©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - ARIHANT PHYSICS

(HINGLISH)

MAGNETIC EFFECT OF CURRENT

Magnetic Effect Of Current

1. Sketch the magnetic field lines in xy plane
for a pair of long parallel wires laid along z
direction if-
(a) Both wires carry current in same direction.
(b) Both wire carry current in opposite directions.

D Watch Video Solution

2. A long wire is along $x=0, z=d$ and carries current in positive y direction. Another wire is along $x=y, z=0$ and carries current
in direction making acute angle with positive x direction. Both the wires have current I. Find
the magnitude of magnetic induction at $(0,0,2 d)$.

D Watch Video Solution

3. Six long parallel current carrying wires are perpendicular to the plane of the fig. They pass through the vertices of a regular hexagon of side length a. All wires have same current I. Direction of current is out of the plane of the figure in all the wires except the one passing through vertex F, which has
current directed into the plane of the figure.
Calculate the magnetic induction field at the centre of the hexagon. Also tell the direction of the field.

- Watch Video Solution

4. Two infinitely long parallel wires carry current $I_{1}=8 A$ and $I_{2}=10 \mathrm{~A}$ in opposite directions. The separation between the wires is $d=0.12 \mathrm{~m}$. Find the magnitude of
magnetic field at a point P that is at a perpendicular distance $r_{1}=0.16 \mathrm{~m}$ and $r_{2}=0.20 \mathrm{~m}$ respectively from the wires.

D Watch Video Solution

5. A wire frame is in the shape of a regular polygon of 2016 sides. Each side is of length
$L=1 \mathrm{~cm}$. If a current $I=5.0 \mathrm{~A}$ is given to
the wire frame estimate the magnetic induction field (B) at the centre of the polygon. $\left[\right.$ Take $\left.^{2}=10.08\right]$

Watch Video Solution

6. Two coplanar concentric circular wires made of same material have radius R_{1} and $R_{2}\left(=2 R_{1}\right)$. The wires carry current due to identical source of emf having no internal resistance. Find the ratio of radii of cross section of the two wires if the magnetic induction field at the centre of the circle is zero.
7. An infinitely long wire carrying current I is bent to from a L shaped wire. Let the bend be the origin and the two arms be along x and y direction (see figure). Calculate the magnitude of magnetic field at point P (in first quadrant) whose co-ordinates are (x, y).

- View Text Solution

8. In the figure shown $A B C$ is a circle of radius
a. Arc $A B$ and $A C$ each have resistance R. Arc BC
has resistance 2R. A current I enters at point A
and leaves the circle at B and C. All straight
wires are radial. Calculate the magnetic field at the centre of the circle. Each arc $A B, B C$ and $A C$ subtends 120° at the centre of the circle.

D View Text Solution

9. A square loop of side length L carries a current which produces a magnetic field B_{0} at the centre (O) of the loop. Now the square
loop is folded into two parts with one half being perpendicular to the other (see fig).

Calculate the magnitude of magnetic field at the centre 0 .

D View Text Solution

10. A current I flows in a long straight wire whose cross section is in the shape of a thin quarter ring of radius R. Find the induction of
the magnetic field (B) at point O on the axis.

D View Text Solution

11. The figure shows a long cylinder and its cross section. There are N (N is a large number) wire on the curved surface of the cylinder at uniform spacing and paral- lel to its axis. Each wire has current I and cross sectional radius of wires are small compared to radius R of the cyl- inder. Find magnetic
field at a distance x from the axis of the cylinder for $(a) x<R$ (b) $x>R$

D View Text Solution

12. A straight current carrying wire has current

I directed into the plane of the fig. There is a
line $A B$ of length $2 a$ at a distance a from the wire (see fig.). Find the value of line integral $\int_{A}^{B} \vec{B} \cdot \overrightarrow{d l}$ where \vec{B} represents magnetic field at a point due to current I. Will the value of
integral change if a is changed? Length of line $A B$ is always double that of a.

D View Text Solution

13. There are two separate long cylindrical wires having uniform current density. The radius of one of the wires is twice that of the other. The fig. shows the plot of magni- tude of magnetic field intensity versus radial distance
(r) from their axis. The curved parts of the two
graphs are overlapping. Find the ratio $B_{1}: B_{2}$.

D View Text Solution

14. A long cylindrical conductor of radius R has two cylindrical cavities of diameter R through
its entire length, as shown in the figure. There
is a current I through the conductor distributed uniformly in its entire cross
section (apart from the cavity region). Find magnetic field at point P at a distance $r=2 R$
from the axis of the conductor (see figure).

