©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

3D - COMPETITION

Solved Examples

1. Show that the three lines drawn from the origin with direction cosines proportional to 1,-1,1,2,-3,0 and 1,0,3 are coplanar

- Watch Video Solution

2. Prove that the two lines whose direction cosines are given by the relations

$$
p l+q m+r n=0 \text { and } a l^{2}+b m^{2}+c n^{2}=0 \quad \text { are }
$$

perpendicular if $p^{2}(b+c)+q^{2}(c+a)+r^{2}(a+b)=0$ and parallel if $\frac{p^{2}}{a}+\frac{q^{2}}{b}+\frac{r^{2}}{c}=0$

- Watch Video Solution

3. Prove that the lines whose directioncosines are given by the equtions $l+m+n=0$ and $3 l m-5 m n+2 n l=0$ are mutually perpendicular.

- Watch Video Solution

4. If the direction cosines of two lines given by the equations $p m+q n+r l=0$ and $l m+m n+n l=0$, prove that the lines are parallel if $p^{2}+q^{2}+r^{2}=2(p q+q r+r p)$ and perpendicular if $p q+q r+r p=0$

- Watch Video Solution

5. Show that the angle between the straight lines whose direction cosines are given by the equation $l+m+n=0$ and $a m n+b n l+c l m=0$ is $\frac{\pi}{3}$ if $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$

- Watch Video Solution

6. Prove that in a tetrahedron if two pairs of opposite edges are perpendicular , then the third pair is also perpendicular.

- Watch Video Solution

7. If coordinates of $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ and $(3,6,4),(2,5,2),(6,4,4),(0,2,1)$ respectively, find the projection of PQ on RS .

- Watch Video Solution

8. Find the length and direction cosines of a line segment whose projection on the coordinate axes are 6,-3,2.

- Watch Video Solution

9.

Show
thast
the
points
$P(1,1,1), Q(0,-1,0), R(2,1,-1)$ and $S(3,3,0)$ are coplanar.

- Watch Video Solution

10. findthe equationof the plane passing through the point (α, β, γ) and perpendicular to the planes
$a_{1} x+b_{1} y+c_{1} z+d_{1}=0$ and $a_{2} x+b_{2}+y c_{2} z+d_{2}=0$

- Watch Video Solution

11. Find the equation of the plane passing through the line of intersection of the planes $4 x-5 y-4 z=1$ and $2 x=y+2 z=8$ and the point (2,1,3).

- Watch Video Solution

12. The plane $a x+b y=0$ is rotated about its line of intersection with the plane $z=0$ through an angle α. Prove that the equation of the plane in its new position is $a x+b y \pm\left(\sqrt{a^{2}+b^{2}} \tan \alpha\right) z=0$

- Watch Video Solution

13. Find the reflection of the plane $a x+b y+c z+d=0$ in the plane $a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}=0$

- Watch Video Solution

14. Find the distance between the planes $2 x-y+2 z=4$ and $6 x-3 y+6 z=2$.

- Watch Video Solution

15. Find the plane which bisects the obtuse angle between the planes $4 x-3 y+12 z+13=0$ and $x+2 y+2 z=9$

- Watch Video Solution

16. Find the equation of the planes bisecting the angles between planes
$2 x+y+2 z=9$ and $3 x-4 y+12 z+13=0$

- Watch Video Solution

17. Find the locus of a point, the sum of squares of whose distance from the planes $x-z=0, x-2 y+z=0 a n d x+y+z=0 i s 36$.
18. If P be a point on the lane $l x+m y+n z=p$ and Q be a point on the OP such that $O P . O Q=p^{2}$ show that the locus of the point Q is $p(l x+m y+n z)=x^{2}+y^{2}+z^{2}$.

- Watch Video Solution

19. A variable plane passes through a fixed point (α, β, γ) and meets the axes at A, B and C. show that the locus of the point of intersection of the planes through $A, B a n d C$ parallel to the coordinate planes is $\alpha x^{-1}+\beta y^{-1}+\gamma z^{-1}=1$.

- Watch Video Solution

20. A variable plane at constant distance p form the origin meets the coordinate axes at P,Q, and R. Find the locus of the point of intersection of planes drawn through P, Q, r and parallel to the coordinate planes.

(D) Watch Video Solution

21. A variable plane is at a constant distance p from the origin and meets the coordinate axes in A, B, C. Show that the locus of the centroid of the tehrahedron $O A B C i s x^{-2}+y^{-2}+z^{-2}=16 p^{-2}$.

- Watch Video Solution

22. A point P moves on a plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$. A plane through P and perpendicular to $O P$ meets the coordinate axes at $A, B a n d C$. If the planes through $A, B a n d C$ parallel to the planes $x=0, y=0 a n d z=0$, respectively, intersect at Q, find the locus of Q.

- Watch Video Solution

23. If a variable plane forms a tetrahedron of constant volume $64 k^{3}$ with the co-ordinate planes, then the locus of the centroid of the tetrahedron is:

(D) Watch Video Solution

24. $A_{x y}, y z, A_{z x}$ be the area of projections oif asn area a o the xy, yz and zx and planes resepctively, then $A^{2}=A^{2}{ }_{-}(x y)+A^{2}{ }_{-}(y z)+a^{2}{ }_{-}(z x)$

- Watch Video Solution

25. Through a point $P(h, k, l)$ a plane is drawn at right angle to OP to meet the coordinate axes in A, B and C. If $O P=p$ show that the area of

$$
\triangle A B C i s p^{\wedge} 5 /(2 \mathrm{hkl}){ }^{\prime}
$$

- Watch Video Solution

26. Find the distance of the point $(1,0,-3)$ from plane $x-y-z=9$ measured parallel to the line $\frac{x-2}{2}=\frac{y+2}{2}=\frac{z-6}{-6}$

- Watch Video Solution

27. Find the equation of the plane passing through $(1,2,0)$ which contains the line $\frac{x+3}{3}=\frac{y-1}{4}=\frac{z-2}{-2}$

- Watch Video Solution

28. Find the equation of the plane through the line $\frac{x-x_{1}}{l_{1}}=\frac{y-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}} \quad$ and parallel to the line $\frac{x-\alpha}{l_{2}}=\frac{y-\beta}{m_{2}}=\frac{z-\gamma}{n_{2}}$

- Watch Video Solution

29. Find the equation of the projection of the line $\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-3}{4}$ on the plane $x+2 y+z=9$.

- Watch Video Solution

30. Find the the image of the point (α, β, γ) with respect to the plane
$2 x+y+z=6$.

(D) Watch Video Solution

31.

Do
the
lines
$\frac{x+3}{-4}=\frac{y-4}{1}=\frac{z+1}{7}$ and $\frac{x+1}{-3}=\frac{y-1}{2}=\frac{z+10}{8} \quad$ intersect?
If so find the point of intersection.

- Watch Video Solution

Also find the equation of the plane containing them.

- Watch Video Solution

33.

Are

the
lines
$3 x-2 y+z+5=0=2 x+3 y+4 z-4$ and $\frac{x+4}{3}=\frac{y+6}{5}=\frac{z-1}{-2}$
coplanar. If yes find their point of intersection and equation of the plane which they lie.

- Watch Video Solution

34. Find the equation of the line which can be drawn from the point (1,-1,0) to intersects the lines $\frac{z-2}{2}=\frac{y-1}{3}=\frac{z-3}{4}$ and $\frac{x-4}{4}=\frac{y}{5}=\frac{z+1}{2}$ orthogonally.

- Watch Video Solution

35. Find the equation of the line which passes thorugh the point $P(\alpha, \beta, \gamma)$ and is parallel to the line $a_{1} x+b_{1} y+c_{1} z+d_{1}=0, a_{2} x+b_{2} y+c_{2} z+d_{2}=0$

- Watch Video Solution

36. Equation of line of projection of the line $3 x-y+2 z-1=0=x+2 y-z-2$ on the plane $3 x+2 y+z=0$ is:

- Watch Video Solution

37. Find the equation of the plane whch passes through the line $a_{1} x+b_{1} y+c_{1} y+c_{1} z+d_{1}=0 a_{2} x+b_{2} y+c_{2} z+d_{2}=0$ and which is parallel to the line $\frac{x-\alpha}{l}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$

- Watch Video Solution

38.

- Watch Video Solution

39. Find the length of the shortest distance between the lines $\frac{x-1}{2} \frac{y-4}{3}=\frac{z+1}{-3}$ and $\frac{x-4}{1}=\frac{y-3}{3}=\frac{z-2}{2}$

- Watch Video Solution

40. Prove that the shortest distance between any two opposite edges of a tetrahedron formed by the planes
$y+z=0, x+z=0, x+y=0, x+y+z=\sqrt{3} a i s \sqrt{2} a$

- Watch Video Solution

41. Find the equation of the sphere touching the four planes $x=0, y=0, z=0$ and $x+y+z=1$ and lying in the octant bounded by positive coordinate planes.

- Watch Video Solution

42. The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the coordinate axes at A, B and C respectively. Find the equation of the sphere $O A B C$.

- Watch Video Solution

43. Find the equation of the sphere which passes through the point $(1,0,0),(0,1,0)$ and ($0,0,1)^{\prime}$ and has its radius as small as possible.

- Watch Video Solution

44. find the equation of the plane passing through points (2,1,0),(5,0,1) and ($4,1,1$).

- Watch Video Solution

45. If P is the point $(2,1,6)$ find the point Q such that $P Q$ is perpendicular to the plane $x+y-2 z=3$ and the mid point of PQ lies on it.
46. A parallelepiped S has base points $A, B, C a n d D$ and upper face points $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime}. The parallelepiped is compressed by upper face $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ to form a new parallepiped T having upper face points $A, \mathrm{~B}, C \mathrm{an} \mathrm{dD}$. The volume of parallelepiped T is 90 percent of the volume of parallelepiped S. Prove that the locus of A is a plane.

- Watch Video Solution

47. A plane is parallel to two lines whose direction ratios are ($1,0,-1$) and $(-1,1,0)$ and it contains the point (1,1,1).If it cuts coordinate axes at A, B, C then find the volume of the tetrahedron OABC.

