©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - ARIHANT PHYSICS

(HINGLISH)

HEAT TRANSFER

Heat Transfer

1. Four metal rods each of length L and cross
sectional area A are joined at point M. Thermal
conductivities of MA, MB and MD are equal and that of MC is thrice that of MA. The end points A, B, C and D are kept in large reservoirs. Heat folws into the junction from B at a rate of $P\left(J s^{-1}\right)$ and C from at a rate of $3 P$. Heat flows out of D at a rate of 5P.
(a) Find the relation between temperatures of points A, B and C.
(b) Find temperature of D if temperature of A
and M and T_{A} and T_{M} respectively.

D Watch Video Solution
2. The two ends of a uniform metallic rod are maintained at $100^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ as shown in
the figure. Assume that end of the rod at
$100^{\circ} C$ is at $\mathrm{x}=0$ and the other end at $0^{\circ} C$ is at $x=L$. Plot the variation of temperature as x changes from 0 to L in steady state. Consider two cases.
(a) The rod is perfectly lagged.
(b) The rod is not lagged and surrounding is at $0^{\circ} C$.

D Watch Video Solution

3. The ends of a metallic bar are maintained at different temperature and there is no loss/gain of heat from the sides of the bar due to conduction or radiation. In the steady state
the temperature variation along the length of
the bar is a shown in the figure what do you think about the cross sectional area of the

- Watch Video Solution

4. A thick spherical shell of inner and outer radii r and R respectively has thermal conductivity $k=\frac{\rho}{x^{n}}$, where ρ is a constant and x is distance from the centre of the shell.

The inner and outer walls are maintained at temperature T_{1} and $T_{2}\left(<T_{1}\right)$
(a) Find the value of number n (call it n_{0}) for which the temperature gradient remains constant throughout the thickness of the shell.
(b) For $n=n_{0}$, find the value of x at which the temperature is $\frac{T_{1}+T_{2}}{2}$
(c) For $n=n_{0}$, calculate the rate of flow of heat through the shell.

- Watch Video Solution

5. Three bars of aluminium, brass and copper are of equal length and cross section. The three pieces are joined together as shown in
A, B and C and the ends are maintained at $100^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$. The thermal conductivities of aluminium, brass and copper are in ratio $2: 1$:
6. Assume no heat loss through curved surface
of the bar and that the system is in steady state.
(a) In which of the three cases (A, B or C) the temperature difference across aluminium bar will be maximum?
(b) Draw a graph showing variation of temperature from one end of the bar to another in case B.
$100^{\circ} \mathrm{C}$ \square $0^{\circ} \mathrm{C}$ (A)
$100^{\circ} \mathrm{C}$ \square
$100^{\circ} \mathrm{C}$ \square Brass $0^{\circ} \mathrm{C}$
(C)

D Watch Video Solution

6. A lake is covered with ice 5 cm thick and the
atmospheric temperature above the ice is
$-10^{\circ} C$. At what rate (in $\mathrm{cm} / \mathrm{hour}$) will the ice
layer thicken? Thermal conductivity of ice
$=0.005$ cgs unit, density of ice $=0.9 g /$ and

latent heat of fusion of ice $=80 \mathrm{cal} / \mathrm{g}$.

A. $0.5 \mathrm{~cm} \mathrm{hr}^{-1}$
B. $1.5 \mathrm{~cm} \mathrm{hr}^{-1}$
C. $2.5 \mathrm{~cm} \mathrm{hr}^{-1}$
D. $3.5 \mathrm{~cm} \mathrm{hr}^{-1}$

Answer: A

D Watch Video Solution

7. A liquid having mass $m=250 \mathrm{~g}$ is kept warm in a vessel by use of an electric heater.

The liquid is maintained at $50^{\circ} \mathrm{C}$ when the power supplied by heater is 30 watt and surrounding temperature is $20^{\circ} \mathrm{C}$. As the heater is switched off, the liquid starts cooling and it was observed that it took 10 second for temperature to fall down from $40^{\circ} \mathrm{C}$ to $39.9^{\circ} \mathrm{C}$. Calculate the specific heat capacity of the liquid. Assume Newton's law of cooling to be applicable.
8. (i) A cylindrical pipe of length L has inner and outer radii as a and b respectively. The inner surface of the pipe is at a temperature
T_{1} and the outer surface is at a lower temperature of T_{2}. Calculate the radial heat current if conductivity of the mate- rial is K.
(ii) A cylindrical pipe of length L has two layers of material of conduc- tivity K_{1} and K_{2}. (see figure). If the inner wall of the cylinder is maintained at T_{1} and outer surface is at
$T_{2}\left(<T_{1}\right)$, calcu- late the radial rate of heat
flow.

