©゙’doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)
 3D - ANGLE BETWEEN TWO LINES

Solved Examples

1. Find the direction cosines of the vector
$2 \hat{i}+2 \hat{j}-\hat{k}$
2. Find the angle at which the vector $\hat{i}-\hat{j}+\hat{k}$ is inclined to each of the coordinte axes.

D Watch Video Solution

3. Show by using direction ratios, that the points
$(2,-4,5),(1,-1,3)$ and $(5,-13,11)$
are collinear

Watch Video Solution

4. Find the values of a for which points

$$
(8,-7, a),(5,2,4) \text { and }(6,-1,2) \quad \text { are }
$$ collinear.

- Watch Video Solution

5. If Q be the foot of perpendicular from
$P(2,4,3)$ on the line joining the points
$A(1,2,4)$ and $B(3,4,5)$, then co-ordinate of
Q is given by
6. Find the direction cosines of the lines, connected by the relations: $l+m+n=0$ and $2 l m+2 \ln -m n=0$.

- Watch Video Solution

7. $\operatorname{can}-\frac{1}{2 \sqrt{2}}-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{3}}$ be the direction
cosines of any directed line? Justify your answer.

- Watch Video Solution

8. If a line makes angles α, β, γ with the

$$
\begin{aligned}
& \text { coordinate axes, prove that } \\
& \sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2
\end{aligned}
$$

- Watch Video Solution

9. A line OP through origin O is inclined at 60^{0} and 45° to OX and OY respectivey, where O is the origin. Find the angle at which it is inclined to OZ.
10. What are the direction cosines of a line which is equally inclined to the axes?

D Watch Video Solution
11. What are the direction cosines of a line whose direction ratios are $3,4,12$?

D Watch Video Solution
12. Find the angles at which a line with direction ratios $2,-1,2$ is inclined to each of the coordinate axes.

D Watch Video Solution

13. A line passes through the points
$(6,-7,-1) \operatorname{and}(2,-3,1) . \quad$ Find te
direction cosines off the line if the line makes
an acute angle with the positive direction of the x-axis.
14. Show that the three lines drawn from the origin with direction cosines proportional to

1,-1,1,2,-3,0 and 1,0,3 are coplanar

D Watch Video Solution

15. If l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are the direction cosines of two mutually perpendicular lines,
show that the direction cosines of the line
perpendicular to both of these are $m_{1} n_{2}-m_{2} n_{1}, n_{1} l_{2}-n_{2} l_{1}, l_{1} m_{2}-l_{2} m_{1}$.

D Watch Video Solution

16. Prove that the lines whose direction
cosines are given by the equations
$l+m+n=0$ and $3 l m-5 m n+2 n l=0$
are mutually perpendicular.

D Watch Video Solution
17. The direction cosines of two lines are given
by
the equations
$3 m+n+5 l=0,6 n l-2 l m+5 m n=0$.
find the angle between them

D Watch Video Solution

18. Find the angel between any two diagonals of a cube.

19. Find the projection of the line joining (1,2,3)

and ($-1,4,2)^{\prime}$ on the line having direction ratios

2,3,-6.

D Watch Video Solution

20. If P, Q, R, S are $(3,6,4),(2,5,2),(6,4,4),(0,2,1)$
respectively find the projection of $P Q$ on $R S$.

D Watch Video Solution

21. The projection of a vector on the coordinate axes are $6,-3,2$. Find its length and direction cosines.

D Watch Video Solution

Exercise

1. If a line makes angle $90 o, 60 o$ and $30 o$ with the
positive direction of x, y and z-axis respectively,
find its direction cosines.

Watch Video Solution

2. If a line makes angles $900,1350,450$ with the x, y and z -axes respectively, find its direction cosines.

- Watch Video Solution

3. If $\vec{r}=2 \hat{i}-3 \hat{j}+2 \hat{k}$ find the direction cosines of 'vecr.
4. Find the direction COSINES of the joining
the points $P(4,3,-5)$ and $Q(-2,1,-8)$

D Watch Video Solution

5. If a line has direction ratios
$-18,-12,-4$ then what are its direction cosines?

D Watch Video Solution
6. Show that the joint of the points $(1,2,3)$,
$(4,5,7)$ is parallel to the join of the points
$(-4,3,-6),(2,9,2)$.

D Watch Video Solution

7. Show that the line joining the points (1,2,3),
$(-1,-2,-3)$ is perpendicular to the line joining
(-2,1,5),(3,3,2).
8. Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.

- Watch Video Solution

9. Show that the points $A(2,3,4), B(1,2,3)$ and $C(3,8,11)$ are collinear.

D Watch Video Solution

10. Find the direction cosines of the sides of the triangle whose vertices are $(3,5,4)$, $(1,1,2)$ and $(5,5,2)$.

D Watch Video Solution

11. Determine the value of k so that the line
joining points $A(k, 1,-1)$ and $B(2,0,2 k)$
is perpendicular to the line joining the points
$C(4,2 k, 1)$ and $D(2,3,2)$.
12. Determine the values of x and y so that the line joining the points
$A(x, 3,11), B(1,1,-2)$ is parallel to the line joining the points
$C(2,5,3), D(-4, y,-6)$.

