©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

CARTESIAN SYSTEMS OF RECTANGULAR COORDINATES FOR BOARDS

Solved Examples

1. In which quadrant do the points lie: $(5,-4)$

- Watch Video Solution

2. In which quadrant do the points lie: $(-3,-2)$
3. In which quadrant do the points lie: $(4,3)$

- Watch Video Solution

4. In which quadrant do the points lie: $(-5,2)$

- Watch Video Solution

5. In which quadrant do the points lie: $(0,-3)$

- Watch Video Solution

6. Plot the following points on a graph paper : $(3,4)$ (ii) $-2,3)$
$(-5,-2)$ (iv) $(4,-3)$

- Watch Video Solution

7. Plot the points $\left(\frac{1}{2}, \frac{3}{2}\right)$

- Watch Video Solution

8. Plot the points $(-3,5)$

- Watch Video Solution

9. Plot the points ($-2,-3$)

- Watch Video Solution

10. Plot the points $(-3,0)$

- Watch Video Solution

11. Where does a point having y-coordinate -2 lie?
12. If three vertices of a rectangle or $(0,0),(2,0)$ and $(0,3)$, find the coordinates of the fourth vertex.

- Watch Video Solution

13. The base of an equilateral triangle with side 20 cm lies along x-axis such that the mid-point of the base is at the origin. Find the vertices of the triangle

- Watch Video Solution

14. Prove that the distance of the point $(a \cos \alpha, a \sin \alpha)$ from the origin is independent of α

- Watch Video Solution

15. Let $A(6,-1), B(1,3)$ and $C(x, 8)$ be three points such that $A B=B C$ then the value of x are

- Watch Video Solution

16. Using distance formula, show that the points $(1,5),(2,4)$ and $(3,3)$ are collinear.

- Watch Video Solution

17. Prove that the points $(2 a, 4 a),(2 a, 6 a)$ and $(2 a+\sqrt{3} a, 5 a)$ are the vertices of an equilateral triangle.

- Watch Video Solution

18. If the segments joining the points $A(a, b)$ and $B(c, d)$ subtends an angle θ at the origin, prove that: $\theta=\frac{a c+b d}{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}$
19. Find the circumcentre of the triangle whose vertices are $(-2,-3),(-1,0),(7,-6)$. Also find the radius of the circumcircle.

- Watch Video Solution

20. Two opposite vertices of a square are $(0,-2)(2,6)$. Find the coordinates of the other vertices.

- Watch Video Solution

21. Two vertices of an equilateral triangle are $(0,0)$ and $(0,2 \sqrt{3})$. Find the third vertex

- Watch Video Solution

22. Prove that the points $(-4,-1),(-2,-4),(4,0)$ and $(2,3)$ are the vertices of a rectangle. Also find the area of the rectangle.

- Watch Video Solution

23. In any triangle ABC , prove that $A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$, where D is the midpoint of $B C$.

- Watch Video Solution

24. Find the coordinates of the point which divides the line segment joining the points $(5,-2)$ and $(9,6)$ internally and externally in the ration 3 : 1

- Watch Video Solution

25. The coordinates of one end of a diameter of a circle are $(5,-7)$. If the coordinates of the centre be $(7,3)$ find the coordinates of the other end of the diameter.

- Watch Video Solution

26. $A(1,1)$ and $B(2,-3)$ are two points and P is a point on AB produced such that $A P=3 A B$. Find the coordinates of P .

- Watch Video Solution

27. Find the coordinates of points which trisect the line segment joining $(1,-2) \operatorname{and}(-3,4)$.

- Watch Video Solution

28. A, B and C are three collinear points, where $A(3,4)$ and $\mathrm{B}(7,7)$. If distance between A and C is 10 units, find the coordinates of C.

- Watch Video Solution

29. Find the ratio in which the point ($2, y$) divides the line segment $(4,3)$ and $(6,3)$. hence find the value of y

- Watch Video Solution

30. Find the ratio in which the line segment joining $(2,-3)$ and $(5,6)$ is divided by the y-axis. Also find the point of division.

- Watch Video Solution

31. In what ratio does the line $x-y-2=0$ divides the line segment joining ($3,-1$) and (8,9) ?
32. If $(-3,2),(1,-2)$ and $(5,6)$ are the mid-points of the sides of a triangle, find the coordinates of the vertices of the triangle.

