

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

APPLICATIONS OF INTEGRALS - FOR BOARDS

Solved Examples

1. Find the area enclosed by the circle of radius a.

2. Find the area of the region bounded by the parabola $y^2 = 4ax$, its axis and two ordinates x = 4 and x = 9

Watch Video Solution

3. Using integration, find the area of the region bounded by the parabola $y^2 = 16x$ and the line

x = 4

4. Find the area of the region bounded by the

ellipse
$$rac{x^2}{a^2}+rac{y^2}{b^2}=1$$

Watch Video Solution

5. Find the area of the smaller portion of the circle

$$x^2+y^2=4$$
 cut off by the line $x^2=1$

Watch Video Solution

6. Find the area bounded by the ellipse $rac{x^2}{a^2}+rac{y^2}{b^2}=1$ and the ordinates x=0 and x=ae,

8. Find the area between the x-axis and the curve

 $y=\sin x$ from x=0 to $x=2\pi$

9. Find the area of the quadrilateral formed by the lines y = 2x + 3, y = 0, x = 2 and x = 4 using integration.

Watch Video Solution

10. Using integration, find the area of the region

bounded by the line 2y + x = 8, the x-axis and the

lines x = 2 and x = 4.

11. Find the area of the triangle formed by the lines

y=x+1, 3y=x+5 and y=-x+7 by

method of integration.

12. Find the area of the region bounded by the curve $y = x^2$ and the line y = 4.

Watch Video Solution

13. Find the area bounded by the curve ert x ert + y = 1

and axis of x.

14. Find the area of the region bounded by $y^2 = 4x, x = 1, x = 4$ and the x-axis in the first quadrant.

Watch Video Solution

15. Sketch the graph of y = |x + 3|. Evaluate

 $\int_{-6}^{0} |x+3| dx.$ What does the value of this

integral represent?

16. Using integration, find the area of the region bounded by the following curves, after curves, after making a rough sketch: y = 1 + |x + 1|, x = -3, x = 3, y = 0

Watch Video Solution

17. Find the area included between the line y=x

and the parabola $x^2 = 4y$.

and the line x = 4y2.

19. Find the area cut off from the parabola $2y = 3x^2$ by the line 2y = 3x + 12.

Watch Video Solution

20. Using integration, find the area of the triangle ABC whose vertices are A(-1, 1), B(0, 5) and C(3, 2).

21. Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).

Watch Video Solution

22. Find the area of the smaller region bounded by

the ellipse
$$\displaystyle rac{x^2}{a^2} + \displaystyle rac{y^2}{b^2} = 1$$
and the line $\displaystyle rac{x}{a} + \displaystyle rac{y}{b} = 1$

23. Find the area enclosed between first quadrant of a circle $x^2 + y^2 = 16$ and line y = x. Watch Video Solution

24. Find the area of the region bounded by the

curves $x = 2y - y^2$ and y = 2 + x.

Watch Video Solution

25. Find the area of the region bounded by $y = x^2 + 1, y = x, x = 0$ and y = 2.

27. Find the area bounded by the parabola $y^2=4x$

and the straight line x + y = 3.

28. Draw a rough sketch of the curves $y = \sin x$ and $y = \cos x$ as x varies from 0 to $\frac{\pi}{2}$. Find the area of the region enclosed by the curves and the y-axis.

29. Find the area of the region bounded by the two

parabolas $y = x^2$ and $y^2 = x$.

30. Find the area included between the curves

$$x^2 = 4y$$
 and $y^2 = 4x$.

Watch Video Solution

31. Find the area of the region included between the parabolas

$$y^2=4axandx^2=4ay, wherea>0.$$

32. Draw a rough sketch of the curves $y^2 = x + 1$ and $y^2 = -x + 1$ and find the area enclosed between them,

Watch Video Solution

33. Using integration, find the area of the region common to the circle $x^2 + y^2 = 16$ and the parabola $y^2 = 6x$.

34. Find the area of the circle $x^2 + y^2 = 16$ which is exterior to the parabola $y^2 = 6x$ by using integration.

35. Find the area, lying above the x=axis and included between the circle $x^2 + y^2 = 8x$ and the parabola $y^2 = 4x$.

36. Prove that the curves $y^2 = 4x$ and $x^2 = 4y$ divide the area of the square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.

38. Find the area of the region enclosed between

the two circles $x^2+y^2=1$ and $(x-1)^2+y^2=1$

Watch Video Solution

39. Find the area of the region $igl\{(x,y)\!:\!0\leq y\leq x^2+1, 0\leq y\leq x+1, 0\leq x\leq 2igr\}$

40. Find the area of the region $\{(x, y): x^2 \le y \le |x|\}$ \checkmark Watch Video Solution

42. Find the area of the region in the first quadrant enclosed by x-axis, line $x = \sqrt{3}y$ and the circle

2. Find the area bounded by the line y = x, the x-

axis and the ordinates $x=\,-\,1$ and x=2

y=3x+2, the x-axis and the ordinates $x=\ -1$

and x=1

Watch Video Solution

4. Using integration, find the area of the region bounded by the line y - 1 = x, $thex - a\xi s$ and the ordinates x = -2andx = 3.

