©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

APPLICATIONS OF INTEGRALS - FOR COMPETITION

Solved Examples

1. Find the area of the region bounded by the x-axis and the curves defined by $y=\tan x,-\frac{\pi}{3} \leq x \leq \frac{\pi}{3}$ and $y=\cot x, \frac{\pi}{6} \leq x \leq \frac{3 \pi}{2}$

- Watch Video Solution

2. Find the area bounded by the curves $x^{2}+y^{2}=4, x^{2}=-\sqrt{2} y$ and $x=y$
3. Find the area bounded by the curves $x^{2}+y^{2}=25,4 y=\left|4-x^{2}\right|$, and $x=0$ above the x -axis.

Watch Video Solution

4. The area of the region bounded by the curve $y=\tan x$, tangent drawn to the curve at $x=\frac{\pi}{4}$ and the x -axis is

- Watch Video Solution

5. The area bounded by the curve $y=x(x-1)^{2}$, the y -axis and the line $y=2$ is

- Watch Video Solution

6. The area between the curve $y=2 x^{4}-x^{2}$, the axis, and the ordinates of the two minima of the curve is $11 / 60$ sq. units (b) $7 / 120$ sq. units $1 / 30$ sq. units (d) 7/90 sq. units

- Watch Video Solution

7. Compute the area of the region bounded by the curves $y-e x(\log)_{e} x a n d y=\frac{\log x}{e x}$

- Watch Video Solution

8. The line $y=m x$ bisects the area enclosed by the curve $y=1+4 x-x^{2}$ and the lines $x=0, x=\frac{3}{2} a n d y=0$. Then the value of m is $\frac{13}{6}$ b. $\frac{6}{13}$ c. $\frac{3}{2}$ d. 4

- Watch Video Solution

9. Let $f(x)=\operatorname{Ma\xi } \mu m\left\{x^{2},(1-x)^{2}, 2 x(1-x)\right\}$, where $0 \leq x \leq 1$. Determine the area of the region bounded by the curves $y=f(x), x-a \xi s, x=0$, and $x=1$.

- Watch Video Solution

10. A curve $y=f(x)$ passes through the origin. Through any point (x, y) on the curve, lines are drawn parallel to the co-ordinate axes. If the curve divides the area formed by these lines and co-ordinates axes in the ratio $m: n$, find the curve.

- Watch Video Solution

11. Let C_{1} and C_{2}, be the graph of the functions $y=x^{2}$ and $y=2 x, 0 \leq x \leq 1$ respectively. Let C_{3}, be the graph of a function $y-(f x), 0 \leq x \leq 1, f(0)=0$. For a point Pand C_{2}, let the lines through P , parallel to the axes, meet C_{2} and C_{3}, at Q and R
respectively. If for every position of P (on C_{1}), the areas of the shaded regions $O P Q$ and $O R P$ are equal, determine the function $f(x)$.

- Watch Video Solution

12. Find the ratio of the areas in which the curve $y=\left[\frac{x^{3}}{100}+\frac{x}{35}\right]$ divides the circle $x^{2}+y^{2}-4 x+2 y+1=0$

- Watch Video Solution

13. Find the area of the region formed by $x^{2}+y^{2}-6 x-4 y+12 \leq 0$. $y \leq x$ and $x \leq \frac{5}{2}$.

- Watch Video Solution

14. Find all the possible values of $b>0$, so that the area of the bounded region enclosed between the parabolas $y=x-b x^{2} a n d y=\frac{x^{2}}{b}$ is maximum.

Watch Video Solution

15. Find the area of the region lying inside $x^{2}+(y-1)^{2}=1$ and outside $c^{2} x^{2}+y^{2}=c^{2}$, where $c=\sqrt{2}-1$.

- Watch Video Solution

16. Consider a square with vertices at $(1,1),(-1,1),(-1,-1), \operatorname{and}(1,-1)$. Set S be the region consisting of all points inside the square which are nearer to the origin than to any edge. Sketch the region S and find its area.

- Watch Video Solution

17. Let A_{n} be the area bounded by the curve $y=(\tan x)^{n}$ and the lines $x=0, y=0$, and $x=\frac{\pi}{4}$. Prove that for $n>2, A_{n}+A_{n-2}=\frac{1}{n-1}$ and deduce $1 /(2 n+2)$
18. Let $f(x)$ be continuous function given by $f(x)=\left\{2 x,|x| \leq 1 x^{2}+a x+b,|x|>1\right\}$. Find the area of the region in the third quadrant bounded by the curves $x=-2 y^{2} a n d y=f(x)$ lying on the left of the line $8 x+1=0$.

- Watch Video Solution

19. The area of the region included between the curves $x^{2}+y^{2}=a^{2}$ and $\sqrt{|x|}+\sqrt{|y|}=\sqrt{a}(a>0)$ is

- Watch Video Solution

20. The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the x-axis is
21. Find the area of the region given by $x+y \leq 6, x^{2}+y^{2} \leq 6 y$ and $y^{2} \leq 8 x$.

- Watch Video Solution

22. Let $b \neq 0$ and for $j=0,1,2, \ldots, n$. Let S_{j} be the area of the region bounded by Y_{-}axis and the curve $x \cdot e^{a y}=\sin b y, \frac{j \pi}{b} \leq y \leq \frac{(j+1) \pi}{b}$. Show that $S_{0}, S_{1}, S_{2}, \ldots S_{n}$ are in geometric progression. Also, find their sum for $a=-1$ and $b=\pi$.

