©゙ doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

CORDINATES AND STARIGHT LINES - FOR COMPETITION

Solved Examples

1. Let S be a square of nit area. Consider any quadrilateral, which has none vertex on each side of S. If a, b, candd denote the lengths of the sides of het quadrilateral, prove that $2 \leq a^{2}+b^{2}+c^{2}+x^{2} \leq 4$.

- Watch Video Solution

2. The distance between two parallel lines is unity. A point P lies between the lines at a distance a from one of them. Find the length of a side of an
equilateral triangle $P Q R$ vertex Q of which lies on one parallel lines and vertex R lies on the other line.

- Watch Video Solution

3. Find the position of point $(4,1)$ after it undergoes the transformations successively : Reflection about the line $y=x-1$

- Watch Video Solution

4. Find the position of point $(4,1)$ after it undergoes the transformations successively : Translation by one unit along x-axis in the positive direction.

- Watch Video Solution

5. Find the position of point $(4,1)$ after it undergoes the transformations successively : Rotation through an angle $\frac{\pi}{4}$ about the origin in the anticlockwise direction.
6. If $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ are the vertices of a $\triangle A B C$ and (x, y) be a point on the internal bisector of angle A, then prove that $: \quad b\left|\begin{array}{ccc}x & y & 1 \\ x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1\end{array}\right|+c\left|\begin{array}{ccc}x & y & 1 \\ x_{1} & y_{1} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=0 \quad$ where $A C=b$ and $A B=c$.

- Watch Video Solution

7. The vertices of a triangle are $A\left(x_{1}, x_{1}, \tan \theta_{1}\right), B\left(x_{2}, x_{2}, \tan \theta_{2}\right)$ and $C\left(x_{3}, x_{3}, \tan \theta_{3}\right)$. If the circumcentre coincides with origin then

- Watch Video Solution

8. P, Q, R are the points of intersection of a line t with sides $B C, C A, A B$ of a $\triangle A B C$ respectively, then $\frac{B P}{P C} \cdot \frac{C O}{Q A} \cdot \frac{A R}{R B}=$
9. If D, E, andF are three points on the sides $B C, A C$, $a n d A B$ of a triangle $A B C$ such that $A D, B E, a n d C F$ are concurrent, then show that $B D x C E x A F x E F x F B$.

- Watch Video Solution

10. $A, B, C, D \ldots$ are n points in a plane whose coordinates are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots A B$ is bisected in the point $G_{1} ; G_{1} C$ is divided at G_{2} in the ratio $1: 2 ; G_{2} D$ is divided at G_{3} in the ratio $1: 3 ; G_{3} E$ at G_{4} in the ratio 1:4, and so on until all the points are exhausted. Shew that the coordinates of the final point so obtained are, $\frac{x_{1}+x_{2}+x_{3}+\ldots \ldots+x_{n}}{n}$ and $\frac{y_{1}+y_{2}+y_{3}+\ldots .+y n}{n}$

- Watch Video Solution

11. If A, B, C, D are points whose coordinats are $(-2,3),(8,9),(0,4)$ and $(3,0)$ respectively, find the ratio in which $A B$
is divided by $C D$.

- Watch Video Solution

12. If the vertices of a triangle have rational coordinates, then prove that the triangle cannot be equilateral.

- Watch Video Solution

13. Prove that that s triangle which has one of the angle as 30° cannot have all vertices with integral coordinates.

- Watch Video Solution

14. The coordinatse of the vertices A, B and C of the triangle $A B C$ taken in anticlockwise order are respectively $\left(x_{4}, y_{r}\right), r=1,2,3$. Prove that the angle A is acute or obtuse according as
$\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)+\left(y_{1}-y_{2}\right)\left(y_{1}-y_{3}\right)>0$ or <0.
15. $A B C$ is a triangle whose medians $A D$ and $B E$ are perpendicular to each other. If $A D=p$ and $B E=q$ then area of $\triangle A B C$ is

- Watch Video Solution

16. Prove that a point can be found which is at the same distance from
each of the four points

$$
\left(a m_{1}, \frac{a}{m_{1}}\right) \cdot\left(a m_{2}, \frac{a}{m_{2}}\right) \cdot\left(a m_{3}, \frac{a}{m_{3}}\right) \operatorname{and}\left(\frac{a}{m_{1} m_{2} m_{3}}, a m_{1} m_{2} m_{3}\right)
$$

- Watch Video Solution

17. If the algebraic sum of perpendiculars from n given points on a variable straight line is zero then prove that the variable straight line passes through a fixed point
18. Find the coordinates of the vertices of a square inscribed in the triangle with vertices $A(0,0), B(2,1)$ and $C(3,0)$, given that two of its vertices are on the side AC'.

- Watch Video Solution

19. If the equal sides $A B$ and $A C$ each of whose length is $2 a$ of a righ aisosceles triangle $A B C$ be produced to P and so that $B P . C Q=A B$, the line $P Q$ always passes through the fixed point

- Watch Video Solution

20. Through the point $P(\alpha, \beta)$, where $\alpha \beta>0$, the straight line $\frac{x}{a}+\frac{y}{b}=1$ is drawn so as to form a triangle of area S with the axes. If $a b>0$, then the least value of S is $\alpha \beta$ (b) $2 \alpha \beta$ (c) $3 \alpha \beta$ (d) none

- Watch Video Solution

21. Let (h, k) be a fixed point, where $h>0, k>0$. A straight line passing through this point cuts the positive direction of the coordinate axes at the point PandQ. Find the minimum area of triangle $O P Q, O$ being the origin.

- Watch Video Solution

22. A straight line through the point $A(-2,-3)$ cuts the line $x+3 y=9$ and $x+y+1=0$ at B and C respectively. Find the equation of the line if $A B . A C=20$.

- Watch Video Solution

23. Show that if any line through the variable point $A(k+1,2 k)$ meets the lines $7 x+y-16=0,5 x-y-8=0, x-5 y+8=0$ at B, C, D, respectively, the $A C, A B$, and $A D$ are in harmonic progression. (The three lines lie on the same side of point A).
24. A line is such that its segment between the lines $5 x-y+4=0$ and $3 x+4 y-4=0$ is bisected at the point (1,5). Obtain its equation.

- Watch Video Solution

25. A variable line L passing through the point $B(2,5)$ intersects the lines $2 x^{2}-5 x y+2 y^{2}=0$ at P and Q . Find the locus of the point R on L such that distances $B P, B R$ and $B Q$ are in harmonic progression.

- Watch Video Solution

26. Consider a curve $a x^{2}+2 h x y+b y^{2}-1=0$ and a point P not on the curve.A line is drawn from the point P intersects the curve at the point Q and R.If the product PQ.PR is independent of the slope of the line, then the curve is:
27. let $A B C$ be a triangle with $A B=A C$. If D is the mid-point of $B C, E$ the foot of the perpendicular drawn from D to $A C, F$ is the mid-point of $D E$. Prove that $A F$ is perpendicular to $B E$.

- Watch Video Solution

28. (1)A triangle formed by the lines $x+y=0, x-y=0$ and $l x+m y=1$. If land m vary subject to the condition $l^{2}+m^{2}=1$ then the locus of the circumcentre of triangle is: (2)The line $x+y=p$ meets the x-axis and y-axis at A and B, respectively. A triangle $A P Q$ is inscribed in triangle $O A B, O$ being the origin, with right angle at $Q . P$ and Q lie, respectively, on $O B$ and $A B$. If the area of triangle $A P Q$ is $\frac{3}{8} t h$ of the area of triangle $O A B$, then $\frac{A Q}{B Q}$ is: equal to

- Watch Video Solution

29. Two consecutive sides of a parallelogram are $4 x+5 y=0$ and
$7 x+2 y=0$. If the equation of one diagonal is $11 x=7 y=9$, find the
equation of the other diagonal.

- Watch Video Solution

30. One diagonal of a square is the portion of the line $7 x+5 y=35$ intercepted by the axes. Obtain the extremities of the other diagonal.

- Watch Video Solution

31. A line $4 x+y=1$ passes through the point $\mathrm{A}(2,7)$ and meets line BC at B whose equation is $3 x-4 y+1=0$, the equation of line $A C$ such that $A B=A C$ is (a) $52 \mathrm{x}+89 \mathrm{y}+519=0(\mathrm{~b}) 52 \mathrm{x}+89 \mathrm{y}-519=0$ c) 82 x $+52 y+519=0$ (d) $89 x+52 y-519=0$

- Watch Video Solution

32. A ray of light is sent along the line $x-2 y-3=0$ upon reaching the line $3 x-2 y-5=0$, the ray is reflected from it. Find the equation of
the line containing the reflected ray.

- Watch Video Solution

33. A man starts from the point $P(-3,4)$ and will reach the point $Q(0,1)$ touching the line $2 x+y=7$ at R . The coordinates R on the line so that he will travel in the shortest distance is

- Watch Video Solution

34. A ray of light is sent along the line $2 x-3 y=5$. After refracting across the line $x+y=1$ it enters the opposite side after torning by 15^{0} away from the line $x+y=1$. Find the equation of the line along which the refracted ray travels.