- Watch Video Solution

9. A 3 mm diameter and 5 m long copper wire
is insu- lated using a 2 mm thick plastic cover
whose thermal con- ductivity is
$K=0.15 \mathrm{Wm}^{-1} K^{-1}$. The wire has a
potential difference of 10 V between its ends
and the current through it is 8 A . The outer
surface of the wire is at $30^{\circ} \mathrm{C}$. Neglect convection.
(i) Calculate the temperature at the interface of the wire and the plastic cover.
(ii) Determine whether doubling the thickness of the plastic cover will increase or decrease the interface temperature. [Given $\ln (2.33)=0.85]$
10. A potato at initial temperature T_{0} is placed inside a hot convection oven maintained at a constant \quad temperature $\quad T_{1}(>T-(0))$.

Assume that the potato receives heat only because of convection phenomenon and the rate at which it receives heat is given as hA $\left(T_{1}-T\right)$ where h is a constant, A is surface area of the potato and T is instantaneous temperature of the potato. Mass and specific heat capacity of the potato are m and s respectively. In how much time the potato will
be at a temperature $T_{2}=\frac{T_{0}+T_{1}}{2}$? Assume no change in volume of the potato.

D Watch Video Solution

11. What is emissivity of a perfectly reflecting surface?

D View Text Solution

12. A body is in thermal equilibrium with
surrounding. Absorptive power of the surface
of the body is $\mathrm{a}=0.5$. E is the radiant energy
incident in unit time on the surface of the body. How much energy propagates from its surface in unit time?

D Watch Video Solution

13. A copper sphere is maintained at 500 K temperature by connecting it to a battery of emf $V_{1}=100 \mathrm{~V}$ (see figure). The surrounding temperature is 300 K . When half the surface of the copper sphere is completely blackened (so
that the surface behaves almost like a black body), a cell of emf $V_{2}=141 \mathrm{~V}$ is needed to maintain its temperature at 500 K . Calculate the emissivity of the copper surface.

- Watch Video Solution

14. Stefan's contain (s) derives from other known con- stant of nature, viz. Boltzmann
constant, (k) planck's con- stant (h) and speed
of light in vacuum (c). Value of the constant is
$\sigma=5.67 \times 10^{-8} J s^{-1} m^{-2} K^{-4}$

If speed of light were 2% more than its present value, how much different (in percentage) the value of σ would have been?

- Watch Video Solution

15. An iron ball is heated to $727^{\circ} C$ and it appears bright red. The plot of energy density distribution versus wavelength is as shown.

The graph encloses an area A_{0} under it. Now the ball is heated further and it appears bright yellow. Find the area (A) of the energy density graph now.

$E \lambda \uparrow$

If the given that wavelengths for red and yellow light are $8000 \AA$ and $6000 \AA$ respectively.
16. A solid cylinder and a sphere of same material are suspended in a room turn by turn, after heating them to the same temperature. The cylinder and the sphere have same radius and same surface area.
(a) Find the ratio of initial rate of cooling of the sphere to that of the cylinder.
(b) Will the ratio change if both the sphere and the cylinder are painted with a thin layer of lamp black?
17. A block body at temperature T radiates same amount of energy in the wavelength range λ_{1} to $\lambda_{1}+\Delta \lambda$ and λ_{2} to $\lambda_{2}+\Delta \lambda$. It is given that $\Delta \ll \lambda_{1}$ or λ_{2} and $\lambda_{2}>\lambda_{1}$. Prove that $\frac{b}{\lambda_{1}}>T>\frac{b}{\lambda_{2}}$ where b is Wien's constant.