- Watch Video Solution

33. Find the centroid of the trianlge whose vertices are $(-1,4),(5,2)$ and ($-1,3$)

- Watch Video Solution

34. Find the coordinates of the centreof the circle inscribed in the triangle whose vertices are $(7,-36),(7,20)$ and $(-8,0)$

- Watch Video Solution

35. Prove that the centroid of any triangle is the same as the centroid of the triangle formed by joining the middle points of its sides

- Watch Video Solution

36. Show that the quadrilateral with vertices
$(3,2),(0,5),(-3,2),(0,-1)$ is square.

- Watch Video Solution

37. x coordinates of two points B and C are the roots of equation $x^{2}+4 x+3=0$ and their y coordinates are the roots of equation $x^{2}-x-6=0$. If x coordinate of B is less than the x coordinate of C and y coordinate of B is greater than the y coordinate of C and coordinates of a third point A be $(3,-5)$, find the length of the bisector of the interior angle at A .
38. If the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ be the three consecutive vertices of a parallelogram, find the coordinates of the fourth vertex.

- Watch Video Solution

39. If G be the centroid of the $\triangle A B C$ and O be any other point in theplane of the triangle $A B C$, then prove that: $O A^{2}+O B^{2}+O C^{2}=G A^{2}+G B^{2}+G B^{2}+G C^{2}+3 G O^{2}$

- Watch Video Solution

40. Find the area of the triangle whose vertices A, B, C are respectively, $(3,4),(-4,3)$ and $(8,6)$.

- Watch Video Solution

41. Find the area of the quadrilateral whose vertices are $(-3,2),(5,4),(7,-6)$ and $(-5,-4)$

- Watch Video Solution

42. Find the area of the pentagon whose vertices taken in order are:
$(4,3),(-5,6),(-7,-2),(0,-7)$ and $(3,-6)$

- Watch Video Solution

43. Show that the points $(3,3),(h, 0)$ and $(0, k)$ are collinear if $\frac{1}{h}+\frac{1}{k}=\frac{1}{3}$

- Watch Video Solution

44. If $(1,4)$ be the C.G. of a triangle and the coordinates of its any two vertices be $(4,-8)$ and $(-9,7)$, find the area of the triangle.
45. The area of a triangle is 5 . Two of its vertices are $(2,1)$ and $(3,-2)$. The third vertex lies on $y=x+3$. Find the third vertex.

- Watch Video Solution

46. The coordinates of points A, B, C and P are $(6,3),(-3,5),(4,-2)$ and (x, y) respectively, prove that $\frac{\Delta P B C}{\triangle A B C}=\frac{x+y-2}{7}$

- Watch Video Solution

47. Thevertices of a triangle ABC are $A(-7,8), B(5,2)$ and $C(11,0)$. If

D, E, F are the mid-points of the sides $B C, C A$ and $A B$ respectively, show that $\triangle A B C=4 \triangle D E F$.
48. The coordinates of points P, Q, R and S are $(-3,5),(4,-2),(p, 3 p)$ and $(6,3)$ respectively, and the ares of $\triangle P Q R$ and $\triangle Q R S$ are in ratio 2:3. Find p.

- Watch Video Solution

49. If the coordinates of two points A and B are $(3,4)$ and $(5,-2)$, respectively, find the coordinates of any point P if $P A=P B$. Area of $P A B$ is 10 sq. units.

- Watch Video Solution

50. If A, B, C, D are points whose coordinates are $(-2,3),(8,9),(0,4)$ and $(3,0)$ respectively, find the ratio in which $A B$ is divided by $C D$.

- Watch Video Solution

51. If the vertices of a triangle have integral coordinates, prove that the trinagle cannot be equilateral.

- Watch Video Solution

52. prove that the area of a triangle is four times the area of the triangle formed by joining the mid-points of its sides.

- Watch Video Solution

53. Find the locus of a point at which the angle subtended by the line segment joining $(1,2)$ and $(-1,3)$ is a right angle.

- Watch Video Solution

54. Find the locus of a point such that the sum of its distances from the points $(0,2) \operatorname{and}(0,-2)$ is6.
55. Find the equation of the locus of a point which moves so that its distance from the x-axis is double of its distance from the y-axis.

- Watch Video Solution

56. If the coordinates of a variable point P be $(a \cos \theta, b \sin \theta)$, where θ is a variable quantity, find the locus of P.

- Watch Video Solution

57. $A B$ is a variable line sliding between the coordinate axes in such a way that A lies on the x-axis and B lies on the y-axis. If P is a variable point on $A B$ such that $P A=b, P b=a$, and $A B=a+b$, find the equation of the locus of P.

- Watch Video Solution

58. If O be origin and A is a point on the locus $y^{2}=8 x$.find the locus of the middle point of $O A$

- Watch Video Solution

59. If A and B are two fixed points, then the locus of a point which moves in such a way that the angle $A P B$ is a right angle is

- Watch Video Solution

60. A straight line segment of length/moves with its ends on two mutually perpendicular lines. Find the locus of the point which divides the line segment in the ratio 1:2

- Watch Video Solution

61. Describe the locus of the point (x, y) satisfying the equation $(x-2)^{2}+(y-3)^{2}=25$
62. Describe the locus of the point (x, y) satisfying the equation $x-y=0$

(Watch Video Solution

63. Examine whether point $(2,-5)$ lies on the curve $x^{2}+y^{2}-2 x+1=0$

- Watch Video Solution

64.

the
equations
$a x^{2}+2 h x y+b y^{2}=0$ and $y^{2}-\left(m_{1}+m_{2}\right) x y+m_{1} m_{2} x^{2}=0$
represent the same curve, find $m_{1}+m_{2}$ and $m_{1} m_{2}$.