- Watch Video Solution

48. Two planes P_{1} and P_{2} pass through origin. Two lines L_{1} and L_{2} also passingthrough origin are such that L_{1} lies on P_{1} but not on P_{2}, L_{2} lies
on P_{2} but not on $P_{1} A, B, C$ are there points other than origin, then prove that the permutation $\left[A^{\prime}, B^{\prime}, C^{\prime}\right]$ of $[A, B, C]$ exists. Such that:

- Watch Video Solution

49. Find the equation of the plane containing the line $2 x+y+z-1=0, x+2 y-z=4$ and at a distance of $\frac{1}{\sqrt{6}}$ from the point (2,1,-1).

- Watch Video Solution

50. The line $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ lies exactly on the plane $2 x-4 y+z=7$ then the value of k is (A) 7 (B) -7 (C) 1 (D) none of these

- Watch Video Solution

51. Two system of rectangular axes have the same origin. IF a plane cuts them at distances $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and $\mathrm{a} \^{\prime}, \mathrm{b} \backslash, \mathrm{c}$ l'omthe $^{\prime}$ or $i g \in \operatorname{then}(\mathrm{~A})$
$\frac{1}{a^{2}}+\frac{1}{b^{2}}-\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
$\frac{1}{a^{2}}-\frac{1}{b^{2}}-\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}-\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}-\frac{1}{a^{\prime 2}}-\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}=0$

- Watch Video Solution

52. The shortest distance from the plane $12 x+y+3 z=327$ to the sphere $x^{2}+y^{2}+z^{2}+4 x-2 y-6 z=155$ is a. 39 b. 26 c. $41-\frac{4}{13}$ d. 13

- Watch Video Solution

53. If the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect then the value of k is (A) $\frac{3}{2}$ (B) $\frac{9}{2}$ (C) $-\frac{2}{9}$ (D) $-\frac{3}{2}$

- Watch Video Solution

54. A line with direction cosines proportional to $2,1,2$ meet each of the lines $x=y+a=z$ and $x+a=2 y=2 z$. The coordinastes of each of the points of intersection are given by (A) $(3 a, 2 a, 3 a),(a, a, 2 a)$
$(3 a, 2 a, 3 a),(a, a, a 0$
(C)
$(3 a, 3 a, 3 a),(a, a, a)$
$92 a, 3 a, 3 a),(2 a, a, a 0$

- Watch Video Solution

55. A variable plane at distance of 1 unit from the origin cuts the coordinte axes at A, B and C . If the centroid $D(x, y, z)$ of triangle ABC satisfies the relation $\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=k$ then the value of k is (A) 3 (B) 1 (C) $\frac{1}{3}$ (D) 9

- Watch Video Solution

56. Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lie in the plane $x+3 y-\alpha z+\beta=0$. Then $(\alpha, \beta) \operatorname{equals}(A)(6,-17)(B)(-6,7)(C)(5,15)(D)$

- Watch Video Solution

57. A line with positive direction cosines passes through the ont $P(2,-1,2)$ and makes equal angles with the coordinate axes. The line meets the plane $2 x+y+z=9$ at Q . The length of the line segment PQ equals (A) 1 (B) $\sqrt{2}$ (C) $\sqrt{3}$ (D) 2

- Watch Video Solution

58. The value of k for which the planes
$k x+4 y+z=0,4 x+k y+2 z=0$ and $2 x+2 y+z=0$ intersect in a straight line is (A) 1 (B) 2 (C) 3 (D) 4

D Watch Video Solution

59. Consider the planes $\vec{r} \cdot \vec{n}_{1}=d_{1}$ and $\vec{r} \cdot \vec{n}_{2}=d_{2}$ then (A) they are perpendiculat if $\vec{n}_{1} \cdot \vec{n}_{2}=0$ (B) intersect in a line parallel to
$\vec{n}_{1} \times \vec{n}_{2}$ if \vec{n}_{1} is not parallel to \vec{n}_{2} (C) angle between them is $\cos ^{-1}\left(\frac{\vec{n}_{1} \cdot n_{2} .}{\left|\vec{n}_{1}\right|\left|\vec{n}_{2}\right|}\right)$ (D) none of these

- Watch Video Solution

60. Consider three planes

- Watch Video Solution

61. A paragraph has been given. Based upon this paragraph, 3 multiple choice question have to be answered. Each question has 4 choices a,b,c and d out of which ONLYONE is correct. Consider the $L_{1}: \frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$ and $L_{2}: \frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}$ The
unit vector perpendicular to both L_{1} and L_{2} is (A) $\frac{-\hat{i}+7 \hat{k}+7 \hat{k}}{\sqrt{99}}$
$\frac{-\hat{i}-7 \hat{k}+5 \hat{k}}{5 \sqrt{3}}$ (C) $\frac{-\hat{i}+7 \hat{k}+7 \hat{k}}{5 \sqrt{3}}$ (D) $\frac{7 \hat{i}-7 \hat{k}-7 k}{\sqrt{99}}$

- Watch Video Solution

62. A paragraph has been given. Based upon this paragraph, 3 multiple choice question have to be answered. Each question has 4 choices a,b,c and d out of which ONLYONE is correct. Consider the $L_{1}: \frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$ and $L_{2}: \frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}$ The shortest distance betwen L_{1} and L_{2} is (A) 0 (B) $\frac{17}{\sqrt{3}}$ (C) $\frac{41}{5(3)}$ (D) $\frac{17}{\sqrt{75}}$

- Watch Video Solution

63. A paragraph has been given. Based upon this paragraph, 3 multiple choice question have to be answered. Each question has 4 choices a,b,c and d out of which ONLYONE is correct. Consider the $L_{1}: \frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$ and $L_{2}: \frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}$ The distance of the point (1,1,) from the plane passing through the point
$(-1,2,-1)$ and whose normal is perpendicular to both the lines L_{1} and L_{2}
is (A) $\frac{2}{\sqrt{75}}$
(B) $\frac{7}{\sqrt{75}}$
(C) $\frac{13}{\sqrt{75}}$
(D) $\frac{23}{\sqrt{75}}$

- Watch Video Solution

Exercise

1. Show that the plane $a x+b y+c z+d=0$ divides the line joining $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ in the ratio of $\left(-\frac{a x_{1}+a y_{1}+c z_{1}+d}{a x_{2}+b y_{2}+c z_{2}+d}\right)$

- Watch Video Solution

2. If origin is the centroid of $\triangle A B C$ with the vertices $A(\alpha, 1,3), B(-2, \beta,-5)$ and $C(4,7, \gamma)$ find the value of α, β, γ
3. Show that $\left(-\frac{1}{2}, 2,0\right)$ is the circumacentre of the triangle whose vertices are $A(1,1,0), B(1,2,1)$ and $C(-2,2,-1)$ and hence find its orthocentre.

- Watch Video Solution

4. $A(3,2,0), B(5,3,2),(-9,6,-3)$ are the vertices of $\triangle A B C$ and AD is the bisector of $\angle B A C$ which meets at D . Find the coordinates of D ,

- Watch Video Solution

5. Find the coordinate of the foot of the perpendicular from $P(2,1,3)$ on the line joinint the points $A(1,2,4)$ and $B(3,4,5)$

- Watch Video Solution

6. IF O be the origin and OP makes angles 45° and 60° with the positive directionof x and y -axes respectively and $\mathrm{OP}=12$ units find the coordinates of P.

- Watch Video Solution

7. Find the angles of $\triangle A B C$ whose vertices are $A(-1,3,2), B(2,3,5)$ and $C(3,5,-2)$.

- Watch Video Solution

8. Find the projection of the line segment joining $(2,-1,3)$ and $(4,2,5)$ on a line which makes equal to acute angle with coordinate axes.

- Watch Video Solution

9. The projection of a directed line segment on the coordinate axes are 12,4,3. Find its length and direction cosines.

- Watch Video Solution

10. Find the direction cosines of as perpendicular from origin to the plane
$\vec{r} \cdot(2 \hat{i}-2 \hat{j}+\hat{j})+2=0$

- Watch Video Solution

11. Find the Cartesian equation of the plane $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+5 \hat{k})=1$.

- Watch Video Solution

12. If the vector equation of a plane is
$\vec{r} \cdot(1+s-t) \vec{i}+(2-s) \vec{j}+(3-2+2 t) \vec{k}$, find its equation in
Cartesian form.

13.
 Find
 the
 angle between
 planes
 $\vec{r} \cdot(\vec{i}+\vec{j})=1$ and $\vec{r} \cdot(\vec{i}+\vec{k})=3$.

- Watch Video Solution

14.

Prove
that
the
planes
$12 x-15 y+16 z-28=0,6 x+6 y-7 z-8=0$ and
$2 x+35 y-39 z+12=0$ have a common line of intersection.

- Watch Video Solution

15. Find the angle between the planes
$x-y+2 z=9$ and $2 x+y+z=7$.
16. Show that the origin lies in the interior of the acute angle between planes $x+2 y+2 z=9$ and $4 x-3 y+12 z+13=0$. Find the equation of bisector of the acute angle.

- Watch Video Solution

17. The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the coordinaste axces in points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively. Find the area of $\triangle A B C$.

- Watch Video Solution

18. $A(1,0,4), B(0,-11,3), C(2,-3,1)$ are three points and D is the foot of perpendicular from A to $B C$. Find the coordinates of D.

- Watch Video Solution

19. Find the perpendicular distance of an angular point of a cube from a diagona which does not pass through that angular point.

- Watch Video Solution

20. A line with cosines proportional to $2,7-5$ drawn to intersect the lines $\frac{x-5}{3}=\frac{y-7}{-1}=\frac{z+2}{1} ; \frac{x+3}{-3}=\frac{y-3}{2}=\frac{z-6}{4}$.Find the coordinates of the points of intersection and the length intercepted on it.

