©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

BINOMIAL THEOREM - FOR COMPETITION

Solved Examples

1. Find the coefficient of $x^{-1} \in\left(1+3 x^{2}+x^{4}\right)\left(1+\frac{1}{x}\right)^{8}$

- Watch Video Solution

2. If in the expansion of $(1-x)^{2 n-1} a_{r}$ denotes the coefficient of x^{r} then prove that $a_{r-1}+a_{2 n-r}=0$
3. If the greatest term in the expansion of $(1+x)^{2} n$ has the greatest coefficient if and only if $x \varepsilon\left(\frac{10}{11}, \frac{11}{10}\right)$ and the fourth term in the expansion of $\left(k x+\frac{1}{x}\right)^{m} i s \frac{n}{4}$ then find the value off $m \mathrm{k}$.

- Watch Video Solution

4. If $p+q=1$ then show that $\sum_{r=0}^{n} r^{2} C_{r} p^{r} q^{n-r}=n p q+n^{2} p^{2}$

(.) Watch Video Solution

5. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}$ show that $C_{1}-2 C_{2}+3 C_{3}-4 C_{4}+\ldots+(-1)^{n-1} n . C_{n}=0 w h e r e C_{r}={ }^{n} C_{r}$.

- Watch Video Solution

6.

showt̂̂. $\left.C_{0}+\frac{2^{2}}{2} \cdot C_{1}+\frac{2^{3}}{3} \cdot C_{2}+\ldots+\frac{2^{11}}{11} \cdot C_{10}=\frac{3^{11}-1}{11}\right)$

(Watch Video Solution

7. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}$ show that $C_{1}-2 C_{2}+3 C_{3}-4 C_{4}+\ldots+(-1)^{n-1} n . C_{n}=0 w h e r e C_{r}={ }^{n} C_{r}$.

- Watch Video Solution

8. If in the expansion of $(1-x)^{2 n-1} a_{r}$ denotes the coefficient of x^{r} then prove that $a_{r-1}+a_{2 n-r}=0$

- Watch Video Solution

9. Find the greatest term in the expansion of $(7-5 x)^{11}$ when $x=\frac{2}{3}$.

- Watch Video Solution

10. Let $R=(5 \sqrt{5}+11)^{2 n+1}$ and $f=R-[R]$ where [] denotes the greatest integer function, prove that $R f=4^{2 n+1}$

Watch Video Solution

11. The coefficient of $x^{2} y^{4} z^{2}$ in the expansion of $(2 x-3 y+4 z)^{9}$ is

- Watch Video Solution

12. Show that the roots of the equation $a x^{2}+2 b x+c=0$ are real and unequal whre a,b,c are the three consecutive coefficients in any binomial expansion with positive integral index.

- Watch Video Solution

13. Find the coefficient of x^{9} in $\left(1+3 x+3 x^{2}+x^{3}\right)^{15}$.
14. The term independent of x in $(1+x)^{m}\left(1+\frac{1}{x}\right)^{n}$ is

- Watch Video Solution

15. If the sum of the binomial coefficients in the expansion of $\left(x+\frac{1}{x}\right)^{n}$ is 64 , then the term independent of x is equal to (A) 10 (B) 20 (C) 30 (D) 40

- Watch Video Solution

16. The sum of the coefficients in the expansion of $\left(2+5 x^{2}-7 x^{3}\right)^{2000}=$ (A) 0 (B) 1 (C) 2 (D) none of these

- Watch Video Solution

17. $(115)^{96}-(96)^{115}$ is divisible by (A) 17 (B) 19 (C) 21 (D) 23
18. If $\{\mathrm{x}\}$ denotes the fractional part of x , then $\left\{\frac{3^{2 n}}{8}\right\}, n \in N$, is

D Watch Video Solution

19. If a is the remainder when 5^{40} is divided by 11 and b is the remainder when 2^{2003} is divided by 17 then the value of b-a is (A) 1 (B) 8 (C) 7 (D) 6

- Watch Video Solution

20. The sum of the series
$\frac{1}{1!(n-1)!}+\frac{1}{3!(n-3)!}+\frac{1}{5!(n-5)!}+\ldots .+\frac{1}{(n-1)!1!}$ is $=(\mathrm{A})$
$\frac{1}{n!2^{n}}$ (B) $\frac{2^{n}}{n}$! (C) $\frac{2^{n-1}}{n}$! (D) $\frac{1}{n!2^{n-1}}$

- Watch Video Solution

21. the digit at the units place of the number $(32)^{32}=(A) 0$ (B) 2 (C) 4 (D) 6

- Watch Video Solution

22. In the expansion of $\left(x^{2}+2 x+2\right)^{n}, \neq \psi \operatorname{lon} N$ (A) coefficient of $x=n .2^{n}(\mathrm{~B})$ coefficient of $\mathrm{x}^{\wedge} 2=\mathrm{n}^{\wedge} 2.2^{\wedge}(\mathrm{n}-1)(C)$ coefficientof $\mathrm{x}^{\wedge} 3=\mathrm{n}^{\wedge} 22^{\wedge}(\mathrm{n}-$ 2) (D) none of these

- Watch Video Solution

23. If $\left(1+2 x+3 x^{2}\right)^{10}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots .+a_{20} x^{20}$ then (A) $a_{1}=20$ (B) $a_{2}=210$ (C) $a_{3}=1500$ (D) $a_{20}=2^{3.3 \wedge} 7$

- Watch Video Solution

24. Which of the following holds true? (A) $101^{50}-100^{50}>99^{50}$
$101^{50}-99^{50}<100^{50}$
(C) $\quad(1000)^{1000}>(1000) 6999$

- Watch Video Solution

25. Given that $\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots .+a_{2 n} x^{2 n}$ find
i) $a_{0}+a_{1}+a_{2} \ldots \ldots+a_{2 n}$
ii) $\quad a_{0}-a_{1}+a_{2}-a_{3} \ldots+a_{2 n}$
$\left(a_{0}\right)^{2}-\left(a_{1}\right)^{2} \ldots+\left(a_{2 n}\right)^{2}$

- Watch Video Solution

26. If n is a positive integer such that $(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2} x^{2}+\ldots \ldots .+{ }^{n} C_{n} x^{n}, f$ or εR. Also ${ }^{\wedge} \mathrm{nC}_{-} \mathrm{r}=\mathrm{C}_{-} \mathrm{r}$