- Watch Video Solution

1. In which quadrant do the following points lies: $(10,-3)$

- Watch Video Solution

2. In which quadrant do the following points lies: $(-4,-6)$

- Watch Video Solution

3. In which quadrant do the following points lies: $(-8,6)$

- Watch Video Solution

4. in which quadrant $\left(\frac{3}{2}, 5\right)$ lies
5. In which quadrant do the following points lies: $(3,0)$

- Watch Video Solution

6. In which quadrant do the following points lies: $(0,-5)$

- Watch Video Solution

7. Plot the points in a rectangular coordinate system: $(4,5)$

- Watch Video Solution

8. Plot the points in a rectangular coordinate system: ($-2,7$)

- Watch Video Solution

9. Plot the points in a rectangular coordinate system: ($-2,-7$)
10. Plot the points in a rectangular coordinate system: $(6,-2)$

- Watch Video Solution

11. Plot the points in a rectangular coordinate system: ($-4,2$)

- Watch Video Solution

12. Plot the points in a rectangular coordinate system: $(4,0)$

- Watch Video Solution

13. Where does a point having y-coordinate -5 lie?
14. If three vertices of a rectangle are $(-2,0),(2,0),(2,1)$, find the coordinates of the fourth vertex

- Watch Video Solution

15. Draw the triangle whose vertices are $(2,3),(-4,2) \operatorname{AND}(3,-1)$

Watch Video Solution

16. The base of an equilateral triangle with side 2 a lies along the yaxis such that the midpoint of the base is at the origin. Find vertices of the triangle.

- Watch Video Solution

17. Let ABCD be a rectangle such that $A B=10$ units and $B C=8$ units.

Taking AB and AD as x and y axis respectively, find the coordinates of A, B, C and D.
18. $A B C D$ is a square having length of a side 20 units. Taking the centre of the square as the origin and x and y axes parallel to AB and AD respectively, find the coordinates of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .

- Watch Video Solution

19. Find the distance between the pair of points: $(0,0),(-5,12)$

- Watch Video Solution

20. Find the distance between the pair of points: $(4,5),(-3,2)$

- Watch Video Solution

21. Find the distance between points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right): P Q$ is parallel to y-axis

Watch Video Solution

22. Find the distance between points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right): P Q$ is parallel to x-axis

- Watch Video Solution

23. Examin whether the points $(1,-1),(-5,7)$ and $(2,5)$ are equidistant from the point $(-2,3)$?

- Watch Video Solution

24. Find a if the distance between $(a, 2)$ and $(3,4)$ is 8 .
25. A line is of length 10 units and one of its ends is $(-2,3)$. If the ordinate of the other end is 9 , prove that the abscissa of the other end is 6 or -10

- Watch Video Solution

26. The distance between the points $(a \cos \alpha, a \sin \alpha)$ and $(a \cos \beta, a \sin \beta)$ where $\mathrm{a}>0$

- Watch Video Solution

27. Find the distance between the points : $\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\left(a t_{2}^{2}, 2 a t_{2}\right)$

- Watch Video Solution

28. Find the distance between the points: $(a-b, b-a),(a+b, a+b)$
29. Find the distance between the points : $(\cos \theta, \sin \theta),(\sin \theta, \cos \theta)$

- Watch Video Solution

30. Find a point on the x-axis which is equidistant from the points $(7,6)$ and ($-3,4$).

- Watch Video Solution

31. Find the point on x-axis which is equidistant from the pair of points:
$(3,2)$ and $(-5,-2)$

- Watch Video Solution

32. Find the point on x-axis which is equidistant from the pair of points:
$(7,6)$ and $(3,4)$
33. Find a point on y-axis which is equidistant from the points $(5,-2)$ and ($-3,2$).

- Watch Video Solution

34. Using distance formula, examine whether the sets of points are collinear: $(3,5),(1,1),(-2,-5)$

- Watch Video Solution

35. Using distance formula, examine whether the sets of points are collinear : $(5,1),(1,-1),(11,4)$

- Watch Video Solution

36. Using distance formula, examine whether the sets of points are collinear : $(0,0),(9,6),(3,2)$

Watch Video Solution

37. Using distance formula, examine whether the sets of points are collinear : ($-1,2$), (5, 0), (2, 1)

- Watch Video Solution

38. If $A \equiv(6,1), B \equiv(1,3), C \equiv(x, 8)$, find the value of x such that $A B=B C$

- Watch Video Solution

39. Prove that the distance between the points $(a+r \cos \theta, b+r \sin \theta)$ and (a, b) is independent of θ.
40. Use distance formula to show that the points $\left(\operatorname{cosec}^{2} \theta, 0\right),\left(0, \sec ^{2} \theta\right)$ and $(1,1)$ are collinear.

