© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

COMPLEX NUMBERS - FOR COMPETITION

Solved Examples

1. Express $\frac{1}{1-\cos \theta+2 i \sin \theta}$ in the form $A+i B$

- Watch Video Solution

2. If $z_{1}=x_{1}+i y, z_{2}=x_{2}+i y_{2}$ and $z_{1}=\frac{i\left(z_{2}+1\right)}{z_{2}-1}$, prove that $x_{1}^{2}+y_{1}^{2}-x_{1}=\frac{x_{2}^{2}+y_{2}^{2}+2 x_{2}-2 y_{2}+1}{\left(x_{2}-1\right)^{2}+y_{2}^{2}}$

- Watch Video Solution

3. Find the complex number z such that $z^{2}+|z|=0$

- Watch Video Solution

4. Show that the equation
$\frac{A^{2}}{x-a}+\frac{B^{2}}{x-b}+\frac{C^{2}}{x-c}+.+\frac{H^{2}}{x-h}=x+1 \quad$ where \quad A,B,C
$, \ldots \ldots, a, b, c$ and i are real cannot have imaginary roots.

- Watch Video Solution

5. If α be a root of equation $x^{2}+x+1=0$ then find the vlaue of $\left(\alpha+\frac{1}{\alpha}\right)+\left(\alpha^{2}+\frac{1}{\alpha^{2}}\right)^{2}+\left(\alpha^{3}+\frac{1}{\alpha^{3}}\right)^{2}+\ldots+\left(\alpha^{6}+\frac{1}{\alpha^{6}}\right)^{2}$

- Watch Video Solution

6. If n is anodd integer greter than 3 but not a multiple of 3 prove that $\left[(x+y)^{n}-x^{n}-y^{n}\right]$ is divisible by $x y(x+y)\left(x^{2}+x y+y^{2}\right)$.
7. Prove that $\left|\frac{z_{1}, z_{2}}{1-\bar{z}_{1} z_{2}}\right|<1$ if $\left|z_{1}\right|<1,\left|z_{2}\right|<1$

- Watch Video Solution

8. Let z_{1}, z_{2}, z_{3} be three complex numbers such that $\left|z_{1}\right|=1,\left|z_{2}\right|=2,\left|z_{3}\right|=3$ and $\left|z_{1}+z_{2}+z_{3}\right|=1 . F \in d \mid 9 z_{1} z_{2}+4 z_{1} z_{3}+$

- Watch Video Solution

9. If z_{1}, z_{2}, z_{3} are three complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1, \quad$ find \quad the maximum value of $\left|z_{1}-z_{2}\right|^{2}+\left|z_{2}-z_{3}\right|^{2}+\left|z_{3}+z_{1}\right|^{2}$

- Watch Video Solution

10. if $\frac{3}{2+\cos \theta+i \sin \theta}=a+i b$ then prove that $a^{2}+b^{2}=4 a-3$

- Watch Video Solution

11. z_{1}, z_{2}, z_{3} are complex number and $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are real numbers such that:
$\frac{p}{\left|z_{2}-z_{3}\right|}=\frac{q}{\left|z_{3}-z_{1}\right|}=\frac{r}{\left|z_{1}-z_{2}\right|}$.
Prove
that
$\frac{p^{2}}{z_{2}-z_{3}}=\frac{q^{2}}{z_{3}-z_{1}}=\frac{r^{2}}{z_{1}-z_{2}}=0$

- Watch Video Solution

12. If $1, \alpha_{1}, \alpha_{2}, \ldots \alpha_{n-1}$ be n, nth roots of unity show that $\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right) \cdot(1-\alpha(n-1)=m$

- Watch Video Solution

13. If the argument of $(z-a)(\bar{z}-b)$ is equal to that $(\sqrt{3}+i)(1+\sqrt{3} i)$ $1+i$
complex conjugate of the complex number z find the locus of z in the Argand diagram. Find the value of a and b so that locus becomes a circle having its centre at $\frac{1}{2}(3+i)$

- Watch Video Solution

14. Find the locus of z if $\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{4}$

- Watch Video Solution

15. If z_{1}, z_{2}, z_{3} be the vertices of an equilateral triangle, show that

$$
\frac{1}{z_{1}-z_{2}}+\frac{1}{z_{2}-z_{3}}+\frac{1}{z_{3}-z_{1}}=0 \text { or } z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}
$$

- Watch Video Solution

16. IF the vertices of a triange ABC are respresented by z_{1}, z_{2} and z_{3}
$z_{1} \sin 2 A+z_{2} \sin 2 B+z_{3} \sin 2 C$
$\sin 2 A+\sin 2 B+\sin 2 C$

(Watch Video Solution

17. Let the complex numbers z_{1}, z_{2} and z_{3} be the vertices of an equilateral triangle let z_{0} be the circumcentre of the triangle. Then prove that $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=3 z_{0}^{2}$

- Watch Video Solution

18. Two different non parallel lines cut the circle $|z|=r$ at points $a ; b ; c ; d$ respectively . prove that these lines meet at a point $\left(\left(a^{-1}+\frac{b^{-1}-c^{-1}-d^{-1}}{a^{-1} b^{-1}-c^{-1} d^{-1}}\right.\right.$

- Watch Video Solution

19. $(x+i y)^{\frac{1}{3}}=(a+i b)$ then prove that $\left(\frac{x}{a}+\frac{y}{b}\right)=4\left(a^{2}-b^{2}\right)$
20. Point P represents the complex num,ber $z=z+i y$ and point Q the complex num,ber $z+\frac{1}{z}$. Show that if P mioves on the circle $|z|=2$ then Q oves on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=\frac{1}{9}$. If z is a complex such that $|z|=2$ show that the locus of $z+\frac{1}{2}$ is an ellipse.

- Watch Video Solution

21. Solve the equation $z^{8}+1=0$ and deduce that $\cos 4 \theta=8\left(\cos \theta-\cos \left(\frac{\pi}{8}\right)\right)\left(\cos \theta-\cos \left(\frac{3 \theta}{3}\right)\right)\left(\cos \theta-\cos \left(\frac{5 \pi}{8}\right)\right)(\operatorname{co}$

- Watch Video Solution

22. The points, $z_{1}, z_{2}, z_{3}, z_{4}$, in the complex plane are the vartices of a parallelogram taken in order, if and only if $z_{1}+z_{4}=z_{2}+z_{3}$ $z_{1}+z_{3}=z_{2}+z_{4} z_{1}+z_{2}=z_{3}+z_{4}$ (d) None of these
23. for any complex nuber z maximum value of $|z|-|z-1|$ is (A) O (B) $\frac{1}{2}$
(C) 1 (D) $\frac{3}{2}$

- Watch Video Solution

24. The least positive integer n for which $\left(\frac{1+i}{1-i}\right)^{n}=\frac{2}{\pi} \sin ^{-1}\left(\frac{1+x^{2}}{2 x}\right)$, where $x>0$ and $i=\sqrt{-1} 1$ is

- Watch Video Solution

25. The pointo fintersection of the cures represented by the equations $\operatorname{art}(z-3 i)=\frac{3 \pi}{4}$ and $\arg (2 z+1-2 i)=\frac{\pi}{4}$ (A) $3+2 i$ (B) $-\frac{1}{2}+5 i$
(C) $\frac{3}{4}+\frac{9}{4} i$ (D) none of these

- Watch Video Solution

26. Dividing $f(z)$ by $z-i$, we obtain the remainder i and dividing it by $z+i$, we get the remainder $1+\mathrm{i}$, then remainder upon the division of $f(z)$ by $z^{2}+1$ is

- Watch Video Solution

27. If all the roots of $z^{3}-a z^{2}+b z+c=0$ are of unit modulus, then (A) $|3-4 i+b|>8$ (B) $|c| \geq 3$ (C) $|3-4 i+a| \leq 8$ (D) none of these

- Watch Video Solution

28. Let z_{1}, z_{2} and origin represent vertices $\mathrm{A}, \mathrm{B}, \mathrm{O}$ respectively of an isosceles triangel OAB , where $\mathrm{OA}=\mathrm{OB}$ and $\angle A O B=2 \theta$. If z_{1}, z_{2} are the roots of the equation $z^{2}+2 a z+b=0$ where a, b re comlex numbers then $\cos ^{2} \theta=$ (A) $\frac{a}{b}$ (B) $\frac{a^{2}}{b^{2}}$ (C) $\frac{a}{b^{2}}$ (D) $\frac{a^{2}}{b}$

- Watch Video Solution

29. If $z=x+i y$ and $w=\frac{1-i z}{z-i}$, then $|w|=1$ implies that in the complex plane (A) z lies on imaginary axis (B) z lies on real axis (C) z lies on unit circle (D) None of these

Watch Video Solution

30. If $k>1,\left|z_{1}\right|, k$ and $\left|\frac{k-z_{1} \bar{z}_{2}}{z_{1}-k z_{2}}\right|=1$, then (A) $z_{2}=0$ (B) $\left|z_{2}\right|=1$ (C) $\left|z_{2}\right|=4$ (D) $\left|z_{2}\right|<k$