5. Find the area of the quadrilateral formed by the

lines y = 2x + 3, y=0, x=4, x=6`.

> Watch Video Solution

6. Find the area of the region bounded by the parabola $y^2 = 4ax$, its axis and two ordinates x = a and x = 2a.

7. Find the area of the region bounded by the curve

 $y^2=x$ and the lines x=1, x=4and the x-axis.

Watch Video Solution

 $y^2=4x, x=1, x=4$ and x-axis in the first

quadrant.

9. Find the area of the region bounded by $y^2 = 9x, x = 2, x = 4$ and the x-axis in the first quadrant.

10. Find the area of the region bounded by $x^2 = 4y$, y = 2, y = 4 and the y-axis in the first quadrant.

11. Examples: Find the area bounded by the parabola $y^2 = 4ax$ and its latus rectum. **Vatch Video Solution**

12. Using integration, find the area of the region bounded by the parabola $y^2=16x$ and the line x=4

13. Find the area bounded by the curve $y^2 = 4ax$

and the lines y = 2a and y-axis.

14. The area between $x = y^2$ and x = 4 is divided into two equal parts by the line x = a, find the value of a.

15. Find the area of the region bounded by the

ellipse
$$rac{x^2}{4}+rac{y^2}{9}=1$$

Watch Video Solution

16. Find the area of the region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. Watch Video Solution

17. Draw a rough sketch of the graph of the curve $rac{x^2}{4}+rac{y^2}{9}=1$ and evaluate the area of the region

19. Using integration find the area of region bounded by the triangle whose vertices are (1, 0), (2, 2) and (3, 1).

20. Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x2y = 6 and x3y + 5 = 0

Watch Video Solution

21. Find the area of the portion of an ellipse $4x^2 + 9y^2 = 36$, which is surrounding by the positive direction of x and y-axes.

23. Find the area of the triangle formed by the straight lines y = 2x, x = 0 and y = 2 by integration.

24. Find the area between x-axis and the curve

$$y=\sin x$$
, from $x=0$ to $x=\pi.$

$$x=0 \,\, \mathrm{and} \,\,, x=\pi.$$

27. Find the area between the curve $y = x \sin x$

and x-axis from x = 0 to $x = 2\pi$.

28. Find the area bounded by the curve y = x |x|, x-

axis and ordinates x = -1 and x = 1.

Watch Video Solution

29. Find the area bounded by the curve $y = 4x - x^2$, the x-axis and the ordinates x = 1

31. Find the area of the region enclosed by the parabola $x^2 = y$, the line y = x + 2 and the x-axis.

32. Find the area of the region enclosed by the parabola $x^2 = y$, the line y = x + 2 and the x-axis.

parabola $y=x^2$ and y=|x| .

Watch Video Solution

34. Find the area of the smaller region bounded by

the ellipse $rac{x^2}{9}+rac{y^2}{4}=1$ and the line $rac{x}{3}+rac{y}{2}=1$

Watch Video Solution

35. Find the area of the portion of the parabola

 $y^2 = 4x$ cut off by the line y = x.

Watch Video Solution

36. Find the area between the curve y = x and

$$y = x^2$$

38. Find the area enclosed by the curves $y = 4x^2$

and $y^2=2x.$

39. Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle $x^2 + y^2 = 32$.

Watch Video Solution

40. Find the area of the circle $4x^2 + 4y^2 = 9$ which

is interior to parabola $y^2 = 4x$.

41. Find the area of the region bounded by the curves $x^2 + y^2 = 4$ and $(x - 2)^2 + y^2 = 4$. Watch Video Solution

42. Sketch the graph of y = |x - 5|. Evaluate $\int_0^1 |x - 5| dx$. What does this value of the integral

represent on the graph.

43. Sketch the graph y = |x + 1|. Evaluate $\int_0^1 |x + 1| dx$. What does this value of the integral

represent on the graph?

44. Using the method of integration find the area

bounded by the curve |x|+|y|=1.

45. Find the area of the region $ig\{(x,y)\!:\!x^2+y^2\leq 1\leq x+yig\}$ Watch Video Solution 46. Find the area of the region $ig\{x,y\!:\!x^2+y^2\leq 2ax,y^2\geq ax,x\geq 0,y\geq 0ig\}$ Watch Video Solution 47. Find the area bounded by curves $ig\{(x,y)\!:\!y\geq x^2 \; ext{ and } \; y=|x|ig\}$