- Watch Video Solution

18. Majority of radiation from the Sun is in visible and near infra-red ($0.7 t o 4 \mu m$) region.

What can you say about the composition of the radiation from the Earth?

D Watch Video Solution

19. A metal ball of mass 1.0 kg is kept in a room
at $15^{\circ} \mathrm{C}$. It is heated using a heater. The heater supplies heat to the ball at a constant rate of 24 W . The temperature of the ball rises
as shown in the graph. Assume that the rate of heat loss from the surface of the ball to the surrounding is proportional to the temperature difference between the ball and the surrounding. Calculate the rate of heat loss from the ball when it was at temperature of $20^{\circ} \mathrm{C}$.

20. A hot body is suspended inside a room
that is maintained at a constant temperature.

The temperature difference between the body
and the surrounding becomes half in a time
interval t_{0}. In how much time the temperature difference between the body and the surrounding will becomes $\frac{1}{4}$ the original value?
21. Newton's law of cooling says that the rate of cooling of a body is proportional to the temperature difference between the body and its surrounding when the difference in temperature is small.
(a) Will it be reasonable to assume that the rate of heating of a body is proportional to temperature difference between the
surrounding and the body (for small difference in temperature) when the body is
placed in a surrounding having higher temperature than the body?
(b) Assuming that our assumption made in (a)
is correct estimate the time required for a cup of cold coffee to gain temperature from $10^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}$ when it is kept in a room having temperature $25^{\circ} \mathrm{C}$. It was observed that the temperature of the cup increases from $5^{\circ} C$ to $10^{\circ} C$ in 4 min

D Watch Video Solution

22. "Blue hot is hotter than red hot". Explain.
23. A planet of radius r_{0} is at a distance r from
the sun $\left(r \gg r_{0}\right)$. The sun has radius R .
Temperature of the planet is T_{0}, and that of
the surface of the sun is T_{s}. Calculate the temperature of another planet whose radius is
$2 r_{0}$ and which is at a distance $2 r$ from the sun.
Assume that the sun and the planets are black bodies.
24. A star having radius R has a small planet revolving around it at a distance $\mathrm{d}(\gg R)$.

The star and the planet both behave like black bodies and radiate maximum amount of energy at wavelength λ_{s} and λ_{p} respectively.
(i) Find d in terms of other given parameters.
(ii) Show that $\lambda_{p} \gg \lambda_{s}$

D Watch Video Solution

25. A 20 mm diameter copper pipe is used to
carry heated water. The external surface of the pipe is at $T=80^{\circ} \mathrm{C}$ and its surrounding is at
$T_{0}=20^{\circ} \mathrm{C}$. The outer surface of the pipe radiates like a black body and also loses heat due to convection. The convective heat loss per unit area per unit time is given by $h\left(T-T_{0}\right)$ where $\mathrm{h}=6 \mathrm{~W}\left(m^{2} K\right)^{-1}$. Calculate
the total heat lost by the pipe in unit time for one meter of its length.
26. Solar constant, I_{s} is defined as intensity of solar radiation incident on the Earth. Its value is close to $1.4 k W / m^{2}$. Nearly 68% of this energy is absorbed by the Earth. The average temperature of Earth is about 290 K . Radius of the Earth is $R_{e}=6000 \mathrm{~km}$ and that of the Sun is $R_{s}=700,000 \mathrm{~km}$. Earth - Sun distance is $r=1.5 \times 10_{8} \mathrm{~km}$. Assume Sun to be a black body.
(a) Estimate the effective emissivity of earth.
(b) Find the power of the sun.
(c) Estimate the surface temperature of the Sun.

D Watch Video Solution

27. A tapering rod of length L has cross sectional radii of a and $b(<a)$ at its two ends. Its thermal conductivity is k. The end with radius a is maintained at a higher temperature T_{1} and the other end is maintained at a lower temperature T_{2}. The curved surface is insulated.
(i) At which of the two points-1 and 2shown in the figure will the temperature gradient be higher?
(ii) Calculate the thermal resistance of the rod.

