©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

CIRCLES - FOR BOARDS

Solved Examples

1. Find the equation of circle whose centre is $\left(\frac{1}{2}, \frac{1}{2}\right)$ and radius is $\frac{1}{\sqrt{2}}$.

- Watch Video Solution

2. Find the equation of the circle whose centre is (1,2) and which passes through the point $(4,6)$.
3. If the equations of the two diameters of a circle are $x+y=6$ and $x+2 y=4$ and the radius of the circle is 10 , find the equation of the circle.

- Watch Video Solution

4. If the line $2 x-y+1=0$ touches the circle at the point $(2,5)$ and the centre of the circle lies in the line $x+y-9=0$. Find the equation of the circle.

- Watch Video Solution

5. Find the equation of the circle which passes through the origin and cuts off intercepts 6 and 8 from the positive parts of x and y axes respectively.

- Watch Video Solution

6. Find the equation of the circle which touches: y-axis and has centre at $(2,3)^{\prime}$

- Watch Video Solution

7. Find the equation of the circle which touches: y-axis at the origin and has radius 4 .

- Watch Video Solution

8. Find the equation of the circle which touches the lines $x=0, y=0$ and $x=4$ and lies in the first quadrant.

- Watch Video Solution

9. Find the equation of a circle which touches both the axes and whose radius is 2 units
10. Find the equation of the circle which has its centre at the point $(3,4)$ and touches the straight line $5 x+12 y-1=0$.

- Watch Video Solution

11. Find the equations of the circles passing through two points on y-axis at distance 3 from the origin and having radius 5 .

- Watch Video Solution

12. Find the equation of a circle which passes through the point $(2,0)$ and whose centre is the limit of the point of intersection of eth lines $3 x+5 y=1$ and $(2+c) x+5 c^{2} y=1 a s c \overrightarrow{1}$.

- Watch Video Solution

13. Find the equation of the circle with radius 5 whose centre lies on xaxis and passes through the point $(2,3)$.

Watch Video Solution

14. A circle has radius $3 u n i t s$ and its centre lies on the line $y=x-1$.

Find the equation of the circle, if it passes through (7, 3).

- Watch Video Solution

15. Find the equation of the circle passing through the points $(1,-2) \operatorname{and}(4,-3)$ and whose centre lies on the $3 x+4 y=7$.

- Watch Video Solution

16. One of the diameters of the circle circumscribing the rectangle $A B C D$ is $4 y=x+y$. If A and B are the points $(-3,4)$ and $(5,4)$
respectively, find the area of the rectangle and equation of the circle.

- Watch Video Solution

17. Find the equations of circles which touch the axes and whose centres lie on the $x-2 y=3$.

- Watch Video Solution

18. A circle of radius 2 lies in the first quadrant and touches both the axes.

Find the equation of the circle with centre at $(6,5)$ and touching the above circle externally.

- Watch Video Solution

19. Find the equation of the circle whose radius is 5 and which touches the circle $x^{2}+y^{2}-2 x-4 y-20=0$ externally at the point $(5,5)$.
20. Equation of circle whose centre is $(3,-1)$ and which cut off an intercept of length 6 unit from the line : $2 x-5 y+18=0$ is:

- Watch Video Solution

21. Find the equations of the circles touching y-axis at $(0,3)$ and making an intercept of 8 units on the x-axis.

- Watch Video Solution

22. Find the radius of the circle which touches the axis of x at a distance 3 from the origin and cuts an intercept of length 6 on the axis of y.

- Watch Video Solution

23. A circle of radius 5units touches the coordinate axes in the first quadrant. If het circle makes one complete roll on $x-a \xi s$ along he positive direction of $x-a \xi s$, find its equation in new position.

- Watch Video Solution

24. Find the centre and radius of the circles $(x+5)^{2}+(y-3)^{2}=36$

- Watch Video Solution

25. Find the centre and radius of each of the following circle: $x^{2}+y^{2}-x+2 y-3=0$

- Watch Video Solution

26. Find the centre and radius of the circle $3 x^{2}+3 y^{2}-8 x-10 y+3=0$
27. Prove that the radi of the circles $x^{2}+y^{2}=1$, $x^{2}+y^{2}-2 x-6 y=6$ and $x^{2}+y^{2}-4 x-12 y=9$ are in arithmetic progression.