Onthebasisotheabove $\in f$ or mationanswerthefollow \in gquestionsThei sum_($\mathrm{r}=1)^{\wedge} \mathrm{n} \quad \mathrm{r}^{\wedge} 2 . \mathrm{C}_{-} \mathrm{r}=(A) 1(B)(-1)^{\wedge}(\mathrm{n} / 2) \cdot \mathrm{n}!/(\mathrm{n} / 2!)^{\wedge} 2(C)(\mathrm{n}-1) . \wedge(2 \mathrm{n}) \mathrm{C}_{-} \mathrm{n}+2(2 \mathrm{n})$
$(D) \mathrm{n}(\mathrm{n}+1) 2^{\wedge}(\mathrm{n}-2)^{\wedge}$

(D) Watch Video Solution

27. If n is a positive integer such that $(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2} x^{2}+\ldots \ldots .+{ }^{n} C_{n} x^{n}, f$ or $\varepsilon R . \quad$ Also ${ }^{\wedge} \mathrm{nC}_{-} \mathrm{r}=\mathrm{C}_{-} \mathrm{r}$

Onthebasisotheabove $\in f$ or mationanswerthe follow \in gquestions f or aepsilon $\quad \mathrm{R}$ thevalueofthe \exp ressiona-(a-1)C_1+(a-2)C-2-(a-3)C_3+.+ $(1)^{\wedge} \mathrm{n}(\mathrm{a}-\mathrm{n}) \mathrm{C}_{-} \mathrm{n}=(A) 0(B) \mathrm{a}^{\wedge} \mathrm{n} \cdot(-1)^{\wedge} \mathrm{n} .{ }^{\wedge}(2 \mathrm{n}) \mathrm{C}_{-} \mathrm{n}(C)\left[2 \mathrm{a}-\mathrm{n}(\mathrm{n}+1)\left[.^{\wedge}(2 \mathrm{n}) \mathrm{C}_{-} \mathrm{n}^{\wedge}\right.\right.$ none of these

- Watch Video Solution

28. If n is a positive integer such that
$(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2} x^{2}+\ldots \ldots . .+{ }^{n} C_{n} x^{n}, f$ or εR. Also ${ }^{\wedge} \mathrm{nC}_{-} \mathrm{r}=\mathrm{C}_{-} \mathrm{r}$

Onthebasisotheabove $\in f$ or mationanswerthe follow \in gquestionsthev

1)+^nC_0^nC_rwherem, n, rarepositive $\int e r \geq s$ and $\operatorname{rltm}, \mathrm{rltn}=(A)$ ${ }^{\wedge}(\mathrm{mn}) \mathrm{C}_{-} \mathrm{r}(B)^{m+n} C_{r}$ (C) 0 (D) 1

- Watch Video Solution

29. If in a positive integer such that If a number $a=p+f$ whre p is an integer and $0<f<1$. Here p is called the integral part of a and f its fractional part. Let \neq plilon N and $(\sqrt{93})+1)^{2 n}=p+f$, where p is the integral part and $0<f<1$. On the basis of bove informationi answer teh following question: The integral part p of $(\sqrt{3}+1)^{2 n}$ is (A) an even number for al $n \varepsilon N$ (B) an odd number for all $\neq \psi \operatorname{lon} N$ (C) anodd or even number according as n is odd or even (D) an even or odd nuber according as n is odd or even

- Watch Video Solution

30. $f 62+(p-1)+4^{n}=$ (A) p (B) $-p$ (C) 2 p (D) $-2 p$
31. Integer just greater tehn $(\sqrt{3}+1)^{2 n}$ is necessarily divisible by (A) $n+2$ (B) 2^{n+3} (C) 2^{n} (D) 2^{n+1}

- Watch Video Solution

32. In the expansion of $\left[2-2 x+x^{2}\right]^{9}$ (A) Number of distinct terms is 10
(C) Sum of coefficients is 1
(B) Number of distinct terms is 55

Coefficient of x^{4} is 97

Watch Video Solution

33. The number of terms free from radical sign in the expansion of $\left(1+3^{\frac{1}{3}}+7^{\frac{1}{7}}\right)^{10}$ is

Watch Video Solution

34.IF $(1+x)^{p}=3+\frac{8}{3}+\frac{80}{3^{3}}+\frac{240}{3^{4}}+\ldots \ldots . \infty$, then $(1+x)^{p}=$

Exercise

$$
\begin{aligned}
& \text { 1. } \begin{array}{c}
\text { Find } \\
\frac{1}{81^{n}}-\frac{10}{\left(81^{n}\right)^{2 n}} C_{1}+\frac{10^{2}}{\left(81^{n}\right)^{2 n}} C_{2}-\frac{10^{3}}{\left(81^{n}\right)^{2 n}} C_{3}++\frac{10^{2 n}}{81^{n}}
\end{array}
\end{aligned}
$$

- Watch Video Solution

2. With the notation $C_{r}={ }^{n} C_{2}=\frac{n!}{r!(n-r)!}$ when n is positive inteer let
$S_{n}=C_{n}-\left(\frac{2}{3}\right) C_{n-1}+\left(\frac{2}{3}\right)^{2} C_{n-2} \pm \ldots \ldots .+(-1)^{n}\left(\frac{2}{3}\right)^{n} \cdot C_{0}$

- Watch Video Solution

3. If $k a n d n$ are positive integers and $s_{k}=1^{k}+2^{k}+3^{k}++n^{k}$, then prove that $\sum_{r=1}^{m} \wedge(m+1) C_{r} s_{r}=(n+1)^{m+1}-(n+1)$.

(Watch Video Solution

4. Let $\left(1+x^{2}{ }^{\wedge}\right)^{2}(1+x)^{n}=\sum_{k=0}^{n+4} a_{k} x^{k}$. If a_{1}, a_{2}, a_{3} are in rithmetic progression find n .