- Watch Video Solution

28. A thick cylindrical shell made of material of
thermal conductivity k has inner and outer
radii r and R respectively and its length is L.

When the curved surface of the cylinder are
lagged (i.e., given insulation cover) and one end is maintained at temperature T_{1} and the other end is maintained at $T_{2}\left(<T_{1}\right)$, the heat current along the length of the cylinder is H . In another experiment the two ends are lagged and the inner wall and outer wall are maintained at T_{1} and T_{2} respectively. Find the
radial heat flow in this case.

D Watch Video Solution
29. A double pan window used for insulating a room thermally from outside consists of two glass sheets each of area $1 \mathrm{~m}^{2}$ and thickness
$0.01 m$ separated by 0.05 m thick stagnant air space. In the steady state, the room-glass interface and the glass-outdoor interface are at constant temperatures of $27^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ respectively. The thermal conductivity of glass is $0.8 W m^{-1} K^{-1}$ and of air $0.08 W m^{-1} K^{-1}$.

Answer the following questions.
(a) Calculate the temperature of the inner glass-air interface.
(b) Calculate the temperature of the outer glass-air interface.
(c) Calculate the rate of flow of heat through the window pane.

- Watch Video Solution

30. The container A contains ice at $O^{\circ} \mathrm{C}$. A conducting uniform rod $P Q$ of length $4 R$ is used to transfer heat to the ice in the container. The end P of the rod is maintained at $100^{\circ} C$ and the other end Q is kept inside
container A. The complete ice melts in 23
minutes. In another experiment, two
conductors in shape of quarter circle of radii $2 R$ and R are welded to the conductor $P Q$ at M and N respectively and their other ends are inserted inside the container A. All conductors are made of same material and have same cross sectional area. Once again the end P is maintained at $100^{\circ} \mathrm{C}$ and this time the com-
plete ice melts in t min- ute. Find t . Assume no heat loss from the curved surface of the rods.
[Take $\pi \cong 3.0$]

- Watch Video Solution

31. Two identical adiabatic containers of negligible heat capacity are connected by conducting rod of length L and cross sectional
area A. Thermal conductivity of the rod is k and its curved cylindrical surface is well insulated from the surrounding. Heat capacity of the rod is also negligible. One container is
filled with n moles of helium at temperature
T_{1} and the other one is filled with equal number of moles of hydrogen at temperature
$T_{2}\left(<T_{1}\right)$. Calculate the time after which the temperature difference between two gases
will becomes half the initial difference.

- Watch Video Solution

32. A copper slab is 2 mm thick. It is protected by a 2 mm layer of stainless steel on both sides. The temperature on one side of this composite slab is $400^{\circ} \mathrm{C}$ and $200^{\circ} \mathrm{C}$ on the other side. Value of thermal conductivities are-
$k_{c u}=400 W m^{-1} K^{-1}$
$k_{s}=16 W^{-1} K^{-1}$
(a) Just by knowing that thermal conductivity
of steel is much less than copper, find (approximately) the temperature of the copper slab.
(b) Plot the variation of temperature across the thickness of the composite wall.

Watch Video Solution

33. A steel plate is $0.3 m$ long, $0.1 m$ wide and
$0.012 m$ thick. The plate is placed on a heating
plate of identical size maintained at $100^{\circ} \mathrm{C}$.
The heating plate is receiving energy through
a 50 W heater. The heating plate losses heat
only to the steel plate which is well insulated
from all sides except at the top. The top
surface of the steel plate is exposed to an
airstream of temperature $20^{\circ} \mathrm{C}$. The top surface of the steel plate radiates like a black body. Calculate the rate at which the top surface looses heat due to convection. The
surface of steel plate in contact with heating
plate is at $100^{\circ} \mathrm{C}$. Thermal conductivity of steel $k=16 \mathrm{Wm}^{-1} \mathrm{~K}^{-1} \quad$ Stefan's constant

$$
=5.67 \times 10^{-8} W m^{-2} K^{-4}
$$

D Watch Video Solution

34. A straight cylindrical wire is connected to a battery. The wire is maintained at constant temperature of T_{1} when the room temperature is $T_{0}\left(<T_{1}\right)$. The wire is disconnected from the battery and half of it is cut-off. The remaining half of the wire is connected to the same battery in the same room. Find the constant temperature $\left(T_{2}\right)$ attained by the wire. Assume that wire loses
heat to the atmosphere through radiation from curved surface only.
35. A spherical shell is kept in an atmosphere
at temperature T_{0}. The wavelength
corresponding to maximum intensity of
radiation for the shell is λ_{0}. A point source of
constant power is switched on inside the shell.