- Watch Video Solution

31. Show that the area of the triangle on the Argand diagram formed by the complex number $z, i z a n d z+i z$ is $\frac{1}{2}|z|^{2}$

- Watch Video Solution

32. Let $z_{1}=6+i$ and $z_{2}=4-3 i$. If z is a complex number such thar $\arg \left(\frac{z-z_{1}}{z_{2}-z}\right)=\frac{\pi}{2}$ then (A) $\mid z-(5-i)=\sqrt{5}$ (B) $\mid z-(5+i)=\sqrt{5}$
(C) $|z-(5-i)|=5$ (D) $|z-(5+i)|=5$

- Watch Video Solution

33. If z_{1} and \bar{z}_{1} represent adjacent vertices of a regular polygon of n sides where centre is origin and if $\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}=\sqrt{2}-1$, then n is equal to: (A) 8 (B) 16 (C) 24 (D) 32

- Watch Video Solution

34. Let z_{1} and z_{2} be complex numbers of such that $z_{1} \neq z_{2}$ and $\left|z_{1}\right|=\left|z_{2}\right| . I f z_{1}$ has positive real part and z_{2} has negative imginary part, then which of the following statemernts are correct for te vaue of $\frac{z_{1}+z_{2}}{z_{1}-z_{2}}$ (A) O (B) real and positive (C) real and negative (D) purely imaginary
35. Let the complex numbers z of the form $x+i y$ satisfy arg $\left(\frac{3 z-6-3 i}{2 z-8-6 i}\right)=\frac{\pi}{4}$ and $|z-3+i|=3$. Then the ordered pairs
(x, y) are (A) $\left(4-\frac{4}{\sqrt{5}}, 1+\frac{2}{\sqrt{5}}\right)$ (B) $\left(4+\frac{5}{\sqrt{5}}, 1-\frac{2}{\sqrt{5}}\right)$
$(6-1)$ (D) $(0,1)$

- Watch Video Solution

36. If $z_{1}=a+i b$ and $z_{2}=c+i d$ are complex numbes such that $\left|z_{1}\right|=\left|z_{2}\right|=1$ and $\operatorname{Re}\left(z_{1} \bar{z}_{2}\right)=0$ then the pair of complex numbers $\omega_{1}=a+i c$ and $\omega_{2}=b+i d$ satisfy which of the following relations?
(A) $\left|\omega_{1}\right|=1$
(B) $\left|\omega_{2}\right|=1$
(C) $\operatorname{Re}\left(\omega_{1} \bar{\omega}_{2}\right)=0$ (D) $\operatorname{Im}\left(\omega_{1} \bar{\omega}_{2}\right)=0$

- Watch Video Solution

37. If z_{1}, z_{2}, z_{3} are non zero non collinear complex number such that $\frac{2}{z_{1}}=\frac{1}{z_{2}}+\frac{1}{z_{3}}$, then (A) ponts z_{1}, z_{2}, z_{3} form and equilateral triangle
(B) points z_{1}, z_{2}, z_{3} lies on a circle (C) z_{1}, z_{2}, z_{3} and origin are concylic (D)
$z_{1}+z_{2}+z_{3}=0$

- Watch Video Solution

38. If $\sin \alpha+\sin \beta+\sin \gamma=\cos \alpha+\cos \beta+\cos \gamma=0, \quad$ then (A) $\cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma=3 \cos (\alpha+\beta+\gamma)$
$\cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma=0 \quad$ (C) $\quad \sin 3 \alpha+\sin 3 \beta+\sin 3 \gamma=0$
$\sin 3 \alpha+\sin 3 \beta+\sin 3 \gamma=3 \sin (\alpha+\beta+\gamma)$

- Watch Video Solution

39. $\frac{z_{2}}{z_{1}}=$ (A) $e^{i \theta} \cos \theta$ (B) $e^{i \theta} \cos 2 \theta$ (C) $e^{-i \theta} \cos \theta$ (D) $e^{2 i \theta} \cos 2 \theta$

- Watch Video Solution

40. $\frac{z_{1}}{z_{2}}=$ (A) $\cos 2 \theta e^{2 i \theta 0}$ (B) $\sec 2 \theta e^{-2} i \theta$) (C) $\cos ^{2} \theta e^{2 i \theta}$ (D) $\sec ^{2} \theta e^{-2 i \theta 0}$
41. $\frac{z_{3}^{2}}{z_{1} \cdot z_{2}}=$ (A) $\sec ^{2} \cdot \cos 2 \theta$
(B) $\cos \theta \cdot \sec ^{22} \theta \quad$ (C) $\cos ^{2} \theta \cdot \sec 2 \theta$
(D) $\sec \theta \cdot \sec ^{22} \theta$

- Watch Video Solution

42. Which of the following is (are) correct?
$\bar{a} z_{1}+a \bar{z}_{1}-\bar{a} z_{2}-a \bar{z}_{2}=0$
(B) $\bar{a} z_{1}+a \bar{z}_{1}+\bar{a} z_{2}+a \bar{z}_{2}=-b$
$\bar{a} z_{1}+a \bar{z}_{1}+\bar{a} z_{2}+a \bar{z}_{2}=2 b(\mathrm{D}) \bar{a} z_{1}+a \bar{z}_{1}+\bar{a} z_{2}+a \bar{z}_{2}=-2 b$

- Watch Video Solution

43. Which of the following is (are) correct? (A) $\overline{z_{1}-z_{2}}-a\left(\bar{z}_{1}-\bar{z}_{2}\right)=0$
(B) $\quad \bar{z}_{1}-z_{2}+a\left(\bar{z}_{1}-\bar{z}_{2}\right)=0$
(C) $\overline{z_{1}-z_{2}}+a\left(\bar{z}_{1}-\bar{z}_{2}\right)=-b$
$\overline{z_{1}-z_{2}}+a\left(\bar{z}_{1}-\bar{z}_{2}\right)=-b$

D Watch Video Solution
44. Which of the following is (are) correct? (A) $\bar{z}_{1}+a \bar{z}_{2}=2 b$

$$
\bar{z}_{1}+a \bar{z}_{2}=b \text { (C) } \bar{z}_{1}+a \bar{z}_{2}=-b \text { (D) } \bar{z}_{1}+a \bar{z}_{2}=-2 b
$$

- Watch Video Solution

45. If $2+z+z^{4}=0$, where z is a complex number then $(A) 1 / 2|\mathrm{t}| z|\mathrm{t}|$ (B) $1 / 2 \mathrm{lt}|\mathrm{z}| \mathrm{t} 1 / 3(C)|\mathrm{z}| \mathrm{ge} 1^{`}(\mathrm{D})$ none of these

- Watch Video Solution

46.

$\left|a_{n}\right|<1 f$ or $n=1,2,3, \ldots$ and $1+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}=0$
then z lies (A) on the circle $|z|=\frac{1}{2}$ (B) inside the circle $|z|=\frac{1}{2}$ outsidethe $\circ \leq|\mathrm{z}|=$ $1 / 2(D)$ onthech or dofthe $\circ \leq|\mathrm{z}|=1 / 2$ cutof fbythel $\in e \operatorname{Re}[(1+\mathrm{i}) \mathrm{z}]=0 `$

- Watch Video Solution

$z^{n} \cos t g h \eta_{0}+z^{n-1} \cos \theta_{1}+z^{n-2} \cos \theta_{2}+\ldots+\cos \theta_{n}=2$,
$\theta_{0}, \theta_{1}, \theta_{2}, \ldots \ldots . \theta_{n} \varepsilon R$ lie (A) on the line $\operatorname{Re}[(3+4 i) z]=0$ (B) inside the circel $|z|=\frac{1}{2}$ (C) outside the circle $|z|=\frac{1}{2}$ (D) on the circle $|z|=\frac{1}{2}$

- Watch Video Solution

48. If $f(x)=x^{4}-8 x^{3}+4 x^{2}+4 x+39$ and $f(3-2 i)=a+i b$, then the vaue of a.b is

- Watch Video Solution

49. if $\omega a n d \omega^{2}$ are the nonreal cube roots of unity and $[1 /(a+\omega)]+[1 /(b+\omega)]+[1 /(c+\omega)]=2 \omega^{2} \quad$ and $\left[1 /(a+\omega)^{2}\right]+\left[1 /(b+\omega)^{2}\right]+\left[1 /(c+\omega)^{2}\right]=2 \omega$, then find the value of $[1 /(a+1)]+[1 /(b+1)]+[1 /(c+1)]$.
50. Given that the complex numbers which satisfy the equation $\left|z z^{3}\right|+\left|z z^{3}\right|=350$ form a rectangle in the Argand plane with the length of its diagonal having an integral number of units, then area of rectangle is 48 sq. units if $z_{1}, z_{2}, z_{3}, z_{4}$ are vertices of rectangle, then $z_{1}+z_{2}+z_{3}+z_{4}=0$ rectangle is symmetrical about the real axis $\arg \left(z_{1}-z_{3}\right)=\frac{\pi}{4}$ or $\frac{3 \pi}{4}$

- Watch Video Solution

Exercise

1. Put the following in the form $A+i B: \frac{(\cos x+i \sin x)(\cos y+i \sin y)}{(\cot u+i)(1+i \tan v)}$

- Watch Video Solution

2. If the expression $\frac{\sin \left(\frac{x}{2}\right)+\cos \left(\frac{x}{2}\right)-i \tan \left(\frac{x}{2}\right)}{1+2 i \sin \left(\frac{x}{2}\right)}$ is real, the find the

(D) Watch Video Solution

3. IF $a \geq 1$, find all complex numbers z satisfying the equation $z+a|z+1|+i=0$

- Watch Video Solution

4. ω is an imaginary root of unity. Prove that If $a+b+c=0$, then prove that $\left(a+b \omega+c \omega^{2}\right)^{3}+\left(a+b \omega^{2}+c \omega^{\square}\right)^{3}=27 a b$.