- Watch Video Solution

23. Find the area bounded by the curves $x^{2}=y, x^{2}=-y$ and $y^{2}=4 x-3$

- Watch Video Solution

24. If $\left[\begin{array}{lll}4 a^{2} & 4 a & 1 \\ 4 b^{2} & 4 b & 1 \\ 4 c^{2} & 4 c & 1\end{array}\right]\left[\begin{array}{c}f(-1) \\ f(1) \\ f(2)\end{array}\right]\left[\begin{array}{c}3 a^{2}+3 a \\ 3 b^{2}+3 b \\ 3 c^{2}+3 c\end{array}\right], f(x) \quad$ is \quad a quadratic function and its maximum valueoccurs at a point V.A is a point of intersection of $y=f(x)$ with X -axis and point B is such that chord AB subtendsa right angle at V . Find the area enclosed by $\mathrm{f}(\mathrm{x})$ andchord AB .

- Watch Video Solution

25. Find the area of the region bounded by the curves $y=x^{2}, y=\left|2-x^{2}\right|$, andyl $=2$, which lies to the right of the line $x=1$.

- Watch Video Solution

26. The area bounded by the parabola $y=(x+1)^{2}$ and $y=(x-1)^{2}$ and the line $y=\frac{1}{4}$ is (A) 4 sq. units (B) $\frac{1}{6}$ sq. units (C) $\frac{3}{4}$ sq. units (D) $\frac{1}{3}$ sq. units
27. The area of the region bounded by the curves $y=\sqrt{\frac{1+\sin x}{\cos x}}$ and $y=\sqrt{\frac{1-\sin x}{\cos x}}$ bounded by the lines $\mathrm{x}=0$ and $x=\frac{\pi}{4}$ is

- Watch Video Solution

28. Consider the function $f(x)=\left\{\begin{array}{ll}x-[x]-\frac{1}{2} & x \notin \\ 0 & x \in I\end{array}\right.$ where [.] denotes the fractional integral function and I is the set of integers. Then find $g(x)$ max $\cdot\left[x^{2}, f(x),|x|\right\},-2 \leq x \leq 2$.

- Watch Video Solution

29. Consider the function $f(x)=\left\{\begin{array}{ll}x-[x]-\frac{1}{2} & x \notin \\ 0 & x \in I\end{array}\right.$ where [.] denotes the fractional integral function and I is the set of integers. Then find $g(x) \max \cdot\left[x^{2}, f(x),|x|\right\},-2 \leq x \leq 2$.

- Watch Video Solution

1. Show that the area between the curve $y=c e^{2 x}$, the x -axis and any two ordinates is proportional to the difference between the ordinates, c being constant.

- Watch Video Solution

2. Find the area bounded by the curve $y=(x+1)(x-1)(x+2)$ and the x-axis.

- Watch Video Solution

3. Find the area bounded by the curve $y=x^{3}-3 x^{2}+2 x$ and the x-axis.

- Watch Video Solution

4. Find the area included between the parabola $y=\frac{x^{2}}{4 a}$ and the curve $y=\frac{8 a^{3}}{x^{2}+4 a^{2}}$.

- Watch Video Solution

5. Prove that the curves $y^{2}=4 x$ and $x^{2}=4 y$ divide the area of the square bounded by $x=0, x=4, y=4$ and $y=0$ into three equal parts

- Watch Video Solution

6. Find the area bounded by the x-axis, part of the curve $y=\left(1-\frac{8}{x^{2}}\right)$, and the ordinates at $x=2 a n d x=4$. If the ordinate at $x=a$ divides the area into two equal parts, then find a.

- Watch Video Solution

7. Find the area included between the curves $y=x^{2}$ and $y=x^{3}$.
8. Find the area bounded by the curve $y=x^{2}+2 x-3$ and the line $y=x+3$.

- Watch Video Solution

9. The smaller area included between $y=\sqrt{4-x^{2}}, y=x \sqrt{3}$ and the x axis is

- Watch Video Solution

10. For any real $t, x=\frac{1}{2}\left(e^{t}+e^{-t}\right), y=\frac{1}{2}\left(e^{t}-e^{-t}\right)$ is a point on the hyperbola $x^{2}-y^{2}=1$ Show that the area bounded by the hyperbola and the lines joining its centre to the points corresponding to t_{1} and $-t_{1}$ is t_{1}.
11. Find the area included between the curve $y=\sqrt{8-x^{2}}$, the tangent to it at the point with abscissa $x=-2$ and the x-axis.

Watch Video Solution

12. Find the area of the figure bounded by the curve $y=\sin ^{-1} x$, the lines $x=0$ and $y=\frac{\pi}{2}$.

- Watch Video Solution

13. The area common to the circle $x^{2}+y^{2}=64$ and the parabola $y^{2}=12 x$ is equal to

- Watch Video Solution

14. The area included between $x^{2}+y^{2}=2 a x$ and $y^{2}=a x$ is
15. Find the area bounded by $(x-y)(x+y)=1$ and $x^{2}+y^{2}=4, x>0, y>0$.

