

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

ALGEBRA - PREVIOUS YEAR QUESTIONS - FOR COMPETITION

Exercise

1. Let pandq be real numbers such that $p \neq 0, p^3 \neq q, andp^3 \neq -q$. If $\alpha and\beta$ are nonzero complex numbers satisfying $\alpha + \beta = -pand\alpha^2 + \beta^2 = q$, then a quadratic equation having $\alpha / \beta and\beta / \alpha$ as its roots is $(p^3 + q)x^2 - (p^3 + 2q)x + (p^3 + q) = 0$ $(p^3 + q)x^2 - (p^3 - 2q)x + (p^3 + q) = 0$ $(p^3 + q)x^2 - (5p^3 - 2q)x + (p^3 - q) = 0$ $(p^3 + q)x^2 - (5p^3 + 2q)x + (p^3 + q) = 0$

2. The number of 3 imes 3 matrices A whose entries are either $0~{
m or}~1$ and for which the system A[xyz]=[100] has exactly two distinct solution is a. 0 b. 2^9-1 c. 168 d. 2

3. Let w be the complex number
$$\frac{\cos(2\pi)}{3} + i\frac{\sin(2\pi)}{3}$$
. Then the number of distinct complex numbers z satisfying $\begin{vmatrix} z+1 & w & w^2 \\ 2 & z+w^2 & 1 \\ w^2 & 1 & z+w \end{vmatrix} = 0$ is

equal

Watch Video Solution

4. Let S_k , k = 1, 2, , 100, denotes thesum of the infinite geometric series whose first term s $\frac{k-1}{k!}$ and the common ratio is $\frac{1}{k}$, then the value of $\frac{100^2}{100!} + \sum_{k=1}^{100} (k^2 - 3k + 1)S_k$ is _____.

5. Let $S=\{1,\,,2,\,34\}$. The total number of unordered pairs of disjoint subsets of S is equal a.25 b. 34 c. 42 d. 41

Watch Video Solution

6. For $r=0,1,\ldots,10$, let $A_r,B_r, ext{ and } C_r$ denote, respectively, the

coefficient of x^r in the expansions of $(1+x)^{10}, (+x)^{20}$ and $(1+x)^{30}$

.Then $\sum_{r=1}^{10}A_r(B_{10}B_r-C_{10}A_r)$ is equal to

Watch Video Solution

7. Let a1,a2,a3 all be real numbers satisfying

$$a_1 = 15, 27 - 2a_2 > 0$$
 and $a_k = 2a_{k-1} - a_{k-2}$ for $k = 3, 4, \dots .11$ If $\frac{a1^2 + a2^2 \dots a11^2}{11} = 90$ then find the value of $\frac{a_1 + a_2 \dots + a_{11}}{11}$

8. Let p be an odd prime number and T_p , be the following set of 2×2 matrices $T_p = \left\{ A = \begin{bmatrix} a & b \\ c & a \end{bmatrix} : a, b, c \in \{0, 1, 2, ..., p-1\} \right\}$ The number of A in T_p , such that A is either symmetric or skew-symmetric or both, and det (A) divisible by p is

Watch Video Solution

9. Let p be an odd prime number and T_p , be the following set of 2×2 matrices $T_p = \left\{ A = \begin{bmatrix} a & b \\ c & a \end{bmatrix} : a, b, c \in \{0, 1, 2, ..., p-1\} \right\}$ The number of A in T_p , such that A is either symmetric or skew-symmetric or both, and det (A) divisible by p is

Watch Video Solution

10. Let p be an odd prime number and T_p , be the following set of 2×2 matrices $T_p = \left\{ A = \begin{bmatrix} a & b \\ c & a \end{bmatrix} : a, b, c \in \{0, 1, 2, ..., p-1\} \right\}$ The

13. A person is to count 4500 currency notes. Let a_n , denote the number

of notes he counts in the nth minute if

 $a_1 = a_2 = a_3 = \dots = a_{10} = 150$ and a_{10}, a_{11}, \dots are in an AP with common difference -2, then the time taken by him to count all notes is :- (1) 24 minutes 10 11 (2) 34 minutes (3) 125 minutes (4) 135 minutes

14. There are two urns. Urn A has 3 distinct red balls and urn B has 9 distinct blue balls. From each urn two balls are taken out at random and then transferred to the other. The number of ways in which this can be done is (1) 36 (2) 66 (3) 108 (4) 3

Watch Video Solution

15. Consider the system of linear equations: $x_1 + 2x_2 + x_3 = 3$ $2x_1 + 3x_2 + x_3 = 3$ $3x_1 + 5x_2 + 2x_3 = 1$ The system has (1) exactly 3 solutions (2) a unique solution (3) no solution (4) infinite number of solutions

