©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

3D - PLANES

Solved Examples

1. Find the Cartesian equation of the plane whose vector equation is $\vec{r} \cdot(3 \hat{i}+4 \hat{j}-2 \hat{k})=5$.

- Watch Video Solution

2. Find the Cartesian equation of the following plane: $\vec{r}=(\lambda-2 \mu) \hat{i}+(3-\mu) \hat{j}+(2 \lambda+\mu) \hat{k}$.
3. Find the vector equation of the plane whose Cartesian equation is $2 x+3 y-9 z=4$

- Watch Video Solution

4. Find the vector equation of the plane $x+7 y-5 z+19=0$

- Watch Video Solution

5. Find the equation of the plane which cuts equal intercepts on the axes and passes through the point $(2,3,5)$.

- Watch Video Solution

6. Find the equation of the plane which is parallel to x-axis and cuts intercepts 2 and 5 on y and z-axis respectively.
7. Find the equation of the plane which is parallel to the plane $x+5 y-4 z+5=0$ and the sum of whose intercepts on the coordinate axes is 15 units.

- Watch Video Solution

8. Find the equation of the plane upon which the length of normal from origin is 10 and direction ratios of this normal are 3,2,6

- Watch Video Solution

9. Find the equation of the plane which is at a distance of 5 units fom the origin and perpendiculat to $2 \hat{i}-3 \hat{j}+6 \hat{k}$

- Watch Video Solution

10. Find the equation of the plane through the point $2 \hat{i}+3 \hat{j}-\hat{k}$ and perpendicular to vector $3 \hat{i}+3 \hat{j}+7 \hat{k}$. Determine the perpendicular distance of this plane from the origin.

- Watch Video Solution

11. Find a normal vector to the plane $x+2 y+3 z-6=0$

- Watch Video Solution

12. What are the direction cosines of the normal to the plane $4 x+12 y+3 z=65$? Also find the lenth of perpendicular from the origin to the plane.

- Watch Video Solution

13. Find the angle between the planes
$-x+y+2 z=9$ and $x+2 y+z=5$

- Watch Video Solution

14. Find the angle between the planes
$\vec{r} \cdot(\hat{i}+\hat{j}-2 \hat{k})=3$ and $\vec{r} \cdot(2 \hat{i}-2 \hat{j}+\hat{k})=2$

- Watch Video Solution

15. Find the angle between the line $\vec{r}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$ and the plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})=4$

- Watch Video Solution

16. Find the angle between the plane $x+y-2 z+5=0$ and the line whose direction cosines are $\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}$.
17. Find the angle between line $\frac{x+1}{3}=\frac{y-1}{2}=\frac{z-2}{4}$ and the plane $2 x+y-3 z+4=0$.

- Watch Video Solution

18. Find the general equation of plane pasing through the point $(1,2,-3)$.

- Watch Video Solution

19. Find the vector and the Cartesian equations of the plane passing through the point $(1,2,3)$ and perpendicular to the line with direction ratio $2,3,-4$.

- Watch Video Solution

20. Find the equation of the plane passing through the points $(2,1,2)$ and $(1,3,-2)$ and parallel to the x-axis.

- Watch Video Solution

21. If a plane passes through the point $(-3,-3,1)$ and is normal to the line joining the points $(2,6,1)$ and $(1,3,0)$, find its equation.

- Watch Video Solution

22. Find the equation of the plane through $P(1,4,-2)$ and parallel to the plane $-2 x+y-3 z=0$

- Watch Video Solution

23. Find the equation of the plane through the point ($3,4,-1$) and parallel to the plane $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+5 \hat{k})+7=0$
24. Find the equation of the plane passing through the point ($-1,-1,2$)and perpendicular to the planes $3 x+2 y-3 z=1$ and $5 x-4 y+z=5$.

- Watch Video Solution

25. Find the equation of the plane through the points $(2,2,1)$ and $(9,3,6)$ and perpendicular to the plane $2 x+6 y+6 z=1$

- Watch Video Solution

26. Find the vector equation to the plane through the point $-\hat{i}+3 \hat{j}+2 \hat{k}$ perpendicular to each of the planes
$\vec{r} \cdot(\hat{i}+2 \hat{j}+2 \hat{k})=25$ and $\vec{r} \cdot(3 \hat{i}+3 \hat{j}+2 \hat{k})=8$.