- Watch Video Solution

28. Find the coordinates of the middle point of the chord which the circle $x^{2}+y^{2}+4 x-2 y-3=0$ cuts off on the line $x-y+2=0$

- Watch Video Solution

29. Find the area of equilateral triangle inscribed in a circle $x^{2}+y^{2}+2 g x+2 f y+c=0$

- Watch Video Solution

$\left(x \cos \alpha+y \sin \alpha-a^{2}\right)+\left(x \sin \alpha-y \cos \alpha-b^{2}\right)=k^{2}, \quad$ if α varies, the locus of its centre is again a circle. Also, find its centre and radius.

- Watch Video Solution

31. Find the equation of the circle whose centre is (h, k) and which passes through the point (p, q).

- Watch Video Solution

32. Find the equation of the circle passing through points $(2,-6),(6,4)$ and $(-3,1)$

- Watch Video Solution

33. The radius of the circle passing through the vertices of the triangle formed by the lines $x+y=2,3 x-4 y=6, x-y=0$

Watch Video Solution

34. Find the equation of the circle passing through the origin and the points where the line $3 x+4 y=12$ meets the axes of coordinates.

- Watch Video Solution

35. Find the equation of the circle which passes through the points $(1,-2),(4,-3)$ and whose center lies on the line $3 x+4 y=7$.

- Watch Video Solution

36. Show that the points $(5,5),(6,4),(-2,4)$ and $(7,1)$, all lie on a circle. Find its equation, centre and radius.'

- Watch Video Solution

37. Find the equation of the circle which passes through the centre of the circle $x^{2}+y^{2}+8 x+10 y-7=0$ and is concentric with the circle $2 x^{2}+2 y^{2}-8 x-12 y-9=0$

- Watch Video Solution

38. Find the equations of the circles touching y-axis at $(0,3)$ and making an intercept of 8 units on the x-axis.

- Watch Video Solution

39. The equation of circle which passes through (1, -1) and which touches the line $6 x+y-18=0$ at point $(3,0)$ is

- Watch Video Solution

40. Show that a cyclic quadrilateral is formed by the lines $5 x+3 y=9, x=3 y, 2 x=y$ and $x+4 y+2=0$ taken in order. Find the equation of the circumcircle.

- Watch Video Solution

41. Examine whether the following equation represents a circle or not : $3 x^{2}+3 y^{2}+2 x y+3 x+y=0$

- Watch Video Solution

42. Examine whether the following equation represents a circle or not : $4 x^{2}+4 y^{2}+12 x+8 y+40=0$

- Watch Video Solution

43. Examine whether that equations reprsent a circle, point or no circle : $x^{2}+y^{2}-3 x+3 y+10=0$

- Watch Video Solution

44. Examine whether that equations reprsent a circle, point or no circle :
$x^{2}+y^{2}+2 x+1=0$

- Watch Video Solution

45. Examine whether that equations reprsent a circle, point or no circle :
$x^{2}+y^{2}-1=0$

- Watch Video Solution

46. Find the equation of the circle when the end points of a diameter are $(5,-3)$ and $(2,-4)$. Also find its centre and radius.
47. The abscissa of the two points A and B are the roots of the equation $x^{2}+2 a x-b^{2}=0$ and their ordinates are the roots of the equation $x^{2}+2 p x-q^{2}=0$. Find the equation of the circle with AB as diameter. Also, find its radius.

- Watch Video Solution

48. Find the equation of the circle passing through the origin and the points where the line $3 x+4 y=12$ meets the axes of coordinates.

- Watch Video Solution

49. Find the equation of the circle whose diameter is the portion of the line $3 x+4 y-14=0$, intercepted by the lines $y=x$ and $11 x=4 y$.
50. The sides of a square are $x=1, x=3, y=2$ and $y=4$.Find the equation of the circle drawn on the diagonal of the square as its diameter.

- Watch Video Solution

51. Find the parametric equations of that circles: $3 x^{2}+3 y^{2}=4$

- Watch Video Solution

52. Find the parametric form of the equation of the circle $x^{2}+y^{2}+p x+p y=0$.

- Watch Video Solution

53. Find the parametric equations of that circles : $2 x^{2}+2 y^{2}-5 x-7 y-3=0$
54. Find the equation of a circle whose diameters are $2 x-3 y+12 a n d x+4 y-5=0$ and area is 154 squareunits.