- Watch Video Solution

5. Find the integral solutions of the following equation: $(3+4 i)^{x}=5^{\frac{x}{2}}$

- Watch Video Solution

6. Find the number of non-zero integral solutions of the equation $|1-i|^{x}=2^{x}$.

Watch Video Solution

7. Find the integral solutions of the following equation: $(1-i)^{x}=(1+i)^{x}$

- Watch Video Solution

8. Let $\left|\frac{\bar{z}_{1}-2 \bar{z}_{2}}{2-z_{1} \bar{z}_{2}}\right|=1$ and $\left|z_{2}\right| \neq 1$ where z_{1} and $z_{2} \quad$ are complex numbers show that $\left|z_{1}\right|=2$

- Watch Video Solution

9. if $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are complex numbers such that $a+b+c=0$ and $|a|=|b|=|c|=1$ find the value of $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$
10. Show that for any two non zero complex numbers z_{1}, z_{2}
$\left(\left|z_{1}\right|+\left|z_{2}\right|\right)\left|\frac{z_{1}}{\left|z_{1}\right|}+\frac{z_{2}}{\left|z_{2}\right|}\right| \leq 2\left|z_{1}+z_{2}\right|$

- Watch Video Solution

11. Prove that $\left|\frac{z-1}{1-\bar{z}}\right|=1$ where z is as complex number.

- Watch Video Solution

12. Solve the equation $x^{4}-4 x^{2}+8 x+35=0$ gine that one of roots is $2+\sqrt{-3}$

- Watch Video Solution

13. If z_{1}, z_{2}, z_{3} be the vertices of an equilateral triangle, show that $\frac{1}{z_{1}-z_{2}}+\frac{1}{z_{2}-z_{3}}+\frac{1}{z_{3}-z_{1}}=0$ or $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}$

- Watch Video Solution

14. The complex numbers $z=x+i y$ which satisfy the equation $\left|\frac{z-5 i}{z+5 i}\right|=1$ lie on (a) The x-axis (b) The straight line $y=5$ (c) A circle passing through the origin (d) Non of these

- Watch Video Solution

15. If $\left|z^{2}-1\right|=|z|^{2}+1$ shwo that the locus of z is as straight line.

- Watch Video Solution

16. If $\log _{\sqrt{3}}\left|\frac{|z|^{2}-|z|+1 \mid}{|z|+2}\right|<2$ then locus of z is

- Watch Video Solution

17. Three points represented by the complex numbers a,b,c lie on a circle with centre 0 and rdius r. The tangent at C cuts the chord joining the points a, b and z. Show that $z=\frac{a^{-1}+b^{-1}-2 c^{-1}}{a^{-1} b^{1}-c^{2}}$

- Watch Video Solution

18. Show that $\left(\frac{1+\cos \phi+i \sin \phi}{1+\cos \phi-i \sin \phi}\right)^{n}=\cos \phi n \phi+i \sin n \phi$

- Watch Video Solution

19. Show that the roots of equation
$(1+z)^{n}=(1-z)^{n} \operatorname{arei} \frac{\tan (r \pi)}{n}, r=0,1,2,, \ldots \ldots \ldots,(n-1)$
excluding the vlaue when n is even and $r=\frac{n}{2}$

- Watch Video Solution

20. The least positive integer n for which $\left(\frac{i-1}{i+1}\right)^{n}$ is a real number is (A) 2 (B) 3 (C) 4 (D) 5

- Watch Video Solution

21. $\sum_{k=1}^{6}\left(\sin , \frac{2 \pi k}{7}-i \cos , \frac{2 \pi k}{7}\right)=$?

- Watch Video Solution

22. For any integer n , the argument of $\frac{(\sqrt{3}+i)^{4 n+1}}{(1-i \sqrt{3})^{4 n}}$

- Watch Video Solution

23. Values of $(1-i \sqrt{3})^{\frac{1}{3}}$ is (are) (A) $2^{\frac{1}{3}}\left(\cos 20^{\circ}+i \sin 20^{\circ}\right)$
$2^{\frac{1}{3}}\left(\cos 20^{\circ}-i \sin 20^{\circ}\right)$
(C) $\quad 2^{\frac{1}{3}}\left(\cos 100^{0}+i \sin 100^{\circ}\right)(D) 2^{\wedge}(1 / 3)$
$\left(\cos 220^{\wedge} 0+i \sin 220^{\wedge} 0\right)^{\wedge}$
24. The complex numbers z_{1}, z_{2} and the origin form an equilateral triangle only if (A) $z_{1}^{2}+z_{2}^{2}-z_{1} z_{2}=0 \quad$ (B) $z_{1}+z_{2}=z_{1} z_{2}$
$z_{1}^{2}-z_{2}^{2}=z_{1} z_{2}$ (D) none of these

- Watch Video Solution

25. for any complex nuber z maximum value of $|z|-|z-1|$ is (A) 0 (B) $\frac{1}{2}$
(C) 1 (D) $\frac{3}{2}$

- Watch Video Solution

26. $\left(\frac{1+i}{\sqrt{2}}\right)^{8}+\left(\frac{1-i}{\sqrt{2}}\right)^{8}$ is equal to

- Watch Video Solution

27. The argument of $\frac{1-i \sqrt{3}}{1+i \sqrt{3}}$ is 60° b. 120° c. 210° d. 240°

- Watch Video Solution

28. Which of the following is not correct? (A) $|7+i|>|5+i|$
$|7+i|>|7-i|$
(C) $|7+2 i|>|7+i|$
(D) none of these

- Watch Video Solution

29. If Z is a complex number the radius of $z \bar{z}-(2+3 i) z-(2-3 i) \bar{z}+9=0$ is equal to

- Watch Video Solution

30. The polynomial $x^{6}+4 x^{5}+3 x 64+2 x^{3}+x+1$ is divisible by \qquad where w is the cube root of units $x+\omega$ b. $x+\omega^{2}$ c. $(x+\omega)\left(x+\omega^{2}\right)$ d. $(x-\omega)\left(x-\omega^{2}\right)$ where ω is one of the imaginary cube roots of unity.

(Watch Video Solution

31. In Argand diagram, $\mathrm{O}, \mathrm{P}, \mathrm{Q}$ represent the origin, z and $\mathrm{z}+\mathrm{iz}$ respectively then $\angle O P Q=$

- Watch Video Solution

32. If $z(\neq-1)$ is a complex number such that $\frac{z-1}{z+1}$ is purely imaginary, then $|z|$ is equal to

- Watch Video Solution

33. The value of $(\sin \theta+i \cos \theta)^{n}$ is (A) $\sin n \theta+i \cos n \theta$
$\cos n \theta-i \sin n \theta$ (C) $\cos \left(\frac{n \pi}{2}-n \theta\right)+i s \sin \left(\frac{n \pi}{2}-n \theta\right)$ (D) none of these

- Watch Video Solution

35. $|z-i|<|z+i|$ represents the region (A) $\operatorname{Re}(z)>0$ (B) $\operatorname{Re}(z)<0$ (C) $\operatorname{Im}(z)>0$ (D) $\operatorname{Im}(z)<0$

- Watch Video Solution

36. The points representing complex numbers z for which $|z-3|=|z-5|$ lie on the locus given by (A) circle (B) ellipse (C) straight line (D) none of these

- Watch Video Solution

37. $|z-4|<|z-2|$ represents the region given by: (a) $\operatorname{Re}(z)>0$ (b) $\operatorname{Re}(z)<0$ (c) $\operatorname{Re}(z)>3$ (d) None of these

- Watch Video Solution

38. if $1, \omega, \omega^{2}, \ldots \ldots \ldots \ldots . \omega^{n-1}$ are nth roots of unity, then $(1-\omega)\left(1-\omega^{2}\right) \ldots \ldots .\left(1-\omega^{n-1}\right)$ equal to

- Watch Video Solution

39. If $1, \alpha_{1}, \alpha_{2}, \ldots \alpha_{n-1}$ be nth roots of unity then $\left(1+\alpha_{1}\right)\left(1+\alpha_{2}\right) \ldots \ldots \ldots\left(1+\alpha_{n-1}\right)=$ (A) 0 or 1 according as n is even or odd (B) 0 or 1 according as n is odd or even (C) $n(D)-n$