- Watch Video Solution

16. Compute the area of the figure bounded by the straight lines
$=0, x=2$ and the curves $y=2^{x}, y=2 x-x^{2}$.

- Watch Video Solution

17. Find the area of the figure bounded by the parabolas $x=-2 y^{2}, x=1-3 y^{2}$.

- Watch Video Solution

18. Compute the area of the region in the first quadrant bounded by the curves $y^{2}=4 x$ and $(x-4)^{2}+y^{2}=16$

- Watch Video Solution

19. The area of the loop between the curve $y=a \sin x$ and x-axis is (A) a
(B) $2 a$ (C) $3 a$ (D) none of these

- Watch Video Solution

20. Find the area of the figure bounded by parabola $y=-x^{2}-2 x+3$, the tangent to it at the point $(2-5)$ and the y-axis.

- Watch Video Solution

21. Find the area of the region lying in the first quadrant and included between the curves
$x^{2}+y^{2}=3 a^{2} \cdot x^{2}=2 a y$ and $y^{2}=2 a x . a>0$

- Watch Video Solution

22. The slope of the tangent to a curve $y=f(x)$ at $(x, f(x))$ is $2 x+1$. If the curve passes through the point $(1,2)$ then the area of the region bounded by the curve, the x-axis and the line $x=1$ is (A) $\frac{5}{6}$ (B) $\frac{6}{5}$ (C) $\frac{1}{6}$ (D) 1

- Watch Video Solution

23. Find the area of the region enclosed by the curves $y=x \log x a n d y=2 x-2 x^{2}$.

- Watch Video Solution

24. The area enclosed by the circle $x^{2}+(y+2)^{2}=16$ is divided into two parts by the x-axis. Find by integration, the area of the smaller part.
25. Find the area bounded by the curves $x=y^{2}$ and $x=3-2 y^{2}$.

- Watch Video Solution

26. Find the area bounded by the curve $2 x^{2}-y=0$ and the lines $x=3, y=1$ and the x-axis all in first quadrant.

- Watch Video Solution

27. Sketch the region bounded by the curve, $y=\frac{1}{2}\left(2-3 x-2 x^{2}\right)$, below the line $y=x+1$, and above the x -axis, also find its area.

- Watch Video Solution

28. Using integration find the area of the region bounded by the curves $y=\sqrt{4-x^{2}}, x^{2}+y^{2}-4 x=0$ and the x -axis.

- Watch Video Solution

29. The area bounded by the curve $y=f(x)$, the x-axis and $x=1$ and $x=c$ is $(c-1) \sin (3 c+4)$ Then $\mathrm{f}(\mathrm{x})$ is

- Watch Video Solution

30. Find the area bounded by the curve $20 y=7-10 x^{2}+20 x^{3}-10 x^{4}$, the axis of x and the two ordinates, corresponding to the points of maxima of this function.

- Watch Video Solution

31. Find the area lying in the first quadrant, bounded by the curves
$y^{2}-x+2=0$ and $y=|x-2|$.

- Watch Video Solution

32. Find the area of the region bounded by the curves $2 y^{2}=x, 3 y^{2}=x+1, y=0$.

- Watch Video Solution

33. Find the ratio of the two areas bounded by the curve $y=x^{2} \sin 2 x$ (x being in radians) and the x -axis from $x=0$ from $x=0$ to $x=\pi$.

- Watch Video Solution

34. Find the area of the region which is inside the parabola satisfying the condition $|x-2 y|+|x+2 y| \leq 8$ and $x y \geq 2$.
35. Sketch the region bounded by the curves $y=x^{2} a n d y=\frac{2}{1+x^{2}}$. Find the area.

- Watch Video Solution

36. Calculate the area bounded by the curve $y=x(3-x)^{2}$ the x -axis and the ordinates of the maximum and minimum points of the curve.

- Watch Video Solution

37. In what ratio does the x-axis divide the area of the region bounded by the parabolas $y=4 x-x^{2}$ and $y=x^{2}-x$?

- Watch Video Solution

38. Find the ratio in which the area bounded by the curves $y^{2}=12 x a n d x^{2}=12 y$ is divided by the line $x=3$.

- Watch Video Solution

39. Find the area enclosed by the curves $3 x^{2}+5 y=32$ and $y=|x-2|$.

- Watch Video Solution

40. Find the area bounded by the curve $|y|+\frac{1}{2} \leq e^{-|x|}$.

- Watch Video Solution

41. Find the value of t for which the area bounded by the lines $y=0, x=0, x=1$ and the curve $y=t^{2} x^{2}+t x+1$ is minimum.

- Watch Video Solution

42. Find the area bounded by the curves $y=\log x$ and $y=(\log x)^{2}$.

- Watch Video Solution

43. Area bounded by the curves $y=x$ and $y=x^{3}$ is (A) $\frac{1}{2}$ (B) 1 (C) $\frac{3}{2}$ (D) 2

- Watch Video Solution

44. Area bounded by the curves $|y|=1-x^{2}$ is (A) $\frac{4}{3}$ (B) $\frac{8}{3}$ (C) $\frac{16}{3}$ none of these

- Watch Video Solution

45. Area of the region bounded by the curves $y=2^{x}, y=2 x-x^{2}, x=0$ and $x=2$ is given by (A) $3 \log 2-\frac{4}{3}$

$$
\begin{equation*}
\frac{3}{\log 2}-\frac{4}{3} \text { (C) } 3 \log 2+\frac{4}{3} \text { (D) } \frac{3}{\log 2}+\frac{4}{3} \tag{B}
\end{equation*}
$$