Watch Video Solution

5. Findthe coefficient of $x^{2} \in\left(x+\frac{1}{x}\right)^{10} \cdot\left(1-x+2 x^{2}\right)$

- Watch Video Solution

6. Findthe coefficient of x^{4} in te expansion of $\left(1+x+2 x^{2}\right)^{6}$

- Watch Video Solution

7. if $\left(1-x^{3}\right)^{n}=\sum_{r=0}^{n} a_{r} x^{r}(1-x)^{3 n-2 r}$, where $\mathrm{n} \varepsilon N$ then find a_{r}.
8. Find the consecutive terms in the binomial expansion oif $(3+2 x)^{7}$ whose coefficients are equal

- Watch Video Solution

9. If $a_{0}, a_{1}, a_{2}, \ldots \ldots . a_{n}$ be the successive coefficients in the expnsion of

$$
(1+x)^{n} \quad \text { show that }
$$

$\left(a_{0}-a_{2}+a_{4} \ldots \ldots . .\right)^{2}+\left(a_{1}-a_{3}+a_{5} \ldots \ldots . .\right)^{2}=a_{0}+a_{1}+a_{2}+\ldots$.

- Watch Video Solution

10. If n is positive integer show that 9^{n+7} is divisible 8

- Watch Video Solution

11. If n is a positive integer, then show tha $3^{2 n+1}+2^{n+2}$ is divisible by 7 .

(Watch Video Solution

12. If $\frac{n C_{0}}{2^{n}}+2 . \frac{n C_{1}}{2^{n}}+3 . \frac{n C_{2}}{2^{n}}+\ldots .(n+1) \frac{n C_{n}}{2^{n}}=16$ then the value of ' n ' is

- Watch Video Solution

13. If $a_{1}, a_{2}, \ldots \ldots \ldots, a_{n+1}$ are in A.P. prove that
$\sum_{k=0}^{n}{ }^{n}{ }^{n} C_{k} \cdot a_{k+1}=2^{n-1}\left(a_{1}+a_{n+1}\right)$

- Watch Video Solution

14. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots \ldots+C_{n} x^{n}$, show that
15. $C_{0}+3^{2} \cdot \frac{C_{1}}{2}+3^{3} \cdot \frac{C_{2}}{2}+.+3^{n+1} \cdot \frac{C_{n}}{n+1}=\frac{4^{n+1}-1}{n+1}$

- Watch Video Solution

15. Deduce that: $\sum_{r=0}^{n} \cdot{ }^{n} C_{r}(-1)^{n} \frac{1}{(r+1)(r+2)}=\frac{1}{n+2}$

- Watch Video Solution

16. If n be a positive integer and P_{n} denotes the product of the binomial coefficients in the expansion of $(1+x)^{n}$, prove that $\frac{P_{n+1}}{P_{n}}=\frac{(n+1)^{n}}{n!}$.

- Watch Video Solution

17. If n is a positive integer, prove that
$\sum_{r=1}^{n} r^{3}\left(\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}\right)^{2}=\frac{(n)(n+1)^{2}(n+2)}{12}$

- Watch Video Solution

18. Find the coefficients of x^{4} in the expansion of $\left(1+x+x^{2}\right)^{3}$
19. Find the coefficient of $x^{3} y^{4} z^{5}$ in the expansion of $(x y+y z+z x)^{6}$

- Watch Video Solution

20. Find the number of terms in the expansion of $(a+b+c+d+e)^{100}$

- Watch Video Solution

21. If in the expansion of $\left(2 a \frac{-^{2}}{4}\right)^{9}$ the sum of middle tem sis S , then the following is (are) thrue (A) $S=\left(\frac{63}{32}\right) a^{14}(a+8)$
$S=\left(\frac{63}{32}\right) a^{14}(a-8)$
(C) $\quad S=\left(\frac{63}{32}\right) a^{13}(a-8)$
$S=\left(\frac{63}{32}\right) a^{13}(8-a)$

- Watch Video Solution

22. If the numerical coefficient of the pth terms in the expansion of $(2 x+3)^{6}$ i s 4860 , then the following is (are) true (A) $p=2$ (B) $p=3$ (C) $p=4$
(D) $p=5$

D Watch Video Solution

23. In the expansion of $(1+x)^{50}$ the sum of the coefficients of odd poer 5 to x is $(\mathrm{A}) 0$ (B) 2^{50} (C) 2^{49} (D) 2^{51}

- Watch Video Solution

24. If the coefficients of x^{2} and x^{3} in the expansion o $(3+a x)^{9}$ are the same, then the value of a is $-\frac{7}{9}$ b. $-\frac{9}{7}$ c. $\frac{7}{9}$ d. $\frac{9}{7}$

- Watch Video Solution

25. if the rth term in the expansion of $\left(\frac{x}{3}-\frac{2}{x^{2}}\right)^{10}$ contains x^{4} then r is equal to
26. I the expansinof $\left(x^{2}+\frac{2}{x}\right) 6 n$ for positive integer n has 13th term independent of x, then the sum of divisors of n is (A) 36 (B) 38 (C) 39 (D) 32

- Watch Video Solution

27. The expression $\left[x+\left(x^{3}-1\right)^{\frac{1}{5}} \wedge 5+\left[x-\left(x^{3}-1\right)^{\frac{1}{2}}\right]^{5}\right.$ is a polynomial of degree (A) 5 (B) 6 (C) 7 (D) 8

- Watch Video Solution

28. The coefficient of x^{4} in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{n}$ is (A)
${ }^{\wedge} n C_{4}$
(B) $\quad{ }^{\wedge} n C_{4}+{ }^{n} C_{2}$
(C) $\quad{ }^{\wedge} n C_{4}+{ }^{n} C_{2}+{ }^{n} C_{4} \cdot{ }^{n} C_{2}$
${ }^{\wedge} n C_{4}+{ }^{n} C_{2}+{ }^{n} C_{1} \cdot{ }^{n} C_{2}$

- Watch Video Solution

29.

