©゙’ doubtnut

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

ALGEBRA - PREVIOUS YEAR QUESTIONS - FOR COMPETITION

Exercise

1. Let $p a n d q$ be real numbers such that $p \neq 0, p^{3} \neq q, a n d p^{3} \neq-q$. If $\alpha a n d \beta$ are nonzero complex numbers satisfying $\alpha+\beta=-$ pand $^{2}+\beta^{2}=q$, then a quadratic equation having $\alpha / \beta a n d \beta / \alpha$ as its roots is $\left(p^{3}+q\right) x^{2}-\left(p^{3}+2 q\right) x+\left(p^{3}+q\right)=0$ $\left(p^{3}+q\right) x^{2}-\left(p^{3}-2 q\right) x+\left(p^{3}+q\right)=0$ $\left(p^{3}+q\right) x^{2}-\left(5 p^{3}-2 q\right) x+\left(p^{3}-q\right)=0$ $\left(p^{3}+q\right) x^{2}-\left(5 p^{3}+2 q\right) x+\left(p^{3}+q\right)=0$
2. The number of 3×3 matrices A whose entries are either 0 or 1 and for which the system $A[x y z]=[100]$ has exactly two distinct solution is a. 0 b. $2^{9}-1$ c. 168 d. 2

- Watch Video Solution

3. Let w be the complex number $\frac{\cos (2 \pi)}{3}+i \frac{\sin (2 \pi)}{3}$. Then the number of distinct complex numbers z satisfying $\left|\begin{array}{ccc}z+1 & w & w^{2} \\ 2 & z+w^{2} & 1 \\ w^{2} & 1 & z+w\end{array}\right|=0$ is equal

- Watch Video Solution

4. Let $S_{k}, k=1,2,100$, denotes thesum of the infinite geometric series whose first term $\mathrm{s} \frac{k-1}{k!}$ and the common ratio is $\frac{1}{k}$, then the value of $\frac{100^{2}}{100!}+\sum_{k=1}^{100}\left(k^{2}-3 k+1\right) S_{k}$ is \qquad
5. Let $S=\{1,, 2,34\}$. The total number of unordered pairs of disjoint subsets of S is equal a. 25 b. 34 c. 42 d .41

- Watch Video Solution

6. For $r=0,1, \ldots ., 10$, let A_{r}, B_{r}, and C_{r} denote, respectively, the coefficient of x^{r} in the expansions of $(1+x)^{10},(+x)^{20}$ and $(1+x)^{30}$.Then $\sum_{r=1}^{10} A_{r}\left(B_{10} B_{r}-C_{10} A_{r}\right)$ is equal to

- Watch Video Solution

7. Let $a 1, a 2, a 3$...... $a 11$ be real numbers satisfying $a_{1}=15,27-2 a_{2}>0$ and $a_{k}=2 a_{k-1}-a_{k-2}$ for $k=3,4, \ldots .11$ If $\frac{a 1^{2}+a 2^{2} \ldots \ldots . . a 11^{2}}{11}=90$ then find the value of $\frac{a_{1}+a_{2} \ldots+a_{11}}{11}$
8. Let p be an odd prime number and T_{p}, be the following set of 2×2 matrices $\quad T_{p}=\left\{A=\left[\begin{array}{ll}a & b \\ c & a\end{array}\right]: a, b, c \in\{0,1,2, \ldots \ldots \ldots p-1\}\right\} \quad$ The number of A in T_{p}, such that A is either symmetric or skew-symmetric or both, and $\operatorname{det}(A)$ divisible by p is

- Watch Video Solution

9. Let p be an odd prime number and T_{p}, be the following set of 2×2 matrices $\quad T_{p}=\left\{A=\left[\begin{array}{ll}a & b \\ c & a\end{array}\right]: a, b, c \in\{0,1,2, \ldots \ldots \ldots p-1\}\right\} \quad$ The number of A in T_{p}, such that A is either symmetric or skew-symmetric or both, and $\operatorname{det}(A)$ divisible by p is

- Watch Video Solution

10. Let p be an odd prime number and T_{p}, be the following set of 2×2 matrices $\quad T_{p}=\left\{A=\left[\begin{array}{ll}a & b \\ c & a\end{array}\right]: a, b, c \in\{0,1,2, \ldots \ldots \ldots p-1\}\right\} \quad$ The
number of A in T_{p}, such that A is either symmetric or skew-symmetric or both, and det (A) divisible by p is