46. Area bounded by the curves $y=|x-1|, y=0$ and $|x|=2$ is (A) 4 (B) 8 (C) 5 (D) 9

- Watch Video Solution

47. Area of the region bounded by the curves
$y=x^{2}+2, y=-x, x=0$ and $x=1$ is (A) $\frac{3}{6}$ (B) $\frac{5}{6}$ (C) $\frac{17}{6}$ (D) none of these

- Watch Video Solution

48. $A O B$ is the positive quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in which $O A=a, O B=b$. Then find the area between the arc $A B$ and the chord $A B$ of the ellipse.
49. The area bounded by the curve $y=x^{4}-2 x^{3}+x^{2}+3$, the x-axis and the two ordinates corresponding to the points of minimum of this function is (A) $\frac{11}{15}$ (B) $\frac{91}{30}$ (C) $\frac{91}{60}$ (D) none of these

- Watch Video Solution

50. Find the area of the figure bounded by the parabolas $x=-2 y^{2}, x=1-3 y^{2}$.

- Watch Video Solution

51. If the area of the region bounded by $y=\sin a x, y=0, x=\frac{\pi}{a}$ and $x=\frac{\pi}{3 a}$ is 4 , then the positive value of a is (A) $\frac{1}{2}$ (B) 2 (C) $\frac{5}{8}$ (D) none of these

- Watch Video Solution

52. The area of the region bounded by the curve $y=\tan x$, tangent drawn to the curve at $x=\frac{\pi}{4}$ and the x -axis is

Watch Video Solution

53. Area of the region bounded by the curve $y=\left\{\begin{array}{ll}x^{2} & x<0 \\ x & x \geq 0\end{array}\right.$ and the line $y=4$ is (A) $\frac{10}{3}$ (B) $\frac{20}{3}$ (C) $\frac{50}{3}$ (D) none of these

- Watch Video Solution

54. The area inside the parabola $5 x^{2}-y=0$ but outside the parabola
$2 x^{2}-y+9=0 \quad$ is $\quad 12 \sqrt{3}$ squinits $\quad 6 \sqrt{3}$ squnits $\quad 8 \sqrt{3}$ squinits
$4 \sqrt{3}$ squinits

- Watch Video Solution

55. Area of the region bounded by the line $x-y+2=0$ and the curve $x=\sqrt{y}$ is (A) 9 (B) $\frac{16}{3}$ (C) $\frac{5}{3}$ (D) 4

- Watch Video Solution

56. The area cut off from a parabola by any double ordinate is k time the corresponding rectangle contained by the double ordinate and its distance from the vertex. Find the value of k ?

- Watch Video Solution

57. Area common to the curves $y=x^{3}$ and $y=\sqrt{x}$ is (A) $\frac{5}{12}$ (B) $\frac{5}{4}$ (C) $\frac{5}{2}$
(D) none of these

- Watch Video Solution

58. Area lying between the curves $y=\tan x, y=\cot x$ and x-axis, $x \in\left[0, \frac{\pi}{2}\right]$ is (A) $\frac{1}{2} \log 2$ (B) $\log 2$ (C) $2 \log \left(\frac{1}{\sqrt{2}}\right)$ (D) none of these

- Watch Video Solution

59. The area of the region bounded by the curves $y=|x-1|$ and $y=3-I x \mid$ is:

- Watch Video Solution

60. Find the area bounded by $y=x e^{|x|}$ and lines $|x|=1, y=0$.

- Watch Video Solution

61. The area bounded by the curve $y=x|x|, \mathrm{x}$-axis and the ordinates
$x=-1, x=1$ is (A) $\frac{5}{3}$ (B) $\frac{4}{3}$ (C) $\frac{2}{3}$ (D) $\frac{1}{3}$

- Watch Video Solution

62. The area $\left\{(x, y) ; x^{2} \leq y \leq \sqrt{x}\right\}$ is equal to $\frac{1}{3}$ b. $\frac{2}{3}$ c. $\frac{1}{6}$ d. none of these

D Watch Video Solution

63. The area enclosed by the curve $y=x^{5}$, the x-axis and the ordinates $x=-1, x=1$ is (A) 0 (B) $\frac{1}{6}$ (C) $\frac{1}{3}$ (D) none of these

- Watch Video Solution

64. The area bounded by the curves $y=f(x)$, the x-axis, and the ordinates $\quad x=1 a n d x=b \quad$ is $\quad(b-1) \sin (3 b+4)$. Then $f(x)$ is. $(x-1) \cos (3 x+4) \quad \sin (3 x+4) \quad \sin (3 x+4)+3(x-1) \cos (3 x+4)$

None of these

(Watch Video Solution

65. The area bounded by the curve $y=x^{2}$, the x-axis and the line $x=2^{\frac{1}{3}}$ is divided into two equal areas by the line $x=k$. The value of k is (A) $2^{-\frac{2}{3}}$ (B) $2^{-\frac{1}{3}}$ (C) 1 (D) $2^{\frac{1}{3}}-1$

- Watch Video Solution

66. The area bounded by the curve $y^{2}=9 x$ and the lines $x=1, x=4$ and $y=0$, in the first quadrant, is

- Watch Video Solution

67. The area of the region bouonded by the curve $y=x-x^{2}$ between $x=0$ and $x=1$ is (A) $\frac{1}{6}$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) $\frac{5}{6}$