$\left(1-x+x^{2 n}\right)^{n}=a_{0}+a_{1} x+a_{2}^{2}+.+a_{2 n} x^{2 n}$ thena $a_{0}+a_{2}+a_{4}+\ldots$. equals (A) $\frac{3^{n}+1}{2}$ (B) $3^{n}-1 \frac{)}{2}$ (C) $1-3^{n} / 2(D) 3^{\wedge} n+1 / 2^{\text {` }}$

- Watch Video Solution

30. If $a_{n}=\sum(r=0)^{n} \frac{1}{\wedge} n C_{r}$, then $\sum_{r=0^{n} \frac{r}{~} n C_{r}}$ equals (A) $(n-1) a_{n}$
$n a_{n}$ (C) $\frac{1}{2} n a_{n}$ (D) none of these

- Watch Video Solution

31. the term independent of x in the expansion of $\left(\sqrt{\frac{x}{3}}+\sqrt{\frac{2}{92^{2}}}\right)^{10}$ is
(A) 0 (B) ${ }^{\wedge} 10 C_{1}$
(C) $\frac{5}{12}$
(D) none of these

- Watch Video Solution

32. For integer $n>1$, the di git at unit place in the number $\sum_{r=0}^{100} r!+2^{2^{n}}$ is equal to

- Watch Video Solution

33. If in the expansion $\mathrm{f}(1+x)^{m}(1-x)^{n}$, thecoefficientofx and $\mathrm{x}^{\wedge} 2^{\wedge}$ are 3 and -6 respectively then (A) $m=9(B) n=12(C) m=12$ (D) $n=9$

- Watch Video Solution

34. The term independent of x in the expansion of $\left(\sqrt{\frac{x}{3}}+\frac{2}{2 x^{2}}\right)^{10}$ is
(A) $\frac{9}{4}$
(B) $\frac{3}{4}$
(C) $\frac{5}{4}$
(D) $\frac{7}{4}$

(Watch Video Solution

35. The value of $\frac{C_{1}}{2}+\frac{C_{3}}{4}+\frac{C_{5}}{6}+\ldots \ldots \ldots$. is equal to (A) $\frac{2^{n}=1}{n-10}$

$$
\frac{2^{n}}{n=1} \text { (C) } \frac{2^{n}+1}{n+1} \text { (D) } \frac{2^{n}-1}{n+1}
$$

(Watch Video Solution

36. The coefficient of $x^{k} \mathrm{~d}$ in the expansion of $1+(1+x)+\left(1+x_{\square}\right)^{2}+\ldots \ldots+(1+x)^{n} \quad$ is $\quad(\mathrm{A}) \quad{ }^{\wedge} n C_{k}$
${ }^{\wedge}(n+1) C_{k}(\mathrm{C}){ }^{\wedge}(n+1) C_{k+1}$ (D) none of these

- Watch Video Solution

37. The term independent of x in the expansion of
$\left(1+x+2 x^{2}\right)\left(\frac{3}{2^{2}}-\frac{1}{3 x}\right)^{9}$ is (A) $\frac{7}{18}$
(B) $\frac{2}{27}$
(C) $\frac{7}{18}+\frac{2}{27}$
$\left(\frac{7}{18}\right)-\left(\frac{2}{27}\right)$

- Watch Video Solution

38. If the largest interval to which x belongs so that the greatest therm in
$(1+x)^{2 n}$ has the greatest coefficient is $\left(\frac{10}{11}, \frac{11}{10}\right)$ then $n=(A) 9$ (B) 10
(C) 11 (D) none of these
39. The number of terms in te expansion of $\left(1+5 x+10 x^{2}+10 x^{3}+x^{5}\right)^{20}$ is (A) 100 (B) 101 (C) 120 (D) none of these

Watch Video Solution

40. The number of terms in the expansion $\left(x^{2}+\frac{1}{x^{2}}+2\right)^{100}$ is (A) 3200
(B) ^102C_2^(C) 201 (D) none of these

- Watch Video Solution

41. The number of terms ins $\left(x^{3}+1+\frac{1}{x^{3}}\right)^{100}$ is (A) 300 (B) 200 (C) 100
(D) 201

- Watch Video Solution

42. The number of terms in the expansion of $\left(x+\frac{1}{x}+1\right)^{n}$ is (A) 2 n (B) $2 n+1$ (C) $2 n-1$ (D) none of these

- Watch Video Solution

43. The number of terms in the expansion of $(1+x)^{101}\left(1+x^{2}-x\right)^{100}$ in powers of x is

- Watch Video Solution

44. The coefficient of $a^{3} b^{6} c$ in the expansionof $(2 a-b+c)^{10}$ is (A) 6720
(B) 840 (C) 10 (D) none of these

(Watch Video Solution

45. Thenumber of distinct terms in the expansion of $\left(x_{1}+x_{2}+\ldots . . .+x_{p}\right)^{n} i s(A)^{\wedge}(\mathrm{n}+\mathrm{p}) \mathrm{C}_{-} \mathrm{n}(B) \mathrm{n}+\mathrm{p}+1(C) \mathrm{n}+1(D)^{\wedge}(\mathrm{n}+\mathrm{p}-$
1)C_(p-1)'

- Watch Video Solution

46. If $\{x\}$ denotes the fractional part of ' x ' , then $82\left\{\frac{3^{1001}}{82}\right\}=$

- Watch Video Solution

47. The digit at units place in $\left(2^{9}\right)^{100}$ is (A) 2 (B) 4 (C) 6 (D) 8

- Watch Video Solution

48. If $(1+a x)^{n}=1+8 x+24 x^{2}+\ldots$. then the value of a and n is

- Watch Video Solution

49. The sum of the coefficients in $\left(1+x+3 x^{2}\right)^{2143}$ is (A) 2^{2143} (B) 0 (C) 1
(D) -1

Watch Video Solution

50. The coefficients of x^{n} in the expansion of $(1+x) 6(2 n)$ and $\left(1+x 0^{2 n-1}\right.$ are in the rtio of (A) $1: 2$ (B) $1: 3$ (C) $3: 1$ (D) $2: 1$

- Watch Video Solution

51. If $\frac{1}{1+2 x+x^{2}}=1+a_{1} x+a_{2} x^{2}+\ldots$. then the value of a_{r} is (A) 2 (B) $r+1$ (C) r (D) $2 r$

- Watch Video Solution

52. The coefficients of x^{7} in the expansion of $\left(1-x^{4}\right)(1+x) 69$ is (A) 27
(B) -24 (C) 48 (D) -48

- Watch Video Solution

53. If $\left(1+x+x^{2}+x^{3}\right)^{n}=\sum_{r=0}^{3 n} b_{r} x^{r}$ and $\sum_{r=0}^{3 n} b_{r}=k$, then $\sum_{r=0}^{3 n} r b_{r}$ is