- Watch Video Solution

41. Use distance formula to show that $(3,3)$ is the centre of the circle passing through points $(6,2),(0,4)$ and $(4,6)$. Find the radius of the circle

- Watch Video Solution

42. If the point (x, y) is equidistant from the points $(2,3)$ and $(6,-1)$, find the relation between x and y.

- Watch Video Solution

43. If the point $P(x, y)$ be equidistant from the points $(a+b, b-a)$ and $(a-b, a+b)$, prove that $\frac{a-b}{a+b}=\frac{x-y}{x+y}$.

- Watch Video Solution

44. Prove that the points $(3,4),(8,-6)$ and $(13,9)$ are the vertices of a right-angled triangle.

- Watch Video Solution

45. Determine the type (isosceles, right-angled, right-angled isosceles, equilateral, scalence) of the triangles whose vertices are: $(1,1),(-\sqrt{3}, \sqrt{3}),(-1,-1)$

- Watch Video Solution

46. Determine the type (isosceles, right-angled, right-angled isosceles, equilateral, scalence) of the triangles whose vertices are:

- Watch Video Solution

47. Determine the type (isosceles, right-angled, right-angled isosceles, equilateral, scalence) of the triangles whose vertices are: $(-2,5),(7,10),(3,-4)$

- Watch Video Solution

48. Determine the type (isosceles, right-angled, right-angled isosceles, equilateral, scalence) of the triangles whose vertices are: $(4,4),(3,5),(-1,-1)$

- Watch Video Solution

49. Determine the type (isosceles, right-angled, right-angled isosceles, equilateral, scalence) of the triangles whose vertices are:
$(1,2 \sqrt{3}),(3,0),(-1,0)$

- Watch Video Solution

50. Determine the type (isosceles, right-angled, right-angled isosceles, equilateral, scalence) of the triangles whose vertices are: $(0,6),(-5,3),(3,1)$

- Watch Video Solution

51. If $A\left(a t^{2}, 2 a t\right), B\left(\frac{a}{t^{2}},-\frac{2 a}{t}\right)$ and $C(a, 0)$ be any three points, show that $\frac{1}{A C}+\frac{1}{B C}$ is independent of t.

- Watch Video Solution

52. If the two vertices of an equilateral triangle be $(0,0),(3, \sqrt{3})$, find the third vertex.
53. Find the circumcentre and circumradius of the triangle whose vertices are $(-2,3),(2,-1)$ and $(4,0)$.

- Watch Video Solution

54. If the line segment joining the points $A(a, b)$ and $B(c, d)$ subtends a right angle at the origin, show that $a c+b d=0$

- Watch Video Solution

55. The vertices of a triangle $A B C$ are $A(0,0), B(2,-1)$ and $C(9,2)$, find $\cos B$.
56. If the line segment joining the points $A(a, b)$ and $B(a,-b)$ subtends an angle θ at the origin, show that $\cos \theta=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$.

- Watch Video Solution

57. The centre of a circle is $(2 x-1,3 x++1)$ and radius is 10 units.

Find the value of x if the circle passes through the point $(-3,-1)$.

- Watch Video Solution

58. Prove that the point $(4,3),(6,4),(5,6)$ and $(3,5)$ asre the vertices of a square.

- Watch Video Solution

59. Prove that the points $(3,2),(6,3),(7,6)$ and $(4,5)$ are the vertices of a parallelogram. Is it a rectangle?
60. Prove that the points $(6,8),(3,7),(-2,-2),(1,-1)$ are the vertices of a parallelogram.

- Watch Video Solution

61. Prove that the points $(4,8),(0,2)(3,0)$ and $(7,6)$ are the vertices of a rectangle.

- Watch Video Solution

62. Show that the points $A(1,0), B(5,3), C(2,7)$ and $D(-2,4)$ are the vertices of a rhombus.

- Watch Video Solution

63. $A(-4,0)$ and $B(-1,4)$ are two given points. Cand D are points which are symmetric to the given points A and B respectively with respect to y-axis.

Calculate the perimeter of the trapezium ABDC.

- Watch Video Solution

64. A line segement AB through the point $A(2,0)$ which makes an angle of 30^{0} with the positive direction of x-axis is rotated about A in anticlockwise direction through an angle of 15^{0}. If C be the new position of point $B(2+\sqrt{3}, 1)$, find the coordinates of C.