- Watch Video Solution

35. The equation of two equal sides $A B$ and $A C$ of an isosceies triangle ABC are $x+y=5$ and $7 x-y=3$ respectively Find the equations of the side $B C$ if the area of the triangle of $A B C$ is 5 units

- Watch Video Solution

36. The equation of the side AB and AC of a triangle ABC are $3 x+4 y+9$ and $4 x-3 y+16=0$ respectively. The third side passes through the point $D(5,2)$ such that $B D: D C=4: 5$. Find the equation of the third side.

- Watch Video Solution

37. The equations of two sides of a triangle are $3 x-2 y+6=0$ and $4 x+5 y-20$ and the orthocentre is (1,1). Find the equation of the third side.
38. the equation of perpendicular bisectors of side $A B, B C$ of triangle $A B C$ are $x-y=5, x+2 y=0$ respectively and $A(1,-2)$ then coordinate of C

- Watch Video Solution

39. If the image of the point $\left(x_{1}, y_{1}\right)$ with respect to the mirror $a x+b y+c=0$ be $\left(x_{2}, y_{2}\right)$.

- Watch Video Solution

40. If the line $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ cut the coordinate axes in concyclic points, prove that: $a_{1} a_{2}=b_{1} b_{2}$.

- Watch Video Solution

41. The equation of the diagonals of a rectangle are $y+8 x-17=0$ and $y-8 x+7=0$. If the area of the rectangle is 8 squnits then find the sides of the rectangle

- Watch Video Solution

42. lines $L_{1}: a x+b y+c=0$ and $L_{2}: l x+m y+n=0$ intersect at the point P and make a angle θ between each other. find the equation of a line L different from L_{2} which passes through P and makes the same angle θ with L_{1}

- Watch Video Solution

43. If $l x+m y+n=0$, where l, m, n are variables, is the equation of a variable line and l, m, n are connected by the relation $a l+b m+c n=0$ where a, b, c are constants. Show that the line passes through a fixed point.
44. A triangle has two of its sides along the lines $y=m_{1} x \& y=m_{2} x$ where m_{1}, m_{2} are the roots of the equation $3 x^{2}+10 x+1=0$ and $H(6,2)$ be the orthocentre of the triangle. If the equation of the third side of the triangle is $a x+b y+1=0$, then $a=3$ (b) $b=1$ (c) $a=4$ (d) $b=-2$

- Watch Video Solution

45. Let $A B C$ and $P Q R$ be any two triangles in the same plane. Assume that the perpendiculars from the points A, B, C to the sides $Q R, R P, P Q$ respectively are concurrent. Using vector methods or otherwise, prove that the perpendiculars from $P, Q, R \rightarrow B C, C A, A B$ respectively are also concurrent.

- Watch Video Solution

46. Let AB be a line segment of length 4 with A on the line $y=2 x$ and B on the line $y=x$. The locus of the middle point of the line segment is

- Watch Video Solution

47. A rectangle PQRS has its side PQ parallel to the line $y=m x$ and vertices P, Q, and S on the lines $y=a, x=b$,and $x=-b$, respectively. Find the locus of the vertex R.

- Watch Video Solution

48. A straight line L through the origin meets the lines $x+y=1$ and $x+y=3$ at P and Q respectively. Through P and Q two straight lines L_{1}, and L_{2} are drawn, parallel to $2 x-y-5$ and $3 x+y 5$ respectively. Lines L_{1} and L_{2} intersect at R . Locus of R , as L varies, is

- Watch Video Solution

49. Let C_{1} and C_{2} be parabolas $x^{2}=y-1$ and $y^{2}=x-1$ respectively. Let P be any point on C_{1} and Q be any point C_{2}. Let P_{1} and Q_{1} be the reflection of P and Q , respectively w.r.t the line $\mathrm{y}=\mathrm{x}$ then prove that P_{1} lies on C_{2} and Q_{1} lies on C_{1} and $P Q \geq\left[P P_{1}, Q Q_{1}\right]$. Hence or otherwise, determine points P_{0} and Q_{0} on the parabolas C_{1} and C_{2} respectively such that $P_{0} Q_{0} \leq P Q$ for all pairs of points (P, Q) with P on C_{1} and Q on C_{2}

- Watch Video Solution

50. The area of the triangle formed by the intersection of a line parallel to x-axis and passing through $P(h, k)$ with the lines $y=x$ and $x+y=2$ is $4 h^{2}$.

Find the locus of the point P.

- Watch Video Solution

51. A variable line cuts n given concurrent straight lines at $A_{1}, A_{2} \ldots A_{n}$ such that $\sum_{i=1}^{n} \frac{1}{O A_{i}}$ is a constant. Show that $\mathrm{A}, \mathrm{A}, \mathrm{A}$ such it always passes
through a fixed point, O being the point of intersection of the lines

- Watch Video Solution

52. The vertices B, C of a triangle $A B C$ lie on the lines $4 y=3 x$ and $y=0$ respectively and the side BC passes through thepoint $P(0,5)$. If ABOC is a rhombus, where O is the origin and the point P is inside the rhombus, then find the coordinates of ' $\mathrm{A} \mid$ '.

- Watch Video Solution

53. Two sides of a rhombus lying in the first quadrant are given by $3 x-4 y=0$ and $12 x-5 y=0$. If the length of the longer diagonal is 12 , then find the equations of the other two sides of the rhombus.

- Watch Video Solution

54. Determine all the values of α for which the point $\left(\alpha, \alpha^{2}\right)$ lies inside the triangle formed by the lines. $2 x+3 y-1=0 \quad x+2 y-3=0$ $5 x-6 y-1=0$

- Watch Video Solution

55. Find the position of the origin with respect to theriangle whose sides are $x+1=0,3 x-4 y-5=0$ and $5 x+12 y-27=0$.

- Watch Video Solution

56. The equation of straight line passing through $(-2,7)$ and having an intercept of length 3 between the straight lines: $4 x+3 y=12,4 x+3 y=3$ are : (A) $7 x+24 y+182=0$ (B) $7 x+24 y+18=0$ (C) $x+2=0$ (D) $x-2=0$

- Watch Video Solution

57. For points $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ of the coordinate plane, a new distance $d(P, Q)$ is defined by $d(P, Q)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$. Let $O(0,0)$ and $A=(3,2)$. Prove that the set of points in the first quadrant which are equidistant (wrt new distance) from O and A consists of the union of a line segment of finite length and an infinite ray.

Sketch this set in a labelled diagram.

- Watch Video Solution

58. The point $(4,1)$ undergoes the following three transformations successively: (a) Reflection about the line $\mathrm{y}=\mathrm{x}$ (b) Translation through a distance 2 units along the positive direction of the x-axis. (c) Rotation through an angle $\frac{\pi}{4}$ about the origin in the anti clockwise direction. The final position of the point is given by the co-ordinates.

- Watch Video Solution

59. Let $O(0,0), P(3,4)$, and $Q(6,0)$ be the vertices of triangle $O P Q$. The point R inside the triangle $O P Q$ is such that the triangles $O P R, P Q R, O Q R$ are of equal area. The coordinates of R are $\left(\frac{4}{3}, 3\right)$ (b) $\left(3, \frac{2}{3}\right)\left(3, \frac{4}{3}\right)$ (d) $\left(\frac{4}{3}, \frac{2}{3}\right)$

- Watch Video Solution

60. Consider three points $P=(-\sin (\beta-\alpha),-\cos \beta)$,
$Q=(\cos (\beta-\alpha), \sin \beta), \quad$ and $\quad R=((\cos (\beta-\alpha+\theta), \sin (\beta-\theta))$, where $0<\alpha, \beta, \theta<\frac{\pi}{4}$ Then

- Watch Video Solution

61. If x_{1}, x_{2}, x_{3} as well as y_{1}, y_{2}, y_{3} are in G.P. with the same common ratio, then the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ (A) lie on a straight line (B) lie on a parabola (C) lie on a circle (D) are vertices of a triangle

- Watch Video Solution

62. The locus of the orthocentre of the triangle formed by the lines $(1+p) x-p y+p(1+p)=0,(1+q) x-q y+q(1+q)=0$ and $\mathrm{y}=0$, where $p \neq \cdot q$, is (A) a hyperbola (B) a parabola (C) an ellipse (D) a straight line

- Watch Video Solution

63. Let $A(h, k), B(1,1)$ and $C(2,1)$ be the vertices of a right angled triangle with $A C$ as its hypotenuse. If the area of the triangle is 1 , then the set of values which k can take is given by (1) $\{1,3\}$ (2) $\{0,2\}$ (3) $\{-1,3\}$
$\{-3,-2\}$

- Watch Video Solution

64. The perpendicular bisector of the line segment joining $P(1,4)$ and Q $(k, 3)$ has yintercept -4 . Then a possible value of k is (1) 1 (2) $2(3)-2(4)$

- Watch Video Solution

65. The lines $p\left(p^{2}+1\right) x y+q=0 \quad$ and
$\left(p^{2}+1\right)^{2} x+\left(p^{2}+1\right) y+2 q=0$ are perpendicular to a common line for (1) no value of p (2) exactly one value of p (3) exactly two values of p
(4) more than two values of p

- Watch Video Solution

66. The number of integral values of m for which the x-coordinate of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integer is 2 (b) 0 (c) 4 (d) 1

- Watch Video Solution

Exercise

1. Let the opposite angular points of a square be $(3,4) \operatorname{and}(1,-1)$. Find the coordinates of the remaining angular points.