- Watch Video Solution

40. If ω be a nth root of unity, then $1+\omega+\omega^{2}+\ldots .+\omega^{n-1}$ is (a) O (B) 1 (C) -1 (D) 2

Watch Video Solution

41. If $|z|=2$ and locus of $5 z-1$ is the circle having radius a and $z_{1}^{2}+z_{2}^{2}-2 z_{1} z_{2} \cos \theta=0$, then $\left|z_{1}\right|:\left|z_{2}\right|=$ (A) a (B) 2 a (C) $\frac{a}{10}$ (D) none of these

- Watch Video Solution

42. If $|z-4+3 i| \leq 1$ and m and n be the least and greatest values of $|z|$ and K be the least value of $\frac{x^{4}+x^{2}+4}{x}$ on the interval $(0, \infty)$, then $K=$

- Watch Video Solution

43. If $a \hat{i}+b \hat{j}+c \hat{k}$ be a unit vector and z is a comple number such that
$(1+a) z=b+i c$, then $\frac{1-i z}{1+z}$
(A) $\frac{a+i b}{1+z}$
(B) $\frac{1+c}{a+i b}$
$(a+i b)(1+c)$ (D) none of these

- Watch Video Solution

44. If for complex numbers z_{1} and $z_{2},\left|z_{1}+z_{2}\right|=\left|z_{1}\right|=\left|z_{2}\right|$ then $\arg z_{1}-\arg z_{2}=(\mathrm{A})$ an even multiple of $\pi(\mathrm{B})$ an odd multiple of π (C) an odd multiple of $\frac{\pi}{2}$ (D) none of these

- Watch Video Solution

45. Number of solutions of $\operatorname{Re}\left(z^{2}\right)=0$ and $|z|=r \sqrt{2}$ where z is a complex number and $r>0$ is (A) 2 (B) 4 (C) 5 (D) none of these

- Watch Video Solution

46. If ω is an imaginary fifth root of unity, then find the value of $l o e_{2}\left|1+\omega+\omega^{2}+\omega^{3}-1 / \omega\right|$.

Watch Video Solution

47. If z is a unimodular number $(\neq \pm i)$ then $\frac{z+i}{z-i}$ is (A) purely real (B) purely imaginary (C) an imaginary number which is not purely imaginary
(D) both purely real and purely imaginary

- Watch Video Solution

48. The locus of the complex number z satisfying the inequaliyt $\log _{\frac{1}{\sqrt{2}}}\left(\frac{|z-1|+6}{2|z-1|-1}\right)>1\left(2 w h e r e|z-1| \neq \frac{1}{2}\right)$ is (A) a circle interior of a circle (C) exterior of circle (D) none of these

- Watch Video Solution

49. The number of complex numbers z satisfying $|z-3-i|=|z-9-i| a n d|z-3+3 i|=3$ are a. one b. two c. four d. none of these

- Watch Video Solution

50. If $|\mathrm{z}|=$ maximum $\{|z+2|,|z-2|\}$, then $(A)|z-\bar{z}|=1 / 2(B)|z+\bar{z}|=4(C)$ $|z+\bar{z}|=1 / 2(D) \mid z-\bar{z}=2$

- Watch Video Solution

51. If z_{1} and z_{2} are complex numbers such that $\left|z_{1}-z_{2}\right|=\left|z_{1}+z_{2}\right|$ and A and B re the points representing z_{1} and z_{2} then the orthocentre of $\triangle O A B$, where O is the origin is (A) $\frac{z_{1}+z_{2}}{2}$ (B) O (C) $\frac{z_{1}-z_{2}}{2}$ (D) none of these

- Watch Video Solution

52. If α is an imaginary root of $z^{n}-1=0$ then $1+\alpha+\alpha^{2}+\ldots \ldots \ldots+\alpha^{n-1}=$ (A) 1 (B) -1 (C) 0 (D) 2

- Watch Video Solution

53. If $\left|z^{2}-3\right|=3|z|$, then the maximum value of $|z|$ is 1 b . $\frac{3+\sqrt{21}}{2} \mathrm{c}$. $\frac{\sqrt{21}-3}{2} d$. none of these

- Watch Video Solution

54. If the maximum value of $|3 z+9-7 i|$ if $|z+2-i|=5$ is 5 K , then find k

Watch Video Solution

55. Let $P \equiv \sqrt{3} e^{i \frac{\pi}{3}}, Q \equiv \sqrt{3} e^{-\frac{\pi}{3}}$ and $R \equiv \sqrt{3} e^{-i \pi}$. If $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ form a triangle $P Q R$ in the Argand plane, then $\triangle P Q R$ is (A) isosceles (B) equilateral (C) scalene (D) none of these

Watch Video Solution

56. $\left.||z| \geq 5$ then the least value of $| z+\frac{2}{z} \right\rvert\,$ is (A) $\frac{23}{5}$ (B) $\frac{24}{5}$ (C) 5 (D) none of these

Watch Video Solution

57. If $\operatorname{Re}\left(\frac{2 z+1}{i z+1}\right)=1$, the the locus of the point representing z in the complex plane is a (A) straight line (B) circle (C) parabola (D) none of these

- Watch Video Solution

58. $|z-4|+|z+4|=16$ where z is as complex number ,tehn locus of z is (A) a circle (B) a straight line (C) a parabola (D) none of these
59. $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the point representing the complex numbers z_{1}, z_{2}, z_{3} respectively on the complex plane and the circumcentre of the triangle ABC lies at the origin. If the altitude of the triangle through the vertex A meets the circumcircel again at P, then prove that P represents the complex number $-\frac{z_{2} z_{3}}{z_{1}}$

- Watch Video Solution

60. The points, $z_{1}, z_{2}, z_{3}, z_{4}$, in the complex plane are the vartices of a parallelogram taken in order, if and only if $z_{1}+z_{4}=z_{2}+z_{3}$ $z_{1}+z_{3}=z_{2}+z_{4} z_{1}+z_{2}=z_{3}+z_{4}$ (d) None of these

- Watch Video Solution

61. If all the roots of $z^{3}-a z^{2}+b z+c=0$ are of unit modulus, then (A) $|3-4 i+b|>8$ (B) $|c| \geq 3$ (C) $|3-4 i+a| \leq 8$ (D) none of these

- Watch Video Solution

62.

$a=z_{1}+z_{2}+z_{3}, b=z_{1}+\omega z_{2}+\omega^{2} z_{3}, c=z_{1}+\omega^{2} z_{2}+\omega z_{3}\left(1, \omega, \omega^{2}\right.$ are cube roots of unity), then the value of z_{2} in terms of a, b, and c is (A)
$\frac{a \omega^{2}+b \omega+c}{3}$
(B) $\frac{a \omega^{2}+b \omega^{2}+c}{3}$
(C) $\frac{a+b+c}{3}$
(D) $\frac{a+b \omega^{2}+c \omega}{3}$

- Watch Video Solution

63. $z=x+i y$ satisfies $\arg (z+2)=\arg (z+i)$ then
$x+2 y+1=0$
(B) $x+2 y+2=0$
(C) $\quad x-2 y+1=0$
$x-2 y-2=0$

- Watch Video Solution

64. The points $A\left(z_{1}\right), B\left(z_{2}\right)$ and $C\left(z_{3}\right)$ form an isosceles triangle in the Argand plane right angled at B , then $\frac{z_{1}-z_{2}}{z_{3}-z_{2}}$ can be (A) 1 (B) -1 (C) $-i$ (D) none of these
65. The number of solutions of $\sqrt{2}|z-1|=z-i$, wherez $=x+i y$ is
(A) 0 (B) 1 (C) 2 (D) 3

Watch Video Solution

66. If $|2 z-1|=|z-2|$ and z_{1}, z_{2}, z_{3} are complex numbrs such that $\left|z_{1}-\alpha\right|<\alpha,\left|z_{2}-\beta\right|<\beta$. Then $\left.\frac{z_{1}+z_{2}}{\alpha+\beta} \right\rvert\,=$ (A) $<|z|$ (B) $<2|z|$ (C) $>|z|$ (D) $>2|z|$
A. $<|z|$
B. null
C. null
D. null

Answer: null

- Watch Video Solution

67. if $1, \alpha_{1}, \alpha_{2}, \ldots \ldots \alpha_{3 n}$ be the roots of equation $x^{3 n+1}-1=0$ and omega be an imaginary cube root of unilty then $\frac{\left(\omega^{2}-\alpha_{1}\right)\left(\omega^{2}-\alpha\right) \cdot\left(\omega^{2}-\alpha(3 n)\right)}{\left(\omega-\alpha_{1}\right)\left(\omega-\alpha_{2}\right) \ldots \ldots\left(\omega-\alpha_{3 n}\right)}=$ (A) ω (B) $-\omega$ (C) 1 (D) ω^{2}

- Watch Video Solution

68. If α and β are two fixed complex numbers, then the equation $z=a \alpha+(1-a) \beta$, whereaع R represents in the Argand plane (A) a straight line passsing through α and β (B) a straight line passing through α but not through β (C) a striaght line passing through β but not through α (D) a straight line passing neighter through α not or through β