- Watch Video Solution

21. Find the image of the point $(2,-3,4)$ with respect to the plane $4 x+2 y-4 z+3=0$

- Watch Video Solution

22. Projection of line $\frac{x+1}{2}+\frac{y+1}{-1}=\frac{z+3}{4}$ on the plane $x+2 y+z=6$; has equation $x+2 y+z-6=0=9 x-2 y-5 z-8$
b. $x+2 y+z+6=0,9 x-2 y+5 z=4$ c. $\frac{x-1}{4}=\frac{y-3}{-7}=\frac{z+1}{10}$
d. $\frac{x+3}{4}=\frac{y-2}{7}=\frac{z-7}{-10}$
23. Prove that the straight lines
$\frac{x}{\alpha}=\frac{y}{\beta}=\frac{z}{\gamma}, \frac{x}{l}=\frac{y}{m}=\frac{z}{n}$ and $\frac{x}{a \alpha}=\frac{y}{b \beta}=\frac{z}{c \gamma}$ will be co planar if $\frac{l}{\alpha}(b-c)+\frac{m}{\beta}(c-a)+\frac{n}{\gamma}(a-b)=0$

Watch Video Solution

24. Find the equation of the line through point $(1,2,3)$ and parallel to line $x-y+2 z=5,3 x+y+z=6$

D Watch Video Solution

25. The shortest distance between the straighat lines through the point
$A_{1}=(6,2,2)$ and $A_{2}=(-4,0,-1)$ in the directions $1,-2,2$ and $3,-2,-2$ is (A) 6 (B) 8 (C) 12 (D) 9

- Watch Video Solution

26. Find the points on the lines
$\frac{x-6}{3}=\frac{y-7}{-1}=\frac{z-4}{1}$ and $\frac{x}{-3}=\frac{y-9}{2}=\frac{z-2}{4}$. Which are nearest to each other.

- Watch Video Solution

27. Find the coordinates of the points where the shortest distance between the lines
$\frac{x-12}{-9}=\frac{y-1}{4}=\frac{z-5}{2}$ and $\frac{x-23}{6}=\frac{y-19}{4}=\frac{z-25}{-3}$ meets them.

- Watch Video Solution

28. A variable plane moves in such a way that the sum of the reciprocals of its intercepts on the three coordinate axes is constant. Show that the plane passes through a fixed point.
29. The position of a mving point in space is $x=2 t, y 4 t, z=4 t$ where t is measured in seconds and coordinates of moving point are in kilometers: The distance of thepoint from the starting point ${ }^{\circ} \mathrm{O}(0,0,0)$ in 15 sec is (A) 3 km (B) 60 km (C) 90 km (D) 120 km

- Watch Video Solution

30. If the system of equations $x=c y+b z y=a z+c x z=b z+a y$ has a non-trivial solution, show that $a^{2}+b^{2}+c^{2}+2 a b c=1$

- Watch Video Solution

31. Let PQ be the perpendicular form $P(1,2,3)$ to xy -plane. If OP makes an angle theta with the positive direction of z -axis and OQ makes an angle ϕ with the positive direction of x-axis where O is the origin show that $\tan \theta=\frac{\sqrt{5}}{3}$ and $\tan \phi=2$.

- Watch Video Solution

32. If a variable plane forms a tetrahedron of constant volume $64 k^{3}$ with the co-ordinate planes, then the locus of the centroid of the tetrahedron is:

- Watch Video Solution

33. The graph of the equation $x^{2}+y^{2}=0$ in the three dimensional space is (A) x-axis (B) y-axis (C) z-axis (D) xy-plane

- Watch Video Solution

34. If a point moves so that the sum of the squars of its distances from the six faces of a cube having length of each edge 2 units is 104 units then the distance of the point from point (1,1,1) is (A) a variable (B) a constant equal to 7 units (C) a constant equal to 4 uinits (D) a constant equal to 49 units

$$
\begin{array}{cccc}
\text { 35. 26. Prove that } & \text { the } \\
O(0,0,0), A(2.0,0), B(1, \sqrt{3}, 0) & \text { and } C\left(1, \frac{1}{\sqrt{3}}, \frac{2 \sqrt{2}}{\sqrt{3}}\right) & \text { are the }
\end{array}
$$ vertices of a regular tetrahedron.,

- Watch Video Solution

36. Prove that the acute angle between two diagonals of a cube is $\cos ^{-1}\left(\frac{1}{3}\right)$

- Watch Video Solution

37. The equation $\vec{r}=\lambda \hat{i}+\mu \hat{j}$ represents the plane (A) $\mathrm{x}=0$ (B) $\mathrm{z}=0$ (C) $y=0$ (D) none of these

- Watch Video Solution

38. The vector \vec{c}, directed along the internal bisector of the angle between the
vectors
$\vec{c}=7 \hat{i}-4 \hat{j}-4 \hat{k}$ and $\vec{b}=-2 \hat{i}-\hat{j}+2 \hat{k}$ with $|\vec{c}|=5 \sqrt{6}$, is

- Watch Video Solution

39. The equation of the plane containing the line $2 x+z-4=0 n d 2 y+z=0$ and passing through the point $(2,1,-1) i s(A)$ $\mathrm{x}+\mathrm{y}-\mathrm{z}=4(B) \mathrm{x}-\mathrm{y}-\mathrm{z}=2(C) \mathrm{x}+\mathrm{y}+\mathrm{z}+2=\mathrm{o}(D) \mathrm{x}+\mathrm{y}+\mathrm{z}=2$

- Watch Video Solution

40. The locus of $x y+y z=0$ is (A) a pair of straighat lines (B) a pair of parallel lines (C) a pair of parallel planes (D) none of these

- Watch Video Solution

41. The acute angle between the planes $5 x-4 y+7 z=13$ and the y-axis is given by (A) $\sin ^{-1}\left(\frac{5}{\sqrt{90}}\right)$ (B) $\sin ^{-1}\left(\frac{-4}{\sqrt{90}}\right)$ (C) $\sin ^{-1}\left(\frac{7}{\sqrt{90}}\right)$
$\sin ^{-1}\left(\frac{4}{\sqrt{90}}\right)$

- Watch Video Solution

42. The points $A(1,1,0), B(0,1,1), C(1,0,1)$ and $D\left(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right)$ are (A) coplanar (B) non coplanar (C) vertices of a paralleloram (D) none of these

- Watch Video Solution

43. The equation of the parallel plane lying midway between the parallel planes $\quad 2 x-3 y+6 z-7=0$ and $2 x-3 y+6 z+7=0 \quad$ is
$2 x-3 y+6 z+1=0$
(B) $2 x-3 y+6 z-1=0$
(C) $2 x-3 y+6 z=0$
(D) none of these
44. The equation of the righat bisector plane of the segment joining (2,3,4) and (6,7,8) is (A) $x+y+z+15=0$ (B) $x+y+z-15=0$ (C) $x-y+z-15=0$ (D) none of these

- Watch Video Solution

45. The angle between the plane $3 x+4 y=0$ and z-axis is (A) 0^{0} (B) 30^{0} (C) 60° (D) 90^{0}

- Watch Video Solution

46.

If
the
points
$(-0,-1,-2),(-3,-4,-5),(-6,-7,-8)$ and (x, x, x)
are non coplanar then x is (A) -2 (B) 0 (C) 3 (D) any real number

- Watch Video Solution

47. The equation of the plane through the point $(1,2,-3)$ which is parallel to the plane $3 x-5 y+2 z=11$ is given by (A) $3 x-5 y+2 z-13=0$
(B) $5 x-3 y+2 z+13=0$
(C) $3 x-2 y+5 z+13=0$
$3 x-5 y+2 z+13=0$

- Watch Video Solution

48. The equation of any plane parallel to x-axis (A) $a y+c z+b=0, a^{2}+b^{2}+c^{2}=0 \quad$ (B) $\quad x=a$
$a y+c z-b x=0, a^{2}+c \neq 0(\mathrm{D})$ none of these

- Watch Video Solution

49. The direction ratios of a normal to the plane through $(1,0,0) \operatorname{and}(0,1,0)$, which makes and angle of $\frac{\pi}{4}$ with the plane $x+y=3$, are a. $\langle 1, \sqrt{2}$,
b. $\langle 1,1, \sqrt{2}\rangle$
c. $\langle 1,1,2\rangle$ d. ‘<>’
50. The equation of the plane through the intersection of plane $x+2 y+3 z=4$ and $2 x+y-z-5$ and perpendicular to the plane $5 x+3 y+6 z+8=0 \quad$ is \quad (A) $\quad 7 x-2 y+3 z+81=0$
$23 x+14 y-9 z+48=0$ (C) $51 x+15 y+50 z+173=0$ (D) none of these

- Watch Video Solution

51. The distance of the point ($2,1,-1$) from the plane $x-2 y+4 z=9$ is (A)
$\frac{\sqrt{13}}{21}$
(B) $\frac{13}{21}$
(C) $\frac{13}{\sqrt{21}}$
(D) $\sqrt{\frac{13}{21}}$

- Watch Video Solution

52. The
points
$A(5,-1,1), B(7,-4,7), C(1,-6,10)$ and $D(-1,-3,4)$ are the vertices of a (A) rhombus (B) square (C) rectangle (D) none of these
53. The angle θ the line $\vec{r}=\vec{r}+\lambda \vec{b}$ and the plane $\vec{r} \cdot \widehat{n}=d$ is given
by (A) $\sin ^{-1}\left(\frac{\vec{b} \cdot \hat{n}}{|\vec{b}|}\right)$ (B) $\cos ^{-1}\left(\frac{\vec{b} \cdot \hat{n}}{|\vec{b}|}\right)$ (C) $\sin ^{-1}\left(\frac{\vec{a} \cdot \hat{n}}{|\vec{a}|}\right)$
$\cos ^{-1}\left(\frac{\vec{a} \cdot \hat{n}}{|\vec{a}|}\right)$

(Watch Video Solution

54. A straighat line $\vec{r}=\vec{a}+\lambda \vec{b}$ meets the plane $\vec{r} \cdot \vec{n}=p$ in the point whose position vector is (A) $\quad \vec{a}+\left(\frac{\vec{a} \cdot \widehat{n}}{\vec{b} \cdot \widehat{n}}\right) \vec{b}$
$\vec{a}+\left(\frac{p-\vec{a} \cdot \widehat{n}}{\vec{b} \cdot \widehat{n}}\right) \vec{b}$ (C) $\vec{a}-\left(\frac{\vec{a} \cdot \widehat{n}}{\vec{b} \cdot \widehat{n}}\right) \vec{b}$ (D) none of these