17. A polynomial of degree 2 which takes values y_0, y_1, y_2 at points x_0, x_1, x_2 respectively , is given by $p(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}y_0 + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}y_1 + \frac{(x - x_0)(x - x_2)}{(x_2 - x_0)(x_2 - x_2)}y_1$ A polynomial of degree 2 which takes values y_0, y_0, y_1 at points $x_0, x_{0+t}, x_1 t \neq 0$ is given by

Watch Video Solution

18. Let α and β be the roots of equation $x^2 - 6x - 2 = 0$. If $a_n = \alpha^n - \beta^n$, f or $n \ge 1$, then the value of $\frac{a_{10} - 2a_8}{2a_9}$ is equal to: (1) 6 (2)-6 (3) 3 (4) - 3

19. Let MandN be two 3 imes 3 non singular skew-symmetric matrices such that MN = NM. If P^T denote the transpose of P, then $M^2N^2ig(M^TN^{-1}ig)^T$ is equal to M^2 b. $-N^2$ c. $-M^2$ d. MN

Watch Video Solution

20. Let $\omega \neq 1$ be cube root of unity and S be the set of all non-singular matrices of the form $[1ab\omega 1c\omega^2\theta 1]$, where each of a, b, andc is either ω or ω^2 . Then the number of distinct matrices in the set S is a. 2 b. 6 c. 4 d. 8

21. Let a,b, and c be three real numbers satisfying
$$\begin{bmatrix} a, b, c \end{bmatrix} \begin{bmatrix} 1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7 \end{bmatrix} = \begin{bmatrix} 0, 0, 0 \end{bmatrix}$$
 If the point $P(a, b, c)$ with reference to (E),

lies on the plane 2x + y + z = 1, the the value of 7a + b + c is (A) O (B)

12 (C) 7 (D) 6

Watch Video Solution

22. Let a,b, and c be three real numbers satisfying
$$[a, b, c] \begin{bmatrix} 1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7 \end{bmatrix} = [0, 0, 0]$$
 Let ω be a solution of $x^3 - 1 = 0$ with $Im(\omega) > 0$. $Ifa = 2$ with b nd c satisfying (E) then the value of $\frac{3}{\omega^a} + \frac{1}{\omega^b} + \frac{3}{\omega^c}$ is equa to (A) -2 (B) 2 (C) 3 (D) -3

Watch Video Solution

23. Let a,b, and c be three real numbers satisfying
$$[a, b, c] \begin{bmatrix} 1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7 \end{bmatrix} = [0, 0, 0]$$
Let b=6, with a and c satisfying (E). If alpha and beta are the roots of the quadratic equation $ax^2 + bx + c = 0$ then $\sum_{n=0}^{\infty} \left(\frac{1}{\alpha} + \frac{1}{\beta}\right)^n$ is (A) 6 (B) 7 (C) $\frac{6}{7}$ (D) oo

24. Let a_1, a_2, a_3, a_{100} be an arithmetic progression with $a_1 = 3ands_p = \sum_{i=1}^p a_i, 1 \le p \le 100$. For any integer n with $1 \le n \le 20$, let m = 5n. If $\frac{S_m}{S_n}$ does not depend on n, then a_2 is_____.

Watch Video Solution

25. If z is any complex number satisfying $|z-3-2i|\leq 2$ then the maximum value of |2z-6+5i| is

Watch Video Solution

26. The minimum value of the sum of real number $a^{-5}, a^{-4}, 3a^{-3}, 1, a^8, and a^{10} with a > 0$ is

Watch Video Solution

28. The number of distinct real roots of $x^4 - 4x^3 + 12x^2 + x - 1 = 0$ is

Watch Video Solution

:

30. The coefficient of x7 in the expansion of $\left(1-x-x^2+x^3
ight)^6$ is : (1)

144 (2) -132 (3) -144 (4) 132

31. Let α, β be real and z be a complex number. If $z^2 + \alpha z + \beta = 0$ has two distinct roots on the line Re z = 1 , then it is necessary that : (1) $b \in (0, 1)$ (2) $b \in (-1, 0)$ (3) |b| = 1 (4) $b \in (1, \infty)$

Watch Video Solution

32. 38. Assertion (A): The area of a rectangle is 630 sqem and its breadth is 15em then its lengthis 55cmReason (R): The area of a rectangle is given by A = length x breadtha) Both A and R are true and R is correct explanation of Ab) Both A and R are true and R is not correct explanation of ASed) A is false and R is true.