- Watch Video Solution

69. If $\left|\begin{array}{ccc}x^{2}+x & x-1 & x+1 \\ x & 2 x & 3 x-1 \\ 4 x+1 & x-2 & x+2\end{array}\right|=p x^{4}+q x^{3}+r x^{2}+s x+t$ be n
identity in x and ω be an imaginary cube root of unity,
$\frac{a+b \omega+c \omega^{2}}{c+a \omega+b \omega^{2}}+\frac{a+b \omega+c \omega^{2}}{b+c \omega+a \omega^{2}}=$ (A) p (B) $2 p$ (C) $-2 p$ (D) $-p$

- Watch Video Solution

70. If $z_{1}, z_{2}, z_{3}, z_{4}$ be the vertices of a quadrilaterla taken in order such that $\quad z_{1}+z_{2}=z_{2}+z_{3}$ and $\left|z_{1}-z_{3}\right|=\left|z_{2}-z_{4}\right| \quad$ then \quad arg
$\left(\frac{z_{1}-z_{2}}{z_{3}-z_{2}}\right)=$ (A) $\frac{\pi}{2}$ (
(B) $\pm \frac{\pi}{2}$
(C) $\frac{\pi}{3}$ (D) $\frac{\pi}{6}$

- Watch Video Solution

71. If z_{1}, z_{2}, z_{3} be the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively of triangle ABC such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$ and $\left|z_{1}+z_{2}\right|=\left|z_{1}-z_{2}\right|$ then $\mathrm{C}=$ (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{6}$
(D) $\frac{\pi}{4}$

- Watch Video Solution

72. If z_{1}, z_{2}, z_{3} be the vertices of a triangle ABC such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$ and $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$,
$\left|\arg ,\left(\frac{z_{3}-z_{1}}{z_{3}-z_{2}}\right)\right|=$ (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{4}$

- Watch Video Solution

73. If $\sec ^{-1}\left(\frac{z-2}{i}\right)$ lies between 0 and $\frac{\pi}{2}$, where $z=x+i y$ then (A) $x>2, y>1$ (B) $x=2, y>1$ (C) $x=2, y=1$ (D) $x<2, y=1$

- Watch Video Solution

74. The system of equation $|z-1-i|=\sqrt{2}$ and $|z|=2$ has (A) one solutions (B) two solution (C) three solutions (D) none of these

- Watch Video Solution

75. If $z_{1}, z_{2}, z_{3}, \ldots \ldots \ldots . z_{n-1}$ are the roots of the equation $1+z+z^{2}+\ldots \ldots+z^{n-1}=0$, wheren $\varepsilon N, n>2$ then
$z_{1}, z_{2}, \ldots z_{n-1}$ are terms of a G.P. (B) $z_{1}, z_{2}, \ldots \ldots, z_{n-1}$ are terms of an A.P. (C) $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=.\left|z_{n-1}\right| \neq 1$ (D) none of these

(Watch Video Solution

76. If the greatest valueof $|z|$ such that $|z-3-4 i| \leq a$ is equal to the least value of $\frac{x^{4}+x^{2}+5}{x}$ in $(0, \infty)$ thena $=$ (A) 1 (B) 4 (C) 3 (D) 2

- Watch Video Solution

77. $|z-4|+|z+4|=16$ where z is as complex number ,then locus of z is (A) a circle (B) a straight line (C) a parabola (D) none of these

- Watch Video Solution

78. Let z_{1}, z_{2}, z_{3} be three distinct non zero complex numbers which form an equilateral triangle in the Argand pland. Then the complex number associated with the circumcentre of the tirangle is (A) $\frac{z_{1} z_{2}}{z_{3}}$ (B) $\frac{z_{1} z_{3}}{z_{2}}$ $\frac{z_{1}+z_{2}}{z_{3}}(D) \frac{z_{1}+z_{2}+z_{3}}{3}$
79. If $\sqrt{5-12 i}+\sqrt{5-12 i}=z$, then principal value of $\arg z$ can be $\frac{\pi}{4}$
b. $\frac{\pi}{4}$ c. $\frac{3 \pi}{4}$ d. $-\frac{3 \pi}{4}$

- Watch Video Solution

80. If $z+\sqrt{2}|z+1|+i=0$, then $\mathrm{z}=$ (A) $2+i$ (B) $2-i$ (C) $-2-i$ (D)
$-2+i$

- Watch Video Solution

81. If A and B represent the complex numbers z_{1} and z_{2} such that $\left|z_{1}-z_{2}\right|=\left|z_{1}+z_{2}\right|$, then circumcentre of $\triangle A O B, O$ being the origin is (A) $\frac{z_{1}+2 z_{2}}{3}$ (B) $\frac{z_{1}+z_{2}}{3}$ (C) $\frac{z_{1}+z_{2}}{2}$ (D) $\frac{z_{1}-z_{2}}{3}$

- Watch Video Solution

82. If α and β are complex numbers then the maximum value of $\frac{\alpha \bar{\beta}+\bar{\alpha} \beta}{|\alpha \beta|}=$

Watch Video Solution

83. If $a=\frac{\cos (2 \pi)}{7}+i \frac{\sin (2 \pi)}{7}, \alpha=a+a^{2}+a^{4}, \beta=a^{3}+a^{5}+a^{6}$ then α, β are the roots of the equation

- Watch Video Solution

84. If z_{1}, z_{2}, z_{3} be the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively of an equilateral trilangle on the Argand plane and $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$ then (A) Centroid oif the triangle $A B C$ is the complex number 0 (B) Distance between centroid and orthocentre of the triangle $A B C$ is O (C) Centroid of the tirangle $A B C$ divides the line segment joining circumcentre and orthcentre in the ratio

1:2 (D) Complex number representing the incentre of the triangle $A B C$ is a non zero complex number
85. If $|z-4+3 i| \leq-2$, then the least value of $|z|=$ (A) 2 (B) 3 (C) 4
(D) 5

- Watch Video Solution

86. If $|z|=5$, then the locus of $-1+2 z$ is (A) a circle having center $(2,0)$
(B) a circle having center $(-1,0)$ (C) a circle having radius 5 (D) a circle having radius 9

- Watch Video Solution

87. $|z+3| \leq 3$, then the greatest and least value of $|z+1|$ are

- Watch Video Solution

88. If z_{1} and z_{2} are two complex numbers such that $\left|\left(\bar{z}_{1}-2 \bar{z}_{2}\right)\left(2-z_{1} \bar{z}_{2}\right)\right|=1 \quad$ then \quad (A) $\quad\left|z_{1}\right|=1, \quad$ if $\quad\left|z_{2}\right| \neq 1$
$\left|z_{1}\right|=2, \quad$ if $\quad\left|z_{2}\right| \neq 1$
(C) $\quad\left|z_{2}\right|=2$, if $\left|z_{1}\right| \neq 1$
$\left|z_{2}\right|=1, \quad$ if $\quad\left|z_{1}\right| \neq 2$

- Watch Video Solution

89. If $\left|z-\frac{4}{z}\right|=2$ then the greatest value of $|z|$ is (A) $\sqrt{5}-1$ (B) $\sqrt{5}+1$ (C) $\sqrt{5}$ (D) 2

- Watch Video Solution

90. If z is a complex number different form $\frac{i}{3}$ then locus of z if $\left|\frac{3 z}{3 z-i}\right|=1$ is (A) a straightline paralel to x axis (B) a straight line having slope undefined (C) as straight line having slope 0 (D) a straight line passing through the point $\left(2, \frac{1}{6}\right)$
91. If z_{1} and z_{2} two non zero complex numbers such that $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|$ then which of the following may be true (A) $\arg z_{1}-\arg z_{2}=0$ (B) $\arg z_{1}-\arg z_{2}=\pi$ (C) $\left|z_{1}-z_{2}\right|=\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$ (D) $\arg z_{1}-\arg z_{2}=4 \pi$

- Watch Video Solution

92. The complex numbers $z_{1},=1+2 i, z_{2}=4-2 i$ and $z_{3}=1-6 i$ form the vertices of a (A) a right angled triangle (B) isosceles triangle (C) equilateral triangle (D) triangle whose one of the sides is of length 8

- Watch Video Solution

93. If the vertices of an equilateral triangle are situated at $z=0, z=z_{1}$ and $z=z_{2}$ then which of the following is(are) true? (A)
$\left|z_{1}\right|=\left|z_{2}\right|$
(B) $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$
(C) $\left|z_{1}-z_{2}\right|=\left|z_{1}\right|$
(D) |argz_1- argz_2 $2=\frac{\pi}{3}$
94. If z_{1} and z_{2} are two complex numbers for which

$$
\begin{aligned}
& \left|\left(z_{1}-z_{2}\right)\left(1-z_{1} z_{2}\right)\right|=1 \text { and }\left|z_{2}\right| \neq 1 \text { then (A) }\left|z_{2}\right|=2 \text { (B) }\left|z_{1}\right|=1 \text { (C) } \\
& z_{1}=e^{i \theta} \text { (D) } z_{2}=e^{i \theta}
\end{aligned}
$$