- Watch Video Solution

27. Find the equation of the plane which passes through the points $(6,2,-4)$ and $(3,-4,1)$ and is parallel to the line joining the points $(1,0,3)$ and ($-1,2,4)$.

- Watch Video Solution

28. Find the equation of the plane through the point $\hat{i}+4 \hat{j}-2 \hat{k}$ and perpendicular to the line of intersection of the planes $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=10$ and $\vec{r} \cdot(2 \hat{i}-\hat{j}+3 \hat{k})=18$.

- Watch Video Solution

29. Find the equation of the plane passing through the points ($0,-1,-1$), $(4,5,1)$ and $(3,9,4)$. Also find the vector equation of the plane.

- Watch Video Solution

30. Find the vector equation of the plane passing through the points $(6,-1,1),(5,1,2)$ and $(1,-5,-4)$. Also find the Cartesian equation of the plane.

- Watch Video Solution

31. Show that the points $(0,-1,0) \cdot(2,1,-1),(1,1,1),(3,3,0)$ are coplanar.

- Watch Video Solution

32. Can there be a unique equationof the plane passing through the points $(4,3,5)(1,2,3)$ and $(7,4,7)$? Give reason for your answer.

- Watch Video Solution

33. Find the points of intersection of the line $\frac{x-2}{-3}=\frac{y-1}{2}=\frac{z-3}{2}$ and the plane $2 x+y-z=3$.

- Watch Video Solution

34. Find the image of the point $P(3,5,7)$ in the plane $2 x+y+z=0$.

- Watch Video Solution

35. Find the distance of the point $(2,3,4)$ from the plane $3 x+2 y+2 z+5=0$ measured parallel to the line $\frac{x+3}{3}=\frac{y-2}{6}=\frac{z}{2}$.

- Watch Video Solution

36. Find the vector equationof the line passing through the point $(3,1,2)$ and perpendicular to the plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})=4$. Find also the
point of intersection of this line and the plane.

- Watch Video Solution

37. Find the equation of a plane containing the line of intersection of the planes $x+y+z-6=0 a n d 2 x+3 y+4 z+5=0$ passing through $(1,1,1)$.

- Watch Video Solution

38. Find the vector equation to the plane through the point $(2,1,-1)$ passing through the line of intersection of the planes $\vec{r} \cdot(\hat{i}+3 \hat{j}-\hat{k})=0$ and $\vec{r} \cdot(\hat{j}+2 \hat{k})=0$

- Watch Video Solution

39. Find the equation of the plane passing through the line of intersection of the planes $2 x+y-Z=3,5 x-3 y+4 z+9=0$ and parallel to
the line $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{5}$

- Watch Video Solution

40. Find the equation of the plane passing through the line intersection of the plane: $2 x-y=0$ and $3 z-y=0$ and perpendicular to the plane $4 x+5 y-3 z=8$

- Watch Video Solution

41. Find the equation of the plane which is perpendicular to the plane $5 x+3 y+6 z+8=0$ and which contains the line of intersection of the planes $x+2 y+3 z-4=0$ and $2 x+y-z+5=0$

- Watch Video Solution

42. Find the equation of plane(s) passing through the intersection of planes $x+3 y+6=0$ and $3 x-y-4 z=0$ and whose perpendicular
distance from origin is unity.

- Watch Video Solution

43. Find the Cartesian as well as the vector equation of the planes pasing through the intersection of the planes
$\vec{r} \cdot(2 \hat{i}=6 \hat{j})+12=0$ and $\vec{r} \cdot(3 \hat{i}-\hat{j}+4 \hat{k})=0$ which are at unit distance from the origin.

- Watch Video Solution

44. The plane $x-y-z=4$ is rotated through 90° about its line of intersection with the plane $x+y+2 z=4$. Find its equation in the new position,

- Watch Video Solution

45. Find the equation of the plane through the point $(3,4,-5)$ and parallel to the vectors $3 \hat{i}+\hat{j}-\hat{k}$ and $\hat{i}-2 \hat{j}+\hat{k}$.