- Watch Video Solution

68. The area of the loop between the curve $y=a \sin x$ and x-axis is (A) a (B) $2 a$ (C) $3 a$ (D) none of these

Watch Video Solution

69. Area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$ is (A) 2 sq. units (B) $\frac{9}{4}$ sq. units (C) $6 \sqrt{3}$ sq. units (D) none of these

- Watch Video Solution

70. Area between the curve $y=4+3 x-x^{2}$ and x-axis in sq. units is (A)
$\frac{125}{3}$ (B) $\frac{125}{4}$ (C) $\frac{125}{6}$ (D) none of these

- Watch Video Solution

71. Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0 \operatorname{andx}=2 \mathrm{is}(\mathrm{A}) \pi$ (B) $\frac{\pi}{2}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{4}$
72. Area lying between the curves $y^{2}=4 x$ and $y=2 x$ is(A) $\frac{2}{3}$ (B) $\frac{1}{3}$ (C) $\frac{1}{4}$ (D) $\frac{3}{4}$

- Watch Video Solution

73. Area common to the curves $y=\sqrt{x}$ and $x=\sqrt{y}$ is (A) 1 (B) $\frac{2}{3}$ (C) $\frac{1}{3}$
(D) none of these

- Watch Video Solution

74. Area bounded by the curve $x y^{2}=a^{2}(a-x)$ and the y -axis is $\frac{\pi a^{2}}{2}$ squinits (b) πa^{2} squinits $3 \pi a^{2}$ squinits (d) None of these

- Watch Video Solution

75. Find the area bounded by the curves $y=2 x-x^{2}$ and the straight line $y=-x$.

- Watch Video Solution

76. Find the area between the curve $y=x \sin x$ and x -axis from $x=0$ to $x=2 \pi$.

- Watch Video Solution

77. The area bounded by the x -axis and the curve $y=4 x-x^{2}-3$ is

- Watch Video Solution

78. Area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\pi a b$

- Watch Video Solution

79. The area of the region bounded by $y=|x-1|$ and $y=1$ is

- Watch Video Solution

80. The slope of the tangent to a curve $y=f(x)$ at $(x, f(x))$ is $2 x+1$. If the curve passes through the point $(1,2)$ then the area of the region bounded by the curve, the x-axis and the line $x=1$ is (A) $\frac{5}{6}$ (B) $\frac{6}{5}$ (C) $\frac{1}{6}$ (D) 1

- Watch Video Solution

81. The area bounded by the parabola $y^{2}=x$, straight line $y=4$ and y axis is

- Watch Video Solution

82. The area enclosed between the curve $y^{2}=4 x$ and the line $y=x$ is
(A) $\frac{8}{3}$
(B) $\frac{4}{3}$
(C) $\frac{2}{3}$
(D) $\frac{1}{2}$

Watch Video Solution

83. Area bounded by the lines $y=2+x, y=2-x$ and $x=2$ is (A) 3
(B) 4 (C) 8 (D) 16

- Watch Video Solution

84. Area bounded by the parabola $y^{2}=x$ and the line $2 y=x$ is (A) $\frac{4}{3}$
(B) 1 (C) $\frac{2}{3}$ (D) $\frac{1}{3}$

- Watch Video Solution

85. Area of the curve $x^{2}+y^{2}=2 a x$ is (A) πa^{2} (B) $2 \pi a^{2}$ (C) $4 \pi a^{2}$ (D) $\frac{\pi a^{2}}{2}$
86. Area enclosed by the parabola $y^{2}=8 x$ and the line $y=2 x$ is (A) $\frac{4}{3}$
(B) $\frac{3}{4}$ (C) $\frac{1}{4}$ (D) $\frac{1}{2}$

- Watch Video Solution

87. Find the area bounded by the parabola $y=x^{2}+1$ and the straight line $x+y=3$.

- Watch Video Solution

88. The area of the region bounded by the lines $x=0, x=\frac{\pi}{2}$ and $f(x)=\sin x, g(x)=\cos x$ is (A) $2(\sqrt{2}+1)$ (B) $\sqrt{3}-1$ (C) $2(\sqrt{3}-1)$
(D) $2(\sqrt{2}-1)$

- Watch Video Solution

89. The ratio of the areas between the curves $y=\cos x$ and $y=\cos 2 x$ and x -axis from $x=0$ to $x=\frac{\pi}{3}$ is (A) $1: 3$ (B) $2: 1$ (C) $\sqrt{3}: 1$ (D) none of these

- Watch Video Solution

90. Area between the x -axis and the curve $y=\cos x$, when $0 \leq x \leq 2 \pi$ is
(A) 0 (B) 2 (C) 3 (D) 4

- Watch Video Solution

91. The area common to the parabolas $y=2 x^{2}$ and $y=x^{2}+4$ (in square units) is (A) $\frac{2}{3}$ (B) $\frac{3}{2}$ (C) $\frac{32}{3}$ (D) $\frac{3}{32}$

- Watch Video Solution

92. The area bounded by the curve $y=\log _{e} x$, the x-axis and the line $x=e$ is (A) e sq. units (B) 1 sq. unit (C) $\left(1-\frac{1}{e}\right)$ sq. units (D) $\left(1+\frac{1}{e}\right)$ sq. units