- Watch Video Solution

2. $A(-4,0)$ and $B(-1,4)$ are two given points. Cand D are points which are symmetric to the given points A and B respectively with respect to y-axis.

Calculate the perimeter of the trapezium ABDC.

- Watch Video Solution

3. If the point A is symmetric to the point $B(4,-1)$ with respect to the bisector of the first quadrant then $A B$ is

- Watch Video Solution

4. A line through the point $A(2,0)$ which makes an angle of 30° with the positive direction of x-axis is rotated about A in anticlockwise direction through an angle 15°. Find the equation of the straight line in the new position.

- Watch Video Solution

5. The point $(1,-2)$ is reflected in the x-axis and then translated parallel to the positive direction of x-axis through a distance of 3 units, find the coordinates of the point in the new position.

- Watch Video Solution

6. The line segment joining $A(3,0)$ and $B(5,2)$ is rotated about A in the anticlockwise direction through an angle of 45° so that B goes to C. If D is the reflection of C in y-axis, find the coordinates of D.
7. Two vertices of a triangle are $A(2,1)$ and $B(3,-2)$. The third vertex C lies on the line $y=x+9$. If the centroid of triangle $A B C$ lies on y axis, find the coordinates of C and the centroid.

- Watch Video Solution

8. If a, b, c are the $p t h, q t h, r t h$ terms, respectively, of an $H P$, show that the points $(b c, p),(c a, q)$, and $(a b, r)$ are collinear.

- Watch Video Solution

9. The area of a triangle is $\frac{3}{2}$ square units. Two of its vertices are the points $A(2,-3)$ and $B(3,-2)$, the centroid of the triangle lies on the line $3 x-y-2=0$, then third vertex C is

- Watch Video Solution

10. Prove that the quadrilateral whose vertices are $A(-2,5), B(4,-1), C(9,1)$ and $D(3,7)$ is a parallelogram and find its area. If E divides AC in the ration $2: 1$, prove that D, E and the middle point F of $B C$ are collinear.

- Watch Video Solution

11. A line through the point $A(2,0)$ which makes an angle of 30° with the positive direction of x-axis is rotated about A in anticlockwise direction through an angle 15°. Find the equation of the straight line in the new position.

- Watch Video Solution

12. A line through the point $P(1,2)$ makes an angle of 60^{0} with the positive directin of $x-a \xi s$ and is rotated about P in the clockwise direction through an angle 15^{0}. Find the equation of the straight line in the new position.

(D) Watch Video Solution

13. The line $2 x-y=5$ turns about the point on it, whose ordinate and abscissae are through an angle of 45° in the anti-clockwise direction.

Find the equation of the line in the new position.

- Watch Video Solution

14. The line $x+2 y=4$ is-translated parallel to itself by 3 units in the sense of increasing x and is then rotated by 30° in the clockwise direction about the point where the shifted line cuts the x-axis.Find the equation of the line in the new position

- Watch Video Solution

15. $A B$ is a side of a regular hexagon $A B C D E F$ and is of length a with A as the origin and $A B$ and $A E$ as the x-axis andy-axis respectively. Find the equation of lines $A C, A F$ and $B E$

(D) Watch Video Solution

16. A straight road is at a distance of $5 \sqrt{2}$ miles from a place. The shortest distance of the road from the place is in the N.E. direction. Do the following villages which (i) is 6 miles East and 4 miles North from the place lie on the road or no, (ii) is 4 miles East and 3 miles North from the place, lie on the road or not?

- Watch Video Solution

17. In the given figure, PQR is an equilateral triangle and OSPT is a square. If $O T=2 \sqrt{2} \quad$ units find the equation of lines $O T, O S, S P, Q R, P R$, and $P Q$.

- Watch Video Solution

18. Two particles start from point (2, -1), one moving two units along the line $x+y=1$ and the other 5 units along the line $x-2 y=4$, If the particle
move towards increasing y, then their new positions are:

- Watch Video Solution

19. One end of a thin straight elastic string is fixed at $A(4,-1)$ and the other end B is at $(1,2)$ in the unstretched condition. If the string is stretched to triple its length to the point C, then find the coordinates of this point.

- Watch Video Solution

20. The line $P Q$ whose equation is $x-y=2$ cuts the x -axis at P, and Q is $(4,2)$. The line $P Q$ is rotated about P through 45^{0} in the anticlockwise direction. The equation of the line $P Q$ in the new position is $y=-\sqrt{2}$ (b) $y=2 x=2$ (d) $x=-2$

- Watch Video Solution

21. The co-ordinates of the extremities of one diagonal of a square are $(1,1)$ and $(1,-1)$ Find the co-ordinates of its other vertices and the equation of the other diagonal

- Watch Video Solution

22. The straight line passing through $P\left(x_{1}, y_{1}\right)$ and making an angle α with x -axis intersects $A x+B y+C=0$ in Q then $\mathrm{PQ}=$

- Watch Video Solution

23. A line which the positive direction of x-axis is drawn through the point $P(3,4)$, to cut the curve $y^{2}=4 x$ at Q and R. Show that the lengths of the segments $P Q$ and $P R$ are numerical values of the roots of the equation $r^{2} \sin ^{2} \theta+4 r(2 \sin \theta-\cos \theta)+4=0$

- Watch Video Solution

24. The lines $2 x+3 y+19=0$ and $9 x+6 y-17=0$, cut the coordinate axes at concyclic points.

- Watch Video Solution

25. A straight line L is perpendicular to the line $5 x-y=1$. The area of the triangle formed by line L, and the coordinate axes is 5 . Find the equation of line L.

- Watch Video Solution

26. The line $2 x+3 y=12$ meets the x -axis at A and the y -axis at B. The line through $(5,5)$ perpendicular to $A B$ meets the x-axis, y-axis \& the line $A B$ at C, D, E respectively. If O is the origin, then the area of the OCEB is $\frac{20}{3}$ squinit (b) $\frac{23}{3}$ squinit $\frac{26}{3}$ squinit (d) $\frac{5 \sqrt{52}}{9}$ squinit

- Watch Video Solution

27. Two equal sides of an isosceles triangle are given by $7 x-y+3=0$ and $x+y=3$, and its third side passes through the point $(1,-10)$. Find the equation of the third side.

- Watch Video Solution

28. A light beam, emanating from the point $(3,10)$ reflects from the straight line $2 x+y-6=0$ and then passes through the point $B(7,2)$.

Find the equations of the incident and reflected beams.

- Watch Video Solution

29. Let $A(3,2)$ and $B(5,1)$. ABP is an equilateral triangle is constructed one the side of $A B$ remote from the origin then the orthocentre of triangle ABP is:

- Watch Video Solution

30. The vertices of a triangle are $A\left(x_{1}, x_{1}, \tan \theta_{1}\right), B\left(x_{2}, x_{2}, \tan \theta_{2}\right)$ and $C\left(x_{3}, x_{3}, \tan \theta_{3}\right)$. If the circumcentre coincides with origin then

- Watch Video Solution

31. The circumcentre of a triangle having vertices $A(a, a \tan \alpha), B(b, b \tan \beta), C(c, c \tan \gamma) \quad$ is at origin, where $\alpha+\beta+\gamma=\pi$. Then the orthocentre lies on

- Watch Video Solution

32. Determine whether the origin lies inside or outside the triangle whose sides are given by the equations
$7 x-5 y-11=0,8 x+3 y+31=0, x+8 y-19=0$.

- Watch Video Solution

33. The equations of two sides of a square are $3 x+4 y-5=0$ and $3 x+4 y-15=0$. The third side has a point $(6,5)$ on it. Find the equation of this third side and the remaining side of the square.

- Watch Video Solution

34. Show that the reflection of the line $p x+q y+r=0$ in the line $x+y+1=0$ is the line $q x+p y+(p+q-r)=0$, where $p \neq-q$.

- Watch Video Solution

35. A rhombus has two of its sides parallel to the lines $y=2 x+3$ and $y=7 x+2$. If the diagonals cut at $(1,2)$ and one vertex is on the y-axis, find the possible values of the ordinate of that vertex.

- Watch Video Solution

36. if x and y coordinates of a point P in $x-y$ plane are given by $x=(u \cos \alpha) t, y=(u \sin \alpha) t-\frac{1}{2} g t^{2}$ where t is a aprameter and u, α, g the constants. Then the locus of the point P is a parabola then whose vertex is:

Watch Video Solution

37. A variable line through the point $\left(\frac{6}{5}, \frac{6}{5}\right)$ cuts the coordinates axes in the point A and B. If the point P divides $A B$ internally in the ratio

2: 1 , show that the equation to the locus of P is : $5 x y=2(2 x+y)$.