Watch Video Solution

95. If $\sin x+\sin y+\sin z=\cos x+\cos y+\cos z=0$, then (A) $\sin 2 \mathrm{x}+\sin 2 \mathrm{y}+\sin 2 \mathrm{z}=0(B) \cos 2 \mathrm{x}+\cos 2 \mathrm{y}+\cos 2 \mathrm{z}=0(C) \tan \mathrm{x}+\tan \mathrm{y}+\tan \mathrm{z}=0^{`}$ none of these

- Watch Video Solution

96. Find the complex number z satisfying the equations $\left|\frac{z-12}{z-8 i}\right|=\frac{5}{3},\left|\frac{z-4}{z-8}\right|=1$
97. Which of the following are correct for any two complex numbers
z_{1} and z_{2} ? (A) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
(B) $\arg \left(\left|z_{1} z_{2}\right|\right)=\left(\arg z_{1}\right)\left(\arg , z_{2}\right)$
$\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$ (D) $\left|z_{1}-z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$

- Watch Video Solution

98. Values $(s)(-i)^{1 / 3}$ is/are $\frac{\sqrt{3}-i}{2}$
b. $\frac{\sqrt{3}+i}{2}$
c. $\frac{-\sqrt{3}-i}{2} \mathrm{~d}$. $\frac{-\sqrt{3}+i}{2}$

- Watch Video Solution

99. The modulus and the principal asrgumentof the complex nuber $\frac{1-i}{3+i}+4 i$ are (A) modulus $=\sqrt{3} \quad$ (B) modulus $=6$
$\arg =\tan ^{-1}(18)(\mathrm{D}) \arg =t n^{-1}\left(\frac{3}{4}\right)$

- Watch Video Solution

100. Let $A\left(z_{1}\right), B\left(z_{2}\right)$ and $C\left(z_{3}\right)$ be the vertices of an equilateral triangle in the Argand plane such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$. Then (A) $\frac{z_{2}+z_{3}}{2 z_{1}-z_{2}-z_{3}}$ is purely real (B) $\frac{z_{2}-z_{3}}{2 z_{1}-z_{2}-z_{3}}$ is purely imaginary $\left.\left|\arg \left(\frac{z_{1}}{z_{2}}\right)\right|=2 \arg \left(\frac{z_{3}-z_{2}}{z_{1}-z_{2}}\right) \right\rvert\,$ (D) none of these

- Watch Video Solution

101. If a and b are two real number lying between 0 and 1 such that $z_{1}=a+i, z_{2}=1+b i$ and $z_{3}=0$ form anequilateral trilangle, then (A) $a=2+\sqrt{3}$ (B) $b=4-\sqrt{3}$ (C) $a=b=2-\sqrt{3}$ (D) $a=2, b=\sqrt{3}$

- Watch Video Solution

102. If $z_{1}, z_{2}, z_{3}, z_{4}$ be the vertices of a parallelogram taken in anticlockwise direction and $\quad\left|z_{1}-z_{2}\right|=\left|z_{1}-z_{4}\right|$, then
$\sum_{r=1}^{4}(-1)^{r} z_{r}=0$
(b) $z_{1}+z_{2}-z_{3}-z_{4}=0 \quad$ ar $\frac{g\left(z_{4}-z_{2}\right)}{z_{3}-z_{1}}=\frac{\pi}{2}$

None of these
103. If $\left|z_{1}+z_{2}\right|=\left|z_{1}-z_{2}\right|$ and $\left|z_{1}\right|=\left|z_{2}\right|$, then (A) $z_{1}= \pm i z_{2}$
$z_{1}=z_{2}(\mathrm{C}) z_{=}-z_{2}(\mathrm{D}) z_{2}= \pm i z_{1}$

- Watch Video Solution

104. If $|z|=\min (|z-1|,|z+1|\}$, where z is the complex number and f be a one -one function from $\{a, b, c\} \rightarrow\{1,2,3\}$ and $f(a)=1$ is false, $f(b) \neq 1$ is false and $f(c) \neq 2$ is true then $|z+\bar{z}|=$ (A) $f(a)$ (B) $f(c)$ (C) $\frac{1}{2} f(a)$ (D) $f(b)$

- Watch Video Solution

105. If z_{1}, z_{2}, z_{3} are complex numbers such that $\left|z_{1}\right|=z_{2}\left|=\left|z_{3}\right|=\left|z_{1}+z_{2}+z_{3}\right|=1\right.$, then $\left(\left.\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}} \right\rvert\,\right.$ is (A) equal to 1 (B) les than (C) greater than 3 (D) equal to 3
$\left|z_{1}=1,\left|z_{2}\right|=2,\left|z_{3}\right|=3\right.$ and $| z_{1}+z_{2}+z_{3} \mid=1$, then $\mid 9 z_{1} z_{2}+4 z_{3} z_{1}+z_{2}$ is equal to (A) 3 (B) 36 (C) 216 (D) 1296

- Watch Video Solution

107. If $\left|z_{1}\right|=\left|z_{2}\right|=.=\left|z_{n}\right|=1$, then the value of $\left|z_{1}+z_{2}+z_{3}+\ldots+z_{n}\right| \quad$ is equal to (A) 1 (B) $\left.\left|z_{1}\right|+\left|z_{2}\right|+z_{3}\left|+\ldots \ldots+\left|z_{n}\right|\right.$ (C) $| \frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}+\ldots \ldots \ldots+\frac{1}{z_{n}} \right\rvert\,$ (D) n

- Watch Video Solution

108. If $\left|z-\frac{4}{z}\right|=2$ then the greatest value of $|z|$ is (A) $\sqrt{5}-1$
$\sqrt{5}+1$ (C) $\sqrt{5}$ (D) 2
109. If $\left|z-\frac{4}{2} z\right|=2$ then the least of $|z|$ is (A) $\left.\sqrt{)} 5\right)=-1$ (B) $\sqrt{5}-2$ (C) $\sqrt{5}$ (D) 2

- Watch Video Solution

110. If $|z-4+3 i| \leq 2$ then the complex number z for which $|z|$ is minimum is (A) $\frac{12}{5}+\frac{9}{5} i$ (B) $\frac{9}{5}-\frac{12}{5} i$ (C) $\frac{12}{5}-\frac{9}{5} i$ (D) $-\frac{12}{5}+\frac{9}{5} i$

- Watch Video Solution

111. Which of the gien statement(s) is (are) true? (A) $A \subseteq B$
$A=B=\phi(\mathrm{C}) A \cap B \neq \phi$ (D) $B \subseteq A$

- Watch Video Solution

112. Let $z_{1} \varepsilon A$ and $z_{2} \varepsilon B$ then the value of $\left|z_{1}-z_{2}\right|$ necessarily lies between (A) 3 and 15 (B) 0 and 22 (C) 2 and 22 (D) 4 and 14

(D) Watch Video Solution

113. If $C=\{z: \operatorname{Re}[(3+4 i) z]=0\}$ thenthe number of elements in the set $B \cap C$ is (A) 0 (B) 1 (C) 2 (D) none of these

- Watch Video Solution

114. If $|z-4+3 i| \leq 3$, then the least value of $|z|=$ (A) 2 (B) 3 (C) 4 (D)

- Watch Video Solution

115. If $|z-25 i| \leq 15$ then least positive value of $\operatorname{argz}=$ (A) $\pi-\tan ^{-1}\left(\frac{3}{4}\right)$ (B) $\tan ^{-1}\left(\frac{3}{4}\right)$ (C) $\tan ^{-1}\left(\frac{4}{3}\right)$ (D) $\pi-\tan ^{-1}\left(\frac{4}{3}\right)$

- Watch Video Solution

116. If $|z|<1$, then $1+2 z$ lies (A) on or inside circle having center at origin and radius 2 (B) outside the circle having center at origin and radius 2 (C) inside the circle having center at (1,0) and radius 2 (D) outside the circle having center at (1,0) and radius 2 .