Watch Video Solution

46. Find the equation of the plane passing through $(1,2,0)$ which contains the line $\frac{x+3}{3}=\frac{y-1}{4}=\frac{z-2}{-2}$

- Watch Video Solution

47. Find the vector and the Cartesian form of the equation of the plane containing two lines: $\vec{r}=\hat{i}+2 \hat{j}-\hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})$ and $\vec{r}=3 \hat{i}+3 \hat{j}-5 \hat{k}+\mu(-2 \hat{i}+$

- Watch Video Solution

48. Find the vector equation of the plane through the points $A(3,-5,-1), B(-1,5,7)$ and parallel to the vector $3 \hat{i}-\hat{j}+7 \hat{k}$

Watch Video Solution

49. Find the distance of the point $(1,2,0)$ from the plane $4 x+3 y+12 z+16=0$

- Watch Video Solution

50. Show that the distance between planes
$2 x-2 y+z+3=0$ and $4 x-4 y+2 z+5=0 i s \frac{1}{6}$

- Watch Video Solution

51. Find the distance of the point $(3,4,5)$ from the plane
$\vec{r} \cdot(2 \hat{i}-5 \hat{j}+3 \hat{k})=13$
52. Find the distance of the point $(1,2,5)$ from the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})+17=0$

- Watch Video Solution

53. Find the length of the foot of the perpendicular from the point $(1,1,2)$ to the plane $\vec{r} \cdot(2 \hat{i}-2 \hat{j}+4 \hat{k})+5=0$

- Watch Video Solution

54. Find the distance between the parallel planes: $\vec{r} \cdot(2 \hat{i}-\hat{j}+3 \hat{k})=4$ and $\vec{r} \cdot 96 \hat{i}-3 \hat{j}+9 \hat{k})+13=0$

- Watch Video Solution

55. Find the shortest distance between the planes: $x+y-z+4=0$ and $2 x-2 y-2 z+10=0$

- Watch Video Solution

56. Find the equation of the line of intersection of the planes $4 x+4 y-5 z=12,8 x+12 y-13 z=32$ in the symmetric form.

- Watch Video Solution

57. Show that the line represented by equation $x=a y+b, z=c y+d$ in symmetric form is $\frac{x-b}{a}=\frac{y}{1}=\frac{z-d}{c}$

- Watch Video Solution

Exercise

1. Find the Cartesian equations of the following planes whose vector equations are: $\vec{r} \cdot(3 \hat{i}+3 \hat{j}-4 \hat{k})=0$

- Watch Video Solution

2. Find the Cartesian equations of the following planes whose vector equations are: $\vec{r} \cdot(2 \hat{i}-7 \hat{j}+4 \hat{k})+=0$

- Watch Video Solution

3. Find the Cartesian equations of the following planes whose vector equations are: $\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2$

- Watch Video Solution

4. Find the Cartesian equations of the following planes whose vector equations are: $\vec{r} \cdot[(s-2 t) \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k}]=15$
5. Find the vector equation of the following planes whose Cartesian equations are $2 x+3 y-z-1=0$

- Watch Video Solution

6. Find the vector equation of the following planes whose Cartesian equations are $x+2 y+3 z+5=0$

- Watch Video Solution

7. Find the equation f the plane with intercepts 2,3 , and 4 on the x, y and $z-$ axes respectivelly.

- Watch Video Solution

8. Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.

- Watch Video Solution

9. Find the euqationof the plane which cuts intercepts $2,3,-4$ on the axes.

- Watch Video Solution

10. Find the intercepts of tehplane $3 x+4 y-7 z=84$ on the axes. Also find the length of perpendicular from origin to this plane and direction cosines of this normal.

- Watch Video Solution

11. Find the intercepts cut off on the axes by the plane $2 x+y-z=5$.
12. Find the equation of a plane which meets the axes in $A, B a n d C$, given that the centroid of the triangle $A B C$ is the point (α, β, γ)

- Watch Video Solution

13. Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector $3 \hat{i}+5 \hat{j}-6 \hat{k}$

- Watch Video Solution

14. Find the vector equation of the plane which is at a distance of $\frac{6}{\sqrt{29}}$ from the origin and its normal vector from the origin is $2 \hat{i}-3 \hat{j}+4 \hat{k}$.

