©゙"doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

AP - FOR BOARDS

Solved Examples

1. Write the first three terms in each of the
equences defined by the following: $t_{n}=n(n+1)$

- Watch Video Solution

2. Write the first three terms in each of the equences defined by the following: $t_{n}=\frac{n^{2}}{n+2}$

- Watch Video Solution

3. What is the 15th term of the sequence defined
by $t_{n}=\frac{1}{2 n-10}$

- Watch Video Solution

4. Find the first five terms of the sequence for which
$t_{1}=1, t_{2}=2$ and $t_{n+2}=t_{n}+t+(n+1)$

- Watch Video Solution

5. Show thast the sequence $\left(t_{n}\right)$ defined by $t_{n}=x+(2 n-1) b$, wherex and $b \quad$ are constants, is an A.P. Fid its common difference.

D Watch Video Solution

6. Show that the sequence defined by $a_{n}=2 n^{2}+1$ is not an A.P.
7. Show that the sequence
$(a+b)^{2}\left(a^{2}+b^{2}\right),(a-b)^{2}, \ldots$ is an A.P.

- Watch Video Solution

$\begin{array}{cc}\text { 8. Show that the } & \text { sequence } \\ \log a, \log \left(\frac{a^{2}}{b}\right), \log \left(\frac{a^{3}}{b^{2}}\right), \log \left(\frac{a^{4}}{b^{3}}\right), & \text { forms an }\end{array}$
A.P.
9. How many terms are there in the A.P. 20, 25, 30, ... 100.

D Watch Video Solution

10. Find the A.P. whose 7 th and 13 th terms are respectively 34 and 64

- Watch Video Solution

11. The 11th term of an A.P. is 80 and the 16th term is 110 . Find the 31 st term.

- Watch Video Solution

12. Is 55 a term of te seqwuence $1,3,5,7$. .? If yes find which term it is.

- Watch Video Solution

13. Find the first negative termof the sequence

2000, 1995, 1990, 1985,......

- Watch Video Solution

14. How many terms are identical in the two arithmetic progressions $2,4,6,8, \ldots \ldots$ up to 100 terms and $3,6,9, \ldots$ up to 80 terms.

- Watch Video Solution

15. If m times the $m t h$ term of an $A P$ is equal to n
times its nth term, then show that ($m+n$)th term of an AP is zero.
16. If pth,qth and rth terms of an A.P. are a, b, c respectively, then show that (i) $a(q-r)+b(r-p)+c(p-$ q) $=0$

- Watch Video Solution

17. Find the numberof integer between 100 and

1000 that are i. divisible by 7 ii. not divisible by 7 .

- Watch Video Solution

18. Show that in an A.P. the sum of the terms equidistant from the beginning and end is always same and equal to the sum of first and last terms.

(D) Watch Video Solution

19. The sum of three numbers in A.P. is 27 and the
sum of their squares is 293 . Find the numbers.

- Watch Video Solution

20. The sum of four integers in $A . P$, is 24 , and their product is 945 find

D Watch Video Solution

21. Divide 69 into three parts which are in A.P. and the product of the two smaller parts is 483.

- Watch Video Solution

22. If the sum of n tems of a series be $5 n^{2}+3 n$,
find its nth term. Are the terms of this series in

- Watch Video Solution

23. Find the sum to n terms of an A.P. whose nth terms is $t_{n}=5+6 n, n \in N$.

D Watch Video Solution

24. Find the sum of the series $99+95+91+87+\ldots$ to 20 terms.
25. Find the sum of n terms of the series $(a+b)^{2}+a^{2}+b^{2}+(a-b)^{2}+$

- Watch Video Solution

26. If the sum of a certain number of terms of the

AP 5,22,19.. is 116. Find the last term.

- Watch Video Solution

27. How many terms of the series $54,51,48, .$. be taken so that their sum is 513 ? Explain the double

- Watch Video Solution

28. Find the sum of all even integers between 101 and 999.

D Watch Video Solution

29. Solve: $1+4+7+10++x=590$.
30. Let the sum of $n, 2 n, 3 n$ terms of an A.P. be S_{1}, S_{2} and S_{3}, respectively, show that $S_{3}=3\left(S_{2}-S_{1}\right)$.