- Watch Video Solution

93. The area bounded by the curve $y=x^{3}$, x-axis and two ordinates $x=1$ and $x=2$ is equal to (A) $\frac{15}{2}$ sq. units (B) $\frac{15}{4}$ sq. units (C) $\frac{17}{2}$ sq. units (D) $\frac{17}{4}$ sq. units

- Watch Video Solution

94. The area bounded by the curve $y=4 x-x^{2}$ and x-axis is (A) $\frac{30}{7}$ sq. units (B) $\frac{31}{7}$ sq. units (C) $\frac{32}{3}$ sq. units (D) $\frac{34}{3}$ sq. units

- Watch Video Solution

95. The area of the region bounded by the curve $y=2 x-x^{2}$ and the line $y=x$ is

- Watch Video Solution

96. The area bounded by the x-axis, the curve $y=f(x)$, and the lines $x=1, x=b$ is equal to $\sqrt{b^{2}+1}-\sqrt{2}$ for all $b>1$, then $f(x)$ is $\sqrt{x-1}$ (b) $\sqrt{x+1} \sqrt{x^{2}+1}$ (d) $\frac{x}{\sqrt{1+x^{2}}}$

- Watch Video Solution

97. The area formed by triangular shaped region bounded by the curves $y=\sin x, y=\cos x$ and $x=0$ is (A) $\sqrt{2}-1$ (B) 1 (C) $\sqrt{2}$ (D) $1+\sqrt{2}$

- Watch Video Solution

98. The triangle formed by the tangent to the curve $f(x)=x^{2}+b x-b$ at the point $(1,1)$ and the coordinate axes, lies in the first quadrant. If its area is 2 , then the value of b is (a) -1 (b) 3 (c) -3 (d) 1

- Watch Video Solution

99. Find the area bounded by the curve $y=2 x-x^{2}$ and the straight line $y=-x$

- Watch Video Solution

100. The area between $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the straight line $\frac{x}{a}+\frac{y}{b}=1$ is
(A) $\frac{1}{2} \pi a b$
(B) $\frac{1}{2} a b$
(C) $\frac{\pi a b}{4}-\frac{a b}{2}$
(D) $\frac{1}{4} a b$
101. The area bounded by the curves $y=|x|-1$ and $y=-|x|+1$ is 1 sq. units (b) 2 sq. units $2 \sqrt{2}$ sq. units (d) 4 sq. units

- Watch Video Solution

102. The area of the figure bounded by the curves $y=\cos x$ and $y=\sin x$ and the ordinates $x=0$ and $x=\frac{\pi}{4}$ is (A) $\sqrt{2}-1$ (B) $\sqrt{2}+1$
(C) $\frac{1}{\sqrt{2}}(\sqrt{2}-1)$ (D) $\frac{1}{\sqrt{2}}$

- Watch Video Solution

103. The area bounded by the curves $y=\ln x, y=\ln |x|, y=|\ln x|$ and $y=|\ln ||x|$ is

- Watch Video Solution

104. The area bounded by the curve $y=\sec x$, the x-axis and the lines
$x=0$ and $x=\frac{\pi}{4}$ is (A) $\log (\sqrt{2}+1)$
(B) $\log (\sqrt{2}-1)$
(C) $\frac{1}{2} \log 2$ (D) $\sqrt{2}$

Watch Video Solution

105. The area of the region bounded by the curves $y=|x-1|$ and $y=3-|x|$ is (A) 6 sq. units (B) 2 sq. units (C) 3 sq. units (D) 4 sq. units

- Watch Video Solution

106. The area bounded by the curves $y=\ln x, y=\ln |x|, y=|\ln x|$ and $y=|\ln ||x|$ is

- Watch Video Solution

107. The area of the region bounded by the curves $y=|x-1|$ and $y=3-|x|$ is (A) 6 sq. units (B) 2 sq. units (C) 3 sq. units (D) 4 sq. units

- Watch Video Solution

108. The area of the region bounded by the curves $y=|x-2|, \mathrm{x}=1, \mathrm{x}=3$ and thex $-a \xi s i s(A) 3(B) 2(C) 1(D) 4^{`}$

- Watch Video Solution

109. The area enclosed between the curve $y=\log _{e}(x+e)$ and the coordinate axes is

- Watch Video Solution

110. The parabola $x^{2}=4 y$ and $y^{2}=4 x$ divide the square region bounded by the lines $x=4, y=4$ and the coordinate axes. If S_{1}, S_{2}, S_{3} are respectively the areas of these parts numbered from top to bottom, then $S_{1}: S_{2}: S_{3}$ is (A) $2: 1: 2$ (B) $1: 2: 1$ (C) $1: 2: 3$ (D) $1: 1: 1$

- Watch Video Solution

111. Let $f(x)$ be a non-negative continuous function such that the area bounded by the curve $y=f(x)$, the x-axis, and the ordinates $x=\frac{\pi}{4} a n d x=\beta>\frac{\pi}{4} i s \beta \sin \beta+\frac{\pi}{4} \cos \beta+\sqrt{2} \beta$. Then $f^{\prime}\left(\frac{\pi}{2}\right)$ is $\left(\frac{\pi}{2}-\sqrt{2}-1\right)$ (b) $\left(\frac{\pi}{4}+\sqrt{2}-1\right)-\frac{\pi}{2}$ (d) $\left(1-\frac{\pi}{4}-\sqrt{2}\right)$