Also find its Cartesian equations

- Watch Video Solution

15. In each of the following cases,determine the direction cosines of the normal to the plane and its distance from the origin: $2 x-3 y+4 z-6=0$

- Watch Video Solution

16. In each of the following cases,determine the direction cosines of the normal to the plane ned its distance from the origin: $2 x+3 y-z=5$

- Watch Video Solution

17. In each of the following cases,determine the direction cosines of the normal to the plane ned its distance from the origin: $x+y+z=1$

- Watch Video Solution

18. In each of the following cases,determine the direction cosines of the normal to the plane ned its distance from the origin: $5 y+8=0$

- Watch Video Solution

19. In each of the following cases,determine the direction cosines of the normal to the plane ned its distance from the origin: $z=2$

- Watch Video Solution

20. Find the direction cosines of the unit vector perpendcular to the plane $\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=3$

- Watch Video Solution

21. Find the angle between the plane:
$2 x-y+z=6$ and $x+y+2 z=7$
22. Find the angle between the plane:
$7 x+5 y+6 z+30=0$ and $3 x-y-10 z+4=0$

- Watch Video Solution

23. Find the angle between the plane:
$3 x-6 y+2 z=7$ and $2 x+2 y-2 z=5$

- Watch Video Solution

24. Find the angle between the plane:
$2 x+y-2 z=5$ and $3 x-6 y-2 z=7$

- Watch Video Solution

25. Determine whether the following pair of planes are parallel or perpendicular and in case they are neither find the angle between them: $2 x-y+3 z-1=0$ and $2 x-y+3 z+3=0$

- Watch Video Solution

26. Determine whether the following pair of planes are parallel or perpendicular and in case they are neither find the angle between them:
$2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-10$

- Watch Video Solution

27. Determine whether the following pasir of planes are parallel or perpendicular and in case they are neither find the angle between them: $2 x+y+3 z-2=0$ and $x-2 y+5=0$

- Watch Video Solution

28. Determine whether the following pasir of planes are parallel or perpendicular and in case they are neither find the angle between them: $4 x+8 y+z-8=0$ and $y+z-4=0$

- Watch Video Solution

29. Determine whether the following pair of planes are parallel or perpendicular and in case they are neither find the angle between them: $3 x-4 y+5 z=0$ and $2 x-y-2 z=5$

- Watch Video Solution

30. Find the angle between the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 x+2 y 11 z=3$.

- Watch Video Solution

31. Find the equation of the plane that contains the point $(1,1,2)$ and is perpendicular to each of the planes $2 x+3 y 2 z=5$ and $x+2 y 3 z=8$.

Watch Video Solution

32. Find the equation of the plane passing through the oint ($-1,-1,2$) and perpendicular to each of tehpalnes $2 x+3 y-3 z=2$ and $5 x-4 y+z=6$.

- Watch Video Solution

33. Find the equation of the plane passing through the point $(-1,3,2)$ and perpendicular to each of the planes $x+2 y+3 z=5$ and $3 x+3 y+z=0$

- Watch Video Solution

34. Find the vector and Cartesian equation of the plane that passes through the point $(1,4,6)$ and the normal vector to the plane is $\hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

35. Find the vector and Cartesian equation of the plane that passes throgh the point $(1,0,-2)$ and the normal vector to the plane is $\hat{i}+\hat{j}-\hat{k}$.

- Watch Video Solution

36. If O be the origin and the coordinates of P be $(1,2,-3)$ then find the equation of of the plane passing through P and perpendicular to $O P$.

- Watch Video Solution

37. Find the equation of the plane through ($3,4,-1$) which is parallel to the plane $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+5 \hat{k})+7=0$

Watch Video Solution

38. Find the equation of the plane passing through (a,b,c) and paralle toteh plne $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$.

- Watch Video Solution

39. find the equation of the plane passing through the point $(3,3,1)$ and perpendicular to the line joining (3,4,-1) and (2,-1,5).

- Watch Video Solution

40. Find the equation of the plane passing through the point ($3,4,1$) and
$(0,1,0)$ and parallel to the line $\frac{x+3}{2}=\frac{y-3}{7}=\frac{z-2}{5}$
41. Find the vector and the Cartesian equation of the plane which pases through the point ($5,2,-4$) and perpendicular to the line with direction ratios (2,3,-1).

- Watch Video Solution

42. Find the equation of the plane through the point $(1,4,-2)$ and parallel to the plane $-2 x+y-3 z=7$.

- Watch Video Solution

43. Find the equation of the plane throughathe points $(2,-3,1)$ and $(5,2,-1)$ and perpendicular to the plane $x-4 y+5 z+2=0$

- Watch Video Solution

44. Find the equation of the plane passing through the points $(-1,1,1)$ and $(1,-1,1)$ and perpendicular to the plane $x+2 y+2 z=5$.