- Watch Video Solution

13. Find the direction cosines of the lines,
connected by the relations: $l+m+n=0$
and $2 l m+2 \ln -m n=0$.
14. Find the coordinates of the foot of the perpendicular from $P(2,1,3)$ on the lines joining the points $A(1,2,4)$ and $B(3,4,5)$.

- Watch Video Solution

15. If O be the origin and OP makes an angle of
45° and 60° with the positive direction of x
and y axes respectively and $O P=12$ units, find the coordinates of P.

D Watch Video Solution

16. Find the angles of $\triangle A B C$ whose vertices are
$A((-1,3,2), B(2,3,5)$ and $C(3,5,-2)$.

D Watch Video Solution
17. Find the angle between the lines whose direction-cosines are give $/+2 m+3 n=0$ and
$3 / m-4 / n+m n=0^{\prime}$

- Watch Video Solution

18. Find the acute angle between the two straight lines whose direction cosines are

$$
\begin{aligned}
& \text { given by } \quad l+m+n=0 \quad \text { and } \\
& l^{2}+m^{2}-n^{2}=0
\end{aligned}
$$

19. Find the projection of the line segment joining (2,-1,3) and (4, 2, 5) on a line which makes equal acute angles with co-ordinate axes.

- Watch Video Solution

20. The length of the line segment whose projection on the coordinate axes are of magnitudes $12,4,3$ is (1) 13 (2) 17 (3) 19 (4) 21
21. The direction cosines of x-axis are (A) 0,0,1
(B) 1,0,0 (C) 0,1,0 (D) 0,1,1

D Watch Video Solution

22. The direction cosines of any normal to the
xy-plane are (A) 1,0,0 (B) 0,1,0 (C) 1,1,0 (D) 0,01

- Watch Video Solution

23. How many lines through the origin make equal angles with the coordinate axes? (A) 1 (B) 4 (C) 8 (D) 2

D Watch Video Solution

24. The number $3,4,5$ can be (A) direction cosines of a line in space (B) direction numbers of a line in space (C) coordinates of a point on the line $y=4 z=0$ (D) coordinates of a point in the plane $x+y-z=0$
25. If the direction cosines of a straighat line are $\mathrm{k}, \mathrm{k}, \mathrm{k}$ the (A) $k>0$ (B) $0<k<1$ (C) $k=1$
(D) $k=\frac{1}{\sqrt{3}}$ or $-\frac{1}{\sqrt{3}}$

- Watch Video Solution

26. The direction cosines of line joining
$(1,-1,1)$ and $(-1,1,1)$ are (A) $2,-2,0$
(B) $1,-1,0$ (C) $\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}, 0$ (D) none of these

- Watch Video Solution

27. If $\alpha+\beta+\gamma$ are the angle which a half ray makes with the positive direction of the axes then $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=$ (A) 1 (B) 2 (C)

0 (D) -1

- Watch Video Solution

28. The direction cosines of the ray from
$(0,0,0) \rightarrow(2,-3,6)$ are (A) $-\frac{2}{7}, \frac{3}{7},-\frac{6}{7}$
(B) $\frac{2}{7}, 37, \frac{6}{7} \quad$ (C) $\quad-\frac{2}{7},-\frac{3}{7}, \frac{6}{7}$
$\frac{2}{7},-\frac{3}{7}, \frac{6}{-}$

D Watch Video Solution

29. Two lines with direction cosines
l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are at righat angles
iff $\quad(\mathrm{A}) \quad l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=0$
$l_{1}=l_{2}, m_{1}=m_{2}, n_{1}=n_{2}$
$\frac{l_{1}}{l_{2}}=\frac{m_{1}}{m_{2}}=\frac{n_{1}}{n_{2}}(\mathrm{D}) l_{1} l_{2}=m_{1} m_{2}=n_{1} n_{2}$

D Watch Video Solution

30. The projections of the segment PQ on the coordinate axes are -9,12,-8 respectively. The direction cosines of the line PQ are (A) $-\frac{9}{\sqrt{17}}, \frac{12}{\sqrt{17}},-\frac{8}{\sqrt{17}}$
$-\frac{9}{288}, \frac{12}{289},-\frac{8}{289}$
(C) $-\frac{9}{17}, \frac{12}{17},-\frac{8}{17}$ (D) none of these

- Watch Video Solution

31. If the direction cosines of a line are $\frac{1}{c}, \frac{1}{c}, \frac{1}{c}$ then (A) $c .0$ (B) $0<c<1$
$c= \pm \sqrt{3}(\mathrm{D}) c>2$

- Watch Video Solution

32. A line making angles 45° and 60° with the positive directions of the x and y axes respectively , makes with the positive direction of z-axis an angle of (A) 60° (B) 120°
60° or 120^{0} (D) none of these

- Watch Video Solution

33. Find the angle between the following pair of lines: A lines with direction ratios 2,2,1 A line joning (3,1,4)to (7,2,12)

- Watch Video Solution

34. Show that the direction cosines of a vector equally inclined to the axes $O X, O Y$ and $O Z$ are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$.
35. If a line makes angles α, β, γ with the axes
then $\cos 2 \alpha+\cos 2 \eta+\cos 2 \gamma=$ $(A)-2(B)-1(C) 1(D) 2$

- Watch Video Solution