- Watch Video Solution

31. Let S_{1}, S_{2} and S_{3} be the sum of n terms of 3 arithmetic series, the first termof each being 1 and
the respective common differences are 1,2,3,then prove that $S_{1}+S_{3}=2 S_{2}$.
32. If there are $(2 n+1)$ terms in A.P. , then prove that the ratio of the sum of odd terms and the sum of even terms is $(n+1): n$

(Watch Video Solution

33. The sum of the first p, q, r terms of an A.P. are $a, b, c \quad$ respectively. Show that $\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
34. The ratio of the sumsof p and q terms of an A.P.is $p^{2}: q^{2}$. Show that the ratio of its $p t h$ and $q t h$ terms is $2 p-1: 2 q-1$

- Watch Video Solution

35. The interior angles of a polygon are in AP The smallest angle is 120 and the common difference is
36. Find the number of sides of the polygon.
37. The ratio of the sum of n terms of two A.P.'s is
$(3 n+1):(4 n+3)$. Find the ratio of their mth terms.

- Watch Video Solution

37. Prove that a sequence in an A.P., if the sum of
its n terms is of the form $A n^{2}+B n$, where A, B are constants.

- Watch Video Solution

38. Find the sum of the integers between 1 and 200 which are multiples of 3.

(D) Watch Video Solution

39. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. prove that $b+c, c+a, a+b$ are also in A.P.

- Watch Video Solution

40. If a^{2}, b^{2}, c^{2} are in A.P. prove that $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P.

- Watch Video Solution

41. If $a b+b c+c a \neq 0$ and a, b, c are in A.P. prove that $a^{2}(b+c), b^{2}(c+a), c^{2}(a+b)$ are also in A.P.

- Watch Video Solution

42. If a, b, c are in A.P. prove that:
$a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ are in A.P.

- Watch Video Solution

43. If $a^{2}(b+c), b^{2}(c+a), c^{2}(a+b)$ are in A.P., then prove that a, b, c are in A.P. or $a b+b c+c a=0$

D Watch Video Solution

44. Insert five arithetic means between 5 and 29.

- Watch Video Solution

45. n A.M.'s are inserted between 1 and 31 such that
the ratio of the 7th and $(n-1)$ th means terms is

5:9. Find n.

- Watch Video Solution

46. For what value of $n, \frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}, a \neq b$ is the A.M. of a and b.

- Watch Video Solution

47. Prove that the sum of n arithmetic means
between two numbers in n times the single. A.M. between them.
48. If x, y, z are in A.P. and A_{1} is the A.M. of xandyand A_{2} is the A.M. of yandz, then prove that the A.M. of $A_{1} a n d A_{2} i s y$.

- Watch Video Solution

49. The sum of two numbers is $\frac{13}{6}$. An even number of arithmetic means are being inserted between them and sum exceeds their number by 1. find the number of means inserted.
50. n arlithmetic means are inserted between $x a n d 2 y$ and then between $2 x a n d y$. If the rth means in each case be equal, then find the ratio x / y.

- Watch Video Solution

Exercise

1. Write the indicated terms in each of the following sequences whose nth terms are:

$$
t_{n}=3 n+1
$$

(D) Watch Video Solution

2. Write the Ap in each of the following sequences whose nth terms are: 2^{n}

- Watch Video Solution

3. Write the indicated terms in each of the following sequences whose nth terms are: $t_{n}=n^{2}+1: t_{1}, t_{2}, t_{3}$
4. Write the indicated terms in each of the following sequences whose nth terms are: $t_{n}=n(n+2): t_{5}, t_{7}$

- Watch Video Solution

5. Write the indicated terms in each of the following sequences whose nth terms are: $t_{n}=\frac{n^{2}}{n+1}: t_{1}, t_{10}$
6. Write the indicated terms in each of the following sequences whose nth terms are: $t_{n}=\frac{n-3}{4}: t_{6}, t_{7}$