- Watch Video Solution

45. Find the equation of the plane passing through the point ($1,1,-1$) and perpendicular to the planes $x+2 y+3 z-7=0$ and $2 x-3 y+4 z=0$

- Watch Video Solution

46. Find the equationfo the plane through points ($2,1,0$),(3,-2,-2), and (3,1,7).

- Watch Video Solution

47. Find the equations of the plane that passes through three points (1,1,0),(1,2,1),(-2,2,-1).

Watch Video Solution

48. Find the vector equation of the plane passing through the points $(2,5,-3),(-2,-3,5),(5,3,-3)$.

- Watch Video Solution

49. Find the vector equation of the plane passing thrugh the points $(2,5,-3),(-2,-3,5),(5,3,-3)$.

- Watch Video Solution

50. Find the coordinates of the point where the line $\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}$ meetsthepla $\neq \mathrm{x}+\mathrm{y}+4 \mathrm{z}=6$.
51. find the coordinates of point where the line through $(3,-4,-5)$ and
$(2,-3,1)$ crosses the plane $2 x+y+z=7$.

- Watch Video Solution

52. Find the coordinates of the point where the line through the points $A(3,4,1)$ and $B(5,1,6)$ crosses the xy-plane.

- Watch Video Solution

53. find the coordinates of thepint where the line through $(5,1,6)$ and $(3,4,1)$ corsses the yz-plane.

- Watch Video Solution

54. Find the distance of the pont $(-1,-5,-10)$ from the point of intersection of the ine \vec{r}. $=2 \hat{i}-\hat{j} 2 \hat{k} \lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$.

- Watch Video Solution

55. Find the coordinates of the foot of perpendicular drawn from origin to the planes: $x+y+z=1$

- Watch Video Solution

56. Find the coordinates of the foot of perpendicular drawn from origin to the planes: $3 y+4 z-6=0$

- Watch Video Solution

57. Find the coordinates of the foot of perpendicular drawn from origin to the planes: $5 y+8=0$

Watch Video Solution

58. Find the coordinates of the foot of perpendicular drawn from origin to the planes: $2 x+3 y+4 z-12=0$

- Watch Video Solution

59. Find the coordinates of the foot of perpendicular drawn from origin to the planes: $2 x-3 y+4 z-6=0$

- Watch Video Solution

60. Find the image of the point $(1,3,4)$ in the plane $2 x-y+z+3=0$.
61. From the point $P(1,2,4)$ a perpendicular is drawn on the plane $2 x+y-2 z+3=0$. Find the equation the length and the coordinates of the foot of perpendicular.

- Watch Video Solution

62. Find the equation of the plane passing through the intersection of the planes $\vec{r} \cdot(2 \hat{i}+\hat{j}+3 \hat{k})=7, \vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9$ and the point (2, 1, 3).

- Watch Video Solution

63. Find the equation of the plane passing through the intersection of the planes $\vec{r} \cdot(2 \hat{i}+\hat{j}+3 \hat{k})=7, \vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9$ and the point (3,2,-1).
64. Find the vector equation of the plane passing through the intersection of the planes
$\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=7, \vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9$ and the point $(2,1,3)$

- Watch Video Solution

65. Find the vector equation of the plane passing through the intersection of the planes
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=6, \vec{r} \cdot(2 \hat{i}+3 \hat{j}+4 \hat{k})=-5$ and the point $(1,1,1)$

- Watch Video Solution

66. Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z-2=0$ and the point $(2,2,1)$.
67. Find the equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$ which is perpendicular to the plane $x-y+z=0$

- Watch Video Solution

68. Find the equation of the plane passing through the line of intersection of the planes
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})+4=0$ and parallel to $x-$ axis.

- Watch Video Solution

69. Find the equation of the plane which contains the line of intersection of the planes $\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4=0, \vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0$ and which is perpendicular to the plane $\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$

Watch Video Solution

70. Show that the lines $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$ and $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$ are coplanar.

- Watch Video Solution

71.

Show that
the
lines
$\frac{x-3}{2}=\frac{y+1}{-3}=\frac{z+2}{1}$ and $\frac{x-7}{-3}=\frac{y}{1}=\frac{z+7}{2} \quad$ are coplanar.
Also find the equation of the plane containing them.