- Watch Video Solution

55. The equation of the line through $(1,1,1)$ and perpendicular to the plane $\quad 2 x+3 y-z=5 \quad$ is \quad (A) $\quad \frac{x-1}{2}=\frac{y-1}{3}=z-1$
$\frac{x-1}{2}=\frac{y-1}{3}=\frac{z-1}{-1}$
(C) $\frac{x-1}{2}=\frac{y-1}{3}=\frac{z-1}{5}$
$\frac{x-1}{2}=\frac{y-1}{-3}=z-1$

- Watch Video Solution

56. For the $l: \frac{x-1}{3}=\frac{y+1}{2}=\frac{z-3}{-1}$ and the plane $P: x-2 y-z=0$ of the following assertions the ony one which is true is (A) I lies in $P(B) I$ is parallel to $P(C) I$ is perpendiculr to $P(D)$ none of these

- Watch Video Solution

57. The reflection of the point $(2,-1,3)$ in the plane $3 x-2 y-z=9$ is
(A) $\left(\frac{28}{7}, \frac{15}{7}, \frac{17}{7}\right)$
(B) $\left(\frac{26}{7},-\frac{15}{7}, \frac{17}{7}\right)$
(C) $\left(\frac{15}{7}, \frac{26}{,}-\frac{17}{7}\right)$
$\left(\frac{26}{7}, \frac{17}{7},-\frac{15}{70}\right)$

- Watch Video Solution

58. the cooerdinastes of the foot of perpendicular from the point $A(1,1,10$ on theine joining the points $B(1,4,6$ and $C(5,4,4)$ are (A)
$(3,4,5)$ (B) $(4,5,3)$
(C) $(3,-4,5)$
(D) $(-3,-4,5)$

- Watch Video Solution

59. The equation of the plane thorugh the point $(-1,2,0)$ and parallel to the lines $\frac{x}{3}=\frac{y+1}{0}=\frac{z-2}{-1}$ and $\frac{x-1}{1}=\frac{2 y+1}{2}=\frac{z+1}{-1}$ is
(A)
$2 x+3 y+6 z-4=0$
(B) $x-2 y+3 z+5=0$
$x+y-3 z+1=0$ (D) $x+y+3 z-1=0$

- Watch Video Solution

60. Find the shortest distance between the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$.
61. The plane $x-2 y+z-6=0$ and the line $x / 1=y / 2=z / 3^{\prime}$ are related as the line (A) meets the plane obliquely (B) lies in the plane (C) meets at righat angle to the plane (D) parallel to the plane

- Watch Video Solution

62. If $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-2 \hat{k})+\frac{3}{2}=0$ is the equation of a plane and $\hat{i}-2 \hat{j}+3 \hat{k}$ is a point then a point equidistasnt from the plane on the opposite side is (A) $\hat{i}+2 \hat{j}+3 \hat{k}$ (B) $3 \hat{i}+\hat{j}+\hat{k}$ (C) $3 \hat{i}+2 \hat{j}+3 \hat{k}$ (D) $3(\hat{i}+\hat{j}+\hat{k})$

- Watch Video Solution

63. The line of intersection of the planes $\vec{r} \cdot(3 \hat{i}-\hat{j}+\hat{k})=1$ and $\vec{r} \cdot(\hat{i}+4 \hat{j}-2 \hat{k})=2$ is parallel to the vector (A) $2 \hat{i}+7 \hat{j}+13 \hat{k}$
$-2 \hat{i}+7 \hat{j}+13 \hat{k}$ (C) $-2 \hat{i}-7 \hat{j}+13 \hat{k}$ (D) $2 \hat{i}-7 \hat{j}-13 \hat{k}$
64. The line $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$ (A) lies in te plane $x-2 y+z=0$ (B) is asme as line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ (C) passes through $(2,3,5)$ (D) is parallel to the plane $x-2 y=z-5=0$

- Watch Video Solution

65.

$l_{1}: \frac{x-5}{3}=\frac{y-7}{-16}=\frac{z-3}{7}$ and $l_{2}: \frac{x-9}{3}=\frac{y-13}{8}=\frac{z-15}{-5}$ the
(A) l_{1} and l_{2} intersect (B) l_{1} and l_{2} are skew (C) distance between l_{1} and l_{2} is 14 (D) none of these

- Watch Video Solution

66. If $\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$ and $\vec{r} \cdot(\hat{i}+2 \hat{j}-\hat{k})=3$ ar the equation of a line and a plane respectively then which of the following is true? (A) line is perp[endiculat to the plane (B) line lies in the plane (C) line is paralle to tehplane but does not lies in the plane (D) line cuts the plane obliquely

(D) Watch Video Solution

67. The distance of the point $(1,2,3)$ form the coordinate axes are A, B and C respectively. $A^{2}=B^{2}+C^{2}, B^{2}=2 C^{2}, 2 A^{2} C^{2}=13 B^{2}$ which of these hold (s) true? (A) 1 only (B) 1 and 3 (C) 1 and 2 (D) 2 and 3

- Watch Video Solution

68. The direction ratio o the lien OP are euqla and the length $O P=\sqrt{3}$. Then the cooredinates of the point P are (A) $(-1,-1,-1)$
$(\sqrt{3}, \sqrt{3}, \sqrt{3})$
(C) $(\sqrt{2}, \sqrt{2}, \sqrt{2})$
(D) $(2,2,2)$

- Watch Video Solution

69. If a line makes angle 35° and 55° with x-axis and y-axis respectively, then the angle with this line makes with z-axis is (A) 35° (B) 45° (C) 55° (D) 90^{0}
70. A unit vector \widehat{a} makes an angle $\frac{\pi}{4}$ with z-axis, if $\widehat{a}+\hat{i}+\hat{j}$ is a unit vector then \widehat{a} is equal to (A) $\hat{i}+\hat{j}+\frac{\hat{k}}{2}$ (B) $\frac{\hat{i}}{2}+\frac{\hat{j}}{2}-\frac{\hat{k}}{\sqrt{2}}$
$-\frac{\hat{i}}{2}-\frac{\hat{j}}{2}+\frac{\hat{k}}{\sqrt{2}}$ (D) $\frac{\hat{i}}{2}-\frac{\hat{j}}{2}-\frac{\hat{k}}{\sqrt{2}}$

(Watch Video Solution

71. If the direction ratio of two lines are given by $3 l m-4 \ln +m n=0$ and $l+2 m+3 n=0$, then the angle between the lines, is

- Watch Video Solution

72. If α, β, γ be angles which a straighat line makes with the positive direction of the axes, then $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$ is equal to (A) 4 (B) 1 (C) 2 (D) 3
73. The condition
$x=a z+b, y=c z+d$ and $x=a_{1} z+b_{1}, y=c_{1} z+d_{1} \quad$ to be perpendicular is (A) $a c_{1}+a_{1} c+1=0$
(B) $a a_{1}+{ }_{-} 1+1=0$
$a c_{1}+\prime+^{\prime}=0$ (D) $\left(a a_{1}+{ }_{-} 1-1=0\right.$

- Watch Video Solution

74. the
two
lines
$x=a y+b, z=c y+d$ and $x=a^{\prime} y+b, z=c^{\prime} y+d^{\prime} \quad$ will be perpendicular, if and only if: (A) $a a^{\prime}+{ }^{\prime}=1=0$
$a a^{\prime}+\prime+^{\prime}=1=0$
(C) $a a^{\prime}+\prime+^{\prime}=0$
$\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right)+\left(c+c^{\prime}\right)=0$

- Watch Video Solution

75. The lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}$ and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$ are coplanar if (A) $k=3$ or -3 (B) $k=0$ or -1 (C) $k=1$ or -1 (D) $k=0$ or -3

- Watch Video Solution

76. The diection cosines of two lines are proportional to $(2,3,-6)$ and $(3,-4,5)$, then the acute angle between them is (A) $\cos ^{-1}\left\{\frac{49}{36}\right\}$ (B) $\cos ^{-1}\left\{\frac{18 \sqrt{2}}{35}\right\}$ (C) 96^{0} (D) $\cos ^{-1}\left(\frac{18}{35}\right)$

- Watch Video Solution

77. The equation to the striaghat line passing through the points (4,-5,-2)
and $\quad(-1,5,3) \quad$ is \quad (A) $\quad \frac{x-4}{1}=\frac{y+5}{-2}=\frac{z+2}{-1}$
$\frac{x+1}{1}=\frac{y-5}{2}=\frac{z-3}{-1}$ (C) $\frac{x}{-1}=\frac{y}{5}=\frac{z}{3}$ (D) $\frac{x}{4}=\frac{y}{-5}=\frac{z}{-2}$
78. The distance between the parallel planes $4 x-2 y+4 z+9=0$ and $8 x-4 y+8 z+21=0$ is (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{3}{2}$
(D) $\frac{7}{4}$

- Watch Video Solution

79. The locus of point such that the sum of the squares of its distances from the planes $x+y+z=0, x-z=0$ and $x-2 y+z=0$ is 9 is
(A) $x^{2}+y^{2}+z^{2}=3$
(B) $x^{2}+y^{2}+z^{2}=6$
(C) $x^{2}+y^{2}+z^{2}=9$
$x^{2}+y^{2}+z^{2}=12$

- Watch Video Solution

80. Which of the folloiwng conditions such that the line $\frac{x-p}{l}=\frac{y-q}{m}=\frac{z-r}{n} \quad$ lies on the
$A x+B y+C z+D=0 i \frac{s}{a} r e c$ or rect?1. Ip $+\mathrm{mq}+\mathrm{nr}+\mathrm{D}=0$
81. $A p+B q+C r+D=0$ 3. $\mathrm{Al}+\mathrm{Bm}+\mathrm{Cn}=0$ © Select the correct answer using the codes given (A) 1 only (B) 1 and 2 (C) 1 and 3 (D) 2 and 3