- Watch Video Solution

55. Find the Cartesian euqaiton of that curves whose parametric equation
$: x=7+4 \cos \alpha, y=-3+4 \sin \alpha$

- Watch Video Solution

56. Find the Cartesian euqaiton of that curves whose parametric equation
$: x=5+3 \cos \theta, y=7+3 \sin \theta$

- Watch Video Solution

57. Find the Cartesian euqaiton of that curves whose parametric equation
$: x=\cos \theta+\sin \theta+1, y=\sin \theta-\cos \theta+2$

- Watch Video Solution

58. Show that equations $x=a \cos \theta+b \sin \theta, y=a \sin \theta-b \cos \theta$ represents a circle, wheter θ is a parameter.

- Watch Video Solution

59. Show that the point (x, y) given by $x=\frac{2 a t}{1+t^{2}}$ andy $=\left(\frac{1-t^{2}}{1+t^{2}}\right)$ lies on a circle for all real values of t such that $-1 \leq t \leq 1$, where a is any given real number.

- Watch Video Solution

Exercise

1. Find the equation of the circle with : Centre $(-3,2)$ and radius 5 .

- Watch Video Solution

2. Find the equation of the circle with : Centre $(-3,-2)$ and radius 7 .

- Watch Video Solution

3. Find the equation of the circle with: Centre (a, a) and radius $\sqrt{2} a$.

- Watch Video Solution

4. Find the equation of the circle with : $\operatorname{Centre}(1,-5)$ and radius 7 .

- Watch Video Solution

5. Find the equation of the circle with : $\operatorname{Centre}(0,0)$ and radius 4 .
6. Find the equation of the circle with : $\operatorname{Centre}(1,1)$ and $\operatorname{radius} \sqrt{2}$.

- Watch Video Solution

7. Find the equation of the circle with : Centre $(-2,3)$ and radius 4 .

- Watch Video Solution

8. Find the equation of the circle with centre : $(0,2)$ and radius 2

- Watch Video Solution

9. Find the equation of the circle with centre : $\left(\frac{1}{2}, \frac{1}{4}\right)$ and radius $\frac{1}{12}$

- Watch Video Solution

10. Find the equation of the circle with : Centre $(-3,2)$ and radius 4.

- Watch Video Solution

11. Find the equation of the circle with : Centre $(-a,-b)$ and radius $\sqrt{a^{2}-b^{2}}$.

- Watch Video Solution

12. Find the equation of the circle with: Centre $(a \cos \alpha, a s \in \alpha)$ and radius a.

Watch Video Solution

13. Find the equation of the circle with :

Centre (- 1, - 2) and diameter 25.
14. Find the equation of the circle passing through $(0,0)$ and making intercepts a and b on the coordinate axes.

- Watch Video Solution

15. Find the equation of the circle passing through the origin and cutting intercepts 10 and 24 from the positive side of x and y axis respectively

- Watch Video Solution

16. Find the equation of the circle touching : x-axis andhaving centre at (4,
$3)^{\prime}$

- Watch Video Solution

17. Find the equation of the circle touching : x-axis at the origin and having radius 10
18. Find the equation of the circle which passes through two points on the x-axis which are at distances 4 from the origin and whose radius is 5 .

- Watch Video Solution

19. Find the equation of the circle with centre $(2,2)$ and passing through the point $(4,5)$.

- Watch Video Solution

20. Find the equation of image of the circle $(x-1)^{2}+(y+2)^{2}=5^{0}$ in the x-axis.

- Watch Video Solution

21. Find the equation of the circle passing through the point $(2,4)$ and centre at the point of intersection of the lines $x-y=4$ and $2 x+3 y=-7$.

- Watch Video Solution

22. I the equations of two diameters of a circles are $2 x+y=6$ and $3 x+2 y=4$ and the radius is 10 , find the equation of the circle.

- Watch Video Solution

23. Find the equation to the circle which passes through the point of intersection of $3 x-2 y-1=0$ and $4 x+y-27=0$ and whose centre is $(2,3)^{\prime}$

- Watch Video Solution

24. Find the equation of the circle whose centre is $(2,-3)$ and which pass through the point of intersection of $3 x+2 y=11$ and $2 x+3 y=4$.

- Watch Video Solution

25. Find the equation of the circle passing through the centre of the circle $x^{2}+y^{2}-4 x-6 y=8$ and being concentric with the circle $x^{2}+y^{2}-2 x-8 y=5$.