D View Text Solution

15. A uniform magnetic field exists in vertical direction in a region of space. A long current carrying wire (having current I) is placed horizontally in the region perpendicular to the figure. The resultant field due to superposition of the uniform field and that due to the current is represented by the field lines shown
in the figure. In which direction does the current carrying wire experience the magnetic force?

D View Text Solution

16. A conducting wire of length and mass m is
placed on a horizontal surface with its length
along y direction. There exists a uniform magnetic field B along positive x direction.

With wire carrying a current I in positive y
direc- tion, the least value of force required to
move it in x and y directions are F_{1} and F_{2}.

Now the direction of current in the wire is reversed and the value of two forces becomes
$F^{\prime}{ }_{1}$ and $F^{\prime}{ }_{2}$. Find the ratio of forces

$$
F_{1}: F_{2}: F_{1}^{\prime}: F_{2}^{\prime}
$$

D View Text Solution

17. How will the conductor, carrying current I_{0}
rotate immediately after it is released in
following three cases [consider magnetic force only]
(a) Conductor carrying current I_{0} is placed symmetrically above poles of a fixed U shaped magnet (figure a).
(b) Conductor carrying current 10 is placed symmetrically at a distance from a fixed current (I_{1}) carrying wire (fig. (b))
(c) An insulated circular current carrying wire
is held fixed in vertical plane. Conductor
carrying current I_{0} is in the shape of a circle of
diameter nearly equal to that of the fixed insulated circle. The planes of the two circles
are perpendicular to each other (fig. (c)) with

xy as common diameter

D View Text Solution

18. A straight wire $A B$ of length a is placed at a distance a from an infinitely long straight wire as shown in the figure. Angle θ is 30°. Find the magnetic force on wire $A B$ if it is also given a
current I. Both the wires are in xy plane.

D View Text Solution

19. A dielectric spheri- cal shell of radius R,
having charge Q is rotating with angular speed w about its diameter. Calculate the magnetic dipole moment (M) of the shell.

Write the ratio of M and angular momentum
(L) of the rotating shell. This ratio is called gyro-magnetic ratio. Mass of shell is m.
20. A wooden cubical block of mass m and side a is resting on a horizontal surface. A wire carrying current I, is wrapped around it in from of a square of side a. A uniform magnetic field $\vec{B}=B_{0} \vec{j}$ is switched on in the region.

Neglect the mass of the wire.
(a) At what distance from the x axis does normal force applied by the horizontal surface on the wooden cube act?
(b) What is the maximum value of current for
which the block will not topple?

D View Text Solution

21. A square loop of mass m and side length a lies in xy plane with its centre at origin. It carries a current I. The loop is free to rotate about x axis. A magnetic field $\vec{B}=B_{0}=B_{0} \vec{j}$ is switched on in the region.

Calculate the angular speed acquired by the
loop when it has rotated through 90°. Assume
no other force on the loop apart from the magnetic force.

D View Text Solution

22. Two long parallel wires are along z direction at $x=0$ and $x=d$. The magnetic field along x axis has been plotted in the given figure with field (B) positive when it is in positive y direction. The co-ordinate of point R is $x=-d$. Find co-ordinate of points P and Q
shown in figure.

D View Text Solution

23. A straight wire of length L and radius a has
a cur- rent I. A particle of mass m and charge q approaches the wire moving at a velocity v in a
direction anti parallel to the current. The line of motion of the particle is at a distance r from the axis of the wire. Assume that r is
slightly larger than a so that the magnetic
field seen by the particle is simi- lar to that caused by a long wire. Neglect end effects and assume that speed of the particle is high so that it crosses the wire quickly and suffers a small deflection θ in its path. Calculate θ.

D View Text Solution
24. A long narrow solenoid is half filled with material of relative permeability μ_{1} and half
filled with another material of relative
permeability μ_{2}. The number of turns per meter length of the solenoid is n. Calculate the magnetic field (B) on the axis of the solenoid at boundary of the two material (i.e. at point P). The current in solenoid coil is I.

D View Text Solution

25. Two identical coils having radius R and number of turns N are placed co-axially with
their centres separated by a distance equal to
their radius R. The two coils are given same current I in same direction. The configuration is often known as a pair of Helmholtz coil.
(i) Calculate the magnetic field (B) at a point
(P) on the axis between the coils at a distance x from the centres of one of the coils.
(ii) Prove that $\frac{d B}{d x}=0$ and $\frac{d^{2} B}{d x^{2}=0}$ [In fact $d^{3} B$ $\frac{d B}{d x^{3}}$ is also equal to zero] at the point lying midway between the two coils. What conclusion can you draw from these results?
26. A current carrying wire is in the shape of a semicircle of radius R and has current $I . M$ is midpoint of the arc and point P lies on extension of MC at a distance $2 R$ from M.