(D) Watch Video Solution

81. If $\vec{a}, \vec{b}, \vec{c}$ are three non coplanar vectors then the vector equation $\vec{r}=(1-p-q) \vec{a}+p \vec{b}+q \vec{c}$ are represents a: (A) straighat line (B) plane (C) plane passing through the origin (D) sphere

- Watch Video Solution

82. A plane pi makes intercepts 3 and 4 respectively on z-axis and x-axis. If pi is parallel to y -axis, then its equation is (A) $3 x-4 z=12$ (B)
$3 z+4 z=12$ (C) $3 y+4 z=12$ (D) $3 z+4 y=12$

- Watch Video Solution

83. The equation of the plane passng throuogh (1,1,1) and (1,-1,-1) and perpendicular to $2 x-y+z+5=0$ is (A) $2 x+5 y+z-8=0$
$x+y-z-1=0$ (C) $2 x+5 y+z+4=0$ (D) $x-y+z-1=0$
84. The angle between the plane $2 x-y+z=6 n$ and $x+y+2 z=3$ is (A) $\frac{\pi}{3}$ (B) $\frac{\cos ^{-1} 1}{6}$ (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{6}$

- Watch Video Solution

85. $\frac{\alpha}{2}, \frac{\beta}{2}, \frac{\gamma}{2}$ are the angle which a line makes with positive $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes respectively. What is the value of $\cos \alpha+\cos \beta+\cos \gamma$? (A) 1 (B) -1 (C) 2 (D) 3

- Watch Video Solution

86. $A B C$ is a triangle and $A D$ is the median. If the coordinates of A are
$(4,7,-8)$ and the coordinates of centroid of triangle ABC are $(1,1,1)$ what are the coordinates of D ? (A) $\left(\frac{-1}{2}, 2,11\right)$ (B) $\left(\frac{-1}{2},-2, \frac{11}{2}\right)$
$(-1,2,11)(D)(-5,-11,19)^{\prime}$
87. If the points $(5,-1,1),(-1,-3,4)$ and $(1,-6,10)$ are three vertices of a rhombus taken in order then which one of the following ils the fourth vertex? (A) $(7,-4,11)$ (B) $\left(3, \frac{-7}{2}, \frac{11}{2}\right)$ (C) $(7,-4,7)$ (D) $(7,4,11)$

- Watch Video Solution

88. which of the following points is on the line of intersection of planes

$$
\begin{align*}
& x=3 z-4, y=2 z-3 ? \text { (A) }(4,3,0) \text { (B) }(-3,-4,0) \text { (C) }(3,2,1) \tag{D}\\
& (-4,-3,0)
\end{align*}
$$

- Watch Video Solution

89. The point of intersection of the lines

$$
\begin{align*}
& \frac{x-5}{3}=\frac{y-7}{-1}=\frac{z+2}{1} \text { and } \frac{x+3}{-36}=\frac{y-3}{2}=\frac{z-6}{4} \quad \text { is } \tag{A}\\
& \left(21, \frac{5}{3}, \frac{10}{3}\right) \text { (B) }(2,10,4) \text { (C) }(-3,3,6) \text { (D) }(5,7,-2)
\end{align*}
$$

90. The equation of the line intersection of the planes $4 x+4 y-5 z=12$ and $8 x+12 y-13 z=32$ can be written as: (A)
$\frac{x}{2}=\frac{y-1}{3}=\frac{z-2}{4}$
(B) $\frac{x}{2}=\frac{y}{3}=\frac{z-2}{4}$
(C) $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z}{4}$
(D) $\frac{x-1}{2}=\frac{y-2}{-3}=\frac{z}{4}$

- Watch Video Solution

91. If line makes angle $\alpha, \beta, \gamma, \delta$ with four diagonals of a cube, then the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma+\sin ^{2} \delta$ is (A) $\frac{4}{-}$ (B) 1 (C) $\frac{8}{3}$ (D) $\frac{7}{3}$

- Watch Video Solution

92. The equation of the plane which makes with coordinate axes a triangle with its centroid (α, β, γ) is (A) $\alpha x+\beta y+\gamma z=3$

$$
\begin{equation*}
\frac{x}{\alpha}+\frac{y}{\gamma}+\frac{z}{\gamma}=1 \text { (C) } \alpha x+\beta y+\gamma z=1 \text { (D) } \frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=3 \tag{B}
\end{equation*}
$$

93.

The
angle
between
two
$x+2 y+2 z=3$ and $-5 x+3 y+4 z=9$ is (A) $\frac{\cos ^{-1}(3 \sqrt{2})}{10}$
$\frac{\cos ^{-1}(19 \sqrt{2})}{30}$
(C) $\frac{\cos ^{-1}(9 \sqrt{2})}{20}$
(D) $\frac{\cos ^{-1}(3 \sqrt{2})}{5}$

- Watch Video Solution

94. A line line makes the same angle θ with each of the x and z-axes. If the angle β, which it makes with y -axis, is such that $\sin ^{2} \beta=3 \sin ^{2} \theta$ then $\cos ^{2} \theta$ equals

- Watch Video Solution

95. Distance between two parallel planes
$2 x+y+2 z=8$ and $4 x+2 y+4 z+5=0$ is (A) $\frac{7}{2}$ (B) $\frac{5}{2}$ (C) $\frac{3}{2}$ (D) $\frac{9}{2}$
96.

$x=1+s, y=-3-\lambda s, z=1+\lambda s$ and $x=\frac{t}{2}, y=1+t, z=2-t$ with parameters s and t respectively, are coplanar, then λ equals (A) $-\frac{1}{2}$ (B) -1 (C) -2 (D) 0

- Watch Video Solution

$$
\begin{aligned}
& \text { 97. The intersection of } \\
& x^{2}+y^{2}+z^{2}+7 x-2 y-z=13 a n d x^{2}+y^{2}=z^{2}-3 x+3 y+4 z=8
\end{aligned}
$$ is the same as the intersection of one of the spheres and the plane a.

$$
x-y-z=1 \text { b. } x-2 y-z=1 \text { c. } x-y-2 z=1 \text { d. } 2 x-y-z=1
$$

- Watch Video Solution

98. If the angle θ between the line $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2 x-y+\sqrt{p z}+4=0$ is such that $\sin \theta=\frac{1}{3}$, then the values of p is (A) 0 (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) $\frac{5}{3}$
99. The angle between the lines $2 x=3 y=-z$ and $6 x=-y=-4 z$ is (A) 0^{0} (B) 90^{0} (C) 45^{0} (D) 30^{0}

- Watch Video Solution

100. If the plane $2 a x-3 a y+4 a z+6=0$ passes through the midpoint of the line joining centres of the spheres $x^{2}+y^{2}+z^{2}+6 x-8 y-2 z=13$ and $x^{2}+y^{2}+z^{2}-10 x+4 y-2 z=$ then a equals (A) -1 (B) 1 (C) -2 (D) 2

- Watch Video Solution

101. The plane $x+2 y-z=4$ cuts the sphere
$x^{2}+y^{2}+z^{2}-x+z-2=0$ in a circle of radius (A) 3 (B) 1 (C) 2 (D) $\sqrt{2}$
102. Let $\vec{a}=3 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}-4 \hat{k}$ be the positon vectors of the points A and B respectively. If \vec{r} is the position vector of any point $P(x, y, z)$ on the plane passing through the point A and perpendiculr to the line $A B$, then consider the following statements: The locus of $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ is given by 1. $(\vec{r} \cdot \vec{a}) \cdot(\vec{b}-\vec{a})=0 \quad 2$. $(\vec{r}-\vec{a}) \cdot(\vec{a}-\vec{b})=0 \quad 3.2 x+3 y+6 z-21=0$ Which of the statements given above are correct? (A) 1,2,and 3 (B) 1 and 2 (C) 1 and 3 (D) 2 and 3

Watch Video Solution

103. IF for a plane the intercepts on the coordinate axes are 8,4,4 then the length of the perpendicular from the origin on to the plane is (A) $\frac{8}{3}$ (B) $\frac{3}{8}$ (C) 3 (D) $\frac{4}{3}$
104. The equation of the sphere concentric with the sphere $2 x^{2}+2 y^{2}+2 z^{2}-6 x+2 y-4 z=1$ and double its radius is (A) $x^{2}+y^{2}+z^{2}-x+y-z=1$ (B) $x^{2}+y^{2}+z^{2}-6 x+2 y-4 z=1$
$2 x^{2}+2 y^{2}+2 z^{2}-6 x+2 y-4 z-15=0 \quad$ (D) $2 x^{\wedge} 2+2 y^{\wedge} 2+2 z^{\wedge} 2-6 x+2 y-$ $4 z-25=0$

- Watch Video Solution

105. If a plane meets the equations axes at $A, B a n d C$ such that the centroid of the triangle is $(1,2,4)$, then find the equation of the plane.