- Watch Video Solution

38. A straight line moves in such a way that the length of the perpendicular upon it from the origin is always p. Find the locus of the centroid of the triangle which is formed by the line and the axes.

- Watch Video Solution

39. A right angled triangle $A B C$ having a right angle at $C, C A=b$ and $C B=a$, move such that h angular points A and B slide along x-axis and y-axis respectively. Find the locus of C

- Watch Video Solution

40. The vertices of a triangle ABC are the points $(0, b),(-a, 0),(a, 0)$.

Find the locus of a point P which moves inside the triangle such that the product of perpendiculars from P to $A B$ and $A C$ is equal to the square of the perpendicular to $B C$.

- Watch Video Solution

41. Find the locus of the point at which two given portions of the straight line subtend equal angle.

- Watch Video Solution

42. A point moves so that the sum of the squares of the perpendiculars let fall from it on the sides of an equilateral triangle is constant. Prove that its locus is a circle.

- Watch Video Solution

43. Find the foues of the middle points of the segment of a line passing through the point ofintersection of lines $a x+b y+c=0$ and $l x+m y+n=0$ and intercepted between the axes.

- Watch Video Solution

44. A point P move along the y-axis. Another point Q moves so that the fixed straight line $x \cos \alpha+y \sin \alpha=p$ is the perpendicular bisector of the line segment $P Q$.Find the locus of Q.
45. The vertices $B a n d C$ of a triangle $A B C$ lie on the lines $3 y=4 x a n d y=0$, respectively, and the side $B C$ passes through the point $\left(\frac{2}{3}, \frac{2}{3}\right)$. If $A B O C$ is a rhombus lying in the first quadrant, O being the origin, find the equation of the line $B C$.

- Watch Video Solution

46. $A B C$ is a right angled triangle, right-angled at A. The coordinates of B and C are $(6,4)$ and $((14,10)$ respectively. The angle between the side AB and x -axis is 45°. Find the coordinates of A.

- Watch Video Solution

47. A variable line passing through the origin intersects two given straight lines $2 x+y=4$ and $x+3 y=6$ at R and S respectively. A point P is taken on this variable line. Find the equation to the locus of the point P if (a) $O P$ is the arithmetic mean of $O R$ and $O S$. (b) $O P$ is the geometric mean of OR and OS. (c) OP is an harmonic mean of OR and OS

(D) Watch Video Solution

48. Equations of two straight lines are $x \cos \alpha+y \sin \alpha=p$ and $x \cos \beta+y \sin \beta=p^{\prime}$. Show that the area of the quadrilateral formed by the two lines and the perpendiculars drawn from the origin to the lines is $\frac{1}{2 \sin (B-\alpha)}\left[2 p p^{\prime}-\left(p 2+p^{\prime} 2\right) \cos (\alpha-\beta)\right\}$.

- Watch Video Solution

49. The line joining $A(b \cos \alpha b \sin \alpha)$ and $B(a \cos \beta, a \sin \beta)$ is produced to the point $M(x, y)$ so that $A M$ and $B M$ are in the ratio $b: a$. Then prove that $x+y \tan \left(\alpha+\frac{\beta}{2}\right)=0$.

- Watch Video Solution

50. The equation of the side AB and AC of a triangle ABC are $3 x+4 y+9$ and $4 x-3 y+16=0$ respectively. The third side passes through the point $D(5,2)$ such that $B D: D C=4: 5$. Find the equation of the third side.

- Watch Video Solution

51. Le n be the number of points having rational coordinates equidistant from the point $(0, \sqrt{3})$, the

- Watch Video Solution

52. If poitns $A(3,5)$ and B are equidistant from $H(\sqrt{2}, \sqrt{5})$ and B has rational coordinates,then $A B=$

- Watch Video Solution

53. Find the number of point (x, y) having integral coordinates satisfying the condition $x^{2}+y^{2}<25$

- Watch Video Solution

54. $A B C$ is an equilateral triangle such that the vertices B and C lie on two parallel at a distance 6 . If A lies between the parallel lines at a distance 4 from one of them then the length of a side of the equilateral triangle.

- Watch Video Solution

55. If all the vertices of a triangle have integral coordinates, then the triangle may be right-angled (b) equilateral isosceles (d) none of these

- Watch Video Solution

56. Quadratic equations + Progression series - misc Let $(A(\alpha a, 0), B(\beta, 0), C(\gamma, 0), D(\delta, 0)$ and α, β are the roots of equation $a x^{2}+2 h x+b==0$. While $\gamma, \delta \quad$, are those of $a-1 x^{2}+2 h_{1} x+b_{1}=0$ If C and D divides AB in the ratio of mal and $\gamma: 1$ and $\mu: 1$ respectively and also $a b_{1}, h h_{1}, a_{1} b$ are in $A . P$. , then $\lambda+\mu$ is equal to

- Watch Video Solution

57. Let $A \equiv(-4,0), B \equiv(-1,4) . C$ and D are points which are symmetric to points A and B respectively with respect to y -axis, then area of the quadrilateral $A B C D$ is (A) 8 sq units (B) 12 sq. units (C) 20 sq. units (D) none of these

- Watch Video Solution

58. If x_{1}, x_{2}, x_{3} as well as y_{1}, y_{2}, y_{3} are in A.P., then the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ are (A) concyclic (B) collinear (C) three vertices
of a parallelogram (D) none of these

- Watch Video Solution

59. If x_{1}, x_{2}, x_{3} as well as y_{1}, y_{2}, y_{3} are in G.P. with the same common ratio, then the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ (A) lie on a straight line (B) lie on a parabola (C) lie on a circle (D) are vertices of a triangle

- Watch Video Solution

60. Given that $P(3,1), Q(6.5)$, and $R(x, y)$ are three points such that the angle $P R Q$ is a right angle and the area of $R Q P$ is 7 , find the number of such points R.

- Watch Video Solution

61. Let $\alpha=L t_{m \rightarrow \infty} L t_{n \rightarrow \infty} \cos ^{2 m}\lfloor n \pi x$, where $\quad x$ is rational, $\beta=L t_{m \rightarrow \infty} L t_{n \rightarrow \infty} \cos ^{2 m}\left\lfloor n \pi x\right.$, where l'x' $^{\prime}$ is irrational, then the area
of the triangle having vertices $(\alpha, \beta),(-2,1)$ and $(2,1)$ is (A) 2 (B) 4 (C) 1 (D) none of these

- Watch Video Solution

62. The incenter of the triangle with vertices $(1, \sqrt{3}),(0,0)$, and $(2,0)$ is $\left(1, \frac{\sqrt{3}}{2}\right)$ (b) $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$ (d) $\left(1, \frac{1}{\sqrt{3}}\right)$

- Watch Video Solution

63. If $P(1,2) Q(4,6), R(5,7)$, and $S(a, b)$ are the vertices of a parallelogram $P Q R S$, then $a=2, b=4$ (b) $a=3, b=4 a=2, b=3$
(d) $a=1$ or $b=-1$

- Watch Video Solution

64. If a point P moves such that the sum of its distances from two perpendicular lines is less than or equal to 2 and S be the region
consisting of all such points P, then area of the region S is: (A) 4 sq.untis (B) 8 sq. units (C) 6 sq. units (D) none of these

- Watch Video Solution

65. If the vertices of a triangle $P Q R$ are rational points, then which of the following points of this triangle may not be rational -
(a) Centroid
(b) Incenter
(c) Circumcenter
(d) Orthocenter

- Watch Video Solution

66. If the algebraic sum of the perpendicular distances from the points $(3,1),(-1,2)$ and $(1,3)$ to a variable line be zero, and $\left|\begin{array}{ccc}x^{2}+1 & x+1 & x+2 \\ 2 x+3 & 3 x+2 & x+4 \\ x+4 & 4 x+3 & 2 x+5\end{array}\right|=m x^{4}+n x^{3}+p x^{2}+q x+r \quad$ be \quad an identity in x, then the variable line always passes through the point (A)
$(-r, m)$
(B) $(-m, r)$
(C) (r, m)
(D) $(2 r, m)$
67. A man starts from the point $P(-3,4)$ and reaches the point $Q(0,1)$ touching the x -axis at $R(\alpha, 0)$ such that $P R+R Q$ is minimum. Then $5|\alpha|=$ \qquad

- Watch Video Solution

68.