- Watch Video Solution

7. Write the indicated terms in each of the following sequences whose nth terms are: $t_{n}=\frac{2 n-3}{6}: t_{1}, t_{2}, t_{3}$
8. Write the indicated terms in each of the following sequences whose nth terms are: $t_{n}=\frac{n}{n+1}: t_{4}, t_{5}$

D Watch Video Solution

9. Write the indicated terms in each of the following sequences whose nth terms are: $t_{n}=n^{2}(n+1): t_{4}, t_{5}$
10. Write the indicated terms in each of the following sequences whose nth terms are:
$t_{n}=\frac{n\left(n^{2}+5\right)}{4}: t_{4}, t_{5}$

- Watch Video Solution

11. Find the indicated terms in each of the following sequences whose nth nth terms are:
$t_{n}=(-1)^{n-1} t^{n-1}, t_{3}$

- Watch Video Solution

12. Find the indicated terms in each of the following sequences whose nth nth terms are:
$t_{n}=\frac{n^{2}}{2^{n}}, t_{4}, t_{6}$

- Watch Video Solution

13. Find the indicated terms in each of the following sequences whose nth nth terms are: $4 n-3, t_{17}, t_{24}$
14. Find the indicated terms in each of the following sequences whose nth nth terms are:
$t_{n}=(-1)^{n-1} \cdot n^{3}, t_{9}$

- Watch Video Solution

15. Find the indicated terms in each of the following sequences whose nth nth terms are:
$t_{n}=\frac{n^{2}(n+1)}{3}, t_{1}, t_{2}$
16. Find the indicated terms in each of the following sequences whose nth nth terms are: $t_{n}=\frac{n(n-2)}{n+3}, t_{20}$

- Watch Video Solution

17. Find the indicated terms in each of the following sequences whose nth nth terms are:

$$
t_{n}=(n-1)(2-n)(3+n), t_{20}
$$

18. Find the indicated terms in each of the following sequences whose nth nth terms are: $\frac{t_{n-1}}{n^{2}}, t_{1}=3, t_{2}, t_{3}(n \geq 2)$

- Watch Video Solution

19. Write the next three terms of the following sequences: $t_{2}=2, t_{n}=t_{n-1}+1,(n \geq 3)$
20. Write the next three terms of the following sequences: $t_{1}=3, t_{n}=3 t_{n-1}+2 f$ or alln >1

- Watch Video Solution

21. Write the next three terms of the following sequences: $t_{1}=1, t_{n}=\frac{t_{n-1}}{n},(n \geq 2)$

D Watch Video Solution

22. Write the next three terms of the following sequences: $t_{1}=2, t_{n}=t_{n-1}-1, n>2$

- Watch Video Solution

23. Find the first five terms of the following sequences and write down the coresponding series: $t_{1}=1, t_{n}=t_{n-1}+2 f$ or $n \geq 2$

- Watch Video Solution

24. Write the next three terms of the following
sequences: $t_{1}=1, t_{n}=\frac{t_{n-1}}{n},(n \geq 2)$

- Watch Video Solution

25. The Fibonacci sequence is defence by $t_{1}=t_{2}=1, t_{n}=t_{n-1}+t_{n-2}(n>2) . I f t_{n+1}=k t_{n}$ then find the values of k for $n=1,2,3$ and 4 .