- Watch Video Solution

54. If the number of terms in $\left(x+1+\frac{1}{x}\right)^{n} n$ being a natural number is 301 the $n=(A) 300$ (B) 100 (C) 149 (D) 150

- Watch Video Solution

55. The coefficient of x^{5} in the expansion of $\left(1+x^{2}\right)^{5}+(1+x)^{4}$ is (A) 30 (B) 60(C) 40(D) none of these

- Watch Video Solution

56. Let the co-efficients of $x^{n} \ln (1+x)^{2 n}$ and $(1+x)^{2 n-1}$ be P \& Qrespectively, then $\left(\frac{P+Q}{Q}\right)^{5}=$
57. The sum of the coefficients of powers of x int eh expansion of the polynomial $\left(x-3 x^{2}+x^{3}\right)^{99}$ is (A) 0 (B) 1 (C) 2 (D) -1

- Watch Video Solution

58. The sixth term in the expansion of $\left(\sqrt{2^{\log \left(10-3^{x}\right)}}+\left(2^{(x-2) \log 3}\right)^{\frac{1}{5}}\right)^{m}$ is equal to 21, if it is known that the binomial coefficient of the 2 nd 3 rd and 4 th terms in the expansion represent, respectively, the first, third and fifth terms of an A.P. (the symbol log stands for logarithm to the base 10) The value of m is

- Watch Video Solution

59.

A
student
wrote
$(1-x)^{-2}=1+2 x+3 x^{2}+4 x^{3}+\ldots \ldots . f$ or $-2<x<2$ and got
xwasallowed \rightarrow be $0(B)$ xwasallowed \rightarrow be $-v e(C) x w a s a l l o w e d ~ \rightarrow h a v e$ $|x|$ ' was greater than 1 for some values of x

- Watch Video Solution

60. If the coefficients of mth, $(m+1)$ the and $(m+2)$ th terms in the expansion $(1+x)^{n}$ are in A.P., then (A) $n^{2}+n(4 m+1)+4 m^{2}+2=0$
(B) $\quad(n+2 m)^{2}=n+2$
(C) $\quad(n-2 m)^{2}=n+2$
$n^{2}+4(4 m+1)+n m^{2}-2=0$

- Watch Video Solution

61. Two consecutive terms in the expansion of $(3+2 x)^{74}$ have equal coefficients then term are (A) 30 and 31 (B) 38 and 39 (C) 31 and 32 (D) 37 and 38
62. If the 21 st and 22 nd terms in the expansin of $(1+x)^{44}$ are equal then x is equal to $(A) \frac{21}{20}$ (B) $\frac{23}{24}$ (C) $\frac{8}{7}$ (D) $\frac{7}{8}$

- Watch Video Solution

63. If C_{r} stands for ${ }^{\wedge} \mathrm{nC} \mathrm{C}_{-}$and sum_($\left.\mathrm{r}=1\right)^{\wedge} \mathrm{n}\left(\mathrm{r} . \mathrm{C}_{-} \mathrm{r}\right) /\left(\mathrm{C}_{-}(\mathrm{r}-1)=210\right.$ then $\mathrm{n}={ }^{\wedge}(\mathrm{A})$ 19 (B) 20 (C) 21 (D) none of these

- Watch Video Solution

64. If $(+x)^{n}=\sum_{r=0}^{n} a_{r} x^{r} \& b_{r}=1+\frac{a_{r}}{a_{r-1}} \& \prod_{r=1}^{n} b_{r}=\frac{(101)^{100}}{100!}$, then equals to: 99 (b) 100 (c) 101 (d) None of these

- Watch Video Solution

65. If P_{n} denotes the product of all the coefficients of $(1+x)^{n}$ and $8!P_{n+1}=9^{8} P_{n}$ then n is equal to

$$
\begin{aligned}
& \text { 66. If the coefficient of } x^{100} \text { isn } \\
& 1+(1+x)+1+x)^{2}+(1+x)^{3}+\ldots \ldots . .+(1+x)^{n},(n .-100) i s^{201} \\
& \text { then } \mathrm{n}={ }^{\prime} \text { (A) } 100 \text { (B) } 200 \text { (C) } 101 \text { (D) none of these }
\end{aligned}
$$

Watch Video Solution

 then $n=(A) 1998$ (B) 1999 (C) 2000 (D) 2001

- Watch Video Solution

68. If $\sum_{r=1}^{n} r^{3}\left(\frac{C(n, r)}{C(n, r-1)}\right)=14^{2}$ then $n=$

- Watch Video Solution

69.

$\left(1+x+x^{2}+x^{3}\right)^{n}=\sum_{r=0}^{300} b_{r} x^{r}$ and $k=\sum_{r=0}^{300} b_{r}=k$, then $\sum_{r=0}^{300} r . b_{r}$, is
(A) 50.4^{100}
(B) 150.4^{100}
(C) 300.4^{100}
(D) none of these

- Watch Video Solution

70. If in the expansion of $(1+x)^{n}$ the coefficients of 14th, 15th and 16th terms are in A.P. then $n={ }^{\prime}(A) 12$ (B) 23 (C) 27 (D) 34

- Watch Video Solution

71. If the four consecutive coefficients in any binomial expansion be a, b, c and d then (A) $\frac{a+b}{a}, \frac{b+c}{b}, \frac{c+d}{c}$ are in H.P.
$(b c+a d)(b-c)=2\left(a c^{2}-b^{2} d\right)$ (C) $\frac{b}{a}, \frac{c}{b}, \frac{d}{c}$ are in A.P. (D) none of these

- Watch Video Solution

72. In the expansion of $(a+b+c)^{10}$ (A) total number of terms in 66 (B) coefficient of $a^{8} b c i s 90$ (C) coefficient of $a^{4} b^{5} c^{3}$ is 0 (D) none of these

- Watch Video Solution

73. Let $a_{n}=\frac{1000^{n}}{n!}$ for $n \in N$, then a_{n} is greatest, when

- Watch Video Solution

74. If in the expansion of $(a+b)^{n}, n \varepsilon N$ sum of odd and even terms be α and $\beta \quad$ respectively, then (A) $\quad\left(a^{2}-b^{2}\right)^{n}=\alpha^{2}-\beta^{2}(B)$
$\left(a^{2}-b^{2}\right)^{n}=\left(\alpha-\beta 0^{n}\right.$
$(a+b)^{n}-(a-b)^{n}=4 \alpha \beta(D)$
$(a+b)^{2 n}-(a-b)^{2 n}=4 \alpha \beta$