- Watch Video Solution

65. The point $(1,-2)$ is reflected in the x-axis and then translated parallel to the positive direction of x-axis through a distance of 3 units, find the coordinates of the point in the new position.
66. The line segment joining $A(3,0)$ and $B(5,2)$ is rotated about A in the anticlockwise direction through an angle of 45^{0} so that B goes to C. If D is the reflection of C in y-axis, find the coordinates of D.

- Watch Video Solution

67. Let $A B C D$ be a rectangle and P be any point in its plane. Show that $A P^{2}+P C^{2}=P B^{2}+P D^{2}$.

- Watch Video Solution

68. Prove analytically that the diagonals of a rectangle are equal

- Watch Video Solution

69. Prove analytically that the sum of square of the diagonals of a rectangle is equal to the sum of squares of its sides.
70. Find the coordinates of the point which divides the line segment joining $(2,4)$ and $(6,8)$ in the ratio1: 3 internally and externally.

- Watch Video Solution

71. Find the coordinates of the points which trisect the line segment joining the points $(2,3)$ and $(6,5)$.

- Watch Video Solution

72. $A(1,4)$ and $B(4,8)$ are two points. P is a point on $A B$ such that $A P=A B+B P$. If $A P=10$, find the coordinates of P.

- Watch Video Solution

73. The line segment joining $A(2,3)$ and $B(-3,5)$ is extended through each end by a length equal to its original length. Find the coordinates of the new ends.

- Watch Video Solution

74. The line segment joining $A(6,3)$ to $B(-1,-4)$ is doubled in length by having its length added to each end , then the ordinates of new ends are

- Watch Video Solution

75. The coordinatse of two points A and B are $(-1,4)$ and $(5,1)$, respectively. Find the coordinates of the point P which lie on extended line $A B$ such that it is three times as far from B as from A.

- Watch Video Solution

76. Find the distance of that point from the origin which divides the line segment joining the points $(5,-4)$ and $(3,-2)$ in the ratio $4: 3$.

- Watch Video Solution

77. The coordinates of the middle points of the sides of a triangle are $(1,1),(2,3)$ and $(4,1)$, find the coordinates of its vertices.

- Watch Video Solution

78. $A(1,-2)$ and $B(2,5)$ are two points. The line OA, OB are produced to C and D respectively such that $O C=2 O A$ and $O D=20 B$. Find CD

- Watch Video Solution

79. Find the lengths of the medians of a triangle whose vertices are $A(-1,3), B(1,-1)$ and $C(5,1)$.
80. If $A(1,5), B(-2,1)$ and $C(4,1)$ be the vertices of $\triangle A B C$ and internal bisector of $\angle A$ meets $B C$ at D, find $A D$.

- Watch Video Solution

81. If the middle point of the line segment joining $(3,4)$ and $(k, 7)$ is (x, y) and $2 x+2 y+1=0$, find the value of k.

- Watch Video Solution

82. One end of a diameterof a circle is at $(2,3)$ and the centre is $(-2,5)$, find the coordinates of the other end of the diameter.

- Watch Video Solution

83. If the point $C(-1,2)$ divides internally the line segment joining $A(2,5)$ and B in the ration $3: 4$. Find the coordinates of B.

Watch Video Solution

84. Find the ratio in which $(-8,3)$ divides the join of points $(2,-2)$ and $(-4,1)$.

- Watch Video Solution

85. In what ratio does the $x=a x i s$ divide the line segment joining the points $(2,-3)$ and $(5,6)$?

- Watch Video Solution

86. Find the ratio in which the line segment joining of the points $(1,2)$ and $(-2,3)$ is divided by the line $3 x+4 y=7$
87. Find the centroid and incentre of the triangle whose vertices are $(2,4),(6,4),(2,0)$.

- Watch Video Solution

88. The vertices of a triangle are at $(2,2),(0,6)$ and $(8,10)$. Find the coordinates of the trisection point of each median which is nearer the opposite side.

- Watch Video Solution

89. Two vertices of a triangle are $(1,4)$ and $(5,2)$. If its centroid is $(0,-3)$, find the third vertex.

- Watch Video Solution

90. The coordinates of centroid of a triangle are $(\sqrt{3}, 2)$ and two of its vertices are $(2 \sqrt{3},-1)$ and $(2 \sqrt{3}, 5)$. Find the third vertex of the triangle.

- Watch Video Solution

91. Find the centroid of the triangle ABC whose vertices are $A(9,2), B(1,10)$ and $C(-7,-6)$. Find the coordinates of the middle points of its sides and hence find the centroid of the triangle formed by joining these middle points. Do the two triangles have same centroid?

- Watch Video Solution

92. If $(1,2),(0,-1)$ and $(2,-1)$ are the middle points of the sides of a triangle, find the coordinates of its centroid.