$P \equiv(a, b), Q \equiv(c, d)$ and $0<a<b<c<d, L \equiv(a, 0), M \equiv(c, 0), R$
lies on x -axis such that $P R=R Q$ is minimum, then R divides $L M$ (A) internally in the ration $a: b(\mathrm{~B})$ internally in the ration $b: c$ (C) internally in the ration $b: d(\mathrm{D})$ internally in the ratio $d: b$

- Watch Video Solution

69. If $a=\frac{\tan \theta}{\tan 3 \theta}$, then the point $P\left(a, a^{2}\right)$ (A) necessarily lies in the acute angle between the lines $y=3 x$ and $3 y=x$ (B) may lie on line
$3 y=x$ or $y=3 x$ (C) necessarily lies in the obtuse angle between the lines $3 y=x$ and $y=3 x$ (D) $a \varepsilon\left(\frac{1}{3}, 3\right)$

- Watch Video Solution

70. If α an integer and $P\left(\alpha, \alpha^{2}\right)$ is a point in the interior of the quadrilateral
$x=0, y=0,4 x+y-21=0$ and $3 x+y-4=0, \quad$ and $(1+a x)^{n}=1-$ then $\alpha=(\mathrm{A}) a(\mathrm{~B})-a(\mathrm{C}) a^{2}(\mathrm{D})$ none of these

- Watch Video Solution

71. If a, b, c are variables such that $21 a+40 b+56 c=0$ then the family of lines $a x+b y+c=0$ passes through (A) $\left(\frac{7}{14}, \frac{9}{4}\right)$ (B) $\left(\frac{4}{7}, \frac{3}{8}\right)$ $\left(\frac{3}{8}, \frac{5}{7}\right)$ (D) $(2,3)$

- Watch Video Solution

72. Consider a triangle $P Q R$ with $P \equiv(0,0), Q \equiv(a, 0), R \equiv(0, b)$. Then the centroid, orthocentre and circumcentre (A) lies on a straight line (B) form a scalene triangle with area $\frac{a}{2}|a b|$ (C) form a right-angled triangle with area $\frac{1}{2}|a b|$ (D) none of these

- Watch Video Solution

73. The equaiton of the line which bisects the obtuse angle between the lines

$$
\begin{equation*}
x-2 y+4=0 \text { and } 4 x-3 y+2=0 \tag{A}
\end{equation*}
$$

$(4-\sqrt{5}) x-(3-2(\sqrt{5}) y+(2-4 \sqrt{5})=0$
$(3-2 \sqrt{5}) x-(4-\sqrt{5}) y+(2+4(\sqrt{5})=0$
$(4+\sqrt{5} x-(3+2(\sqrt{5}) y+(2+4(\sqrt{5})=0$ (D) none of these

- Watch Video Solution

74. If two sides of a triangle are represented by
$2 x-3 y+4=0$ and $3 x+2 y-3=0$, then its orthocentre lies on the
line: (A) $x-y+\frac{8}{15}=0$ (B) $3 x-2 y+1=0$ (C) $9 x-y+\frac{9}{13}=0$ (D) $4 x+3 y+\frac{5}{13}=0$

- Watch Video Solution

75. Equation of the line equidistant from
$3 x+4 y-25=0$ and $3 x+4 y+25=0$ is (A) $6 x+4 y+5=0$
$3 x+4 y=0$ (C) $3 x-4 y+5=0$ (D) $6 x+8 y+5=0$

- Watch Video Solution

76. The equation of a line through $(2,-4)$ which cuts the axes so that the intercepts are equal in magnitude is : (A) $x+y+2=0$ $x-y+2=0$ (C) $x+y+6=0$ (D) $x+y-6=0$

- Watch Video Solution

77. If a line is perpendicular to the line $5 x-y=0$ and forms a triangle with coordinate axes of area 5 sq. units, then its equation is :

- Watch Video Solution

78. Find the equation of a straight line through the intersection of $2 x-3 y+4=0$ and $3 x+4 y-5=0$ and parallel to Y-axis

- Watch Video Solution

79. A variable line intersects the co-ordinate axes at A and B and passes through a fixed point (a, b).then the locus of the vertex C of the rectangle $O A C B$ where O is the origin is

- Watch Video Solution

80. The family of lines $(l+3 m) x+2(l+m) y=(m-l)$, where $l \neq 0$ passes through a fixed point having coordinates (A) $(2,-1)(B)(0,1)(C)$ $(1,-1)(\mathrm{D})(2,3)$

- Watch Video Solution

81. The equation of the line passing through $(1,2)$ and having a distance equal to 7 units from the points $(8,9)$ is

- Watch Video Solution

82. If a, c, b are in AP the family of line $a x+b y+c=0$ passes through the point.

- Watch Video Solution

83. The coordinates of the vertices A and B of an isosceles triangle $A B C(A C=B C)$ are $(-2,3)$ and $(2,0)$ respectively. A line parallel to $A B$ and having a y-intercept equal to $\frac{43}{12}$ passes through C, then the coordinatse of C are : (A) $\left(-\frac{3}{4}, 1\right)$ (B) $\left(1, \frac{17}{6}\right)$ (C) $\left(\frac{2}{3}, \frac{4}{5}\right)$ (D) $(1,0)$

(Watch Video Solution

84. The equaiton of the line perpendicular to $2 x+6 y+5=0$ and having the length of x-intercept equal to 3 units can be (A) $y=3 x+5$
(B) $2 y=6 x+1$ (C) $y=3 x+9$ (D) none of these

- Watch Video Solution

85. The point on the line $3 x-2 y=1$ which is closest to the origin is (A) $\left(\frac{3}{13},-\frac{2}{13}\right)$ (B) $\left(\frac{5}{11}, \frac{2}{11}\right)$ (C) $\left(\frac{3}{5}, \frac{2}{5}\right)$ (D) none of these

- Watch Video Solution

$A(5,-1,1), B(7,-4,7), C(1,-6,10)$ and $D(-1,-3,4)$ are the vertics o a (A) rhombus (B) square (C) rectangle (D) none of these

- Watch Video Solution

87. Distance of a point $(2,5)$ from the line $2 x-y-4=0$ measured parallel to the line $3 x-4 y+8=0$ is :

- Watch Video Solution

88. If $A(-1,0), B(1,0)$ and $C(3,0)$ are three given points, then the locus of point D satisfying the relation $D A^{2}+D B^{2}=2 D C^{2}$ is (A) a straight line parallel to x-axis (B) a striaght line parallel to y-axis (C) a circle (D) none of these

- Watch Video Solution

89. A point (1,1) undergoes reflection in the x-axis and then the coordinates axes are rotated through an angle of $\frac{\pi}{4}$ in anticlockwise direction. The final position of the point in the new coordinate system is

- Watch Video Solution

90. If the point $(1, a)$ lies in between the lines $x+y=1$ and $2(x+y)=3$ then a lies in (i) $(-\infty, 0) \cup(1, \infty) \quad$ (ii) $\left(0, \frac{1}{2}\right)$
$(-\infty, 0) \cup\left(\frac{1}{2}, \infty\right)$ (iv) none of these

- Watch Video Solution

91. $A=\left(\sqrt{1-t^{2}}+t, 0\right)$ and $B=\left(\sqrt{1-t^{2}}-t, 2 t\right)$ are two variable points then the locus of mid-point of $A B$ is

- Watch Video Solution

92. The equation of a straight line passing through (3,2) and cutting an intercept of 2 units between the lines $3 x+4 y=11$ and $3 x+4 y=1$ is
(A) $2 x+y-8=0$
(B) $3 y-4 x+6=0$
(C) $3 x+4 y-17=0$
$2 x-y-4=0$

- Watch Video Solution

93. The coordinates of the foot of perpendicular drawn from the point (2,
4) on the line $x+y=1$ are (A) $\left(\frac{1}{2}, \frac{1}{2}\right)$
(B) $\left(-\frac{1}{2}, \frac{3}{2}\right)$
(C) $\left(\frac{1}{4}, \frac{3}{4}\right)$
(D) $\left(\frac{3}{2},-\frac{1}{2}\right)$

- Watch Video Solution

94. The equation of straight line equally inclined to the axes and equidistant from the point $(1,-2)$ and $(3,4)$ is:

- Watch Video Solution

95. The equation $\sqrt{x^{2}+4 y^{2}-4 x y+4}+x-2 y=1$ represent a (A) straight line (B) circle (C) parabola (D) pair of lines

(Watch Video Solution

96. If a $\triangle A B C$ remains always similar to a given triangle and the point A is fixed and the point B always moves on a given straight line, then locus of C is (A) a circle (B) a straight line (C) a parabola (D) none of these

- Watch Video Solution

97. The graph of the function $y=\cos x \cos (x+2)-\cos ^{2}(x+1)$ is:
(A) A straight line passing through $\left(0, \sin ^{2} 1\right)$ with slope 2
(B) A stright line passing through $(0,0)$
(C) A parabola with vertex $\left(1,-\sin ^{2} 1\right)$

- Watch Video Solution

98. A variable line through the point (p, q) cuts the x and y axes at A and B respectively. The lines through A and B parallel to y -axis and x-axis respectively meet at P. If the locus of P is $3 x+2 y-x y=0$, then
(A) $p=2, q=3$
(B) $\quad p=3, q=2$
(C) $\quad p=2, q=-3$
$p=-3, q=-2$