Find the magnetic field due to circular arc at point P.

D View Text Solution
27. The figure shows three straight current carrying conductors having current I_{1}, I_{2} and I_{3} respectively. Calculate line integral of magnetic induction field \vec{B} along the closed path ABCDEFA

D View Text Solution

28. A circular coil of N turns carries a current I .

Field at a distance x from centre of the loop
on its axis is B. Write the value of integral $\int_{-\infty}^{\infty} B . d x$.

D Watch Video Solution

29. In the figure shown $W 1$ represent the cross section of an infinitely long wire carrying
current 11 into the plane of the fig. $A B$ is a line of length L and the wire $W 1$ is symmetrically
located with respect to the line. The line integral $\int_{A}^{B} \vec{B} \cdot \vec{d} l . \mathrm{d} \mathrm{I}$ along the line from A to B is equal to $-a_{0}$ where a_{0} is a positive
number. Another long wire $W 2$ is placed symmetrically with respect to $A B$ (see fig) and the value of $\int_{A}^{B} \vec{B} \cdot \vec{d} l$ becomes zero.

Consider a line DC to the right of $W 2$. The line is parallel to $A B$ and has same length. The two wires fall on perpendicular bisector of both lines. If $\int_{C}^{D} \vec{B} \cdot \vec{d}=2 a_{0}$ with both wires $W 1$ and $W 2$ present, calculate the ratio of current $\frac{I_{2}}{I_{1}}$ in the two wires.

D View Text Solution

30. (a) A long straight wire carries a current I into the plane of the figure. $A B$ is a straight
line in the plane of the figure subtending an angle $\theta \mathrm{e}$ point of intersection of the wire with the plane. Find (by integration) the line integral of magnetic field along the line AB.
(b) In the last problem the straight line $A B$ is
replaced with a curved line $A B$ as shown in
figure. Can you calculate the line integral of magnetic field B along this curved line? If yes,
what is its value?

D View Text Solution

31. A long straight cylindrical region of radius
a curries a current along its length. The current density (J) varies from the axis to the edge of the cylindrical region according to $J=J_{0}\left(1-\frac{r}{a}\right)$ Where r is distance from the axis $(0<r<a)$
(a) Find the mean current density.
(b) Plot the variation of magnetic field (B) with distance r from the axis of the cylinder for $0<r<a$.

- Watch Video Solution

32. A student has studied the use of Ampere's
law in calculation of magnetic field (B) due to a
straight current carrying conductor of infinite length. Now she used similar arguments for calculation of B due to a current carrying conductor (AB) of finite length. She assumes a
closed circular path (C) of radius r with the conductor along the axis (see fig.). She argues that because of symmetry the field (B) shall be tangential to C and must have same magnitude at all points on C. Therefore she writes $B=\frac{\mu_{0} I}{2 \pi r}$ Do you support the answer? Give reasons.

D View Text Solution

33. There are two co-axial non conducting
cylinders of radii a and $b(>a)$. Length of each cylinder is $L(\gg b)$ and their curved surfaces have uniform surface charge densities $o f-\sigma$ (on cylinder of radius a) and $+\sigma$ (on cylinder of radius b). The two cylinders are made to rotate with same angular velocity
ω as shown in the figure. The charge distribution does not change due to rotation.

Find the electric field (E) and magnetic field
(B) at a point (P) which is at a distance r from
the axis such that (a) $0<r<a$ (b) $a<r<b$
(c) $r>b$. Assume that point P is close to perpendicular bisector of the length of the cylinders

D View Text Solution

34. An infinite sheet in xy plane has a uniform
surface charge density σ. The thickness of the sheet is infinitesimally small. The sheet begins to move with a velocity $\vec{v}=v \hat{i}$
(i) Find the electric field (\vec{E}) and magnetic
field (\vec{B}) above and below the sheet.
(ii) If the velocity of the sheet is changed to $\vec{v}=v \hat{k}$, find the electric and magnetic field above and below the sheet.