- Watch Video Solution

106. The position vector of the pont where the line $\vec{r}=\hat{i}-h * j+\hat{k}+t(\hat{i}+\hat{j}-\hat{k})$ meets plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=5$ is (A) $5 \hat{i}+\hat{j}-\hat{k}$ (B) $5 \hat{i}+3 \hat{j}-3 \hat{k}$ (C) $5 \hat{i}+\hat{j}+\hat{k}$ (D) $4 \hat{i}+2 \hat{j}-2 \hat{k}$
107. If $(2,3,5)$ is one end of a diameter of the sphere $x^{2}+y^{2}+z^{2}-6 x-12 y-2 z+20=0$, then the coordinates of the other end of the diameter are (1) $(4,9,-3)(2)(4,-3,3)(3)(4,3,5)$ (4) $(4,3,-3)$

- Watch Video Solution

108. The line segment joining the points A, B makes projection $1,4,3 o n x, y, z$ axes respectively then the direction cosiners of AB are (A)
$1,4,3$ (B) $\frac{1}{\sqrt{26}}, \frac{4}{\sqrt{26}}, \frac{3}{\sqrt{26}}$
(C) $\frac{-1}{\sqrt{26, \frac{4}{\sqrt{26}}, \frac{3}{\sqrt{26}}}}$
(D) $\frac{1}{\sqrt{26}}, \frac{-4}{\sqrt{26}}, \frac{3}{\sqrt{26}}$

- Watch Video Solution

109. The length of projection of the line segment joinint ($3,-1,0$) and $(-3,5, \sqrt{2})$ on a line with direction cosiens $\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}$ is (A) 1 (B) 2 (C) 3 (D) 4
110. The line perpendicular to the plane $2 x-y+5 z=4$ passing through the point $(-1,0,1)$ is (A) $(x+1)=-y=\frac{z-1}{-5}$
$\frac{x+1}{-2}=y=\frac{z-1}{5}$
$\frac{x+1}{2}=y=\frac{z-1}{5}$
(C) $\quad \frac{x=1}{2}=-y=\frac{z-1}{5}$

- Watch Video Solution

111. The shortest distance between the lines
$\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-6}{5}$ and $\frac{x-5}{1}=\frac{y-2}{1}=\frac{z-1}{2}$ is (A) 3 (B) 2
(C) 1 (D) 0

- Watch Video Solution

112. Angle between the line $\frac{x+1}{1}=\frac{y}{2}=\frac{z-1}{1}$ and a normal to plane $x-y+z=0$ is (A) $0^{\wedge} 0(B) 30^{\wedge} 0(C) 45^{\wedge} 0(D) 90^{\wedge} 0^{`}$

- Watch Video Solution

113. Foot of the perpendicular form $(-2,1,4)$ to a plane π is $(3,1,2)$. Then the equation of theplane π is (A) $4 x-2 y=11$ (B) $5 x-2 y=10$ $5 x-2 z=11$ (D) $5 x+2 z=11$

- Watch Video Solution

114. If θ is the angel between the planes
$2 x-y+z-1=0$ and $x-2 y+z+2=0$ then $\cos \theta=(A) 2 / 3(B)$ 3/4(C)4/5(D)5/6'

- Watch Video Solution

115. If $(2,3,5)$ is one end of a diameter of the sphere $x^{2}+y^{2}+z^{2}-6 x-12 y-2 z+20=0$, then the coordinates of the other end of the diameter are (1) $(4,9,-3)(2)(4,-3,3)(3)(4,3,5)$
(4) $(4,3,-3)$
116. Let L be the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$. If L makes an angle α with the positive x-axis, then $\cos \alpha$ equals a. $\frac{1}{2}$ b. 1 c. $\frac{1}{\sqrt{2}}$ d. $\frac{1}{\sqrt{3}}$

- Watch Video Solution

117. The shortest distance form the point $(1,2,-1)$ to the surface of the sphere $(x+1)^{2}+(y+2)^{2}+(z-1)^{2}=6$ (A) $3 \sqrt{6}$ (B) $2 \sqrt{6}$ (C) $\sqrt{6}$ (D) 2

- Watch Video Solution

118. If from a point $P(a, b, c)$ perpendiculars $P A a n d P B$ are drawn to $Y Z a n d Z X-$ planes find the vectors equation of the plane $O A B$.

- Watch Video Solution

119. If $P(x, y, z)$ is a point on the line segment joining $Q(2,2,4) \operatorname{and} R(3,5,6)$ such that the projections of $\overrightarrow{O P}$ on te axes are $13 / 5,19 / 5$ and $26 / 5$, respectively, then find the ratio in which P divides $Q R$.

- Watch Video Solution

120. The angle betwene the line
$\vec{r}=(1+2 \mu) \hat{i}+(2+\mu) \hat{j}+(2 m-1) \hat{k} \quad$ and the plane $3 x-2 y=6 z=0$ where μ is a scalar is (A) $\sin ^{-1}\left(\frac{15}{21}\right)$ (B) $\cos ^{-1}\left(\frac{16}{21}\right)$
(C) $\sin ^{-1}\left(\frac{16}{21}\right)$ (D) $\frac{\pi}{2}$

- Watch Video Solution

121. The length of the shortest distance between the two lines $\vec{r}=(-3 \hat{i}+6 \hat{j})+s(-4 \hat{i}+3 \hat{j}+2 \hat{k})$ and $\vec{r}=(-2 \hat{i}+7 \hat{k})=t($
is (A) 7units (B) 13units (C) 8units (D) 9units
122. The equationof the plane passing through the origin and containing the line $\frac{x-1}{5}=\frac{y-2}{4}=\frac{z-3}{5}$ is (A) $x+5 y-3 z=0$
$x-5 y+3 z=0$ (C) $x-5 y-3 z=0$ (D) $3 x-10 y+5 z=0$

Watch Video Solution

123. The line passing through the points $(5,1, a)$ and $(3, b, 1)$ crosses the yzplane at the point $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$.Then (1) $a=2, b=8$
$a=4, b=6$ (3) $a=6, b=4$ (4) $a=8, b=2$

- Watch Video Solution

124. If the straight lines $\frac{x-1}{k}=\frac{y-2}{2}=\frac{z-3}{3} \quad$ and $\frac{x-2}{3}=\frac{y-3}{k}=\frac{z-1}{2}$ intersect at a point, then the integer k is equal to (1) $-5(2) 5(3) 2(4)-2$
125. The shortest distance between the straighat lines through the point $A_{1}=(6,2,2)$ and $A_{2}=(-4,0,-1)$ in the directions $1,-2,2$ and 3,-2,-2 is (A) 6 (B) 8 (C) 12 (D) 9

- Watch Video Solution

126. The centre and radius of the spehere $x^{2}+y^{2}+z^{2}=3 x-4 z+1=0$ are (A) $\left(-\frac{3}{2}, 0,-2\right), \frac{\sqrt{21}}{2}$
$\left(-\frac{3}{2}, 0,2\right), \frac{\sqrt{21}}{2}$ (C)
(C) $\left(-\frac{3}{2}, 0,-2\right), \frac{\sqrt{21}}{2}$
(D) $\left(-\frac{3}{2}, 2,0\right), \frac{21}{2}$

- Watch Video Solution

127. The plane through the point $(-1,-1,-1)$ nd contasining the line of intersection of the planes $\vec{r} \cdot(\hat{i}+3 \hat{j}-\hat{k})=0, \vec{r} \cdot(\hat{i}+2 \hat{k})=0$ is (A)
$\vec{r} \cdot(\hat{i}+2 \hat{j}-3 \hat{k})=0$
(B)
$\vec{r} \cdot(\hat{i}+4 \hat{j}+\hat{k})=0$
$\vec{r} \cdot(\hat{i}+5 \hat{j}-5 \hat{k})=0$ (D) $\vec{r} \cdot(\hat{i}+\hat{j}+3 \hat{k})=0$
128. If projections of as line on x, y and z axes are 6,2 and 3 respectively, then directions cosines of the lines are (A) $\left(\frac{6}{2}, \frac{2}{7}, \frac{3}{7}\right)$ (B) $\left(\frac{3}{5}, \frac{5}{7}, \frac{6}{7}\right)$
(C) $\left(\frac{1}{7}, \frac{2}{7}, \frac{3}{7}\right)$ (D) none of these

- Watch Video Solution

129. Distance between two parallel planes
$4 x+2 y+4 z=5=0$ and $2 x+y+2 z=8$ is (A) $\frac{5}{2}$ (B) $\frac{3}{2}$ (C) $\frac{7}{2}$ (D) $\frac{4}{3}$

- Watch Video Solution

130. The coordinates of the point of intersection of the lines $\frac{x-1}{1}=\frac{y+2}{3}=\frac{z-2}{-2}$ with the plane $3 x+4 y+5 z-25=0$ is (A)
$(5,6,-10)$
(B) $(5,10,-6)$
(C) $(-6,5,10)$
(D) $(-6,10,5)$

- Watch Video Solution

131. Let PM be the perpendicular from the point $P(1,2,3)$ to XY -plane. If OP makes an angle θ with the positive direction of the Z-axies and $O M$ makes an angle Φ with the positive direction of X -axis, where O is the origin, θ and Φ are acute angles, then

- Watch Video Solution

132. The values (s) of k for whichate trianle with vertice $(6,10,10),(1,0,-5)$ and $(6,-10, k)$ will be righat angled triangle is /are (A) 0 (B) 35 (C) $\frac{70}{3}$ (D) 0

- Watch Video Solution

133. The diection ratios of lines intersecting the line $\frac{x-3}{2}=\frac{y-3}{2}=\frac{z}{1}$ at an angle 60° are (A) 1,2,-1 (B) 1,1,2 (C) 1,-2,1 (D) 1,-1,2

134. If $O A B C$ is a tetrahedron such that $O A^{2}+B C^{2}=O B^{2}+C A^{2}=O C^{2}+A B^{2}$ then

- Watch Video Solution

135. The direction ratios of the bisector of the angle between the lines whose direction cosines are l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are (A)
$l_{1}+l_{2}, m_{1}+m_{2}+n_{1}+n_{2}$
(B) $\quad l_{1}-l_{2}, m_{1}-m_{2}-n_{1}-n_{2}$
$l_{1} m_{2}-l_{2} m_{1}, m_{1} n_{2}-m_{2} n_{1}, n_{1} l_{2}-n_{2} l_{1}$
$l_{1} m_{2}+l_{2} m_{1}, m_{1} n_{2}+m_{2} n_{1}, n_{1} l_{2}+n_{2} l_{1}$

- Watch Video Solution

136. If straighat lin emakes and angle of 60° with each of the x and y-axes the angle which it makes with the z-axis is (A) $\frac{\pi}{4}$ (B) $\frac{\pi}{3}$ (C) $\frac{3 \pi}{4}$ (D) $\frac{\pi}{2}$
137. The lines $\left(x-\frac{20}{1}=\frac{y-3}{1}=\frac{z-4}{-k \text { and }\left(x-\frac{10}{k}=\frac{y-4}{2}=\frac{z-5}{1}\right.}\right.$ are coplanar if (A) $k=3$ or -3 (B) $k=0$ or -1 (C) $k=1$ or -1 (D) $k=0$ or -3