- Watch Video Solution

11. The number of 3 non-singular matrices, with four entries as 1 and all other entries as 0 , is (1) 5 (2) 6 (3) at least 7 (4) less than 4

- Watch Video Solution

12. Let A be a 2×2 matrix with non-zero entries and let $\mathrm{A}^{\wedge} 2=1$, where i is a 2×2 identity matrix, $\operatorname{Tr}(\mathrm{A})$ i= sum of diagonal elements of A and $|A|=$ determinant of matrix A. Statement 1:Tr(A)=0 Statement 2: $|A|=1$

- Watch Video Solution

13. A person is to count 4500 currency notes. Let a_{n}, denote the number of notes he counts in the $n t h$ minute if
$a_{1}=a_{2}=a_{3}=\ldots \ldots \ldots .=a_{10}=150$ and $a_{10}, a_{11}, \ldots \ldots \ldots$. are in an $A P$ with common difference -2 , then the time taken by him to count all notes is :- (1) 24 minutes 1011 (2) 34 minutes (3) 125 minutes (4) 135 minutes

- Watch Video Solution

14. There are two urns. Urn A has 3 distinct red balls and urn B has 9 distinct blue balls. From each urn two balls are taken out at random and then transferred to the other. The number of ways in which this can be done is (1) 36 (2) 66 (3) 108 (4) 3

- Watch Video Solution

15. Consider the system of linear equations: $x_{1}+2 x_{2}+x_{3}=3$ $2 x_{1}+3 x_{2}+x_{3}=33 x_{1}+5 x_{2}+2 x_{3}=1$ The system has (1) exactly 3 solutions (2) a unique solution (3) no solution (4) infinite number of solutions
16. The number of complex numbers z such that $|z-1|=|z+1|=|z-i|$ is

- Watch Video Solution

17. A polynomial of degree 2 which takes values y_{0}, y_{1}, y_{2} at points x_{0}, x_{1}, x_{2} respectively , is given by $p(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} y_{1}+\frac{\left(x-x_{0}\right)(x-x}{\left(x_{2}-x_{0}\right)\left(x_{2}-\right.}$
A polynomial of degree 2 which takes values y_{0}, y_{0}, y_{1} at points $x_{0}, x_{0+t}, x_{1} t \neq 0$ is given by

- Watch Video Solution

18. Let α and β be the roots of equation $x^{2}-6 x-2=0$. If $a_{n}=\alpha^{n}-\beta^{n}, f$ or $n \geq 1$, then the value of $\frac{a_{10}-2 a_{8}}{2 a_{9}}$ is equal to:
$6(2)-6(3) 3(4)-3$

- Watch Video Solution

19. Let $\operatorname{Mand} N$ be two 3×3 non singular skew-symmetric matrices such that $M N=N M$. If P^{T} denote the transpose of P, then $M^{2} N^{2}\left(M^{T} N^{-1}\right)^{T}$ is equal to M^{2} b. $-N^{2}$ c. $-M^{2}$ d. $M N$

- Watch Video Solution

20. Let $\omega \neq 1$ be cube root of unity and S be the set of all non-singular matrices of the form $\left[1 a b \omega 1 c \omega^{2} \theta 1\right]$, where each of a, b, andc is either ω or ω^{2}. Then the number of distinct matrices in the set S is a. 2 b. 6 c. 4 d. 8

- Watch Video Solution

21. Let a, b, and c be three real numbers satistying
$[a, b, c]\left[\begin{array}{ccc}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right]=[0,0,0]$ If the point $P(a, b, c)$ with reference to (E),
lies on the plane $2 x+y+z=1$, the the value of $7 a+b+c$ is (A) 0 (B) 12 (C) 7 (D) 6

- Watch Video Solution

22. Let a, b, and c be three real numbers satistying $[a, b, c]\left[\begin{array}{lll}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right]=[0,0,0]$ Let ω be a solution of $x^{3}-1=0$ with $\operatorname{Im}(\omega)>0 . I f a=2$ with b nd c satisfying (E) then the vlaue of $\frac{3}{\omega^{a}}+\frac{1}{\omega^{b}}+\frac{3}{\omega^{c}}$ is equa to (A) -2 (B) 2 (C) 3 (D) -3