- Watch Video Solution

72. Find the distance of each of the following points from the corresponding given plane: $(-6,0,0), 2 x-3 y+6 z-2=0$

- Watch Video Solution

73. Find the distance of each of the following points from the corresponding given plane: $(2,3,-5), x+2 y-2 z=9$

- Watch Video Solution

74. Find the distance of each of the following points from the corresponding given plane: $(0,0,0), 3 x-4 y+12 z=3$

- Watch Video Solution

75. Find the distance of each of the following points from the corresponding given plane: $(3,-2,1),(2 x-y+2 z+3=0$

- Watch Video Solution

76. Find the distance of a point $(2,5,-3)$ from the plane vecr.(6hati3hatj+2hatk)=4.
77. If a plane has intercepts a, b, c on axes and is at a distance of p units from the origin then prove that $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$

- Watch Video Solution

78. Find the distance of the point $P(6,5,9)$ from the plane determined by the points $A(3,-1,2), B(5,2,4)$ and $C(-1,-1,6)$.

- Watch Video Solution

$$
\begin{aligned}
& \text { 79. Find the distance between the planes } \\
& 2 x+3 y+4 z=4 \text { and } 4+6 y+8 z=12 \text {. }
\end{aligned}
$$

- Watch Video Solution

80. Find the equation of the line through point $(1,2,3)$ and parallel to line $x-y+2 z 5,3 x+y+z=6$.

- Watch Video Solution

81. the
two
lines
$x=a y+b, z=c y+d$ and $x=a^{\prime} y+b, z=c^{\prime} y+d^{\prime} \quad$ will be perpendicular, if and only if: (A) $a a^{\prime}+{ }^{\prime}=1=0$
$a a^{\prime}+\prime+{ }^{\prime}=1=0$
(C) $a a^{\prime}+\prime+^{\prime}=0$
$\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right)+\left(c+c^{\prime}\right)=0$

- Watch Video Solution

82. Find the vector equation o the line passing through $(1,2,3)$ and parallel to the planes $\vec{r} \cdot(\hat{i}+\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$

- Watch Video Solution

83. A plane meets the coordinate axes at P, Q and R such that the centroid of the triangle is $(3,3,3)$. The equation of he plane is (A) $x+y+z=9$ $x+y+z=1$ (C) $x+y+z=3$ (D) $3 x+3 y+3 z=1$

- Watch Video Solution

84. The equation $x y=0$ in three dimensional space is represented by (A) a plane (B) two planes at righat angles (C) a pair of parallel planes (D) a pair of straighat lines

- Watch Video Solution

85. The equation $(x-1)(x-2)=0$ in thre dimensional space is represented by (A) a pair of straighat lines (B) a pair of parallel planes (C) a sphere (D) none of these

- Watch Video Solution

86. A plane meets of axes in P, Q and R such that centroid $P Q R$ is $(1,2,3)$. The equation of the plane is (A) $6 x+3 y+2 z=6$ (B) $6 x+3 y+2 z=1$ (C) $6 x+3 y+2 z=18$ (D) $x+2 y+3 z=1$

- Watch Video Solution

87. The distasnce of the plane $2 x-3 y+6 z+14=0$ from the origin is
(A) 2 (B) 4 (C) 7 (D) 11

- Watch Video Solution

88. The equation of the plane through the origin and parallel to the plane $3 x-4 y+5 z-6=0 \quad$ is \quad (A) $\quad 3 x-4 y-5 z-6=0$
$3 x-4 y+5 z+6=0$ (C) $3 x-4 y_{5} z=0$ (D) $3 x+4 y-5 z+6=0$

- Watch Video Solution

89. The equation of the plane containing the line $2 x+z-4=0 n d 2 y+z=0$ and passing through the point $(2,1,-1) i s(A)$ $\mathrm{x}+\mathrm{y}-\mathrm{z}=4(B) \mathrm{x}-\mathrm{y}-\mathrm{z}=2(C) \mathrm{x}+\mathrm{y}+\mathrm{z}+2=0(D) \mathrm{x}+\mathrm{y}+\mathrm{z}=2^{\prime}$

- Watch Video Solution

90. The eqution $x y+y z=0$ represents (A) a pair of straighat lines (B) a pair of parallel lines (C) a pair of parallel planes (D) a pair of perpendicular planes