- Watch Video Solution

99. If $f(x+y)=f(x) . f(y)$ for all x and $y . f(1)=2$, then area enclosed by $3|x|+2|y| \leq 8$ is (A) $f(5)$ sq. units (B) $f(6)$ sq. units (C) $\frac{1}{3} f(6)$ sq. units (D) $f(4)$ sq. units

- Watch Video Solution

100. The straight lines $x+y=0,3 x+y-4=0$ and $x+3 y-4=0$ form a triangle which is (A) isosceles (B) right angled (C) equilateral (D) scalene
101. The point $(-4,5)$ is vertex of a square and one of its diagonal is $7 x-y+8=0$. The equation of other diagonal is $7 x-y+23=0$ $7 y+x+=307 y+x=31 x-7 y=30 x+7 y+31=0$

- Watch Video Solution

102. If (α, β) be the circumcentre of the triangle whose sides are $3 x-y=5, x+3 y=4$ and $5 x+3 y+1=0$, then (A) $11 \alpha-21 \beta=0$
(B) $11 \alpha+21 \beta=0$ (C) $\alpha+2 \beta=0$ (D) none of these

- Watch Video Solution

103. if $\frac{x}{a}+\frac{y}{b}=1$ is a variable line where $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c^{2}}(c$ is constant) then the locus of foot of the perpendicular drawn from origin

- Watch Video Solution

$a x+b y+c=0, b x+c y+a=0$ and $c x+a y+b=0(a, b, c \quad$ being distinct) are concurrent, then (A) $a+b+c=0$ (B) $a+b+c=0$
$a b+b c+c a=1$ (D) $a b+b c+c a=0$

- Watch Video Solution

105. If a, b, c are the $p t h, q t h, r t h$ terms respectively of an $H . P$., then the lines $b c x+p y+1=0, c a x+q y+1=0$ and $a b x+r y+1=0$
(A) are concurrent (B) form a triangle (C) are parallel (D) none of these

- Watch Video Solution

106. If a, b, c are in A.P. then the family of lines $a x+b y+c=0$ (A) passes through a fixed point (B) cuts equal intercepts on both the axes (C) forms a triangle with the axes with area $=\frac{1}{2}|a+c-2 b|$ (D) none of these
107. The value of a for which the image of the point ($a, a-1$) w.r.t the line mirror $3 x+y=6 a$ is the point $\left(a^{2}+1, a\right)$ is (A) 0 (B) 1 (C) 2 (D) none of these

- Watch Video Solution

108. If the lines $a x+b y+c=0, b x+c y+a=0$ and $c x+a y+b=0$ be concurrent, then:

- Watch Video Solution

109. Through the point $P(\alpha, \beta)$, where $\alpha \beta>0$, the straight line $\frac{x}{a}+\frac{y}{b}=1$ is drawn so as to form a triangle of area S with the axes. If $a b>0$, then the least value of S is $\alpha \beta$ (b) $2 \alpha \beta$ (c) $3 \alpha \beta$ (d) none

- Watch Video Solution

110. The line $x+y=4$ divides the line joining the points $(-1,1)$ and $(5,7)$ in the ratio (A) 0.0854166666666667 0.0430555555555556 (C) 0.0423611111111111 (D) 0.16875

- Watch Video Solution

111. A vertex of an equilateral triangle is at (2, 3), and th equation of the opposite side is $x+y=2$, then the equaiton of the other two sides are

$$
\begin{equation*}
y=(2+\sqrt{3})(x-2), y-3=2 \sqrt{3}(x-2) \tag{A}
\end{equation*}
$$

$y-3=(2+\sqrt{3}(x-2), y-3=(2-\sqrt{3}(x-2)$
$y+3=(2-\sqrt{3}(x-2), y-3=(2-\sqrt{3}(x+2)$ (D) none of these

- Watch Video Solution

112. The equation of the bisectors between the lines
$3 x-4 y+7=0$ and $12+5 y-2=0$ is (A) $21 x+77 y-101=0$
$11 x+3 y+20=0$ (C) $21 x-7 y+3=0$ (D) $11 x-3 y+9=0$
113. If one of the diagonals of a square is along the line $x=2 y$ and one of its vertices is $(3,0)$, then its sides through this vertex are given by the equations
(A) $\quad y-3 x+9=0,3 y+x-3=0$
$y+3 x+9=0,3 y+x-3=0$
(C) $y-3 x+9=0,3 y-x+3=0$
(D) $y-3 x+9=0,3 y+x+9=0$

- Watch Video Solution

114. The orthocentre of triangle with vertices $\left(2, \frac{\sqrt{3}-1}{2}\right),\left(\frac{1}{2},-\frac{1}{2}\right),\left(2,,-\frac{1}{2}\right)$

- Watch Video Solution

115. A line through $A(-5,-4)$ meets the lines $x+3 y+2=0,2 x+y+4=0 a n d x-y-5=0 \quad$ at \quad the points
$B, C a n d D$ rspectively, if $\left(\frac{15}{A B}\right)^{2}+\left(\frac{10}{A C}\right)^{2}=\left(\frac{6}{A D}\right)^{2}$ find the equation of the line.

- Watch Video Solution

116. The normal form of the eqatuion of the line $x+\sqrt{3 y}+4=0$ is (A) $x \cos 60^{\circ}+y \sin 60^{\circ}=2$
(B) $\quad x \cos 24^{0}-y \sin 24^{0}-2$
$x \cos 240^{\circ}+y \sin 240^{\circ}-2$ (D) none of these

- Watch Video Solution

117. The equaiton of the line which bisects the obtuse angle between the lines

$$
\begin{equation*}
x-2 y+4=0 \text { and } 4 x-3 y+2=0 \tag{A}
\end{equation*}
$$

$(4-\sqrt{5}) x-(3-2(\sqrt{5}) y+(2-4 \sqrt{5})=0$
$(3-2 \sqrt{5}) x-(4-\sqrt{5}) y+(2+4(\sqrt{5})=0$
$(4+\sqrt{5} x-(3+2(\sqrt{5}) y+(2+4(\sqrt{5})=0$ (D) none of these

- Watch Video Solution

118. The equation of the diagonal through origin of the quadrilateral formed by the lines $x=0, y=0, x+y-1=0$ and $6 x+y-3=0$, is

- Watch Video Solution

119. A line passes through the point $(2,2)$ and is perpendicular to the line $3 x+y=3$, then its y-intercept is

- Watch Video Solution

120. If the sum of the distances of a moving point in a plane from the axes is 1 , then find the locus of the point.

- Watch Video Solution

121. If $P=(1,0) ; Q=(-1.0) \& R=(2,0)$ are three given points, then the locus of the points S satisfying the relation, $S Q^{2}+S R^{2}=2 S P^{2}$ is -
122. The equaiton of the lines through the point $(2,3)$ and making an intercept of length 2 units between the lines $y+2 x=3$ and $y+2 x=5 \quad$ are \quad (A) $\quad x+3=0,3 x+4 y=12$ $y-2=(0,4 x-3 y=6$ (C) $x-2=0,3 x+4 y=18$ (D) none of these

- Watch Video Solution

123. Line L has intercepts $a a n d b$ on the coordinate axes. When the axes are rotated through a given angle keeping the origin fixed, the same line L has intercepts pandq. Then $a^{2}+b^{2}=p^{2}+q^{2} \frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}+\frac{1}{q^{2}}$ $a^{2}+p^{2}=b^{2}+q^{2}$ (d) $\frac{1}{a^{2}}+\frac{1}{p^{2}}=\frac{1}{b^{2}}+\frac{1}{q^{2}}$

- Watch Video Solution

124. The distance between the parallel Ines $y=2 x+4$ and $6 x-3 y-5$ is (A) 1 (B) $\frac{17}{\sqrt{3}}$ (C) $7 \frac{\sqrt{5}}{15}$ (D) $3 \frac{\sqrt{5}}{15}$

(D) Watch Video Solution

125. The pair of points which lie on the same side of the straight line
$3 x-3 y-7=0 \quad$ is
(A) $(0,-1)(0,0)$
(B) $(0,1),(3,0)$
$(-1,-1),(3,7)$ (D) $(24,-3),(1,1)$

- Watch Video Solution

126. The equation of the base of an equilateral triangle $A B C$ is $x+y=2$ and the vertex is $(2,-1)$. The area of the triangle $A B C$ is:
$\frac{\sqrt{2}}{6}$ (b) $\frac{\sqrt{3}}{6}$ (c) $\frac{\sqrt{3}}{8}$ (d) None of these

- Watch Video Solution

127.

Three
lines
$3 x+4 y+6=0, \sqrt{2} x+\sqrt{3} y+2 \sqrt{2}=0$ and $4 x+7 y+8=0$ are (A)
sides of triangle (B) concurrent (C) parallel (D) none of these
128. Given that $P(3,1), Q(6.5)$, and $R(x, y)$ are three points such that the angle $P R Q$ is a right angle and the area of $R Q P$ is 7 , find the number of such points R.