- Watch Video Solution

26. If nth term of a sequences is $4 n^{2}+1$, find the sequence. Is this sequences at A.P.?

- Watch Video Solution

27. If nth term of a sequences is $2 n+b$, wherea, b are constants, is the this sequence an A.P.?

(-) Watch Video Solution

28. If the nth term of a sequence is an expressionof first degree in n, show that it is an A.P.

- Watch Video Solution

29. A sequence $\left\{t_{n}\right\}$ is given by
$t_{n}=n^{2}-1, n \in N$, show that it is not an A.P.

D Watch Video Solution

30. Find the indicated terms in each of the following arithmetic progression $16,11,16, \ldots, t_{61}$

D Watch Video Solution

31. Find the indicated terms in each of the $\begin{array}{lll}\text { following } & \text { arithmetic } & \text { progression }\end{array}$

- Watch Video Solution

32. Find the indicated terms in each of the following arithmetic progression $5,2,-1 \ldots . t_{10}$

D Watch Video Solution

33. Find the indicated terms in each of the
following arithmetic
progressions
$a=21, d=-5, t_{n}, t_{25}$

- Watch Video Solution

34. Find the 10th term of the sequence 10,5,0,-5,-10,...

- Watch Video Solution

35. Find the 10th term of the sequence whose 7th and 12th terms are 34 and 64 respectively.

- Watch Video Solution

36. If $\mathrm{pth}, \mathrm{qth}$, and rth terms of an A.P. are a, b, c,

$$
\begin{aligned}
& a(q-r)+b(r-p)+c(p-q)=0 \\
& (a-b) r+(b-c) p+(c-a) q=0
\end{aligned}
$$

- Watch Video Solution

37. find the first negative term of the sequence 999,995,991,987,...

- Watch Video Solution

38. In an A.P. if $m^{\text {th }}$ term is n and the $n^{\text {th }}$ term is m ,
where $m \neq n$, find the pth term.
39. Each of the sequences $3,5,7, .$. and $4,7,10$, is continued to 100 terms. Find how many terms are identical.

- Watch Video Solution

40. Find the number of all positive integers of 3 digits which are divisibleby 5 .
41. For an A. P, show that $t_{m}+t_{2 n}+m=2 t_{m+n}$

D Watch Video Solution

42. For an A.P. show that $t_{m+n}+t_{m-n}=2 t_{m}$

- Watch Video Solution

43. Determine the number of terms in the A.P.
$3,7,11, \ldots, 399$. Also find its 20th term from the end.

- Watch Video Solution

44. If $\left\{t_{n}\right\}$ is n A.p. such that $\frac{t_{4}}{t_{1}}=\frac{2}{3}$, find $\frac{t_{8}}{t_{9}}$.

- Watch Video Solution

45. Show that the sequence
$\log a, \log (a b), \log \left(a b^{2}\right), \log \left(a b^{3}\right)$, is an A.P. Find its nth term.

D Watch Video Solution

46. A man starts repaying a loan as first instalment of Rs. 100. If he increases the instalments by Rs. 5
every month, what amount he will pay in the 30th instalment?

- Watch Video Solution

47. Three numbers are in A.P., their sum is 27 and the sum of their squares is 275 . Find the numbers.

- Watch Video Solution

48. The sum of three numbers in A.P. is 12 and the
sum of their cubes is 408 find them.
49. Divide 15 into three parts which aere in A.P. and the sum of their squares is 83 .

- Watch Video Solution

50.4. (a) Divide 20 into 4 parts which are in A.P. and such that. the product of the first and fourth is to the product o the secondi.and third in the ratio 2:3.

- Watch Video Solution

51. If the sum to n terms of a sequences is $2 n^{2}+4$, find its n th. Is this seqwuence as AP.?

(D) Watch Video Solution

52. Find the sum of the following series:
$1+4+7+10+\ldots \rightarrow 40$ terms

- Watch Video Solution

53. Find the sum of the following series: $2\left(\frac{2}{3}\right)+3\left(\frac{2}{3}\right)+4\left(\frac{2}{3}\right)+\ldots 60$ terms
54. Find the sum of the following series: $\frac{3}{\sqrt{5}}+\frac{4}{\sqrt{5}}+\ldots 25$ terms

- Watch Video Solution

55. Find the sum of the following series:
$1+5+3+9+5+13+7+\ldots 20$ terms

-
 Watch Video Solution

56. How many terms of the series $15+12+9+\ldots$ must be taken to make 15? Explain the double answer.

D Watch Video Solution

57. Find the sum of all odd numbers between 100 and 200.

- Watch Video Solution

58. Find the sum of odd integers from 1 to 2001.
59. Find the sum of first 30 terms of an A.P. whose second term is 2 and seventh term is 22 .