- Watch Video Solution

26. Find the equaiton of the circle passing through the point of intersection of $x+3 y=0$ and $2 x-7 y=0$ and whose centre is the point of intersection of lines $x+y+1=0$ and $x-2 y+4=0$

- Watch Video Solution

27. Find the equation of circle whose centre is the point $(1,-3)$ and touches the line $2 x-y-4=0$

Watch Video Solution

28. Find the equation of the circle of radius 5 whose centre lies on y-axis and which passes through the point $(3,2)$.

- Watch Video Solution

29. Find the equation of the circle whose radius is 5 and centre lies on the positive side of x-axis at a distance 5 from the origin.

- Watch Video Solution

30. Find the equation of the circle which passes through the points $(-1,2)$ and $(3,-2)$ and whose centre lies on the line $x-2 y=0$.
31. Find the equation of the circle passing through the points (2, and $(1, \quad 1)$ and whose centre is on the line $x \quad 3 y \quad 11=0$.

- Watch Video Solution

32. Find the equation of the circle which passes through the points
$(2,-2)$, and $(3,4)$ and whose centre lies on the line $x+y=2$.

- Watch Video Solution

33. Find the equation of the circle passing through the points $(4,1)$ and $(6,5)$ and whose centre is on the line $4 x+y=16$.

- Watch Video Solution

34. Find the equation of the circle which touches the axis of y at a distance 4 from the origin and cuts off an intercept of length 6 on the axis of x.

- Watch Video Solution

35. Does the point ($-2.5,3.5$) lie inside, outside or on the circle $x^{2}+y^{2}=25 ?$

- Watch Video Solution

36. Find the centre and radius of the circles $x^{2}+y^{2}-8 x+10 y-12=0$

- Watch Video Solution

37. Find the centre and the radius of the circle $x^{2}+y^{2}+8 x+10 y-8=0$.
38. Find the centre and radius of the circles $2 x^{2}+2 y^{2}-x=0$

- Watch Video Solution

39. Find the centre and radius of the circles $x^{2}+y^{2}-4 x-8 y-45=0$

- Watch Video Solution

40. Find the centre and radius of each of that circles : $x^{2}+(y-1)^{2}=2$

- Watch Video Solution

41. Find the centre and radius of each of that circles :

$$
\left(x-\frac{1}{2}\right)^{2}+\left(y+\frac{1}{3}\right)^{2}=\frac{1}{4}
$$

42. Find the centre and radius of each of that circles : $x^{2}+y^{2}-2 x+4 y=8$

- Watch Video Solution

43. Find the centre and radius of each of that circles : $x^{2}+y^{2}-4 x+6 y=5$

- Watch Video Solution

44. Find the centre and radius of the circles : $x^{2}+y^{2}-8 x-12 y-48=0$

- Watch Video Solution

45. Find the centre and radius of the circles : $x^{2}+y^{2}-a x-b y=0$
46. Find the centre and radius of the circles : $3 x^{2}+3 y^{2}+12 x-18 y-11=0$

- Watch Video Solution

47. Find the centre and radius of the circles : $x^{2}+y^{2}-2 x+4 y=8$

- Watch Video Solution

48. Find the centre and radius of the circles :
$\frac{1}{2}\left(x^{2}+y^{2}\right)+x \cos \theta+y \sin \theta-4=0$

- Watch Video Solution

49. Prove that the centres of the circles $x^{2}+y^{2}=1$, $x^{2}+y^{2}+6 x-2 y-1=0$ and $x^{2}+y^{2}-12 x+4 y=1$ are collinear

(Watch Video Solution

50. Prove that the centres of the three circles $x^{2}+y^{2}-4 x-6 y-12=0, x^{2}+y^{2}+2 x+4 y-5=0$ and $x^{2}+y^{2}-10 x-$ are collinear.

- Watch Video Solution

51. Prove that the radi of the circles $x^{2}+y^{2}=1$, $x^{2}+y^{2}-2 x-6 y=6$ and $x^{2}+y^{2}-4 x-12 y=9$ are in arithmetic progression.

- Watch Video Solution

52. Prove that the radii of the circles $x^{2}+y^{2}=4,4 x^{2}+4 y^{2}-8 x-24 y+15=0$ and $x^{2}+y^{2}-4 y-5=0$ are in arithmetic progression.
53. Find the equation of the circles passing through the three points : $(0,0),(5,0)$ and $(3,3)$

- Watch Video Solution

54. Find the equation of the circles passing through the three points : $(1,0),(0,1)$ and $(-1,0)$

- Watch Video Solution

55. Find the equation of the circles passing through the three points :
$(1,-2),(5,4)$ and $(10,5)$

- Watch Video Solution

56. Find the equation of the circles passing through the three points : $(1,2),(3,-4)$ and $(5,-6)$

Watch Video Solution

57. Find the equation of the circle circumscribing the triangle formed by the straight lines $x+y=6,2 x+y=4$ and $x+2 y=5$.