The power radiated by the source is
$P=04 \sigma S e T_{0}^{4}$ where S , e and σ are outer
surface area of the shell, emissivity of the outer surface of the shell and Stefan's constant respectively. Calculate the new wavelength (λ) corresponding to the
maximum intensity of radiation from the shell.

Assume that change in temperature (ΔT) of
the shell is small compared to the ambient temperature T_{0}.

D Watch Video Solution

36. A body at a temperature of $50^{\circ} \mathrm{C}$ cools to
$49^{\circ} C$ in time Δt when it is placed in a room maintained at $-3^{\circ} C$. The same body cools
from $50^{\circ} C$ to $49^{\circ} C$ in time Δt^{\prime} when placed in a room that is maintained at $24^{\circ} C$. Find
Δt^{\prime} in terms of Δt. Assume heat loss through
radiation only and the specific heat capacity of
the body remains constant with change in temperature.

D Watch Video Solution

37. A plane surface A is at a constant temperature $T_{1}=1000 K$. Another surface B parallel to A, is at a constant lower temperature $T_{2}=300 K$. There is no medium in the space between two surfaces. The rate of
energy transfer from A to B is equal to $r_{1}\left(\frac{J}{s}\right)$. In order to reduce rate of heat flow due to radiation, a heat shield consisting of two thin plates C and D, thermally insulated from each other, is placed between A and B in parallel. Now the rate of heat transfer (in steady state) reduces to r_{2}. Neglect any effect due to finite size of the surfaces, assume all surfaces to be black bodies and take Stefan's constant $\sigma=6 \times 10^{-} 8 \mathrm{Wm}^{-2} K^{-4}$. Area of all surfaces $A=1 m^{2}$.
(i) Find r^{1}
(ii) Find the ratio $\frac{r^{2}}{r^{1}}$
(iii)Find the ratio $\frac{r^{E}(2)}{r_{1}}$ if temperature of A and B were 2000 K 600 K respectively.

- Watch Video Solution

38. A block is kept in a room which is at $20^{\circ} \mathrm{C}$.

To raise the temperature of the block, heat is
given to it at a constant rate of 600 watt
(using an electric heater). The temperature of
the block rises with time as shown in the graph. The slope of the graph at time $t=0$ is
$3^{\circ} C s^{-1}$. Once the temperature rises to $60^{\circ} C$,
the heater is switched off and another heater
is switched on to maintain the temperature of
the block at $60^{\circ} C$. This new heater supplies
heat at a constant rate of 100 watt. Assume
that heat capacity of the block remains
constant for the range of temperature involved.
(a) Explain why the slope of the given graph is
decreasing with time.
(b) Calculate the heat capacity of the block.
(c) If the 100 W heater is also switched off,
what will be initial rate of cooling of the block?
(d) Assuming that rate of heat loss by the block to the surrounding is proportional to difference in its temperature with
surrounding, calculate the heat radiated per
second by the block when it was at $30^{\circ} \mathrm{C}$.
Temperature $\left({ }^{\circ} \mathrm{C}\right)$

D Watch Video Solution

39. Mass m of a liquid A is kept in a cup and it
is at a temperature of $90^{\circ} \mathrm{C}$. When placed in a room having temperature of $20^{\circ} \mathrm{C}$, it takes 5 min for the temperature of the liquid to drop
to $30^{\circ} C$. Another liquid B has nearly same density as that of A and its sample of mass m kept in another identical cup at $50^{\circ} \mathrm{C}$ takes 5 min for its temperature to fall to $30^{\circ} \mathrm{C}$ when
placed in room having temperature $20^{\circ} \mathrm{C}$. If the two liquids at $90^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ are mixed in a calorimeter where no heat is allowed to leak, find the final temperature of the mixture.