- Watch Video Solution

138. The plane $x-2 y+7 z+21=0 \quad$ (A) contains the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$
(B) contains the point ($0,7,-1$) (C) is perpendicular to the line $\frac{x}{1}=\frac{y}{-2}=\frac{z}{7}$ (D) is parallel to the plane $x-2 y+7 z=0$

- Watch Video Solution

139. If d_{1}, d_{2}, d_{3} denote the distances of the plane $2 x-3 y+4 z=0$ from the planes $2 x-3 y+4 z+6=0$
$4 x-6 y+7 z+3=0$ and $2 x-3 y+4 z-6=0$ respectively, then
140. In three dimensional geometry $a x+b y+c=0$ represents (A) a plane perpendicular to z-axis (B) a plane perpendicular to xy plane (C) a straighat line on xy plane (D) a plane parallel to z-axis

- Watch Video Solution

141. $A(0,5,6), B(1,4,7), C(2,3,7)$ and $D(3,4,6)$ are four points in space. The point nearest to the origin $O(0,0,0)$ is (A) A (B) B (C) C (D) D

- Watch Video Solution

142. If $P(2,3,1)$ is a point $L \equiv x-y-z-2=0$ is a plane then (A) origin and P lie on the same side of the plane (B) distance of P from the plane is $\frac{4}{\sqrt{3}}$ (C) foot of perpendicular from point P to plane is $\left(\frac{10}{3}, \frac{5}{3},-\frac{1}{3}\right)(\mathrm{D})$ image of point P i the planee is $\left(\frac{10}{3}, \frac{5}{3},-\frac{1}{3}\right)$
143. $P(1,1,1)$ and $Q(\lambda, \lambda, \lambda)$ are two points in space such that $P Q=\sqrt{27}$ the value of λ can be (A) -2 (B) -4 (C) 4 (D) 2

- Watch Video Solution

144. The
lines
$\frac{x-1}{3}=\frac{y-1}{-1}=\frac{z+1}{0}$ and $\frac{x-4}{2}=\frac{y+0}{0}=\frac{z+1}{3}$ (A) intersect at (4,0,-1) (B) intersect at (1,1,-1) (C) do not intersect (D) intersect

- Watch Video Solution

145. If α, β, γ are the angles which a line makes with the coordinate axes ,then (A) $\sin ^{2} \alpha=\cos ^{2} \beta+\cos ^{2} \gamma$ (B) $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=2$ $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$ (D) $\sin ^{2} \alpha+\sin ^{2} \beta=1+\cos ^{2} \gamma$

- Watch Video Solution

146. The equation of a line $4 x-4 y-z+11=0=x+2 y-z-1$ can be put as $\quad \frac{x}{2}=\frac{y-2}{1}=\frac{z-3}{4} \quad$ (b) $\quad \frac{x-2}{2}=\frac{y-2}{1}=\frac{z}{4}$ $\frac{x-2}{2}=\frac{y}{1}=\frac{z-3}{4}$ (d) None of these

- Watch Video Solution

147. A point Q at a distance 3 from the point $P(1,1,1)$ lying on the line joining the points
$A(0,-1,3)$ and P has the coordinates

- Watch Video Solution

148. If $A \equiv(2,-3,7), B \equiv(-1,4,-5)$ and P is a point on the line $A B$ such that $A P: B P=3: 2$, then P has coordinastes (A) $\left(\frac{7}{5}, \frac{-18}{5}, \frac{29}{5}\right)$ $\left.\frac{1}{5}, \frac{6}{5}, \frac{-1}{5}\right)$ (C) $\left.\frac{4}{5}, \frac{-1}{5}, \frac{11}{5}\right)$ (D) $(-7,18,-29)$

- Watch Video Solution

149. If the direction ratios of a line are $1+\lambda, 1-\lambda, 2$ and the line the makes an angle 60^{0} with the y -axis, then λ is (A) $1+\sqrt{3}$ (B) $2+\sqrt{5}$ (C) $1-\sqrt{3}(\mathrm{D}) 2-\sqrt{5}$

- Watch Video Solution

150. A point on the line $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z+1}{3}$ at a distance $\sqrt{6}$ from the origin is (A) $\left(\frac{-5}{7}, \frac{-10}{7}, \frac{13}{7}\right)$ (B) $\left(\frac{5}{7}, \frac{10}{7}, \frac{-13}{7}\right)$ (C) $(1,2,-1)$ (D) $(-1,-2,1)$

- Watch Video Solution

151. A plane through the line $\frac{x-1}{1}=\frac{y+1}{-2}=\frac{z}{1}$ has the equation (A)
$x+y+z=0$
(B) $3 x+2 y-z=1$
(C) $4 x+y-2 z=3$
$3 x+2 y+z=0$

- Watch Video Solution

$2 x-y-3 z=5$ and $A(1,1,1), B(2,1,-3), C(1,-2,-2)$ and $D(-$ are four points. Which of the following line segments are intersects by the plane? (A) $A D$ (B) $A B$ (C) $A C(D) B C$

- Watch Video Solution

153. Assertion: The equation $3 y+4 z=0$ in te dimensional space represents a plane containing x-axis., Reason: An equation of the form $a x+b y+c z+d=0$ always represents a plane. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

154. Assertion: $x+y+z-15=0$ is the equation of a plane which passes through the midpoint of the ine segment joining te points $(2,3,4)$
and $(6,7,8)$. Reason: The mid point $(4,5,6)$ satisfies the equation of the plane. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

155. Assertion: Straighat lines l_{1} and l_{2} are perpendicular to each other. Reason: $a a^{\prime}+1+^{\prime}=\sin \theta$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

156. Assertion : Line L is perpendicular to the plane $2 x-3 y+6 z=7$, Reason: Direction cosines of L are $\frac{2}{7}, \frac{-3}{7}, \frac{6}{7}$. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

157. Assertion: equation of the straighat ine passing through the ont $(2,3,-5)$ and equally inclined to the axes is $x-2=y-3=z+5$, Reason: Direction ratios of the line which is equally inclined to the axes are $<1,1,1>$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

(Watch Video Solution

158. Assertion: The lines $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and $\frac{x-1}{-2}=\frac{y-2}{-4}=\frac{z-3}{-6}$ are parallel., Reason: two lines having direction ratios l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are parallel if $\frac{l_{1}}{l_{2}}=\frac{m_{1}}{m_{2}}=\frac{n_{1}}{n_{2}}$. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.
159. Assertion : The line I is parallel to the plane P. Reason: The normal of the plane P is perpendicular to the line I. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

160. Assertion: centroid of the triangle $A B C$ is $\left(\frac{1}{3 a}, \frac{1}{3 b}, \frac{1}{3 c}\right)$, Reason: Centroid of a triangle is the point of intersection of medians. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

161. Assertion: The distance between two parallel planes $a x+b y+c z+d=0$ and $a x+b y+c z+d^{\prime}=0$ is $\frac{\left|d-d^{\prime}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}$, Reason: The normal of two parallel planes are perpendicular to each other. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

162. Assertion: If the lines

$$
\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2} \text { and } \frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}
$$

perpendicular to each other, then $k=\frac{10}{7}$, Reason: Two lines having diection ratios l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are perpendiculr to each other if and only if $l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=0$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

[^0]163. Assertion: The straighat line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ is parallel to the plane $x-2 y+z-6=0$ Reason: The normal of the plane is perpendicular to the line. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

164. The equation of a straighat line through the point (a, b, c) and parallel to x -axis is $\frac{x-a}{1} \frac{y-b}{0}=\frac{z-c}{0}$, Reason: The direction ratiof of the y -axis are $, 0,1,0>(\mathrm{A})$ Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

165. Assertion: The equation of the plane thorugh the orign and parallel to the plane $3 x-4 y+5 z-6=0 i s 3 x-4 y=5 z=0$ Reason: The
normals of two parallel planes are always parallel. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

166. Assertion:The centre of the sphere which passes through the point $(a, 0,0),(0, b, 0),(0,0, c)$ and $(0,0,0) s i\left(\frac{a}{2}, 0,0\right)$ Reason: Points on a sphere are equidistant from its centre. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

167. Assertion: The shortest distance between the skew lines $\vec{r}=\vec{a}+\alpha \vec{b}$ and $\vec{r}=\vec{c}+\beta \vec{d} i s \frac{|[\vec{a}-\vec{c} \vec{b} \vec{d}]|}{|\vec{b} \times \vec{d}|}$, Reason: Two
lines are skew lines if they are not coplanar. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

168. Assertion: ABCD is a rhombus. Reason: $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$ and $A C \neq B D$.
(A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

169. Assertion: The direction ratios of the line joining orign and point (x, y, z) are $\mathrm{x}, \mathrm{y}, \mathrm{z}$., Reason: If O be the origin and $P(x, y, z)$ is a point in space and $\mathrm{OP}=\mathrm{r}$ then direction cosines of OP are $\frac{x}{r}, \frac{y}{r}, \frac{z}{r}$. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are
true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

170. Assertion: The equation of the plane through the intesection of the planes $x+y+z=6$ and $2 x+3 y+4 z+5=0$ and the point $(4,4,40 i s 29 x+23 y+17 z=276$. Reason: Equation of the plane through the line of intersection of the planes $P_{1}=0$ and $P_{2}=0 i s P_{1}+\lambda P_{2}=0, \lambda \neq 0$. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

171. Assertion: The equation $2 x^{2}-6 y^{2}+4 z^{2}+18 y z+2 z+x y=0$ represents a pair of perpendicular planes, Reason: A pair of planes represented by $a x^{2}+b y^{2}+c z^{3}+2 f y z+2 g z x+2 h x y=0 \quad$ are
perpendicular if $a+b+c=0$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

172. Assertion: The points $(2,1,5)$ and $(3,4,5)$ lie on opposite side of the plane $2 x+2 y-2 z-1=0$, Reason: Values of $2 x+2 y-2 z-1$ for points $(2,1,5)$ and $(3,4,3)^{\prime}$ have opposite signs. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

173. Assertion: If coordinates of the centroid and circumcentre oif a triangle are known, coordinates of its orthocentre can be found., Reason:

Centroid, orthocentre and circumcentre of a triangle are collinear. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and
R are true R is not te correct explanation of $A(C) A$ is true but R is false.
(D) A is false but R is true.