- Watch Video Solution

58. Find the equation of the circle which is concentric with the circle $x^{2}+y^{2}-4 x+6 y-3=0$ and the double of its area.

- Watch Video Solution

59. Find the equation of the circle concentric with the circle $2 x^{2}+2 y^{2}-6 x+8 y+1=0$ and of double its area.
60. Find the equation. of the circle concentric with the $x^{2}+y^{2}+4 x-8 y-6=0$ and having radius double of its radius.

- Watch Video Solution

61. Find the equation of the circle concentric with the circle $x^{2}+y^{2}-4 x-6 y-9=0$ and passing through the point $(-4,-5)$

- Watch Video Solution

62. Find the equation of the circle passing through the points $(1,-1)$ and centre at the intersection of the lines $x-y=4$ and $2 x+3 y=-7$

- Watch Video Solution

63. The line $5 x-y=3$ is a tangent to a circle at the point $(2,7)$ and its centre is on theline $x+2 y=19$. Find the equation of the circle.

- Watch Video Solution

64. If the line $4 x-3 y=-12$ is tangent at point $(-3,0)$ and the line $3 x+4 y=16$ is tangent at the point $(4,1)$ to a circle then equation of circle

- Watch Video Solution

65. Find the equation of the circle circumscribing the quadrilateral formed
by the straight lines
$x-y=0,3 x+2 y=5, x-y=10$ and $2 x+3 y=0$

- Watch Video Solution

66. Find the equation of the circle passing through the points $(0,-1)$ and $(2,0)$ and whose centre lies on the line $3 x+y=5$

- Watch Video Solution

67. Find the equaiton of the circle passing through the points $(2,-3)$ and $(3,-2)$ and whose centre lies on the line $2 x-3 y=8$.

- Watch Video Solution

68. Determine whether the equation represent a circle or not : $3 x^{2}-3 y^{2}+4 x-6 y+10=0^{\prime}$

- Watch Video Solution

69. Determine whether the equation represent a circle or not :

$$
5 x^{2}+5 y^{2}+2 x y+4 x-y+2=0
$$

70. Determine whether the equation represent a circle or not : $5 x^{2}+5 y^{2}+4 x-8 y-16=0$

- Watch Video Solution

71. Determine whether the equation represent a circle or not : $x^{2}+y^{2}+6 x-8 y+50=0$

- Watch Video Solution

72. Determine whether the equation represent a circle, a point or no circle : $x^{2}+y^{2}+x-y=0$

- Watch Video Solution

73. Determine whether the equation represent a circle, a point or no circle : $x^{2}+y^{2}-6 x-8 y+25=0$

Watch Video Solution

74. Determine whether the equation represent a circle, a point or no circle : $x^{2}+y^{2}+2 x+10 y+26=0$

- Watch Video Solution

75. Determine whether the equation represent a circle, a point or no circle : $2 x^{2}+2 y^{2}-24 x+8 y+120=0$

- Watch Video Solution

76. Find the equation of the circle when the end points of a diameter of the circle are : $(3,4)$ and $(-3,-4)$
77. Find the equation of the circle when the end points of a diameter of the circle are : $(-2,3)$ and $(3,-5)$

- Watch Video Solution

78. Find the equation of the circle when the end points of a diameter of the circle are : $(0,0)$ and $(2,-4)$

- Watch Video Solution

79. Find the equation of the circle when the end points of a diameter of the circle are : $(-2,-3)$ and $(-3,5)$

- Watch Video Solution

80. Find the equation of the circle when the end points of a diameter of the circle are : (p, q) and (r, s)

- Watch Video Solution

81. Find the equation of the circle when the end points of a diameter of the circle are : $(2,3)$ and $(-1,-3)$

- Watch Video Solution

82. Find the equation of the circle when the end points of a diameter of the circle are : $(3,2)$ and $(2,5)$

- Watch Video Solution

83. Find the equation of the circle, the end points of whose diameter are
$(2,-3)$ and $(-2,4)$. Find its centre and radius.'
84. Find the equaiton of the circle drawn on the intercept between the axes made by the line $3 x+4 y=12$ as a diameter.