- Watch Video Solution

60. The sum of first p - terms terms of an A.P. is q
and the sum of first q terms is p, find the sum of
first $(p+q)$
61. How many terms of the A.P. $-6,-\frac{11}{2},-5$.. are needed to give the sum -?

(D) Watch Video Solution

62. solve: $1+6+11+16+\ldots \ldots . .+x=148$

- Watch Video Solution

63. Solve : $2+22+19+16++x=115$

- Watch Video Solution

64. Find the sum of integers from 1 to 100 that are divisible by 2 or 5 .

- Watch Video Solution

65. Find the sum of all natural numbers lying between 100 and 1000 , which are multiples of 5 .

- Watch Video Solution

66. Find the sum of all numbers between 200 and

400 which are divisible by 7.

- Watch Video Solution

67. If the sum to n terms of a sequence be $n^{2}+2 n$ then prove tht the sequence is an A.P.

D Watch Video Solution

68. Find the sum of n terms of an A.P. whose kth terms is $5 k+1$.
69. Find the sum of all two digit numbers which when divided by 4 , yields 1 as remainder.

D Watch Video Solution

70. If the sum of n terms of an A.P. is $3 n^{2}+5 n$ and its m th term is 164 , find the value of m.

- Watch Video Solution

71. If the sum of n terms of an A.P. is $\left(p n+q n^{2}\right)$, where p and q are constants, find the common
difference.

- Watch Video Solution

72. If the sum of n terms of an A.P. in $n P+\frac{1}{2} n(n-1) Q$, where P and Q are constants, find the common difference.

D Watch Video Solution

73. If the sum of 8 terms of an A.P. is 64 and the sum of 19 terms is 361 , find the sum of n terms.
74. The first, second and the last terms of an A.P. are a, b, c respectively. Prove that the sum is $\frac{(a+c)(b+c)(c-2 a)}{2(b-a)}$.

- Watch Video Solution

75. If the $m^{t h}$ term of an A.P. is $\frac{1}{n}$ and the $n^{t h}$ term is $\frac{1}{m}$, show that the sum of $m n$ terms is $\frac{1}{2}(m n+1)$.

- Watch Video Solution

76. If 12 th term of an A.P. is -13 and the sum of the first four terms is 4 , what is the sum of first 10 terms?

- Watch Video Solution

77. If there are $(2 n+1)$ terms in A.P. , then prove that the ratio of the sum of odd terms and the sum of even terms is $(n+1): n$
78. If the sum of first m terms of an A.P. is the same
as the sum of its first n terms, show that the sum of tis $(m+n)$ terms is zero.

- Watch Video Solution

79. In an A.P. the first term is 2 and the sum of the
first five terms is one fourth of the next five terms.

Show that 20th term is $\mathbf{- 1 1 2}$.

- Watch Video Solution

80. the income of a person is Rs. 300,000 in the
first year and he receivers in increase of Rs. 10000
to his income per year for the next 19 years. Find the total amount, he received in 20 years.

D Watch Video Solution

81. A man starts repaying a loan as first instalment of Rs. 100. If he increases the instalments by Rs. 5
every month, what amount he will pay in the 30th instalment?
82. The interior angle of polygon are in A.P., the smallest angle is 75° and the common difference is 10^{0}. Find the numberof sieds of the polygon.

- Watch Video Solution

83. If S_{n}, be the sum of n terms of an $A . P$; the
value of $S_{n}-2 S_{n-1}+S_{n-2}$, is

- Watch Video Solution

84. The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 167 . Find the progression.

D Watch Video Solution

85. if the pth term of an A.P. is x and qth term is y,
show tht the sum of $(p+q)$ terms is $\frac{p+q}{2}\left[x+y+\left(\frac{x-y}{p-q}\right)\right]$

D Watch Video Solution
86. The sum of n terms of two arithmetic progressions are in the ratio $(3 n+8):(7 n+15)$. Find the ratio of their 12th terms.