- Watch Video Solution

35. Consider two slabs of current shown in the
figure. Both slabs have thickness b in y direction and extend up to infinity in x and z directions. The common face of the two slabs is $y=0$ plane. The slab in the region
$0<y<d$ has a constant current density
$=J_{0} \hat{k}$ and the other slab in the region
$-d<y<0$ has a constant current density
$=J_{0}(-\hat{k})$.
(a) Find magnetic field at $y=0$
(b) Plot the variation of magnetic field
along the y axis.

D View Text Solution
36. A current carrying conductor is in the shape of an arc of a circle of radius R subtending an angle q at the centre (C). A long current carrying wire is perpendicular to the plane of the arc and is at a distance $2 R$ from the midpoint (M) of the arc on the line joining the points M and C. Current in the arc as well as straight wire is I. Find the magnetic force on the arc.
37. Two long straight conducting wires with
linear mass density λ are kept parallel to each
other on a smooth horizon- tal surface.
Distance between them is d and one end of each wire is connected to each other using a
loose wire as shown in the figure. A capacitor is charged so as to have energy U_{0} stored in it.

The capacitor is connected to the ends of two wires as shown. The resistance (R) of the entire arrangement is negligible and the capacitor discharges quickly. Assume that the distance between the wires do not change
during the discharging process. Calculate the speed acquired by two wires as the capacitor discharges

D View Text Solution

38. A current carrying loop is in the shape of an equilateral triangle of side length a. Its mass is M and it is in vertical plane. There exists a uniform horizontal magnetic field B in the region shown.
(a) The loop is in equilibrium for $y_{0}=\frac{\sqrt{3}}{4}$ a.

Find the current in the loop.
(b) The loop is displaced slightly in its plane perpendicular to its side $A B$ and released. Find
time period of its oscillations. Neglect emf induced in the loop. Express your answer in terms of a and g.

- View Text Solution

39. A current loop consist of two straight segments ($O A$ and $O B$), each of length, having an angle θ between them and a semicircle (ACB). The loop is placed on an incline plane making an angle θ with horizontal (see figure).

The loop carries a current I. A uniform vertical magnetic field B is switched on. (a) Write the value of magnetic torque on the loop. (b) Tell
whether the normal contact force between the
incline and the loop increases or decreases
when magnetic field is switched on. Assume
that the loop remains stationary on the incline.

D View Text Solution

40. A wooden disc of mass M and radius R has
a single loop of wire wound on its
circumference. It is mounted on a massless
rod of length d. The ends of the rod are supported at its ends so that the rod is
horizontal and disc is vertical. A uniform magnetic field B_{0} exists in vertically upward
direction. When a current I is given to the wire one end of the rod leaves the support. Find least value of I .

D View Text Solution

41. A uniform ring of mass M and radius R
carries a current I (see figure). The ring is suspended using two identical strings OA and

OB. There exists a uniform horizontal magnetic field B_{0} parallel to the diameter AB
of the ring. Calculate tension in the two strings. [Given $\theta=60^{\circ}$]

D View Text Solution

42. In a two dimensional $x-y$ plane, the magnetic field lines are circular, centred at the origin. The magnitude of the field is inversely proportional to distance from the origin and field at any point P has magnitude given by $B=\frac{k}{r}$, where k is a positive constant. A wire
carrying current I is laid in xy plane with its ends at point $\mathrm{A}\left(x_{1}, y_{1}\right.$ and point $\left.\mathrm{B}\left(x_{2}\right), y_{2}\right)$.

Find force on the wire.

D View Text Solution

43. A straight current carrying wire has its one
end attached to an infinity conducting sheet
(shown as a circle in the figure). The other end of the wire goes to infinity and the wire is perpendicular to the sheet. The current
spreads uniformly on the surface of the sheet.

Calculate the magnitude of magnetic induction field at a point P at a distance d from the straight wire. Current in the wire is I.

D View Text Solution

44. A wire carrying current I is laid in shape of a curve which is represented in plane polar coordinate system as $r=b+\frac{c}{\pi} \theta$ for $0<\theta<\frac{\pi}{2}$ Here b and c are positive
constants. θ is the angle measured with
respect to positive x direction in anticlockwise sense and r is distance from origin (see figure).

Calculate the magnetic field at the origin due to the wire.

D View Text Solution
45. A light freely deformable conducting wire
with insulation has its two ends (A and C) fixed
to the ceiling. The two vertical parts of the
wire are close to each other. A load of mass m
is attached to the middle of the wire. The entire region has a uniform horizontal magnetic field B directed out of the plane of the figure. Prove that the two parts of the wire take the shape of circular arcs when a current I is passed through the wire. Neglect the magnetic interaction between the two parts of the wire.

