two forces of magnitude P and Q are perpendicular to each other, their resultant is of magnitude R. When they are at an angle of 180° to each other their resultant is of magnitude $\frac{R}{\sqrt{2}}$. Find the ratio of P and Q.

- Watch Video Solution

33. If the four forces as shown are in equilibrium Express $\vec{F}_{1} \& \vec{F}_{2}$ in unit vector form.

- Watch Video Solution

Exercise 3

1. If a vector $(2 \hat{i}+3 \hat{j}+8 \hat{k})$ is perpendicular to the vector $(4 \hat{j}-4 \hat{i}+\alpha \hat{k})$, then the value of α is :
A. -1
B. $1 / 2$
C. $-1 / 2$
D. 1

Answer: C

- Watch Video Solution

2. If the angle between the vectors \vec{A} and \vec{B} is θ, the value of the product $(\vec{B} \times \vec{A}) \cdot \vec{A}$ is equal to
A. $B A^{2} \cos \theta$
B. $B A^{2} \sin \theta$
C. $B A^{2} \sin \theta \cos \theta$
D. zero

Answer: D

- Watch Video Solution

3. If $|\vec{A} \times \vec{B}|=\sqrt{3} \vec{A} \cdot \vec{B}$, then the value of $|\vec{A}+\vec{B}|$ is
A. $\left(A^{2}+B^{2}+A B\right)^{1 / 2}$
B. $\left(A^{2}+B^{2}+\frac{A B}{\sqrt{3}}\right)^{1 / 2}$
C. $A+B$
D. $\left(A^{2}+B^{2}+\sqrt{3} A B\right)^{1 / 2}$

Answer: A

- Watch Video Solution

4. Square of the resultant of two forces of equal magnitude is equal to three times the product of their magnitude. The angle between them is
A. 0°
B. 45°
C. 60°
D. 90°

Answer: C

- Watch Video Solution

5. A particle moves with a velocity $v=(5 \hat{i}-3 \hat{j}+6 \hat{k}) m s^{-1}$ under the influence of a constant force
$F=(10 \hat{i}+10 \hat{j}+20 \widehat{h}) N$, the instantaneous power applied to the particle is.
A. $200 \mathrm{Js}^{-1}$
B. $40 \mathrm{Js}^{-1}$
C. $140 \mathrm{Js}^{-1}$
D. $170 \mathrm{Js}^{-1}$

Answer: C

6. A river is flowing from west to east with a speed of $5 \mathrm{~m} / \mathrm{min}$. A man can swim in still water with a velocity $10 \mathrm{~m} / \mathrm{min}$. In which direction should the man swim so as to take the shortest possible path to go to the south.
A. 30° east of south
B. 60° east of south
C. 60° west of south
D. 30° east of north

Answer: A

- Watch Video Solution

7. The vectors for origin to the points A and B are $A=3 \hat{i}-6 \hat{j}+2 \hat{k}$ and $B=2 \hat{i}+\hat{j}-2 \hat{k}$, respectively. The area of the $\triangle O A B$ is
A. $\frac{5}{2} \sqrt{17}$
B. $\frac{2}{5} \sqrt{17}$
C. $\frac{3}{5} \sqrt{17}$
D. $\frac{5}{3} \sqrt{17}$

Answer: A

- Watch Video Solution

8. Minimum number of vectors of unequal magnitudes which can give zero resultant are
A. two
B. three
C. four
D. more than four
9. A police jeep is chasing with, velocity of $45 \mathrm{~km} / \mathrm{h}$ a thief in another jeep moving with velocity $153 \mathrm{~km} / \mathrm{h}$. Police fires a bullet with muzzle velocity of $180 \mathrm{~m} / \mathrm{s}$. The velocity it will strike the car of the thief is.
A. $150 \mathrm{~ms}^{-1}$
B. $27 m s^{-1}$
C. $450 \mathrm{~ms}^{-1}$
D. $250 \mathrm{~ms}^{-1}$

Answer: A

Watch Video Solution

10. The vector \vec{A} and \vec{B} are such that $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$. The angle between vectors \vec{A} and \vec{B} is -
A. 90°
B. 60°
C. 75°
D. 45°

Answer: A

- Watch Video Solution

11. \vec{A} and \vec{B} are two vectors and θ is the angle between them, if $|\vec{A} \times \vec{B}|=\sqrt{3}(\vec{A} \cdot \vec{B})$ the value of θ is:-
A. 90°
B. 60°
C. 45°
D. 30°

Watch Video Solution

12. A car travles 6 km towards north at an angle of 45° to the east and then travles distance of 4 km towards north at an angle of 135° to east (figure). How far is the point from the starting point? What angle does the straight line joining its initial and final position makes with the east?

A. $\sqrt{50} \mathrm{~km}$ and $\tan ^{-1}(5)$
B. $\sqrt{10} \mathrm{~km}$ and $\tan ^{-1}(\sqrt{5})$
C. $\sqrt{5} 2 \mathrm{~km}$ and $\tan ^{-1}(5)$
D. $\sqrt{5} 2 k m$ and $\tan ^{-1}(\sqrt{5})$

Answer: C

- Watch Video Solution

13. Two forces of $12 N$ and $8 N$ act upon a body. The resultant force on the body maximum value of
A. 4 N
B. zero
C. 20 N
D. 8 N

Answer: C

14. A proton in a cyclotron changes its velocity from $30 \mathrm{kmh}^{-1}$ the north of $45 \mathrm{kmh}^{-1}$ the east in 20 s . What is the magnitude of average acceleration during this time ?
A. $2.5 k m s^{-2}$
B. $12.5 \mathrm{~km}^{-2}$
C. $22.5 \mathrm{kms}^{-2}$
D. $32.5 \mathrm{~km}^{-2}$

Answer: A

- Watch Video Solution

15. Rain is falling vertically downwards with a speed of $4 \mathrm{kmh}^{-1}$. A girl moves on a straight road with a velocity of $3 k m h^{-1}$. The apparent velocity of rain with respect to the girl is.
A. $1 k m h^{-1}$
B. $3 k m h^{-1}$
C. $4 k m h^{-1}$
D. $5 k m h^{-1}$

Answer: D

- Watch Video Solution

16. A train of 150 m length is going toward north direction at a speed of $10 \mathrm{~ms}^{-1}$. A parrot flies at a speed of $5 m s^{-1}$ toward south direction parallel to the railway track. The time taken by the parrot to cross the train is equal to.
A. 12 s
B. 8 s
C. 15 s
D. 10 s

Answer: D

- Watch Video Solution

17. Three are N coplancar vectors each of magnitude V Each vector is inclined to the preceding vector atangle $\frac{2 \pi}{N}$ What is the magnitude of their resultant?
A. $\frac{V}{N}$
B. V
C. Zero
D. $\frac{N}{V}$

Answer: C

18. A particle is moving such that its position coordinates (x, y) are
$(2 m, 3 m)$ at time $t=0,(6 m, 7 m)$ at time $t=2 s$, and $(13 m, 14 m)$ at time $t=5 s$.

Average velocity vector $\left(\vec{V}_{a v}\right)$ from $t=0$ to $t=5 s$ is
A. $\frac{1}{5}(13 \hat{i}+14 \hat{j})$
B. $\frac{7}{3}(\hat{i}+\hat{j})$
C. $2(\hat{i}-\hat{j})$
D. $\frac{11}{5}(\hat{i}+\hat{j})$

Answer: D

- Watch Video Solution