- Watch Video Solution

93. Find the incentre of the triangle with vertices $(1, \sqrt{3}),(0,0)$ and $(2,0)$

- Watch Video Solution

94. The mid-points of the sides of a triangle are $\left(\frac{1}{2}, 0\right),\left(\frac{1}{2}, \frac{1}{2}\right)$ and $\left(0, \frac{1}{2}\right)$. Find the coordinates of the incentre.

- Watch Video Solution

95. Two vertices of a triangle are $A(2,1)$ and $B(3,-2)$. The third vertex C lies on the line $y=x+9$. If the centroid of $\triangle A B C$ lies on y-axis, find the coordinates of C and the centroid.

- Watch Video Solution

96. Prove that the points $(-2,-1),(1,0),(4,3)$ and $(1,2)$ are the vertices of a parallelogram.

- Watch Video Solution

97. Show that the points $A(1,0), B(5,3), C(2,7)$ and $D(-2,4)$ are the vertices of a rhombus.

- Watch Video Solution

98. Prove that the points $(4,8),(0,2),(3,0)$ and $(7,6)$ are the vertices of a rectangle.

- Watch Video Solution

99. Prove that the points $(4,3),(6,4),(5,6)$ and $(3,5)$ are the vertices of a square.
100. If $(6,8),(3,7)$ and $(-2,-2)$ be the coordinates of the three consecutive vertices of a parallelogram, find the coordinates of the fourth vertex.

- Watch Video Solution

101. Three consecutive vertices of a rhombus are $(5,3),(2,7)$ and $(-2,4)$. Find the fourth vertex

- Watch Video Solution

102. A quadrilateral has the vertices at the points $(-4,2),(2,6),(8,5)$ and $(9,-7)$. Show that the mid points of the sides of this quadrilateral are the vertices of a parallelogram.

- Watch Video Solution

103. Prove that the line segment joining the middle points of two sides of a triangle is half the third side.

- Watch Video Solution

104. If $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ divide the sides BC, CA and AB of $\triangle A B C$ in the same ratio, prove that the centroid of the triangles $A B C$ and $P Q R$ coincide.

- Watch Video Solution

105. Prove that three times the sum of the squares of the sides of a triangle is equal to four times the sum of the squares of the medians of the triangle.

- Watch Video Solution

106. If G be the centroid of the $\triangle A B C$, then prove that $A B^{2}+B C^{2}+C A^{2}=3\left(G A^{2}+G B^{2}+G C^{2}\right)$

Watch Video Solution

107. Prove that the mid point of the hypotenuse of a right triangle is equidistant from its vertices.

- Watch Video Solution

108. Find the area of the triangle whose vertices are : $(3,-4),(7,5),(-1,10)$

- Watch Video Solution

109. Find the area of the triangle whose vertices are : $\left(a t_{1}^{2}, 2 a t_{1}\right),\left(a t_{2}^{2}, 2 a t_{2}\right),\left(a t_{3}^{2}, 2 a t_{3}\right)$
110. Find the area of the triangle whose vertices are : $(a \cos \alpha, b \sin \alpha),(a \cos \beta, b \sin \beta),(a \cos \gamma, b \sin \gamma)$

D Watch Video Solution

111. Find the area of the quadrilateral whose vertices are : $(1,1),(7,-3),(12,2)$ and $(7,21)$

- Watch Video Solution

112. Find the area of the quadrilateral whose vertices are : $(-4,5),(0,7),(5,-5)$ and $(-4,-2)$

- Watch Video Solution

113. Find the area of the pentagon whose vertices are $(4,3),(-5,6),(0,-7),(3,-6),(-7,-2)$

- Watch Video Solution

114. Find the area of the hexagon whose consecutive vertices are $(5,0),(4,2),(1,3),(-2,2),(-3,-1)$ and $(0,-4)$

- Watch Video Solution

115. If A, B, C are the points $(-1,5),(3,1),(5,7)$ respectively and D, E, F are the middle points of $B C, C A$ and $A B$ respectively, prove that : $\triangle A B C=4 \Delta D E F$.

- Watch Video Solution

116. Three vertices of a triangle are $A(1,2), B(-3,6)$ and $C(5,4)$. If D , E and F are the mid-points of the sides opposite to the vertices A, B and C, respectively, show that the area of triangle ABC is four times the area of triangle DEF.

- Watch Video Solution

117. Find the area of a triangle $A B C$ if the coordinates of the middle points of the sides of the triangle are $(-1,-2),(6,1)$ and $(3,5)$

- Watch Video Solution

118. The vertices of a $\triangle A B C$ are $A(3,0), B(0,6)$ and $C(6,9)$. A straight line $D E$ divides $A B$ and $A C$ in the ration $1: 2$ at D and E respectively, prove that $\frac{\triangle A B C}{\triangle A D E}=9$

- Watch Video Solution

119. Prove that the area of the triangle whose vertices are $(t, t-2),(t+2, t+2) \operatorname{and}(t+3, t)$ is independent of t.