Assume that Newton's law of cooling is applicable for given temperature ranges.

- Watch Video Solution

40. Consider the Sun to be a black body at temperature $T_{S}=5780 K$. Radius of the Sun is $r_{S}=6.96 \times 108 m$. The Earth - Sun distance is $R=1.49 \times 1011 \mathrm{~m}$. Assume that 30% of the solar radiation that hits the earth is scattered back into space without absorption.
(a) Calculate the steady state average temperature of the earth assuming it to be a black body. Take $(0.7)^{\frac{1}{4}}=0.91$
(b) We know that average temperature of earth is $\cong 288 K$. How does this value compare with that obtained in (a)? The difference is due to greenhouse effect.

Comment on the following statement
"Emissivity of earth is reduced more than absorptivity due to green house effect."

D Watch Video Solution

41. A and B are two sphere made of same material. Radius of A is double that of B and initially they are at same temperature (T). Both of them are kept far apart in a room at temperature $T_{0}(<T)$. Calculate the ratio of initial rate of cooling (i.e. rate of fall of
temperature) of sphere A and B if
(a) the spheres are solid,
(b) the spheres are hollow made of thin sheets of same thickness

- Watch Video Solution

42. Heat received by the Earth due to solar
radiations is $1.35 K W m^{-2}$. It is also known
that the temperature of the Earth's crust increases $1^{\circ} C$ for every 30 m of depth. The average thermal conductivity of the Earth's
crust is $K=0.75 J(m s K)^{-1}$ and radius of the Earth is $R=6400 \mathrm{~km}$.
(i) Calculate rate of heat loss by the Earth's core due to conduction.
(ii) Assuming that the Earth is a perfect block body estimate the temperature of its surface.

D Watch Video Solution

43. A truck of mass M has 4 wheels. The
surface area of the metal disc in each wheel is
A. When brakes are applied the brake shoe in
each wheel rubs against the metal disc. This produces heat. We will assume that this heat is used to heat the disc in the wheel only. Each disc has mass m and is made of material of specific heat capacity s. One day the truck was
going downhill on a road inclined at angle θ to
the horizontal. To maintain a constant speed v
the driver had to apply brakes. The only other
dissipative force, apart from the brake force,
on the truck is the air resistance force that is
equal to F. Assume no heating of discs due to
air friction.
(a) Find the initial rate of rise of temperature
of each metal disc after the brakes are applied.
(b) Find the final temperature (T) of the disc assuming that it is a black body and it loses heat only through radia- tion. Take the atmospheric temperature to be T_{0}

D Watch Video Solution

44. A solid body A of mass m and specific heat capacity 's' has temperature $T_{1}=400 K$. It is placed, at time $t=0$, in atmosphere having temperature $T_{0}=300 K$. It cools, following

Newton's law of cooling and its temperature was found to be $T_{2}=350 K$ at time t_{0}. At time
t_{0}, the body A is connected to a large water bath maintained at atmospheric temperature
T_{0}, using a conducting rod of length L , cross
section A and thermal conductivity k. The cross
sectional area A of the connecting rod is small
compared to the overall surface area of body
A. Find the temperature of A at time $t=2 t_{0}$.

D Watch Video Solution

45. A cylindrical rod of length I, thermal conductivity k and area of cross section A has
one end in a furnace maintained at constant temperature. The other end of the rod is exposed to surrounding. The curved surface of the rod is well insulated from the surrounding.

The surrounding temperature is T_{0} and the
furnace is maintained at $T_{1}=T_{0}+\Delta T_{1}$. The exposed end of the rod is found to be slightly warmer then the surrounding with its temperature maintained
$T_{2}=T_{0}+\Delta T_{2}\left[\Delta T_{2} \ll T_{0}\right]$. The exposed
surface of the rod has emissivity e. Prove that
ΔT_{1} is proportional to ΔT_{2} and find the proportionality constant.

- Watch Video Solution