- Watch Video Solution

117. If the complex numbers z_{1}, z_{2}, z_{3} represents the vertices of a triangle ABC, where z_{1}, z_{2}, z_{3} are the roots of equation $z^{3}+3 \alpha z^{2}+3 \alpha z^{2}+3 \beta z+\gamma=0, \alpha, \beta, \gamma$ beng complex numbers and $\alpha^{2}=\beta$ then $\triangle A B C$ is (A) equilateral (B) right angled (C) isosceles but not equilateral (D) scalene

- Watch Video Solution

118. If a and b are two real number lying between 0 and 1 such that $z_{1}=a+i, z_{2}=1+b i$ and $z_{3}=0$ form an equilateral triangle, then
(A) $a=2+\sqrt{3}$
(B) $b=4-\sqrt{3}$
(C) $a=b=2-\sqrt{3}$
$\sqrt{3}$ (D) $a=2, b=\sqrt{3}$

(D) Watch Video Solution

119. Let the complex numbers z_{1}, z_{2} and z_{3} be the vertices of a equilateral triangle. Let z_{0} be the circumcentre of the tringel ,then
$z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=(\mathrm{A}) z_{0}^{2}(\mathrm{~B}$
(B) $3 z_{0}^{2}$
(C) $9 z_{0}^{2}$ (D) 0

- Watch Video Solution

120. If the complex number z_{1}, z_{2} and z_{3} represent the vertices of an equilateral triangle inscribed in the circle $|z|=2$ and $z_{1}=1+i \sqrt{3}$ then (A) $z_{2}=1, z_{3}=1-i \sqrt{3}$
(B) $z_{2}=1-i \sqrt{3}, z_{3}=-i \sqrt{3}$
$z_{2}=1-i \sqrt{3}, z_{3}=-1+i \sqrt{3}$ (D) $z_{2}=, z_{3}=1-i \sqrt{3}$

- Watch Video Solution

121. The locus of the centre of a variable circle touching circle $|z|=5$ internally and circle $|z-4|=1$ externally is (A) a parabola (B) a hyperbola (C) an ellipse (D) none of these

(Watch Video Solution

122. Locus of the centre of the circle touching circles $|z|=3$ and $|z-4|=1$ externally is (A) a parabola (B) a hyperbola (C) an ellipse (D) none of these

D Watch Video Solution

123. Locus the centre of the variable circle touching $|z-4|=1$ and the line $\operatorname{Re}(z)=0$ when the two circles on the same side of the line is (A) a parabola (B) an ellipse (C) a hyperbola (D) none of these

- Watch Video Solution

124. If $|z-1|+|z+3| \leq 8$, then the maximum, value of $|z-4| i s=$

- Watch Video Solution

125. If z_{1}, z_{2}, z_{3} are three points lying on the circle $|z|=2$ then the minimum value of the expression $\left|z_{1}+z_{2}\right|^{2}+\left|z_{2}+z_{3}\right|^{2}+\left|z_{3}+z_{1}\right|^{2}=$

- Watch Video Solution

126. If z_{1} and \bar{z}_{1} represent adjacent vertices of a regular polygon of n sides where centre is origin and if $\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}=\sqrt{2}-1$, then n is equal to: (A) 8 (B) 16 (C) 24 (D) 32

- Watch Video Solution

127. The | value |
| :---: |
| Th | of the expression

$2^{199} \sin \left(\frac{\pi}{199}\right) \sin \left(\frac{2 \pi}{199}\right) \sin \left(\frac{3 \pi}{199}\right)$

- Watch Video Solution

128. If $\frac{1}{a+\omega}+\frac{1}{b+\omega}+\frac{1}{c+\omega}+\frac{1}{d+\omega}=\frac{1}{\omega}$
$a, b, c, d \in R$ and ω is cube root of unity then show that $\sum \frac{1}{a^{2}-a+1}=1$.

- Watch Video Solution

129. If $\quad x=2+5 i$
(where
$\left.i^{2}=-1\right)$ and $2\left(\frac{1}{1!9!}+\frac{1}{3!7!}\right)+\frac{1}{5!5!}=\frac{2^{a}}{b!}$, then the value of
$\left(x^{3}-5 x^{2}+33 x-19\right)$ is equal to

- Watch Video Solution

130. Let z be a complex number lying on a circle centred at the origin having radius r. If the area of the triangle having vertices as $z, z \omega$ and $z+z \omega$, where omega is an imaginary cube root of unity is $12 \sqrt{3}$ sq. units, then the radius of the circle $r=$

- Watch Video Solution

131. Number of solutons of $\operatorname{Re}\left(z^{2}\right)=0$ and $|z|=r \sqrt{2}$ where z is a complex number and $r>0$ is equal to.

- Watch Video Solution

132. Let z_{1}, z_{2} and origin be the vertices $\mathrm{A}, \mathrm{B}, \mathrm{O}$ respectively of an isosceles triangle OAB , where $\mathrm{OA}=\mathrm{OB}$ and $\angle A O B=2 \theta . I f z_{1}, z_{2}$ are the roots of equation $z^{2}+z+9=0$ then $\sec ^{2} \theta=$

- Watch Video Solution

133. Let the center of the circle represented by $z \bar{z}-(2+3 i) z-(2-3 i) \bar{z}+9=0^{\prime} b e(x, y)$, then the value of $x^{2}+y^{2}+x y$ is

- Watch Video Solution

134. Assertion (A): If $1, \omega, \omega^{2}$ are the cube roots of unity, then roots of equation $(x-2)^{3}-27=0 \operatorname{are} 5,2,+3 \omega, 2+3 \omega^{2}$, Reason (R): If α be one cube root of a number, then its other two cube roots are $\alpha \omega$ and $\alpha \omega^{2}(\mathrm{~A})$ Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

135. Assertion (A): $\arg \mid z_{1}-\arg z_{2}=0, \quad$ Reason: If $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$, then origin z_{1}, z_{2} are colinear and z_{1}, z_{2} lie on the same side of the origin. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

136. Assertion (A): Circumcentre of $\triangle P O Q$ is $\frac{z_{1}+z_{2}}{2}$, Reason (R): Circumcentre of a right triangle is the middle point of the hypotenuse. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not the correct explanation of $A(C) A$ is true but R is false.
(D) A is false but R is true.

- Watch Video Solution

137. If α, β are complex numbers, then maximum value of $\frac{\alpha \bar{\beta}+\bar{\alpha} \beta}{|\alpha \beta|}$ is 2 . Reason (R): For any two complex numbers z_{1} and $z_{2},\left|z_{1}-z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right.$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

(Watch Video Solution

138. Assertion (A): z_{1}, z_{2} and origin form an equilateral triangle if $p^{2}=6 q$ for the equation $z^{2}+p z+q=0$, Reason (R): Triangle having
vertices z_{1}, z_{2}, z_{3} in the Argand plane is equilateral if $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z 3 z_{1}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

139. Assertion (A): Points representing z_{1}, z_{2}, z_{3} are collinear. Reason (R): Three numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P., if $b-a=c-b$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

140. Assertion (A): $\arg z_{1}-\operatorname{artg} z_{2}=0, \quad$ Reason (R): If $\left|z_{1}-z_{2}\right|=\left|z_{1}\right|-\left|z_{2}\right|$ then origin z_{1} and z_{2} are collinear and z_{1} and z_{2} lie on the same side of the origin. (A) Both A and R are true and R is the
correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

141. Assertion (A): $\frac{z}{4-z^{2}}$ lies on y-axis. Reason $(R):|z|^{\wedge} 2=z \bar{z}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

142. Assertion (A): $|i z+3-5 i|<8$, Reason(R): For any two complex numbers $z_{1} a \neq d z_{2},\left|z_{1}+z_{2}\right| \geq\left|z_{1}\right|+\left|z_{2}\right|$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.
143. Assertion (A): For any non zero complex numbers $z,|z-|z|| \leq|z| \arg z \mid$ Reason (R): $|\sin \theta| \leq \theta$ for all theta` (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

144. If $\omega(\neq 1)$ is a cube root of unity, and $(1+\omega)^{7}=A+B \omega$. Then (A,
B) equals $(1)(0,1)(2)(1,1)(3)(1,0)(4)(-1,1)$

- Watch Video Solution

145. Let z and ω be two non zero complex numbers such that $|z|=|\omega|$ and $\arg z+\arg \omega=\pi$, then z equals $(A) \omega(B)-\omega(C) \bar{\omega}(D)-\bar{\omega}$
146. Let $z a n d \omega$ be two complex numbers such that $|z| \leq 1,|\omega| \leq 1$ and $|z-i \omega|=|z-i \omega|=2$, thenz equals 1 or i b. i or $-i \mathrm{c} .1$ or $-1 \mathrm{~d} . i$ or -1

- Watch Video Solution

147. If $i z^{3}+z^{2}-z+i=0$, then show that $|z|=1$

- Watch Video Solution

148.

$|z| \leq 1$ and $|\omega| \leq 1$,
show
that
$|z-\omega|^{2} \leq(|z|-|\omega|)^{2}+(\arg z-\arg \omega)^{2}$

- Watch Video Solution

149.