- Watch Video Solution

120. If $A(x, y), B(1,2)$ and $C(2,1)$ are the vertices of a triangle of area 6 square units, show that $x+y=15$ or -9 .

- Watch Video Solution

121. Prove that the points $(a, b+c),(b, c+a)$ and $(c, a+b)$ are collinear.

- Watch Video Solution

122. If the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ be collinear, show that: $\frac{y_{2}-y_{3}}{x_{2} x_{3}}+\frac{y_{3}-y_{1}}{x_{3} x_{2}}+\frac{y_{1}-y_{2}}{x_{1} x_{2}}=0$
123. If the points $(a, b),\left(a_{1}, b_{1}\right)$ and $\left(a-a_{1}, b-b\right)$ are collinear, show that $\frac{a}{a_{1}}=\frac{b}{b_{1}}$

- Watch Video Solution

124. Three points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C(x, y)$ are collinear. Prove that: $\left(x-x_{1}\right)\left(y_{2}-y_{1}\right)=\left(x_{2}-x_{1}\right)\left(y-y_{1}\right)$.

- Watch Video Solution

125. Show that the points $(a, 0),(0, b)$ and $(1,1)$ are collinear if $\frac{1}{a}+\frac{1}{b}=1$

- Watch Video Solution

126. Find the values of x if the points $(2 x, 2 x),(3,2 x+1)$ and $(1,0)$ are collinear.

- Watch Video Solution

127. Show that the straight line joining the points $A(0,-1)$ and $B(15,2)$ divides the line joining the points $C(-1,2)$ and $D(4,-5)$ internally in the ration $2: 3$.

- Watch Video Solution

128. Find the area of the triangle whose vertices are $(a+1)(a+2),(a+2),(a+2)(a+3),(a+3)$ and $(a+3)(a+4),(a+$

- Watch Video Solution

129. The point A divides the join of $P(-5,1)$ and $Q(3,5)$ in the ratio $k: 1$. Find the two values of k for which the area of $A B C$ where B is $(1,5) \operatorname{and} C(7,-2)$ is equal to 2 units.

- Watch Video Solution

130. The coordinates of A, B, C, D are $(6,3),(-3,5),(4,-2)$ and $(x, 3 x)$ respectively. If $\frac{\Delta D B C}{\Delta A B C}=1 / 2^{2}$, find x

- Watch Video Solution

131. If the area of the quadrilateral whose angular points taken in order are $(1,2),(-5,6),(7,-4)$ and $(h,-2)$ be zero, show that $h=3$.

- Watch Video Solution

132. Find the area of the triangle whose vertices A, B, C are $(3,4),(-4,3),(8,6)$ respectively and hence find the length of perpendicular from A to $B C$.

- Watch Video Solution

133. The coordinates of the centroid of a triangle and those of two of its vertices are respectively $\left(\frac{2}{3}, 2\right),(2,3),(-1,2)$. Find the area of the triangle.

- Watch Video Solution

134. The area of a triangle is 3 square units. Two of its vertices are $A(3,1), B(1,-3)$ and the centroid of the triangle lies on x-axis. Find the coordinates of the third vertex C.
135. The area of a parallelogram is 12 square units. Two of its vertices are the points $A(-1,3)$ and $B(-2,4)$. Find the other two vertices of the parallelogram, if the point of intersection of diagonals lies on x-axis on its positive side.

- Watch Video Solution

136. The area of a triangle is $\frac{3}{2}$ square units. Two of its vertices are the points $A(2,-3)$ and $B(3,-2)$, the centroid of the triangle lies on the line $3 x-y-2=0$, then third vertex C is

- Watch Video Solution

137. Prove that the quadrilateral whose vertices are $A(-2,5), B(4,-1), C(9,1)$ and $D(3,7)$ is a parallelogram and find its area. If E divides AC in the ration $2: 1$, prove that D, E and the middle point F of BC are collinear.
138. Prove that points $(-3,-1),(2,-1),(1,1)$ and $(-2,1)$ taken in order are the vertices of a trapezium.

- Watch Video Solution

139. Show that the line joining the centroid of a triangle to its vertices divide it into three triangles of equal area.

- Watch Video Solution

140. Find the equation of the set of all points $P(x, y)$ such that the line $O P$ is coincident with the line joining P and the point $(3,2)$.

- Watch Video Solution

141. Find the equation of the set of points equidistant from $(-1,-1)$ and $(4,2)$

- Watch Video Solution

142. Find the equation of the locus of a point P if the sum of squares of distances of the point P from the axes is p^{2}.