- Watch Video Solution

91. The direction cosines of a normal to the plane $2 x-3 y-6 z+14=0$ are (A) $\left(\frac{2}{7}, \frac{-3}{7}, \frac{-6}{7}\right)$ (B) $\left(\frac{-2}{7}, \frac{3}{7}, \frac{6}{7}\right)$ (C) $\left(\frac{-2}{7}, \frac{-3}{3}, \frac{-6}{7}\right)$ none of these
92. The plane $2 x-3 y+6 z-11=0$ makes an angle $\sin ^{-1}(\alpha)$ with X axis. The value of alpah is

- Watch Video Solution

93. The acute angle between the plane $5 x-4 y+7 z=13$ and the y-axis is givne by (A) $\sin ^{-1}\left(\frac{5}{\sqrt{90}}\right)$ (B) $\sin ^{-1}\left(\frac{-4}{\sqrt{90}}\right)$ (C) $\sin ^{-1}\left(\frac{7}{\sqrt{90}}\right)$
$\sin ^{-1}\left(\frac{4}{\sqrt{90}}\right)$

- Watch Video Solution

94. The equation of the parallel plane lying midway between the parallel planes $\quad 2 x-3 y+6 z-7=0$ and $2 x-3 y+6 z+7=0 \quad$ is
$2 x-3 y+6 z+1=0$
(B) $2 x-3 y+6 z-1=0$
(C) $2 x-3 y+6 z=0$
(D) none of these

- Watch Video Solution

95. The plane $x+y=0(A)$ is parallel to y-axis (B) is perpendicular to z axis (C) passes through y-axis (D) none of these

- Watch Video Solution

96. The points $A(1,1,0), B(0,1,1), C(1,0,1)$ and $D\left(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right)$ are (A) coplanar (B) nonn coplanar (C) vertices of a parallelograsm (D) none of these

- Watch Video Solution

97. The equation of the plane whose intercepts on the axes are thrice of those made by the plane $2 x-3 y+6 z-11=0$ is
$6 x-9 y+18 z-11=0$
(B) $2 x-3 y+6 z-33=0$
$2 x-3 y+6 z+33=0$ (D) none of these

- Watch Video Solution

98. The equation of the righat bisecting plane of the segment joiningteh points (a, a, a) and $(-a,-a,-a), a \neq 0$ is (A) $x+y+z=a$
$x+y+z=3 a$ (C) $x+y+z=0$ (D) $x+y+z+a=0$

- Watch Video Solution

99. The equation of plane parallel to the plane $x+y+z=0$ and passing through $\quad(\alpha, \beta, \gamma 0 \quad$ is (A) $\quad x+y+z=\alpha+\beta+\gamma$
$x+y+z=\alpha \beta+\beta \gamma+\gamma \alpha$ (C) $x+y+z+\alpha+\beta+\gamma=0$ (D) none of these

- Watch Video Solution

100. The three planes $x+y=0, y+z=0$ and $x+z=0$ (A) meet in the unique point (B) meet in a line (C) meet taken two at a time i parallel lines (D) none of these
101. The equation $x^{2}-x-2=0$ in three dimensional space is reresented by (A) a pair of parlle planes (B) as pair of straigh lines (C) a pair of perpendicular planes (D) a set contasining two distinct points

- Watch Video Solution

102. The angle between the plane $3 x+4 y=0$ and the line $x^{2}+y^{2}=0$ is (A) 0^{0} (B) 30^{0} (C) 60° (D) 90^{0}

- Watch Video Solution

103. The locus of a first degree equation in x, y and z is a (A) straighat line
(B) plane (C) sphere (D) none of these

- Watch Video Solution

$(-0,-1,-2),(-3,-4,-5),(-6,-7,-8)$ and (x, x, x) are non coplanar then x is (A) - 2 (B) 0 (C) 3 (D) any real number

- Watch Video Solution

105. The points $(3,-2,-1),(-1,1,2),(2,3,-4)$ and $(4,5, \lambda)$ are coplanar when $\lambda=(A) 0(B)(-146) / 17(C) 1(D)(-17) / 9^{`}$

- Watch Video Solution

106. The equation of the righat bisector plane of the segment joining
$(2,3,4)$ and $(6,7,8)$ is (A) $x+y+z+15=0$ (B) $x+y+z-15=0$ (C) $x-y+z-15=0$ (D) none of these