- Watch Video Solution

174. Assertion: The shortest distance between the skew lines $\frac{x+3}{-4}=\frac{y-6}{3}=\frac{z}{2}$ and $\frac{x+2}{-4}=\frac{y}{1}=\frac{z-7}{1}$ is 9., Reason: Two lines are skew lines if there exists no plane passing through them. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false.
(D) A is false but R is true.

- Watch Video Solution

175. Assertion : A^{-1} exists, Reason: $|A|=0$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.
176. A tetahedron is a three dimensional figure bounded by forunon coplanar trianglular plane.So a tetrahedron has four no coplnar points as its vertices. Suppose a tetrahedron has points A, B, C, D as its vertices which have coordinates $\left(x_{1}, y_{1}, z_{1}\right)\left(x_{2}, y_{2}, z s_{2}\right),\left(x_{3}, y_{3}, z_{3}\right)$ and $\left(-4, y_{4}, z_{4}\right)$ respectivley in a rectngular three dimensionl space. Then the coordinates $\begin{array}{ccc}\text { of } & \text { tis } & \text { centroid }\end{array}$ are
. the circumcentre of the tetrahedron is th centre of a sphere pssing thorugh its vetices. So, this is a point equidistasnt from each ofhate vertices fo the tetrahedron. Let a tetrahedron hve three of its vertices reresented by the points ($0,0,0$),(6,5,-1) and ($-4,1,3$) and its centrod lies at the point $(1,2,5)$. THe coordinate of the fourth vertex of the tetrahedron is

- Watch Video Solution

177. A tetrahedron is a three dimensional figure bounded by four non coplanar triangular plane.So a tetrahedron has four no coplnar points as its vertices. Suppose a tetrahedron has points A, B, C, D as its vertices which have coordinates $\left(x_{1}, y_{1}, z_{1}\right)\left(x_{2}, y_{2}, z_{2}\right),\left(x_{3}, y_{3}, z_{3}\right)$ and $\left(x_{4}, y_{4}, z_{4}\right)$ respectively in a rectangular three dimensional space. Then the coordinates of its centroid are $\left(\frac{x_{1}+x_{2}+x_{3}+x_{3}+x_{4}}{4}, \frac{y_{1}+y_{2}+y_{3}+y_{3}+y_{4}}{4}, \frac{z_{1}+z_{2}+z_{3}+z_{3}+z}{4}\right.$
. the circumcentre of the tetrahedron is the center of a sphere passing through its vertices. So, this is a point equidistant from each of the vertices of the tetrahedron. Let a tetrahedron have three of its vertices represented by the points ($0,0,0$) , $(6,-5,-1)$ and $(-4,1,3)$ and its centroid lies at the point $(1,2,5)$. The coordinate of the fourth vertex of the tetrahedron is

- Watch Video Solution

178. A tetahedron is a three dimensional figure bounded by forunon coplanar trianglular plane.So a tetrahedron has four no coplnar points as
its vertices. Suppose a tetrahedron has points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ as its vertices which have coordinates $\left(x_{1}, y_{1}, z_{1}\right)\left(x_{2}, y_{2}, z s_{2}\right),\left(x_{3}, y_{3}, z_{3}\right)$ and $\left({ }_{-} 4, y_{4}, z_{4}\right)$ respectivley in a rectngular three dimensionl space. Then the coordinates

$$
\begin{array}{ccc}
\text { of } & \text { tis } & \text { centroid } \\
\left(x_{1}+x_{2}+x_{3}+x_{3}+4 \frac{\partial}{4}, y_{1}+y_{2}+y_{3}+y_{3}+4 \frac{\partial}{4}, z_{1}+z_{2}+z_{3}+z_{3}+\right.
\end{array}
$$

. the circumcentre of the tetrahedron is th centre of a sphere pssing thorugh its vetices. So, this is a point equidistasnt from each ofhate vertices fo the tetrahedron. Let a tetrahedron hve three of its vertices reresented by the points ($0,0,0$) , (6,-5,-1) and ($-4,1,3$) and its centrod lies at the point $(1,2,5)$. THe coordinate of the fourth vertex of the tetrahedron is

- Watch Video Solution

179. A tetahedron is a three dimensional figure bounded by forunon coplanar trianglular plane.So a tetrahedron has four no coplnar points as its vertices. Suppose a tetrahedron has points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ as its vertices which have coordinates $\left(x_{1}, y_{1}, z_{1}\right)\left(x_{2}, y_{2}, z s_{2}\right),\left(x_{3}, y_{3}, z_{3}\right)$ and $\left({ }_{-} 4, y_{4}, z_{4}\right)$ respectivley in a rectngular three dimensionl space. Then the coordinates

$$
\left(x_{1}+x_{2}+x_{3}+x_{3}+4 \frac{\ddots}{4}, y_{1}+y_{2}+y_{3}+y_{3}+4 \frac{\varrho}{4}, z_{1}+z_{2}+z_{3}+z_{3}+\right.
$$

. the circumcentre of the tetrahedron is th centre of a sphere pssing thorugh its vetices. So, this is a point equidistasnt from each ofhate vertices fo the tetrahedron. Let a tetrahedron hve three of its vertices reresented by the points ($0,0,0$) , (6,-5,-1) and ($-4,1,3$) and its centrod lies at the point $(1,2,5)$. THe coordinate of the fourth vertex of the tetrahedron is

- Watch Video Solution

180. Supose directioncoisnes of two lines are given by $u l+v m+w n=0$ and $a l^{2}+b m^{2}+c n^{2}=0 \quad$ where $\quad u, v, w, a, b, c \quad$ are arbitrary constnts and I,m,n are directioncosines of the lines. For $u=v=w=1$ directionc isines of both lines satisfy the relation. (A)
$(b+c)\left(\frac{n}{l}\right)^{2}+2 b\left(\frac{n}{l}\right)+(a+b)=0$
$(c+a)\left(\frac{l}{m}\right)^{2}+2 c\left(\frac{l}{m}\right)+(b+c)=0$
$(a+b)\left(\frac{m}{n}\right)^{2}+2 a\left(\frac{m}{n}\right)+(c+a)=0$ (D) all of the above
181. Supose directioncoisnes of two lines are given by $u l+v m+w n=0$ and $a l^{2}+b m^{2}+c n^{2}=0 \quad$ where $\quad u, v, w, a, b, c \quad$ are arbitrary constnts and l,m,n are directioncosines of the lines. For $u=v=w=1$ if $\frac{n_{1} n_{2}}{l_{1} l_{2}}=\left(\frac{a+b}{b+c}\right)$ then (A) $\frac{m_{1} m_{2}}{l_{1} l_{2}}=\frac{(b+c)}{(c+a)}$
$\frac{m_{1} m_{2}}{l_{1} l_{2}}=\frac{(c+a)}{(b+c)}$ (C) $\frac{m_{1} m_{2}}{l_{1} l_{2}}=\frac{(a+b)}{(c+a)}$ (D) $\frac{m_{1} m_{2}}{l_{1} l_{2}}=\frac{(c+a)}{(a+b)}$

- Watch Video Solution

182. Supose directioncoisnes of two lines are given by $u l+v m+w n=0$ and $a l^{2}+b m^{2}+c n^{2}=0 \quad$ where $\quad \mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{a}, \mathrm{b}, \mathrm{c}$ are arbitrary constnts and $1, m, n$ are directioncosines of the lines. For $u=v=w=1$ if lines are perpendicular then. (A) $a+b+c=0$ $a b+b c+c a=0$ (C) $a b+b c+c a=3 a b c$ (D) $a b+b c+c a=a b c$

- Watch Video Solution

183. The equations of motion of a rocket are $x=2 t, y=-4 t a n d z=4 t$, where timet is given in seconds, and the
coordinates of a moving points in kilometers. What is the path of the rocket? At what distance will be the rocket from the starting point $O(0,0,0)$ in $10 s ?$

- Watch Video Solution

184. The position of a mving point in space is $x=2 t, y=4 t, z=4 t$ where t is measured in seconds and coordinates of moving point are in kilometers: The distance of thepoint from the starting point ${ }^{\circ} \mathrm{O}(0,0,0)$ in 15 sec is (A) 3 km (B) 60 km (C) 90 km (D) 120 km

- Watch Video Solution

185. Let the equtios of two planes be $P_{1}: 2 x-y+z=2$ and $P_{2}: x+2 y-z=3$ the equation o fthe plane through the intersection of $P_{1} n d P_{2}$ and the point $(3,2,1)$ is (A) $x-3 y+2 z+1=0$ (B) $3 x-y+2 z-9=0$ (C) $4 x-3 y+2 z-8=0$ (D) $2 x-3 y+z-1=0$
186. Let the equations of two planes be $P_{1}: 2 x-y+z=2$ and $P_{2}: x+2 y-z=3$ Equation of the plane which passes through the point ($-1,3,2$) and is perpendicular to each of the plane $\quad P_{1}$ and $P_{2} \quad$ is (A) $\quad x-3 y-5 z+20=0$
$x+3 y+5 z-18=0$ (C) $x-3 y-5 z=0$ (D) $x+3 y-5 z=0$

- Watch Video Solution

187. The equation of the acute angle bisector of planes
$2 x-y+z-2=0$ and $x+2 y-z-3=0$ is $x-3 y+2 z+1=0$
$3 x+3 y-2 z+1=0 x+3 y-2 z+1=0$ (d) $3 x+y=5$

- Watch Video Solution

188. The equation of the acute angle bisector of planes $2 x-y+z-2=0$ and $x+2 y-z-3=0$ is $x-3 y+2 z+1=0$
$3 x+3 y-2 z+1=0 x+3 y-2 z+1=0$ (d) $3 x+y=5$

- Watch Video Solution

189. The image of plane $2 x-y+z=2$ in the plane mirror $x+2 y-z=3$ is $x+7 y-4 x+5=0 \quad$ (b) $\quad 3 x+4 y-5 z+9=0$
$7 x-y+2 z-9=0$ (d) None of these

- Watch Video Solution

[^0]: - Watch Video Solution