- Watch Video Solution

75. If 4 th term in the expansion of $\left(k x+\frac{1}{x}\right)^{n} i s \frac{5}{2}$ then (A) $\mathrm{n}=8$ (B) $\mathrm{n}=6$ (C) $k=\frac{1}{4}$ (D) $k=\frac{1}{2}$

- Watch Video Solution

76. If in the expansion $\mathrm{f}(1+x)^{m}(1-x)^{n}$, thecoefficientofx and $\mathrm{x}^{\wedge} 2^{\text {` }}$ are 3 and -6 respectively then (A) $m=9$ (B) $n=12$ (C) $m=12$ (D) $n=9$

(Watch Video Solution

77. In the expansion of $\left(x^{2}+1+\frac{1}{x^{2}}\right)^{n}, n \in N$, number of terms is $2 n+1$ coefficient of constant terms is 2^{n-1} coefficient of $x^{2 n-1} i s n$ coefficient of x^{2} in n

- Watch Video Solution

78. If n is a positive integer then ${ }^{\wedge} n C_{r}+{ }^{n} C_{r+1}={ }^{n+1}{ }^{\wedge} C_{r+1}$ Also coefficient of x^{r} in the expansion of $(1+x)^{n}={ }^{n} C_{r}$. In an identity in x , coefficient of similar powers of x on the two sides re equal. On the basis of above information answer the following question: If n is a positive integer then $\quad{ }^{n} C_{n}+{ }^{n+1} C_{n}+{ }^{n+2} C_{n}+\ldots .+{ }^{n+k} C_{n}=$

$$
\begin{align*}
& \wedge(n+k+1) C_{n+2} \text { (B) } \wedge(n+k+1) C_{n+1} \text { (C) } \wedge(n+k+1) C_{k} \tag{D}\\
& \wedge(n+k+1) C_{n-2} \tag{A}
\end{align*}
$$

- Watch Video Solution

79. If n is a positive integer then ${ }^{\wedge} n C_{r}+{ }^{n} C_{r+1}={ }^{n+1}{ }^{\wedge} C_{r+1}$ Also coefficient of x^{r} in the expansion of $(1+x)^{n}={ }^{n} C_{r}$. In an identity in x , coefficient of similar powers of x on the two sides re equal. On the basis of above information answer the following question: If n is a positive integer then ${ }^{\wedge} n C_{n}+{ }^{n+1} C_{n}+{ }^{n+2} C_{n}+\ldots .+{ }^{n+k} C_{n}=$

$$
\begin{align*}
& \wedge(n+k+1) C_{n+2} \text { (B) } \wedge(n+k+1) C_{n+1} \text { (С) } \wedge(n+k+1) C_{k} \tag{D}\\
& \wedge(n+k+1) C_{n-2} \tag{A}
\end{align*}
$$

80. If n is a positive integer then ${ }^{\wedge} n C_{r}+{ }^{n} C_{r+1}={ }^{n+1}{ }^{\wedge} C_{r+1}$ Also coefficient of x^{r} in the expansion of $(1+x)^{n}={ }^{n} C_{r}$. In an identity in x, coefficient of similar powers of x on the two sides re equal. On the basis of above information answer the following question: If n is a positive integer then ${ }^{\wedge} n C_{n}+{ }^{n+1} C_{n}+{ }^{n+2} C_{n}+\ldots .+{ }^{n+k} C_{n}=$

$$
\begin{align*}
& \wedge(n+k+1) C_{n+2} \text { (B) } \wedge(n+k+1) C_{n+1} \text { (C) ^}(n+k+1) C_{k} \tag{D}\\
& \wedge(n+k+1) C_{n-2} \tag{A}
\end{align*}
$$

- Watch Video Solution

81. If n is a positive integer then

$$
(1+x)^{n}={ }^{n} C_{0} x^{0}+{ }^{n} C_{1} x^{1}+{ }^{n} C_{2}^{2}+\ldots \ldots \ldots .+{ }^{n} C_{r} x^{r}=\sum_{r=0}^{n} \wedge n C_{r} x^{r} \text { an }
$$

$$
{ }^{\wedge} n C_{r} x^{r}
$$

On the basis of above information answer the following question: If n is a
positive integer then $\frac{1}{(49)^{n}}$.
$\frac{8}{(49)^{n}}($ ~
$\left.(2 n) C_{1}\right)+\frac{8^{2}}{(49)^{n}}($ ^
$\left.(2 n) C_{2}\right)-\frac{8^{3}}{(49)^{n}}(\stackrel{ }{~}$
$\left.(2 n) c_{3}\right)+\ldots \ldots+\frac{8^{2 n}}{(49)}$
(A) -1 (B) 1 (C) $\left(\frac{64}{49}\right)^{n}$ (D) none of these

- Watch Video Solution

82. If n is a positive integer then

$$
(1+x)^{n}={ }^{n} C_{0} x^{0}+{ }^{n} C_{1} x^{1}+{ }^{n} C_{2}^{2}+\ldots \ldots \ldots+{ }^{n} C_{r} x^{r}=\sum_{r=0}^{n}{ }^{n} n C_{r} x^{r} \text { an }
$$

$$
{ }^{\wedge} n C_{r} x^{r}
$$

On the basis of above information answer the following question:If n is a positive integer then $\lim _{n} \rightarrow \infty n\left[\wedge n c_{n}-\frac{2}{3} \cdot{ }^{n} C_{n-1}+\left(\frac{2}{3}\right)^{2} \cdot{ }^{n} C_{n-2-\ldots \ldots \ldots+(-1)^{n}\left(\frac{2}{3}\right)^{n} \cdot{ }^{n} C}\right.$
(A) 1 (B) $\frac{1}{2}$ (C) 0 (D) $\frac{1}{3}$