- Watch Video Solution

112. The area enclosed between the curves $y^{2}=x a n d y=|x|$ is (1) $2 / 3$ (2)

1 (3) $1 / 6(4) 1 / 3$

- Watch Video Solution

113. The area of the plane region bounded by the curves $x+2 y^{2}=0$ and $x+3 y^{2}=1$ is equal to (1) $\frac{5}{3}$ (2) $\frac{1}{3}$ (3) $\frac{2}{3}$ (4) $\frac{4}{3}$

- Watch Video Solution

114. The area bounded by the curves $y=\sqrt{x}, 2 y+3=x$, and x-axis in the 1st quadrant is 18 sq. units (b) $\frac{27}{4}$ squnits $\frac{4}{3}$ squnits (d) 9 sq. units

- Watch Video Solution

115. The area enclosed between the curves $y=a x^{2}$ and $x=a y^{2}(a>0)$ is 1 sq. unit, value of a is $\frac{1}{\sqrt{3}}$ (b) $\frac{1}{2}$ (c) 1 (d) $\frac{1}{3}$

- Watch Video Solution

116. The area bounded by $y=\left|e^{|x|}-e^{-x}\right|$, the x -axis and $x=1$ is (A) $\int_{0}^{1}\left(e^{x}-e^{-x}\right) d x$ (B) $e+e^{-1}-2$ (C) $e+e^{-1}+2$ (D) $\left(\sqrt{e}-\frac{1}{\sqrt{e}}\right)^{2}$

- Watch Video Solution

117. The function f is such that : $f(x y)=f(x)+f(y), x, y>0$ and $f^{\prime}(1)=2$ and A the area bounded by the curves $y=f(x), x=2$ and the $\quad \mathrm{x}$-axis, then (A) $f(x)=2 \log _{e} x \quad$ (B) $f(x)=2 \log _{e} x$
$A=2\left(2 \log _{e} 2-1\right)$ (D) $A=4 \log \left(\frac{2}{\sqrt{e}}\right)$

- Watch Video Solution

118. For which of the following values of m is the area of the regions bounded by the curve $y=x-x^{2}$ and the line $y=m x$ equal $\frac{9}{2} ?-4$ (b) -2 (c) 2 (d) 4

- Watch Video Solution

119. Area bounded by the curves $y^{2}=4 x$ and $y=2 x$ is equal to (A)

$$
\int_{0}^{1}(2 \sqrt{x}-2 x) d x \text { (B) } \frac{1}{3} \text { (C) } \frac{2}{3} \text { (D) } \int_{0}^{2}\left(\frac{y}{2}-\frac{y^{2}}{4}\right) d y
$$

- Watch Video Solution

120. The area of the region bounded by the curve $y=e^{x}$ and lines $x=0 a n d y=e$ is $e-1 \quad$ (b) $\int_{1}^{e} 1 n(e+1-y) d y \quad e-\int_{0}^{1} e^{x} d x$ $\int_{1}^{e} 1 n y d y$

Watch Video Solution

121. Statement-1: The area bounded by the curve $y=x \sin x, \mathrm{x}$-axis and ordinates $x=0$ and $x=2 \pi$ is 4π.Statement- 2 : The area bounded by the curve $y=f(x)$, x-axis and two ordinates $x=a$ and $x=b$ is $\int_{a}^{b}|y| d x$. (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

(Watch Video Solution

122. Statement-1: The area bounded by the curve $y=2 x^{2}$ and $y=x^{2}+4$ is $\frac{32}{3}$ sq. units.Statement-2: The area bounded by the curves
$x=f(y), x=g(y) \quad$ and \quad two \quad abscissae $\quad y=c \quad$ and $\quad y=d \quad$ is $\int_{c}^{d}|f(y)-g(y)| d y$. (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

- Watch Video Solution

123. Statement-1: The area bounded by the curves $y=x^{2}$ and $y=\frac{2}{1+x^{2}}$ is $2 \pi-\frac{2}{3}$ Statement-2: The area bounded by the curves $y=f(x), y=g(x) \quad$ and \quad two ordinates $\quad x=a \quad$ and $\quad x=b \quad$ is $\int_{a}^{b}[f(x)-g(x)] d x$, if $f(x)>g(x)$. (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

- Watch Video Solution

124. Let the area bounded by the curve $y=f(x), \mathrm{x}$-axis and the ordinates
$x=1 \quad$ and $\quad x=a \quad$ be $\quad(a-1) \sin (3 a+4)$.Statement- $1:$
$f(x)=\sin (3 x+4)+3(x-1) \cos (3 x+4)$.Statement-2:
$y=\int_{g(x)}^{h(x)} f(t) d t$, then $\frac{d y}{d x}=f(h(x)) h^{\prime}(x)-f(g(x)) g^{\prime}(x)$. (A) Both
1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

- Watch Video Solution

125. Statement-1: The area of the region $R=\left\{(x, y):|x| \leq|y|\right.$ and $\left.x^{2}+y^{2} \leq 1\right\}$ is $\frac{\pi}{4}$ sq. units.Statement-2: Curves $|y|=|x|$ and $x^{2}+y^{2}=1$ symmetric about both x and y -axis. (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

- Watch Video Solution

126. Statement-1: The area bounded by the curves $y=\ln |x|, y$-axis and $y=1-|x|$ is 2 sq. units.Statement-2: Both the curves $y=\log |x|$ and $y=1-|x|$ are symmetric about y-axis. (A) Both 1 and 2 are true and 2 is the correct explanation of $1(B)$ Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

- Watch Video Solution

127. Consider the polynomial $\mathrm{f}(x)=1+2 x+3 x^{2}+4 x^{3}$. Let s be the sum of all distinct real roots of $f(x)$ and let $t=|s|$.