The value
of
the
expression

1. $(2-\omega) \cdot\left(2-\omega^{2}\right)+2 \cdot(3-\omega)\left(3-\omega^{2}\right)+.+(n-1)(n-\omega)\left(n-\omega^{2}\right)$,
where ω is an imaginary cube root of unity, is

- Watch Video Solution

150. For positive integer n_{1}, n_{2} the value of the expression $(1+i)^{n 1}+\left(1+i^{3}\right)^{n 1}\left(1+i^{5}\right)^{n 2}\left(1+i^{7}\right)^{n_{20}}$, where $i=\sqrt{-} 1$, is a real number if and only if (a) $n_{1}=n_{2}+1$ (b) $n_{1}=n_{2}-1$ (c) $n_{1}=n_{2}$ (d) $n_{1}>0, n_{2}>0$

- Watch Video Solution

151. Find all non zero complex numbers z satisfying $\bar{z}=i z^{2}$

- Watch Video Solution

152. Let z_{1} and z_{2} be the root of the equation $z^{2}+p z+q=0$ where the coefficient p and q may be complex numbers. Let A and B represent z_{1} and z_{2} in the complex plane.
$\angle A O B=\alpha \neq 0$ and 0 and $O A=O B$, where O is the origin prove that $p^{2}=4 q \cos ^{2}\left(\frac{\alpha}{2}\right)$

- Watch Video Solution

153. Let $\bar{b} z+b(\bar{z})=c, b \neq 0$ be a line the complex plane, where \bar{b} is the complex conjugate of b . If a point $z_{1} \mathrm{i}$ the reflection of the point z_{2} through the line then show that $c=\bar{z}_{1} b+z_{2} \bar{b}$

- Watch Video Solution

154. If ω is an imaginary cube root of unity, then $\left(1+\omega-\omega^{2}\right)^{7}$ is equal to 128ω (b) $-128 \omega 128 \omega^{2}$ (d) $-128 \omega^{2}$

- Watch Video Solution

155. The value of $\operatorname{sum} \sum_{n=1}^{13}\left(i^{n}+i^{n+1}\right)$, where ei= $\sqrt{-1}$ equals i
$i-1$ (c) $-i$ (d) 0

(Watch Video Solution

156. $x+i y=\left|\begin{array}{ccc}6 i & -3 i & 1 \\ 4 & 3 i & -1 \\ 20 & 3 & i\end{array}\right|$, find x and y .

- Watch Video Solution

157.

If

$$
i=\sqrt{-1} 1,
$$

then
$4+5\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)^{334}+3\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)^{365}$ is equal to (1) $1-i \sqrt{3}$
(2) $-1+i \sqrt{3}$ (3) $i \sqrt{3}$ (4) $-i \sqrt{3}$

- Watch Video Solution

158. For complex numbers z and w, prove that $|z|^{2} w-|w|^{2} z=z-w$, if and only if $z=w$ or $z \bar{w}=1$.

- Watch Video Solution

159. If $\arg (z)<0$, then $\arg (-z)-\arg (z)$ equals $\pi(b)-\pi$ (d) $-\frac{\pi}{2}$
(d) $\frac{\pi}{2}$

- Watch Video Solution

160. If z_{1}, z_{2} and z_{3} are complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}\right|=1$, then $\left|z_{1}+z_{2}+z_{3}\right| \quad$ is
equal to 1 (B) gt1 (C) gt3 (D) equal to 3

- Watch Video Solution

161. Let z_{1} and z_{2} be nth roots of unity which subtend a right angle at the origin. Then n must be of the form (1) $4 k+1$ (2) $4 k+2$ (3) $4 k+3$ (4) $4 k$

- Watch Video Solution

162. The complex numbers $z_{1} z_{2}$ and $z 3$ satisfying $\frac{z_{1}-z_{3}}{z_{2}-z_{3}}=\frac{1-i \sqrt{3}}{2}$ are the vertices of triangle which is (1) of area zero (2) right angled isosceles(3) equilateral (4) obtuse angled isosceles

- Watch Video Solution

163. Let $\omega=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$. Then the value of the determinant $\left|1111-1-\omega^{2} \omega^{2} 1 \omega^{2} \omega^{4}\right|$ is 3ω b. $3 \omega(\omega-1)$ c. $3 \omega^{2}$ d. $3 \omega(1-\omega)$

- Watch Video Solution

164. For all complex numbers z_{1}, z_{2} satisfying
$\left|z_{1}\right|=12$ and $\left|z_{2}-3-4 i\right|=5$ the minimum value of $\left|z_{1}-z_{2}\right|$ is (A) 0
(B) 2 (C) 7 (D) 17

- Watch Video Solution

165. Let a complex number $\alpha, \alpha \neq 1$, be a rootof hte euation $z^{p+q}-z^{p}-z^{q}+1=0$, wherep, q are distinct primes. Show that either $1+\alpha+\alpha^{2}++\alpha^{p-1}=0$ or $1+\alpha+\alpha^{2}++\alpha^{q-1}=0$, but not both together.

- Watch Video Solution

166. If $|z|=1$ and $w=\frac{z-1}{z+1}$ (where $z \neq-1$) then $\operatorname{Re}(w)$ is (A) 0 (B)
$-\frac{1}{|z+1|^{2}}$ (C) $\left|\frac{z}{z+1}\right| \frac{1}{|z+1|^{2}}$ (D) $\frac{\sqrt{2}}{|z+1|^{2}}$

- Watch Video Solution

167. If z_{1} and z_{2} are two complex numbers such that $\left|z_{1}\right|<1<\left|z_{2}\right|$ then prove that $\left|\frac{1-z_{1} \bar{z}_{2}}{z_{1}-z_{2}}\right|<1$

- Watch Video Solution

168. Prove that there exists no complex number z such that $|z|<\frac{1}{3}$ and $\sum_{n=1}^{n} a_{r} z^{r}=1$, where $\left|a_{r}\right|<2$.

- Watch Video Solution

169. If $\omega(\neq 1)$ be an imaginary cube root of unity and $\left(1+\omega^{2}\right)=\left(1+\omega^{4}\right)$, then the least positive value of n is (a) 2 (b) 3 (c) 5 (d) 6

(Watch Video Solution

170. Find the centre and radius of the circle formed by all thepoints represented by $z=x+i y$ satisfying the relation $\left|\frac{z-\alpha}{z-\beta}\right|=k(k \neq 1)$, where α and β are the constant complex numbers given by $\alpha=\alpha_{1}+i \alpha_{2}, \beta=\beta_{1}+i \beta_{2}$.

- Watch Video Solution

171. a, b, c are integers, not all simultaneously equal, and ω is cube root of unity $(\omega \neq 1)$, then minimum value of $\left|a+b \omega+c \omega^{2}\right|$ is 0 b. 1 c. $\frac{\sqrt{3}}{2} \mathrm{~d}$. $\frac{1}{2}$

D Watch Video Solution

172. The shaded region,
where
$P=(-1,0), Q=(-1+\sqrt{2}, \sqrt{2}) R=(-1+\sqrt{2},-\sqrt{2}, S=(1,0)$ is represented by Figure \cline { }$|z+1|>2,|a r g(z+1) 2,|a r g(z+1) \gg p i / 4| z+1| \ll 2, \mid a r$ $g(z+1)>p i / 2^{`}$

(Watch Video Solution

173. If one of the vertices of the square circumscribing the circle $|z-1|=\sqrt{2}$ is $2+\sqrt{3} \iota$. Find the other vertices of square

- Watch Video Solution

174. If $w=\alpha+i \beta$, where $\beta \neq 0$ and $z \neq 1$, satisfies the condition that $\left(\frac{w-w z}{1-z}\right)$ is a purely real, then the set of values of z is $|z|=1, z \neq 2$
(b) $|z|=1$ and $z \neq 1 z=z$ (d) None of these

- Watch Video Solution

175. A man walks a distance of 3 units from the origin towards the NorthEast $\left(N 45^{0} E\right)$ direction.From there, he walks a distance of 4 units towards the North-West $\left(N 45^{0} W\right)$ direction to reach a point P. Then, the position of P in the Argand plane is $3 e^{\frac{i \pi}{4}}+4 i$ (b) $(3-4 i) e^{\frac{i \pi}{4}}$ $(4+3 i) e^{\frac{i \pi}{4}}(\mathrm{~d})(3+4 i) e^{\frac{i \pi}{4}}$

- Watch Video Solution

176. If $|z|=1$ and $z \neq \pm 1$, then all the values of $\frac{z}{1-z^{2}}$ lie on a line not passing through the origin $|z|=\sqrt{2}$ the x -axis (d) the y -axis

- Watch Video Solution

177. A particle P starts from the point $z_{0}=1+2 i$, where $i=\sqrt{-1}$. It moves first horizontally away from origin by 5 units and then vertically away from origin by 3 units to reach a point z_{1}. From z_{1} the particle moves $\sqrt{2}$ units in the direction of the vector $\hat{i}+\hat{j}$ and then it moves through an angle $\frac{\pi}{2}$ in anticlockwise direction on a circle with centre at origin, to reach a point z_{2}. The point z_{2} is given by $6+7 i$ (b) $-7+6 i$ $7+6 i(\mathrm{~d})-6+7 i$

- Watch Video Solution

178. Let $z=\cos \theta+i \sin \theta$. Then , the value of $\sum_{m=1}^{15} \operatorname{Im}\left(z^{2 m-1}\right)$ at $\theta=2^{0}$ is $\frac{1}{\sin 2^{0}}$ (b) $\frac{1}{3 \sin 2^{0}} \frac{1}{2 \sin 2^{0}}$ (d) $\frac{1}{4 \sin 2^{0}}$

- Watch Video Solution

179. Let $z=x+i y$ be a complex number where $x a n d y$ are integers.

Then, the area of the rectangle whose vertices are the roots of the equation $z z^{3}+z z^{3}=350$ is 48 (b) 32 (c) 40 (d) 80