- Watch Video Solution

$$
\begin{aligned}
& \text { 83. } \begin{array}{l}
\text { Prove } \\
\sum_{r=0}^{n}(-1)^{r}{ }^{\wedge} n C_{r}\left[\frac{1}{2^{r}}+\frac{3}{2^{2 r}}+\frac{7}{2^{3 r}}+\frac{15}{2^{4 r}}+u p \rightarrow m \text { that } m s\right]=\frac{2^{m n}-}{2^{m n}\left(2^{n}-\right.}
\end{array}
\end{aligned}
$$

- Watch Video Solution

84. Sum of the series $a^{n}+a^{n-1} b+{ }^{n-2} b^{2}+\ldots \ldots \ldots \ldots+a b^{n}$ can be obtained by taking outt a^{n} or b^{n} comon and using the forumula of sum of $(n+1)$ terms of G.P. N the basis of above information answer the following question: Coefficient of
$x^{50} \in(1+x)^{1000}+x(1+x)^{999}+\ldots \ldots . .+x^{999}(1+x)+x^{1000}$ is (A)
${ }^{\wedge} 1000 C_{50}(\mathrm{~B}){ }^{\wedge} 1002 C_{50}(\mathrm{C}){ }^{\wedge} 1001 C_{50}(\mathrm{D}){ }^{\wedge} 1001 C_{49}$

- Watch Video Solution

85. Sum of the series $a^{n}+a^{n-1} b+{ }^{n-2} b^{2}+\ldots \ldots \ldots \ldots+a b^{n}$ can be obtained by taking outt a^{n} or b^{n} comon and using the forumula of sum of $(n+1)$ terms of G.P. N the basis of above information answer the following question:Um of coeficients of x^{50} and x^{51} in $(1+x)^{199}+(1+x)^{198} x+(1+x) 6197 x^{2}+\ldots+(1+x) x^{198}+x^{199}$ is euqla to the coefficient of $x^{r} \in(1+\mathrm{x})^{\wedge} 200+(1+\mathrm{x})^{\wedge} 199 \mathrm{x}+$ $\left(1+x 0^{\wedge} 198 x^{\wedge} 2+\ldots+(1+x) x^{\wedge} 199+x^{\wedge} 200\right.$ then r may be equal to (A) 51 (B) 52 (C) 53 (D) none of these
86. Sum of the series $a^{n}+a^{n-1} b+{ }^{n-2} b^{2}+\ldots \ldots \ldots .+a b^{n}$ can be obtained by taking outt a^{n} or b^{n} comon and using the forumula of sum of $(n+1)$ terms of G.P. N the basis of above information answer the following question:Coefficientoif
$x p,(0 \leq p \leq n) \in 3^{n-1}+3^{n-2}(x+3)+3^{n-3}(x+3)^{2}+\ldots \ldots \ldots \ldots+(x+$ is (A) $\left.{ }^{\wedge} n C_{p} 3^{n}-p\right)(\mathrm{B}) \wedge(n+1) C_{p} 3^{n-p+1}$ (C) ${ }^{\wedge} n C_{p} 3^{n-p-1}(\mathrm{D})$ none of these

- Watch Video Solution

87. In a binomial expansion $\left(x_{y}\right)^{n}$ gretest term means numericaly greatest term and therefore greatest term in $(x-y)^{n}$ and $(x+y)^{n}$ are ame. I frth therm t_{r} be the greatest term in the expansion of $(x+y)^{n}$ whose therms are all ositive, then $t_{r} \geq t_{r+1}$ and $t_{r} \geq t_{=}(r-1) i . e . \frac{t_{r}}{t_{m}} \geq 1$ and $\frac{t_{r}}{t_{r-}} \geq 1$ ON the basis of above information answer the following question: Greatest term in the
expansion of $\left(2+3 x 0^{10}\right.$, whernx $=\frac{3}{5}$ is (A) ${ }^{\wedge} 10 C_{5}\left(\frac{18}{5}\right)^{5}$
${ }^{\wedge} 10 C_{6}\left(\frac{18}{5}\right)^{6}$ (C) ${ }^{\wedge} 10 C_{4}\left(\frac{18}{5}\right)^{4}$ (D) none of these

- Watch Video Solution

88. In a binomial expansion $\left(x_{y}\right)^{n}$ gretest term means numericaly greatest term and therefore greatest term in $(x-y)^{n}$ and $(x+y)^{n}$ are ame. I frth therm t_{r} be the greatest term in the expansion of $(x+y)^{n}$ whose therms are all ositive, then $t_{r} \geq t_{r+1}$ and $t_{r} \geq t_{=}(r-1) i . e . \frac{t_{r}}{t_{m}} \geq 1$ and $\frac{t_{r}}{t_{r-}} \geq 1$ On the basis of above information answer the following question:If rth term is the greatest term in the expansion $f\left(2-3 x 0^{10}\right.$ then $r=(A) 5$ (B) 6 (C) 7 (D) none of these

- Watch Video Solution

89. In a binomial expansion $\left(x_{y}\right)^{n}$ gretest term means numericaly greatest term and therefore greatest term in $(x-y)^{n}$ and $(x+y)^{n}$ are
ame. I frth therm t_{r} be the greatest term in the expansion of $(x+y)^{n}$ whose therms are all ositive, then $t_{r} \geq t_{r+1}$ and $t_{r} \geq t_{=}(r-1) i . e . \frac{t_{r}}{t_{m}} \geq 1$ and $\frac{t_{r}}{t_{r-}} \geq 1$ On the basis of above information answer the following question:The set al values of x for which thegreatest term in teh expnsionof $(1+x)^{30}$ may have the greatest coefficient is (A) $\left(\frac{14}{15}, \frac{15}{14}\right)$ (B) $\left[\frac{15}{16}, \frac{16}{15}\right]$ (C) $\left(\frac{15}{16}, \frac{16}{15}\right)$ none of these

- Watch Video Solution

90. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ be the foru cosecutive coefficients int eh binomial expansion $(1+x)^{n}$ On the basis of above information answer the following question: $\frac{a}{a+b}, \frac{b}{b+c}, \frac{c}{c+d}$ are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

- Watch Video Solution

91. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ be the foru cosecutive coefficients int eh binomial expansion $(1+x)^{n}$ On the basis of above information answer the following question: ((bc+ad)(b-c))/(ac^2-b^2d)=(A)1/2 (B)1(C)-1(D)2