- Watch Video Solution

128. Consider the polynomial $\mathrm{f}(x)=1+2 x+3 x^{2}+4 x^{3}$. Let s be the sum of all distinct real roots of $f(x)$ and let $t=|s|$.

- Watch Video Solution

129. Consider the polynomial $\mathrm{f}(x)=1+2 x+3 x^{2}+4 x^{3}$. Let s be the sum of all distinct real roots of $f(x)$ and let $t=|s|$.

- Watch Video Solution

130. A normal to the curves $x^{2}+k x-y+2=0$ at the point P whose abscissa is 1 is parallel to the line, $y=x$. Now answer the question.The value of k is equal to (A) -3 (B) 1 (C) 0 (D) 2

- Watch Video Solution

131. A normal to the curves $x^{2}+k x-y+2=0$ at the point P whose abscissa is 1 is parallel to the line, $y=x$. Now answer the question. The value of k is equal to (A) -3 (B) 1 (C) 0 (D) 2

- Watch Video Solution

132. A normal to the curves $x^{2}+k x-y+2=0$ at the point P whose abscissa is 1 is parallel to the line, $y=x$. Now answer the question. The value of k is equal to (A) -3 (B) 1 (C) 0 (D) 2

- Watch Video Solution

133. Let $f(x)=\left\{\begin{array}{ll}\frac{x^{3}+2 x^{2}-x-2}{x^{3}-2 x^{2}-x+2} & f \text { or }|x|<1 \\ x^{2}+a x+b & f \text { or }|x| \geq 1\end{array}\right.$ be continuous for all x. Now answer the question:The values of a and b are given by
(A) $a=-\frac{8}{3}, b=-\frac{4}{3}$
(B) $a=\frac{4}{3}, b=-\frac{8}{3}$
(C) $a=-\frac{4}{3}, b=-\frac{8}{3}$
(D) $a=-\frac{4}{3}, b=\frac{8}{3}$

Watch Video Solution

134. Consider the two curves
$C_{1}: y=1+\cos x$ and $C_{2}: y=1+\cos (x-\alpha)$ for $\alpha \in\left(0, \frac{\pi}{2}\right)$, where

Also the area of the figure bounded by the curves C_{1}, C_{2}, and $x=0$ is same as that of the figure bounded by $C_{2}, y=1$, and $x=\pi$.

The value of α is

- Watch Video Solution

$$
\begin{array}{lccc}
135 . & \text { Consider twe } & \text { two } & \text { curves } \\
C_{1}: y=1+\cos x \text { and } C_{2}: y=1+\cos (x-\alpha) & \text { for } \alpha \in\left(0, \frac{\pi}{2}\right), \text { where }
\end{array}
$$ Also the area of the figure bounded by the curves C_{1}, C_{2}, and $x=0$ is same as that of the figure bounded by $C_{2}, y=1$, and $x=\pi$. The value of α is

- Watch Video Solution

$$
\begin{array}{lccc}
\text { 136. Consider two } & \text { the } & \text { twrves } \\
C_{1}: y=1+\cos x \text { and } C_{2}: y=1+\cos (x-\alpha) & \text { for } \alpha \in\left(0, \frac{\pi}{2}\right), \text { where }
\end{array}
$$ Also the area of the figure bounded by the curves C_{1}, C_{2}, and $x=0$ is same as that of the figure bounded by $C_{2}, y=1$, and $x=\pi$.

The value of α is

- Watch Video Solution

137. The area of bounded by $e^{\ln (x+1)} \geq|y|,|x| \leq 1$ is....

- Watch Video Solution

138. Let $f(x)=\min \cdot\left[\tan x, \cot x, \frac{1}{\sqrt{3}}\right], x \in\left[0, \frac{\pi}{2}\right]$. If the area bounded by $y=f(x)$ and x -axis is $\ln \left(\frac{a}{b}\right)+\frac{\pi}{6 \sqrt{3}}$, where a, b are coprimes. Then $a b=$.....

- Watch Video Solution

139. If Δ be the area between the curve $y=x^{2}+x-2$ and line $y=2 x$ for which $\left|x^{2}+x-2\right|+|2 x|=\left|x^{2}+3 x-2\right|$ is satisfied, then 9Δ is equal to.....
140. If Δ be the area in square units of the region bounded by the parabola $y=-x^{2}-2 x+3$, the line tangent to it at the point $P(2,-5)$ and the y -axis, then 3Δ is equal to...

- Watch Video Solution

141. If the area bounded by the curve $y=\cos ^{-1}(\cos x)$ and $y=|x-\pi|$ is $\frac{\pi^{2}}{n}$, then n is equal to...

- Watch Video Solution

142. Let $f(x)=\min .\left[\tan x, \cot x, \frac{1}{\sqrt{3}}\right], x \in\left[0, \frac{\pi}{2}\right]$. If the area bounded by $y=f(x)$ and x -axis is $\ln \left(\frac{a}{b}\right)+\frac{\pi}{6 \sqrt{3}}$, where a, b are coprimes. Then $a b=$.....

- Watch Video Solution