- Watch Video Solution

87. The sum of n terms of two arithmetic progressions are in the ratio $5 n+4: 9 n+6$. Find the ratio of their 18th terms.
88. If in an A.P, $S_{n}=n^{2} p$ and $S_{m}=m^{2} p$, then S_{p} is equal to

D Watch Video Solution

89. If $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in A.P. and
$a+b+c \neq 0$ prove that $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P.
90. If a^{2}, b^{2}, c^{2} are in A.P, show that:
$\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in A.P.

- Watch Video Solution

91. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P., prove that: (i) $\frac{1}{b c}, \frac{1}{c a}, \frac{1}{a b}$
are in A.P.
$(b+c)^{2}-a^{2},(a+c)^{2}-b^{2},(b+a)^{2}-c^{2}$ are in
A.P.
92. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P., prove that: (i) $\frac{1}{b c}, \frac{1}{c a}, \frac{1}{a b}$ are in A.P.
$(b+c)^{2}-a^{2},(a+c)^{2}-b^{2},(b+a)^{2}-c^{2}$ are in A.P.

D Watch Video Solution

93. If a, b, c are in A.P., then prove that the
following
$\frac{1}{\sqrt{b}+\sqrt{c}}, \frac{1}{\sqrt{c}+\sqrt{a}}, \frac{1}{\sqrt{a}+\sqrt{b}}$

- Watch Video Solution

94. If $\frac{b+c-a}{a}, \frac{c+a-b}{b}, \frac{a+b-c}{c}$ are in A.P.,
show that $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P. provided $a+b+c \neq 0$

D Watch Video Solution

95. If $(b-c)^{2},(c-a)^{2},(a-b)^{2}$ are in A.P., then show that $\frac{1}{b-c}, \frac{1}{c-a}, \frac{1}{a-b}$ are in A.P.

- Watch Video Solution

96. If a, b, c are in A.P. show that $(a-c)^{2}=4(a-b)(b-c)$

D Watch Video Solution

97. If a, b, c are in A.P, show that
$(i) a^{3}+b^{3}+6 a b c=8 b^{3}$
$(a+2 b-c)(2 b+c-a)(a+c-b)=4 a b c$

- Watch Video Solution

98. If a, b, c are in A.P, show that
$(i) a^{3}+b^{3}+6 a b c=8 b^{3}$
$(a+2 b-c)(2 b+c-a)(a+c-b)=4 a b c$

D Watch Video Solution

99. Find the single arithmetic mean between:

7 and 31

- Watch Video Solution

100. Findthe single arithmetic mean between:
$(a-b)$ and $(a+b)$

- Watch Video Solution

101. Findthe single arithmetic mean between:

6 and -18

- Watch Video Solution

102. Insert 6 numbers between 3 and 24 such that the resulting sequence is an A. P.

- Watch Video Solution

103. Insert 7 A.M.'s between 2 and 34 .

- Watch Video Solution

104. Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.

- Watch Video Solution

105. Insert 4 A.M.s between 4 and 19.
106. If $A_{1}, A_{2}, A_{3}, A_{2}$ and A_{5} are the five A.M.'s between 2 and 8, then find the value of
$A_{1}+A_{2}+A_{3}+A_{4}+A_{5}$.

(D) Watch Video Solution

107. If n arithemetic means are inserted between $20 a n d 80$ such tht the ratio of first mean to the last mean is $1: 3$, then find the value of n.
108. If $\frac{x^{p}+y^{p}}{x^{p-1}+y^{p-1}}$ be the A.M. between x and y then find the value of p.

- Watch Video Solution

109. if the A.M. between pth and qth terms of an
A.P. be equal to the A.M. between rth and sth terms
of the A.P., then show that $p+q=r+s$

D Watch Video Solution
110. Show that in an A.P. the sum of the terms equidistant from the beginning and end is always
same and equal to the sum of first and last terms.

D Watch Video Solution