- Watch Video Solution

129. Let $P S$ be the median of the triangle with vertices $P(2,2), Q(6,-1) \operatorname{and} R(7,3)$ Then equation of the line passing through $(1,-1)$ and parallel to $P S$ is $2 x-9 y-7=0$ $2 x-9 y-11=02 x+9 y-11=02 x+9 y+7=0$

- Watch Video Solution

130. The orthocentre of the triangle formed by the lines $x y=0$ and $x+y=1$ is $\left(\frac{1}{2}, \frac{1}{2}\right)$ (b) $\left(\frac{1}{3}, \frac{1}{3}\right)(0,0)$ (d) $\left(\frac{1}{4}, \frac{1}{4}\right)$
131. If $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}$, are the values of n for which $\sum_{r=0}^{n-1} x^{2 r}$, is divisible by $\sum_{r=0}^{n-1} x^{r}$ then prove that the triangle having vertices $\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right)$ and $\left(\alpha_{3}, \beta_{3}\right)$ cannot be an equilateral triangle.

- Watch Video Solution

132. The straight lines $3 x+y-4=0, x+3 y-4=0$ and $x+y=0$ form a triangle which is :

- Watch Video Solution

133. All points lying inside the triangle formed by the points (1.3). (5, 0)

$$
\begin{align*}
& \text { and } \quad(-1, \quad \text { 2) satisfy } \quad \text { (A) } 3 x+2 y \geq 0 \quad \text { (B) } 2 x+y-13 \geq 0 \tag{C}\\
& 2 x-3 y-12 \leq 0 \text { (D) }-2 x+y \geq 0
\end{align*}
$$

134. The equation to a pair of opposite sides of a parallelogram are $x^{2}-5 x+6=0$ and $y^{2}+5=0$. The equations to its diagonals are $x+4 y=13, y=4 x-7$ (b) $\quad 4 x+y=13,4 y=x-7$
$4 x+y=13, y=4 x-7$ (d) $y-4 x=13, y+4 x-7$

- Watch Video Solution

135. Equation(s) of the straight line(s), inclined at 30^{0} to the x-axis such that the length of its (each of their) line segment(s) between the coordinate axes is 10 units, is (are) $x+\sqrt{3} y+5 \sqrt{3}=0$ $x-\sqrt{3} y+5 \sqrt{3}=0 x+\sqrt{3} y-5 \sqrt{3}=0 x-\sqrt{3} y-5 \sqrt{3}=0$

- Watch Video Solution

136. A ray of light travelling along the line $x+y=1$ is incident on the x axis and after refraction it enters the other side of the x-axis by turning 30^{0} away from the x-axis. The equation of the line along which the refracted ray travels is

(D) Watch Video Solution

137. The incident ray is along the line $3 x-4 y-3=0$ and the reflected ray is along the line $24 x+7 y+5=0$. Find the equation of mirrors.

- Watch Video Solution

138. $A(1,2)$ and $B(7,10)$ are two points. If $P(x)$ is a point such that the angle APB is 60° and the area of the triangle APB is maximum, then which of the following is (aré) true?

- Watch Video Solution

139. A straight line passing through the point $(2,2)$ and the axes enclose an area λ. The intercepts on the axes made by the line are given by the two roots of:
(A) $x^{2}-2|\lambda| x+|\lambda|=0$
(B) $x^{2}+|\lambda| x+2|\lambda|=0$
(C) $x^{2}-|\lambda| x+|2 \lambda|=0$
(D) None of these

(D) Watch Video Solution

140. Let L be the line $2 x+y-2=0$. The axes are rotated by 45° in clockwise direction then the intercepts made by the line L on the new axes are respectively

- Watch Video Solution

141. The sides of a triangle are the straight lines $x+y=1,7 y=x$, and $\sqrt{3} y+x=0$. Then which of the following is an interior point of the triangle? Circumcenter (b) Centroid Incenter (d) Orthocenter

- Watch Video Solution

142. $A(1,3)$ and $C(7,5)$ are two opposite vertices of a square. The equation of a side thro' A is
143. If $\mathrm{bx}+\mathrm{cy}=\mathrm{a}$, there a, b, c are of the same sign, be a line such that the area enclosed by the line and the axes of reference is $\frac{1}{8}$ square units, then : (A) b, a, c are in G.P. (B) $b, 2 a, c$ arein G.P. (C) $b, \frac{a}{2}, c$ are in A.P. (D) $b,-2 a, c$ are in G.P.

- Watch Video Solution

144. If $6 a^{2}-3 b^{2}-c^{2}+7 a b-a c+4 b c=0$ then the family of lines $a x+b y+c=0,|a|+|b| \neq 0$ can be concurrent at concurrent (A) $(-2,3)$
(B) $(3,-1)(C)(2,3)(D)(-3,1)$

- Watch Video Solution

145. One diagonal of a square is the portion of the line $\sqrt{3} x+y=2 \sqrt{3}$ intercepted by the axes. Obtain the extremities of the other diagonal is :
(A) $(1+\sqrt{3},-1+\sqrt{3})$
(B) $(1+\sqrt{3}, 1+\sqrt{3})$
(C) $(1-\sqrt{3},-1+\sqrt{3})$
(D) $(1-\sqrt{3}, 1+\sqrt{3})$
146. If the vertices P, Q, R of a triangle $P Q R$ are rational points, which of the following points of thetriangle $P Q R$ is/are always rational point(s) ?(A) centroid(B) incentre(C) circumcentre(D) orthocentreAgrawn Korouteden36

- Watch Video Solution

147. A straight line L is perpendicular to the line $5 x-y=1$. The area of the triangle formed by line L, and the coordinate axes is 5 . Find the equation of line L.

- Watch Video Solution

148. The points on $x+y=4$ that lie at a unit distance from the line $4 x+3 y-10=$ are
149. One side of a square makes an angle α with x axis and one vertex of the square is at origin. Prote that the equations of its diagonals are $x(\sin \alpha+\cos \alpha)=y(\cos \alpha-\sin \alpha)$ or $x(\cos \alpha-\sin \alpha)+y(\sin \alpha+\cos \alpha)=a$, where a is the length of the side of the square.

- Watch Video Solution

150. Let the algebraic sum of the perpendicular distances from the points $(2,0),(0,2) \operatorname{and}(1,1)$ to a variable straight line be zero. Then the line pass through a fixed point whose coordinates are $(1,1)$ b. $(2,2)$ c. $(3,3)$ d. $(4,4)$

- Watch Video Solution

151. The area of a triangle is 5 . Two of its vertices are $(2,1)$ and $(3,-2)$
. The third vertex lies on $y=x+3$. Find the third vertex.

D Watch Video Solution

152. If (α, β) is the foot of perpendicular from $\left(x_{1}, y_{1}\right)$ to line

$$
\begin{array}{ll}
l x+m y+n=0, \quad \text { then } & \text { (A) } \quad \frac{x_{1}-\alpha}{l}=\frac{y_{1}-\beta}{m} \\
\left.\frac{x-1-\alpha}{l}\right)=\frac{l x_{1}+m y_{1}+n}{l^{2}+m^{2}} & \text { (C) } \quad \frac{y_{1}-\beta}{m}=\frac{l x_{1}+m y_{1}+n}{l^{2}+m^{2}} \\
\frac{x-\alpha}{l}=\frac{l \alpha+m \beta+n}{l^{2}+m^{2}} & \tag{D}
\end{array}
$$

(Watch Video Solution

153. The range of value of α such that $(0, \alpha)$ lies on or inside the triangle formed by the lines $y+3 x+2=0,3 y-2 x-5=0,4 y+x-14=0$ is
154. The equation of two equal sides $A B$ and $A C$ of an isosceies triangle ABC are $x+y=5$ and $7 x-y=3$ respectively Find the equations of the side $B C$ if the area of the triangle of $A B C$ is 5 units

- Watch Video Solution

155. Two sides of a triangle are $(a+b) x+(a-b) y-2 a b=0$ and $(a-b) x+(a+b) y-2 a b=0$. If the triangle is isosceles and the third side passes through point $(b-a, a-b)$, then the equation of third side can be

- Watch Video Solution

156. (1) If coordinates of centroid and circumcentre of a triangle are known, coordinates of its orthocentre can be obtained. (2) Centroid, circumcentre and orthocentre of a triangle are collinear. (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and

2 is not a correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

- Watch Video Solution

157. Let P, Q, R be three non-collinear points having rational coordinatse. (1) Coordinates of incentre of $\triangle P Q R$ are rational (2) Incentre of a triangle is the point of intersection of internal bisectors of angle of the triangle. (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not a correct explanation of $1(C) 1$ is true but 2 is false (D) 1 is false but 2 is true

- Watch Video Solution

158. Let O be the origin and $P \equiv\left(a, a^{2}\right)$. (1) If $P\left(a, a^{2}\right)$ lies in the first quadrant between the lines $y=x$ and $y=2 x$, then $1<a<2$. (2) Slope of $O P$ is a. (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not a correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

- Watch Video Solution

159.