- Watch Video Solution

23. Let a, b, and c be three real numbers satistying $[a, b, c]\left[\begin{array}{lll}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right]=[0,0,0]$ Let $\mathrm{b}=6$, with a and c satisfying (E). If alpha and beta are the roots of the quadratic equation $a x^{2}+b x+c=0$ then $\sum_{n=0}^{\infty}\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)^{n}$ is (A) 6 (B) 7 (C) $\frac{6}{7}$ (D) oo
24. Let $a_{1}, a_{2}, a_{3},, a_{100}$ be an arithmetic progression with $a_{1}=3$ ands $_{p}=\sum_{i=1}^{p} a_{i}, 1 \leq p \leq 100$. For any integer n with $1 \leq n \leq 20$, let $m=5 n$. If $\frac{S_{m}}{S_{n}}$ does not depend on n, then a_{2} is \qquad .

- Watch Video Solution

25. If z is any complex number satisfying $|z-3-2 i| \leq 2$ then the maximum value of $|2 z-6+5 i|$ is

- Watch Video Solution

26. The minimum value of the sum of real number $a^{-5}, a^{-4}, 3 a^{-3}, 1, a^{8}, a n d a^{10}$ witha >0 is

- Watch Video Solution

27. Let $\omega=e^{i \frac{\pi}{3}}$ and a, b, c, x, y, z be nonzero complex number such that $a+b+c=x, a+b \omega+c \omega^{2}=y, a+b \omega^{2}+c \omega=z$. Then the value of $\frac{|x|^{2}+|y|^{2}+|z|^{2}}{|a|^{2}+|b|^{2}+|c|^{2}}$ is

- Watch Video Solution

28. The number of distinct real roots of $x^{4}-4 x^{3}+12 x^{2}+x-1=0$ is

- Watch Video Solution

29. Let M be a 3×3 matrix satisfying $M[010]=M[1-10]=[11-1]$, and $M[111]=[0012]$ Then the sum of the diagonal entries of M is \qquad .

- Watch Video Solution

30. The coefficient of x 7 in the expansion of $\left(1-x-x^{2}+x^{3}\right)^{6}$ is : (1) $144(2)-132(3)-144(4) 132$

Watch Video Solution

31. Let α, β be real and z be a complex number. If $z^{2}+\alpha z+\beta=0$ has two distinct roots on the line Re $z=1$, then it is necessary that : (1) $b \in(0,1)(2) b \in(-1,0)(3)|b|=1(4) b \in(1, \infty)$

- Watch Video Solution

32.38. Assertion (A): The area of a rectangle is 630 sqem and its breadth is 15 em then its lengthis 55 cm Reason (R): The area of a rectangle is given by $\mathrm{A}=$ length x breadtha) Both A and R are true and R is correct explanation of $A b$) Both A and R are true and R is not correct explanation of ASed) A is false and R is true.
33. A man saves Rs. 200 in each of the first three months of his service. In each of the subsequent months his saving increases by Rs. 40 more than the saving of immediately previous month. His total saving from the start of service will be Rs. 11040 after : (1) 18months (2) 19months (3) 20months (4) 21months

- Watch Video Solution

34. If $\omega(\neq 1)$ is a cube root of unity, and $(1+\omega)^{7}=A=B \omega$. Then (A, B) equals (a) $(0,1)$ (b) $(1,1)$ (c) $(2,0)$ (d) $(-1,1)$

- Watch Video Solution

35. The number of values of k for which the linear equations $4 x+k y+2 z=0 k x+4 y+z=02 x+2 y+z=0$ posses a non-zero solution is : (1) 3 (2) 2 (3) 1 (4) zero
36. Statement-1 : The number of ways of distributing 10 identical balls in 4 distinct boxes such that no box is empty is ${ }^{\wedge} 9 C_{3}$. Statement-2 : The number of ways of choosing any 3 places from 9 different places is ${ }^{\wedge} 9 C_{3}$
. Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1. Statement-1 is true, Statement-2 is true;

Statement-2 is not a correct explanation for Statement-1. Statement-1 is true, Statement-2 is false. Statement-1 is false, Statement-2 is true.