- Watch Video Solution

85. Find the equaiton of the circle drawn on the intercept between the axes made by the line $3 x+4 y=12$ as a diameter.

- Watch Video Solution

86. Show that equation of the circle passing through the origin and cutting intercepts a and b on the coordinate axes is $x^{2}+y^{2}-a x-b y=0$

- Watch Video Solution

87. Find the equation of the circle the end points of whose diameter are the centres of the circle : $x^{2}+y^{2}+6 x-14 y=1$ and $x^{2}+y^{2}-4 x+10 y=2$.

- Watch Video Solution

88. The abscissae of two points A and B are the roots of the equaiton $x^{2}+2 x-a^{2}=0$ and the ordinats are the roots of the equaiton $y^{2}+4 y-b^{2}=0$. Find the equation of the circle with $A B$ as its diameter. Also find the coordinates of the centre and the length of the radius of the circle.

- Watch Video Solution

89. If $(4,1)$ be an end of a diameter of the circle $x^{2}+y^{2}-2 x+6 y-15=0$, find the coordinates of the other end of the diameter.
90. The sides of a rectangle are given by the equations $x=-2, x=4, y=-2$ andy $=5$. Find the equation of the circle drawn on the diagonal of this rectangle as its diameter.

- Watch Video Solution

91. Find the equaiton of the circle drawn on a diagonal of the rectangle as its diameter whose sides are : $x=5, x=8, y=4, y=7$

- Watch Video Solution

92. The sides of a square are $x=6, x=9, y=3$ and $y=6$. Find the equation of a circle drawn on the diagonal of the square as its diameter.

- Watch Video Solution

93. Find the equation of the circle circumscribing the rectangle whose sides are : $x=4, x=-5, y=5, y=-3$

- Watch Video Solution

94. Find the equation of the circle circumscribing the rectangle whose sides are : $x=6, x=-3, y=3, y=-1$

- Watch Video Solution

95. Find the equation of the circle circumscribing the rectangle whose sides are : $x-3 y=4,3 x+y=22, x-3 y=14,3 x+y=62$

- Watch Video Solution

96. Find the parametric equation of the circles : $x^{2}+y^{2}=9$
97. Find the parametric equation of the circles :
$x^{2}+y^{2}+2 x-4 y-1=0$

- Watch Video Solution

98. Find the parametric equation of the circles :
$x^{2}+y^{2}-2 x+4 y-4=0$

- Watch Video Solution

99. Find the parametric equation of the circles :
$3 x^{2}+3 y^{2}+4 x-6 y-4=0$

- Watch Video Solution

100. Find the Cartesian equation of the curves whose parametric equation are : $x=5 \cos \theta, y=5 \sin \theta$

- Watch Video Solution

101. Find the Cartesian equation of the curves whose parametric equation are : $x=a+c \cos \alpha, y=b+c \sin \alpha$

- Watch Video Solution

102. Find the Cartesian equation of the curves whose parametric equation are : $x=3 \cos \alpha, y=3 \sin \alpha$

- Watch Video Solution

103. Find the Cartesian equation of the curves whose parametric equation
are : $x=1+3 \cos \theta, y=2-3 \sin \theta$
104. Find the Cartesian equation of the curves whose parametric equation are : $x=\cos \theta+\sin \theta, y=\sin \theta-\cos \theta$

- Watch Video Solution

105. Find the Cartesian equation of the curves whose parametric equation
are : $x=\frac{20 t}{4+t^{2}}, y=\frac{5\left(4-t^{2}\right)}{4+t^{2}}$

- Watch Video Solution

106. Prove that : $x \cos \theta+y \sin \theta=a$ and $x \sin \theta-y \cos \theta=b$ are the parametric equations of a circle for all θ satisfying $0 \leq \theta<2 \pi$

- Watch Video Solution

107. Show that : $\quad x=a \cos \theta-b \sin \theta$ and $y=a \sin \theta+b \cos \theta$, represent a circle where θ is the parameter.

- Watch Video Solution

108. Show that the point (x, y), where $x=5 \cos \theta, y=-3+5 \sin \theta$, lies on a circle for all values of 'theta

- Watch Video Solution

109. Show that the point (x, y), where $x=a+r \cos \theta, y=b+r \sin \theta$, lies on a circle for all values of θ.

- Watch Video Solution