- Watch Video Solution

92. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ be the foru cosecutive coefficients int eh binomial expansion $(1+x)^{n}$ On the basis of above information answer the following question: The value of n is (A) $\frac{2 a c-b(a+c)}{b^{2}-a c}$
$\frac{2 a c+b(a+c)}{b^{2}-a c}$ (C) $\frac{2 a c}{a+c}-b$ (D) $\frac{b^{2}-a c}{2 a c+b(a+c)}$

- Watch Video Solution

93. Assertion: 1sum_(r=0)^n(r+1).^nC_r=(n+2)2^(n-10, Reason: sum_($r=0)^{\wedge} n(r+1) . \wedge n C_{-} r x^{\wedge} r=(1+x) 6 n+n x(1+x)^{\wedge}(n-1)$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te
correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

94. Assertion: Number of rational terms in the expansion of $\left(2^{\frac{1}{3}}+3^{\frac{1}{2}}\right)^{630}$ is 6 , Reason: If p is a prime number then p^{k} in rational only when k is a non negative integer (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

95. Assertion: If $(1+a x)^{n}=1+8 x+24^{2}+\ldots \ldots \ldots$. then vaues of a and n are 2 and 4 Reason IN an identity in x the coefficients of similar powers of x on the two sides are equal. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.
96. Assertion: Sum of coefficient of the polynomiasl ${ }^{`}\left(1+3 x^{\wedge} 2-5 x^{\wedge} 3\right)^{\wedge} 2001$ is
-1. Reason: Sum of coefficients of a polynomial in x can be obtained by putting $\mathrm{x}=1$ in the polynomial. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

97. Assertion: 1sum_(r=0)^n(r+1).^nC_r=(n+2)2^(n-10, Reason: sum_($r=0)^{\wedge} n(r+1) . \wedge n C_{-} r x^{\wedge} r=(1+x) 6 n+n x(1+x)^{\wedge}(n-1)(A)$ Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

98. Assertion: If n is an even positive integer n then $\sum_{r=1}^{n-1} \frac{1}{\lfloor r\lfloor n-r}=\frac{2^{n-1}}{\lfloor n}$.
${ }^{\wedge} n C_{1}+{ }^{n} C_{3}+\ldots \ldots \ldots+{ }^{n} C_{n-1}=2^{n-1}(\mathrm{~A})$ Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

99. Assertion: If n is an even positive integer n then
$\sum_{r=0}^{n}{ }^{\wedge} n \frac{C_{r}}{r+1}=\frac{2^{n+1}-1}{n+1}$,
Reason
$\sum_{r=0}^{n}{ }^{n} n \frac{C_{r}}{r+1} x^{r}=\frac{(1+x)^{n+1}-1}{n+1}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

100. Assertion: The coefficient of x^{4} in $\left(1+x+x^{2}+x^{3}\right)$ is ${ }^{\wedge}{ }^{n} C_{4}+{ }^{n} C_{2}+{ }^{n} C_{1} \cdot{ }^{n} C_{2}$, Reason: $\left(1+x+x^{2}+x^{3}\right)^{n}=(1+x)^{n}\left(1+x^{2}\right)^{n}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

101. Assertion: $r=15$ Reason: ${ }^{\wedge} n C_{x}={ }^{I} n C_{y} \rightarrow x+y=n$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

102. Assertion: $f(n)$ is divisible by 961, Reason : $2^{5 n}=(1+31)^{n}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are
true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

103. If $a_{n}=\sum(r=0)^{n} \frac{1}{n} n C_{r}$, then $\sum_{r=0^{n} \stackrel{r}{n} n C_{r}}$ equals (A) $(n-1) a_{n}$
$n a_{n}$ (C) $\frac{1}{2} n a_{n}$ (D) none of these

- Watch Video Solution

104. If in the expansion of $(1+x)^{m}(1-x)^{n}$ the coefficients of x and ${ }^{\wedge} \mathrm{x}^{\wedge} 2$ and 3 and -6 respectivly then m is (A) 6 (B) 9 (C) 12 (D) 24

- Watch Video Solution

105. For any positive integer (m, n) (with $n \geq m$), Let $\binom{n}{m}=.{ }^{n} C_{m}$

Prove that
$\binom{n}{m}+2\binom{n-1}{m}+3\binom{n-2}{m}+\ldots .+(n-m+1)\binom{m}{m}$

Watch Video Solution

106. For $2 \leq r \leq n,\binom{n}{r}+2\binom{n}{r-1}+\binom{n}{r-2}$ is equal to

- Watch Video Solution

107. In the binomial expansion of $(a-b)^{\cap} \geq 5$, the sum of the 5 th and 6th term is zero. Then a / b equals $(n-5) / 6$ b. $(n-4) / 5$ c. $n /(n-4)$ d. $6 /(n-5)$

- Watch Video Solution

108. The sum $\sum_{i=0}^{m}\binom{10}{i}\binom{20}{m-1}$, where $\binom{p}{q}=0$ if $p<q$, is maximum when m is equal to (A) 5 (B) 10 (C) 15 (D) 20

- Watch Video Solution

109. The coefficient of t^{24} in $\left(1+t^{2}\right)^{12}\left(1+t^{12}\right)\left(1+t^{24}\right)$ is ^ $12 C_{6}+3$
b. ${ }^{\wedge} 12 C_{6}+1$ c. ${ }^{\wedge} 12 C_{6}$ d. ${ }^{\wedge} 12 C_{6}+2$

- Watch Video Solution

110.

Prove
that
$2^{k}(n, 0)(n, k)-2^{k-1}(n, 1)(n-1, k-1)+2^{k-2}(n, 2)(n-2, k-2)-$

- Watch Video Solution

111. If ^ $n-1 C_{r}=\left(k^{2}-3\right)^{n} C_{r+1}$, thenk $\in(-\infty,-2]$ b. $[2, \infty)$ c. $[-\sqrt{3}, \sqrt{3}]$ d. $(\sqrt{3}, 2]$

- Watch Video Solution

$(300)(3010)-(301)(3011)+(302)(3012)++(3020)(3030)=$
^ $60 C 20 \mathrm{~b} .{ }^{\wedge} 30 C 10 \mathrm{c} .{ }^{\wedge} 60 C 30 \mathrm{~d} .{ }^{\wedge} 40 C 30$

- Watch Video Solution