- Watch Video Solution

107. The equation of the plane through the point $(1,2,3)$ which is parallel to the plane $3 x-5 y+2 z=11$ is given by (A) $3 x-5 y+2 z-13=0$
(B) $5 x-3 y+2 z+13=0$
(C) $3 x-2 y+5 z+13=0$
$3 x-5 y+2 z+13=0$

- Watch Video Solution

108. The distance between the parallel planes
$x+2 y-3 z=2$ and $2 x+4 y-6 z+7=0$ is (A) $\frac{1}{\sqrt{14}}$ (B) $\frac{11}{\sqrt{56}}$
$\frac{7}{\sqrt{56}}$ (D) none of these

- Watch Video Solution

109. The angle between the planes $2 x-y+z=6$ and $x+y+2 z=7$
is (A) $\frac{\pi}{4}$ (B) $\frac{\pi}{6}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

- Watch Video Solution

110. Lines $O A$ and $O B$ are drawn from O with directioncosines proportional to ($1,-2,-1$) and ($3,-2,3$) respectively. The direction ratios of the normal to the planes AOB are (A) (4,3,2) (B) (4,-3,-2) (C) (-4,3,-2) (D) (4,3,-2)

- Watch Video Solution

111. The equation of the plane through intersectioof planes $x=2 y+3 z=4$ and $2 x+y-z=-5$ and perpendicular to the plane $\quad 5 x+3 y+6 z+8=0 \quad$ is $\quad(\mathrm{A}) \quad 7 x-2 y+3 x+81=0$ $23 x+14 y-9 z+48=0$ (C) $51 x+15 y+50 z+173=0$ (D) none of these

- Watch Video Solution

112. The distance of the point $(2,1,-1)$ from the plane $x-2 y+4 z=9$ is
(A) $\frac{\sqrt{13}}{21}$
(B) $\frac{13}{21}$
(C) $\frac{13}{\sqrt{21}}$
(D) $\sqrt{\frac{13}{21}}$

- Watch Video Solution

113. The equation of the plane passing through the intersection of the planes $x+2 y+3 z+4=0 a d n 4 x+3 y+2 z+1=0$ and the origin ils
(A) $3 x+2 y+z+1=0$
(B) $3 x+2 y+z=0$
(C) $2 x+3 y+z=0$ $x+y+z=0$

- Watch Video Solution

114. If p is the length of perpendicular from the origin onto the plane whose intercepts on the axes area $\mathrm{a}, \mathrm{b}, \mathrm{c}$ then (A) $a+b+c=p$
$a^{-2}+b^{-2}+c^{-2}=p^{-2}$
$a^{-1}+b^{-1}+c^{-1}=p^{-1}$

$$
\begin{equation*}
{ }^{\wedge} a^{\wedge}(-1)+b^{\wedge}(-1)+c^{\wedge}(-1)=1 \tag{C}
\end{equation*}
$$

- Watch Video Solution

115. Consider the points $P(p, 0,0), Q(0, q, 0)$ and $R(0,0, r)$ where $p q r \neq 0$ then the equation of the plane PQR is (A) $p x+q y+r=1$
$\frac{x}{p}+\frac{y}{q}+\frac{z}{r}=1$ (C) $x+y+z+\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=0$ (D) none of these
116. The planes $x=0$ and $y=0^{\prime}(A)$ are parallel (B) are perpendicular to each other (C) interesect in z-axis (D) none of these

Watch Video Solution

117. The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ (A) does not pass through origin (B) is at a distance $\frac{1}{\sqrt{a^{-2}+b^{-2}+c^{-2}}}$ from origin (C) makes intercepts of a, b, c on the coordinates axes (D) all of a,b,c

- Watch Video Solution

118. The distance of the plane $\vec{r} \cdot\left(\frac{2}{7} \hat{i}+\frac{3}{7} \hat{j}-\frac{6}{7} \hat{k}\right)=1$ from the origin is (A) 1 (B) 7 (C) $\frac{1}{7}$ (D) none of these

- Watch Video Solution

119.

$$
\begin{equation*}
\vec{r} \cdot(2 \hat{i}+3 \hat{j}-6 \hat{k})=7 \text { and } \vec{r} \cdot\left(\frac{-2}{7} \hat{i}-\frac{3}{7} \hat{j}+\frac{6}{7} \hat{k}\right)=0 \quad \text { are } \tag{A}
\end{equation*}
$$ parallel (B) at righat angles (C) equidistant from origin (D) none of these

- Watch Video Solution