33. A man saves Rs. 200 in each of the first three months of his service. In each of the subsequent months his saving increases by Rs. 40 more than the saving of immediately previous month. His total saving from the start of service will be Rs. 11040 after : (1) 18months (2) 19months (3) 20months (4) 21months

Watch Video Solution

34. If $\omega(\neq 1)$ is a cube root of unity, and $(1+\omega)^7=A=B\omega$. Then (A,B) equals (a) (0,1) (b) (1,1) (c) (2,0) (d) (-1,1)

Watch Video Solution

35. The number of values of k for which the linear equations 4x + ky + 2z = 0 kx + 4y + z = 0 2x + 2y + z = 0 posses a non-zero solution is : (1) 3 (2) 2 (3) 1 (4) zero

36. Statement-1 : The number of ways of distributing 10 identical balls in 4 distinct boxes such that no box is empty is $^{9}C_{3}$. Statement-2 : The number of ways of choosing any 3 places from 9 different places is $^{9}C_{3}$. Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1. Statement-1 is true, Statement-2 is true; Statement-2 is true; Statement-2 is not a correct explanation for Statement-1 is false. Statement-1 is false, Statement-2 is true.

Watch Video Solution

37. If P is a 3×3 matrix such that $P^T = 2P + I$, where P^T is the

transpose of P and I is the 3 imes3 identity matrix, then there exists a

column matrix,
$$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 such that

38. Let $a_1, a_2, a_3, ...$ be in harmonic progression with $a_1 = 5anda_{20} = 25$. The least positive integer n for which $a_n < 0.22$ b. 23 c. 24 d. 25

39. If the adjoint of a 3 3 matrix P is 1 4 4 2 1 7 1 1 3 , then the possible

value(s) of the determinant of P is (are) (A) 2 (B) 1 (C) 1 (D) 2

Watch Video Solution

40. Let z be a complex number such that the imaginary part of z is nonzero and $a = z^2 + z + 1$ is real. Then a cannot take the value (A) -1 (B) 1 3 (C) 1 2 (D) 3 4

41. The total number of ways in which 5 balls of different colours can be

distributed among 3 persons so thai each person gets at least one ball is

43. Let n denote the number of all n-digit positive integers formed by the digits 0, 1 or both such that no consecutive digits in them are 0. Let b_n = the number of such n-digit integers ending with digit 1 and c_n = the number of such n-digit integers ending with digit 0. The value of b_6 , is

44. Let n denote the number of all n-digit positive integers formed by the digits 0, 1 or both such that no consecutive digits in them are 0. Let b_n = the number of such n-digit integers ending with digit 1 and c_n = the number of such n-digit integers ending with digit 0. The value of b_{6} , is

Watch Video Solution

45. The equation $e^{\sin x} - e^{-\sin x} - 4 = 0$ has (A) infinite number of real

roots (B) no real roots (C) exactly one real root (D) exactly four real roots

Watch Video Solution

46. Statement-1 The sum of the series 1 + (1 + 2 + 4) + (4 + 6 + 9) + (9 + 12 + 16) ...(361 +380 +400) is 8000. Statement-2 $\sum_{k=1}^{n} (k^3 - (k-1)^3) = n^3$ for any natural number n. (1) Statement-1 is true, Statement-2 is false. (2) Statement-1 is false, Statement-2 is true. (3) Statement-1 is true, Statement-1 is true, Statement-2 is true Statement-2 is a correct explanation for Statement-1 (4) Statement-1 is true, Statement-2 is true Statement-2 is not a correct

explanation for Statement-l.

47. Let A = (100210321) If u_1 and u_2 are column matrices such that $Au_1 = (100)$ and $Au_2 = (010)$, then $u_1 + u_2$ is equal to (1) (-110) (2)

 $(\,-11-1)$ (3) $(\,-1-10)$ (4) (1-1-1)

Watch Video Solution

48. If n is a positive integer, then $(\sqrt{3} + 1)^{2n} - (\sqrt{3} - 1)^{2n}$ is (1) an irrational number (2) an odd positive integer (3) an even positive integer (4) a rational number other than positive integers

49. If 100 times the 100^{th} term of an AP with non zero common difference equals the 50 times its 50^{th} term, then the 150^{th} term of this AP is (1) 150 (2) 150 times its 50^{th} term (3) 150 (4) zero

50. Out of 10 white, 9 black, and 7 red balls, find the number of ways in which selection of one or more balls can be made (balls of the same color are identical).

Watch Video Solution

51. If $z \neq 1$ and $\frac{z^2}{z-1}$ is real, then the point represented by the complex number z lies (1) either on the real axis or on a circle passing through the origin (2) on a circle with centre at the origin (3) either on the real axis or on a circle not passing through the origin (4) on the imaginary axis

52. Let P and Q be 3×3 matrices with $P \neq Q$. If $P^3=Q^3andP^2Q=Q^2P$, then determinant of $\left(P^2+Q^2\right)$ is equal to (1) 2 (2) 1 (3) 0 (4) 1