Lines
$15 x-18 y+1=0,12 x+10 y-3=0$ and $6 x+66 y-11=0$ donot form a triangle. (2)|(15, -18, 1), (12, 10, -3), (6, 66, -11)|=0 (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not a correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

- Watch Video Solution

160. If the line $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ cut the coordinate axes in concyclic points, prove that : $a_{1} a_{2}=b_{1} b_{2}$.

- Watch Video Solution

161. (1) The straight lines $(2 k+3) x+(2-k) y+3=0$, where k is a variable, pass through the fixed point $\left(-\frac{3}{7},-\frac{6}{7}\right)$. (2) The family of lines $a_{1} x+b_{1} y+c_{1}+k\left(a_{2} x+b_{2} y+c_{2}\right)=0$, where k is a variable, passes through the point of intersection of lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{-} 2 x+b_{2} 2 y+c_{-} 2=0^{\prime}(A)$ Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not a correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

- Watch Video Solution

162. (1) The lines $y=3 x+1$ and $2 y=x+3$ are equally inclined to the line $y=\left(1-5 \frac{\sqrt{2}}{7} x+5\right.$. (2) The line $y=\left(1-5 \frac{\sqrt{2}}{7} x+5\right.$ is parallel to a bisector of the angle between lines $y=3 x+1$ and $2 y=x+3$. (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not a correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true
163. Area of the rhombus formed by the lines $a x \pm b y \pm c=0$ is (A)
$2 \frac{c^{2}}{|a b|}$
(B) $\frac{|a b|}{2} c^{2}$
(C) $\frac{c^{2}}{|a b|}$
(D) $\frac{|a b|}{c^{2}}$

- Watch Video Solution

164. Prove that the area of the parallelogram formed by the lines $x \cos \alpha+y \sin \alpha=p, x \cos \alpha+y s \in \alpha=q, x \cos \beta+y \sin \beta=r a n d x \cos$,

- Watch Video Solution

165. The image of line $2 x+y=1$ in line $x+y+2=0$ is : (A)
$x+2 y-7=0$
(B) $2 x+y-7=0$
(C) $\quad x+2 y+7=0$
$2 x+y+7=0$

- Watch Video Solution

166. Image of ellipse $4 x^{2}+9 y^{2}=36$ in the line $y=x$ is: (A) $9 x^{2}+4 y^{2}=36$ (B) $3 x^{2}+2 y^{2}=36$ (C) $2 x^{2}+3 y^{2}=36$ (D) none of these

- Watch Video Solution

167. The mirror image of the parabola $y^{2}=4 x$ in the tangent to the parabola at the point $(1, \quad 2)$ is $(x-1)^{2}=4(y+1)$
$(x+1)^{2}=4(y+1)(x+1)^{2}=4(y-1)(\mathrm{d})(x-1)^{2}=4(y-1)$

- Watch Video Solution

168. Two equal sides of an isosceles triangle are $7 x-y+3=0, x-y-3=0$ and its third side passes through the point $(1,0)$ the equation of the third side is (A) $3 x+y+7=0$ $x-3 y+29=0$ (C) $3 x+y+3=0$ (D) $3 x+y-3=0$
169. Two consecutive sides of a parallelogram are $4 x+5 y=0$ and $7 x+2 y=0$. If the equation of one diagonal is $11 x=7 y=9$, find the equation of the other diagonal.

- Watch Video Solution

170. Lines $L_{1} \equiv a x+b y+c=0$ and $L_{2} \equiv l x+m y+n=0$ intersect at the point P and make an angle θ with each other. Find the equation of a line different from L_{2} which passes through P and makes the same angle θ with L_{1}.

- Watch Video Solution

171. The equation of sides $B C, C A, A B$ of a triangle $A B C$ are $a x+b y+c=0, l x+m y+n=0$ and $p x+q y+r=0$ respectively, then the line : $\frac{p x+q y+r}{a p+b q}=\frac{l x+m y+n}{a l+m b}$ is (A) perpendicular to AB (B) perpendicular to $A C(C)$ perpendicular to $B C(D)$ none of these
172. If a and b are parameters, then each line of the family of lines $x(a+2 b)+y(a-3 b)=a-b$ passes through the point whose distance from origin is: (A) $\frac{3}{5}$ (B) $\frac{\sqrt{13}}{5}$ (C) $\frac{\sqrt{11}}{5}$ (D) $\frac{4}{5}$

- Watch Video Solution

173. For each natural number k , let C_{k} denotes the circle radius k centimeters in the counter-clockwise direction.After completing its motion on C_{k}, the particle moves to C_{k+1} in the radial direction. The motion of the particle continues in this manner. The particle starts at $(1,0)$.If the particle crosses the the positive direction of the x-axis for first time on the circle C_{n}, then n equal to

- Watch Video Solution

174. A line cuts the x -axis at $A(7,0)$ and the y -axis at $B(0,-5) \mathrm{A}$ variable line $P Q$ is drawn perpendicular to $A B$ cutting the x-axis in P and the y-axis in Q. If $A Q$ and $B P$ intersect at R, find the locus of R

- Watch Video Solution

175. A straight line l passes through a fixed point (6,8). If locus of the foot of perpendicular on line l from origin is a circle, then radius of this circle is

- Watch Video Solution

176. A line is such that its segment between the lines $5 x-y+4=0$ and $3 x+4 y-4=0$ is bisected at the point (1,5). Obtain its equation.

- Watch Video Solution

177. A straight line L is perpendicular to the line $5 x-y=1$. The area of the triangle formed by line L, and the coordinate axes is 5 . Find the equation of line L.

- Watch Video Solution

178. A line $4 x+y=1$ passes through the point $\mathrm{A}(2,7)$ and meets line BC at B whose equation is $3 x-4 y+1=0$, the equation of line AC such that $A B=A C$ is (a) $52 \mathrm{x}+89 \mathrm{y}+519=0(\mathrm{~b}) 52 \mathrm{x}+89 \mathrm{y}-519=0$ c) 82 x $+52 y+519=0$ (d) $89 x+52 y-519=0$

- Watch Video Solution

179. Let $A B$ be a line segment of length 4 with A on the line $y=2 x$ and B on the line $y=x$. The locus of the middle point of the line segment is

- Watch Video Solution

180. Let $O(0,0), P(3,4), Q(6,0)$ be the vertices of the triangle $O P Q$. The point R inside the triangles OPQ is such that the triangles OPR, PQR, OQR are of equal area. The coordinates of R are (1) $\left(\frac{4}{3}, 3\right)$ (2) $\left(3, \frac{2}{3}\right)$ (3) $\left(3, \frac{4}{3}\right)$ (4) $\left(\frac{4}{3}, \frac{2}{3}\right)$

- Watch Video Solution

181. Let S be a square of nit area. Consider any quadrilateral, which has none vertex on each side of S. If a, b, candd denote the lengths of the sides of het quadrilateral, prove that $2 \leq a^{2}+b^{2}+c^{2}+x^{2} \leq 4$.

- Watch Video Solution

182. The equations of two sides of a triangle are $3 x-2 y+6=0$ and $4 x+5 y-20$ and the orthocentre is (1,1). Find the equation of the third side.
183. Let the four consecutive compartments made by the lines $2 x-3 y+1=0$ and $3 x-5 y+2=0$ be I, II, III and IV respectively. Let (0,0) belong to compartment I. We associate four numbers 100, 200, 300 and 400 to the compartments I, II, III and IV respectively. Then the number associated to the compartment in which $(-1,1)$ belong is ...

- Watch Video Solution

184. A ray of light is sent along the line $x-2 y-3=0$. On reaching the line $3 x-2 y-5=0$, the ray is reflected from it. If the equation of reflected ray be $a x-2 y=c$, where a and c are two prime numbers differing by 2 , then $a+c=$

- Watch Video Solution

185. Consider the lines given by :
$L_{1}: x+3 y-5=0, L_{2}: 3 x-k y-1=0, L_{3}: 5 x+2 y-12=0$ If a be the value of k for which lines L_{1}, L_{2}, L_{3} do not form a triangle and c be
the value of k for which one of L_{1}, L_{2}, L_{3} is parallel to at least one of the other lines, then $a b c=$

- Watch Video Solution

186. A ray of light emanating from $(-4,3)$ after reflection from x-axis at $(\alpha-0)$ is normal to circle $x^{2}+y^{2}-10 x-2 y+25=0$, then $4 \alpha=$

- Watch Video Solution

187. If the quadrilateral formed by the lines $a x+b y+c=0,6 \sqrt{3} x+8 \sqrt{3} y+k=0$, $a x+b y+k=0$ and $6 \sqrt{3} x+8 \sqrt{3} y+c=0$ has diagonals at right angles, then the value of $a^{2}+b^{2}=\ldots$

- Watch Video Solution

188. A straight line I with negative slope passes through $(8,2)$ and cuts the coordinate axes at P and Q . Find absolute minimum value of " $\mathrm{OP}+\mathrm{OQ}$ where O is the origin-

- Watch Video Solution