- Watch Video Solution

143. Find the equation of the set of all points which are equidistant from the points $\left(a^{2}+b^{2}, a^{2}-b^{2}\right)$ and $\left(a^{2}-b^{2}, a^{2}+b^{2}\right)$

- Watch Video Solution

144. Square of the distance of the point from x-axis is double of its distance from the origin.
145. Write the equation of locus of a point whose distance from y-axis is always equal to the double of its distance from x-axis.

- Watch Video Solution

146. Find the equation of the set of points for which every ordinate is greater than the corresponding abscissa by a given distance d.

- Watch Video Solution

147. If a point P moves such that its distance from $(a, 0)$ is always equal to $a+x$-coordinate of P, show that the locus of P is $y^{2}=4 a x$.

- Watch Video Solution

148. Show that the equation of the locus of a point which moves so that the sum of its distance from two given points $(k, 0)$ and $(-k, 0)$ is equal to $2 a$ is : $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}-k^{2}}=1$

- Watch Video Solution

149. If the sum of the distances of a moving point from two fixed points $(a e, 0)$ and $(-a e, 0)$ be $2 a$, prove that the locus of the point is: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}\left(1-e^{2}\right)}=1$

- Watch Video Solution

150. Find the locus of a variable point $\left(a t^{2}, 2 a t\right)$ where t is the parameter.

- Watch Video Solution

151. If the coordinates of a variable point P be $\left(t+\frac{1}{t}, t-\frac{1}{t}\right)$, where t is a variable quantity, then find the locus of P.

- Watch Video Solution

152. If the coordinates of a variable point P be $(\cos \theta+\sin \theta, \sin \theta-\cos \theta)$, where θ is a variable quantity, find the locus of P.

- Watch Video Solution

153. If $A(\cos \theta, \sin \theta), B(\sin \theta, \cos \theta), C(1,2)$ are the vertices of $\Delta A B C$.

Find the locus of its centroid if θ varies.

- Watch Video Solution

154. A point moves so that its distance from the point $(-2,3)$ is always three times its distance from the point $(0,3)$. Find the equation to its locus.

- Watch Video Solution

155. A and B are two given points whose coordinates are $(-5,3)$ and $(2,4)$ respectively. A point P moves in such a manner that $P A: P B=3: 2$. Find the equation to the locus traed out by P.

- Watch Video Solution

156. find the equation of the locus of a points such that sum of its distance from $(0,3)$ and $(0,-3)$ is 8 .

- Watch Video Solution

157. S is the point $(4,0)$ and M is the foot of the perpendicular drawn from a point P to the y-axis. If P moves such that the distance $P S$ and $P M$ remain equal find the locus of P.

- Watch Video Solution

158. If $A(1,1)$ and $B(-2,3)$ are two fixed points, find the locus of a point P so that area of $\triangle P A B$ is 9 units.

- Watch Video Solution

159. Find the locus of a point such that the line segments having end points $(2,0)$ and $(-2,0)$ subtend a right angle at that point.

- Watch Video Solution

160. If P is the middle point of the straight line joining a given point $A(1,2)$ and Q, where Q is a variable point on the curve $x^{2}+y^{2}+x+y=0$. Find the locus of P.

- Watch Video Solution

161. $A(2,3)$ is a fixed point and $Q(3 \cos \theta, 2 \sin \theta)$ a variable point. If P divides $A Q$ internally in the ratio 3:1, find the locus of P .

- Watch Video Solution

162. From the point $A(6,-8)$, all possible lines are drawn to cut the x axis. Find the locus of their middle points.

- Watch Video Solution

163. A stick of length l slides with its ends on two mutually perpendicular lines. Find the locus of the middle point of the stick.

- Watch Video Solution

164. Prove that the locus of the point equidistant from two given points is the straight line which bisects the line segment joining the given points at right angles.

- Watch Video Solution

165. Describe the locus of the point (x, y) satisfying the condition $x^{2}+y^{2}=a^{2}$.

- Watch Video Solution

166. Describe the locus of the point (x, y) satisfying $(x-1)^{2}+(y-1)^{2}=2^{2}$.

- Watch Video Solution

167. Examine whether point $(1,2)$ lies on the curve $4 x^{2}-y^{2}=0$.

- Watch Video Solution

168. Examing whether point $(2,-3)$ lies on the curve
$x^{2}-2 y^{2}+6 x y+8=0$.

- Watch Video Solution

169. If the equation $a x^{2}+2 h x y+b y^{2}=0$ and $b x^{2}-2 h x y+a y^{2}=0$ represent the same curve, then show that $a+b=0$.
170. Find the value of k if the point $(1,2)$ lies on the curve

$$
(k-10) x^{2}+y^{2}-(k-7) x-(3 k-27) y+11=0
$$

- Watch Video Solution