- Watch Video Solution

37. If P is a 3×3 matrix such that $P^{T}=2 P+I$, where P^{T} is the transpose of P and I is the 3×3 identity matrix, then there exists a column matrix, $X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ such that

- Watch Video Solution

38. Let $a_{1}, a_{2}, a_{3}, \ldots$ be in harmonic progression with $a_{1}=5$ and $a_{20}=25$. The least positive integer n for which $a_{n}<022 \mathrm{~b}$. 23 c. 24 d. 25

- Watch Video Solution

39. If the adjoint of a 33 matrix P is 144217113 , then the possible value(s) of the determinant of P is (are) (A) 2 (B) 1 (C) 1 (D) 2

- Watch Video Solution

40. Let z be a complex number such that the imaginary part of z is nonzero and $a=z 2+z+1$ is real. Then a cannot take the value (A) -1 (B) 1 3 (C) 12 (D) 34

- Watch Video Solution

41. The total number of ways in which 5 balls of differert colours can be distributed among 3 persons so thai each person gets at least one ball is

- Watch Video Solution

42.

The
value
of
$6+\log _{\frac{3}{2}}\left(\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \cdots \cdot}}}\right)$ is

(Watch Video Solution

43. Let n denote the number of all n -digit positive integers formed by the digits 0,1 or both such that no consecutive digits in them are 0 . Let $b_{n}=$ the number of such n-digit integers ending with digit 1 and $c_{n}=$ the number of such n-digit integers ending with digit 0 . The value of b_{6}, is

- Watch Video Solution

44. Let n denote the number of all n -digit positive integers formed by the digits 0,1 or both such that no consecutive digits in them are 0 . Let $b_{n}=$ the number of such n-digit integers ending with digit 1 and $c_{n}=$ the number of such n-digit integers ending with digit 0 . The value of b_{6}, is

- Watch Video Solution

45. The equation $e^{\sin x}-e^{-\sin x}-4=0$ has (A) infinite number of real roots (B) no real roots (C) exactly one real root (D) exactly four real roots

- Watch Video Solution

46. Statement-1 The sum of the series $1+(1+2+4)+(4+6+9)+(9+12+16) .$. $(361+380+400)$ is 8000 . Statement-2 $\sum_{k=1}^{n}\left(k^{3}-(k-1)^{3}\right)=n^{3}$ for any natural number n. (1) Statement-1 is true, Statement-2 is false. (2) Statement-1 is false, Statement-2 is true. (3) Statement-1 is true, Statement-2 is true Statement-2 is a correct explanation for Statement-I
(4) Statement-1 is true, Statement-2 is true Statement-2 is not a correct explanation for Statement-I.

- Watch Video Solution

47. Let $A=(100210321)$ If u_{1} and u_{2} are column matrices such that $A u_{1}=(100)$ and $A u_{2}=(010)$, then $u_{1}+u_{2}$ is equal to (1) (-110$)$
$(-11-1)(3)(-1-10)(4)(1-1-1)$

- Watch Video Solution

48. If n is a positive integer, then $(\sqrt{3}+1)^{2 n}-(\sqrt{3}-1)^{2 n}$ is (1) an irrational number (2) an odd positive integer (3) an even positive integer
(4) a rational number other than positive integers

- Watch Video Solution

49. If 100 times the $100^{\text {th }}$ term of an AP with non zero common difference equals the 50 times its $50^{t h}$ term, then the $150^{t h}$ term of this AP is (1) 150 (2) 150 times its $50^{\text {th }}$ term (3) 150 (4) zero

- Watch Video Solution

50. Out of 10 white, 9 black, and 7 red balls, find the number of ways in which selection of one or more balls can be made (balls of the same color are identical).

- Watch Video Solution

51. If $z \neq 1$ and $\frac{z^{2}}{z-1}$ is real, then the point represented by the complex number z lies (1) either on the real axis or on a circle passing through the origin (2) on a circle with centre at the origin (3) either on the real axis or on a circle not passing through the origin (4) on the imaginary axis
52. Let P and Q be 3×3 matrices with $P \neq Q$. If $P^{3}=Q^{3}$ and $P^{2} Q=Q^{2} P$, then determinant of $\left(P^{2}+Q^{2}\right)$ is equal to (1) 2 (2) 1 (3) $0(4) 1$

- Watch Video Solution

