

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

DIFFERENTIAL EQUATIONS - FOR BOARDS

Solved Examples

1. Find the order and degree of the following differential

equation:
$$\left(rac{d^3y}{dx^3}
ight)^2 - x \left(rac{dy}{dx}
ight)^3.$$

2. Determine the order and degree of the differential equation $\frac{d^2y}{dx^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$ Watch Video Solution

3. Determine the order and degree of each of the following

differential equation. State also whether they are linear or

non-linear: $y=px+\sqrt{a^2p^2+b^2}, \;where\; p=rac{dy}{dx}$

Watch Video Solution

4. Find the order and degree of the differential equation

$$rac{dy}{dx} + \sin\!\left(rac{dy}{dx}
ight) = 0$$

Match Mideo Colution

5. Find the order and degree of the differential equation

$$\log_e\!\left(1+rac{d^2y}{dx^2}
ight)=x$$

Watch Video Solution

6. The differential equation representing the family of curves $y^2 = 2c(x + \sqrt{c})$, where c is a positive parameter, is of (a) order 1 (b) order 2 (c) degree 3 (d) degree 4

Watch Video Solution

7. Obtain the differential equation of the family of curves represented by $y = Ae^x + Be^{-x} + x^2$, where A and B are

- 8. From the differential equation of the family of curves
- $y = a \sin(x + b)$, where a and b are arbitrary constants.

9. Form the differential equation representing the family of

curves $y = A\cos(x + B)$ where AS and B are parameters.

10. Find the differential equation of the family of curves $y = Ae^x + Be^{-x}$, where A and B are arbitrary constants.

11. Form the differential equation corresponding to
$$y^2 = a(b-x)(b+x)$$
 by eliminating parameters $aandb$.

Watch Video Solution

12. Show that the differential equation of all parabolas $y^2 = 4a(x-b)$ is given by

13. Form the differential equation corresponding to $y^2 = a(b-x)^2$,where a and b are arbitrary constant.

Watch Video Solution

14. Find the differential equation of the family of curves given by $x^2 + y^2 = 2ax$

Watch Video Solution

15. Form the differential equation representing the family of curves $y^2 - 2ay + x^2 = a^2$, where a is an arbitrary constant. 16. Show that the differential equation representing one

parameter family of curves $ig(x^2-y^2ig)=cig(x^2+y^2ig)^2is\ ig(x^3-3xy^2ig)dx=ig(y^3-3x^2yig)dy$

Watch Video Solution

17. Form the differential equation of all concentric circles at the origin.

Watch Video Solution

18. Find the differential equation of the family of all straight lines passing through the origin.

19. Form the differential equation representing the parabolas having vertex at the origin and axis along positive direction of x-axis.

20. Form the differential equation of the family of circles

touching the x-axis at origin.

21. Form the differential equation of the family of circles in

the second quadrant and touching the coordinate axes.

23. Show that the function $y = (A + Bx)e^{3x}$ is a solution

of the equation
$$rac{d^2y}{dx^2}-6rac{dy}{dx}+9y=0.$$

24. Verify that $y = ae^{3x} + be^{-x}$ is a solution of differential equation $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 3y = 0$ Watch Video Solution

25. Show that
$$y = Ax + \frac{B}{x}, x \neq 0$$
 is a solution of the differential equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - y = 0$

Watch Video Solution

26. Show that, $v=rac{A}{r}+B$ satisfies the differential equation $rac{d^2v}{dr^2}+rac{2}{r}.rac{dv}{dr}=0$

27. solve the differential equation $rac{dy}{dx}=e^{x+y}+x^2e^y$

30. Solve the differential equation $rac{dy}{dx} = rac{1+y^2}{1+x^2}$

39. Solve:
$$\left(x+y
ight)^2 rac{dy}{dx} = a^2$$

40. Solve the differential equation $\sin^{-1} \left(\frac{dy}{dx}
ight) = x + y$ Watch Video Solution **41.** Solve the following differential equation $(x^2+xy)dy=(x^2+y^2)dx$ Watch Video Solution 42. Solve the following differential equation: $2xydx + (x^2 + 2y^2)dy = 0$ Watch Video Solution

45. solve the differential equation $(y+x)rac{dy}{dx}=y-x$

Watch Video Solution

$$\Big\{x\cos\Big(rac{y}{x}\Big)-x\cos\Big(rac{y}{x}\Big)\Big\}xdy=\Big\{y\sin\Big(rac{y}{x}\Big)-x\cos\Big(rac{y}{x}\Big)\Big\}$$

47. Solve
$$\Big(1+2e^{rac{x}{y}}\Big)dx+2e^{rac{x}{y}}\Big(1-rac{x}{y}\Big)dy=0$$

Watch Video Solution

48. Solve the following differential equation:
$$y \, dx + x \log \left(\frac{y}{x}\right) dy = 2x \, dy$$

49. Solve each of the following initial value problem: $2xy + y^2 - 2xy^2 \frac{dy}{dx} = 0, \ y(1) = 2$

Watch Video Solution

50. Solve the differential equation
$$x \frac{dy}{dx} - y = x \tan\left(\frac{y}{x}\right)$$
, given $y = \frac{\pi}{2}$ when $x = 1$.

Watch Video Solution

51. Show that the family of curves for which the slope of the tangent at any point (x, y) on it is $\frac{x^2 + y^2}{2xy}$, is given by

$$x^2 \quad y^2 = \quad cx \ .$$

52. Solve the following differential equation: $x \frac{dy}{dx} - y = x^2$

Watch Video Solution

54. Solve the differential equation:
$$rac{dy}{dx} + y \cot x = 2 \cos x$$

55. Solve the following differential equation:
$$\frac{dy}{dx} + \sec x \cdot y = \tan x \left(0 \le x < \frac{\pi}{2} \right)$$

0

56. Solve the following differential equation:

$$\frac{dy}{dx} + 2\tan x \cdot y = \sin x$$
 Also find the particular solution
if $y = 0$ when $x = \frac{\pi}{3}$

Watch Video Solution

57. Solve:
$$x\log x \frac{dy}{dx} + y = 2\log x$$

58. Solve the following differential equation :

$$\frac{(x^2 - 1)dy}{dx} + 2x \ y = \frac{2}{(x^2 - 1)}$$
Watch Video Solution

61. Solve the differential equation
$$x\frac{dy}{dx} + y - x + xy \cot x, x \neq 0$$

62. Solve the differential equation:
$$rac{dy}{dx}+rac{y}{x}=e^x, x>0$$

63. Solve:
$$rac{dy}{dx} - 2y = \cos 3x$$

64. Solve:
$$(x \log x) \frac{dy}{dx} + y = \frac{2}{x} \log x$$

65. Find the particular solution of the differential equation $rac{dy}{dx}+y\cot x=2x+x^2\cot x(x
eq 0)$ given that y=0 when $x=rac{\pi}{2}.$

Watch Video Solution

66. Solve the following differential equation, given that y = 1 when x = 2: $x \frac{dy}{dx} + y = x^3$

satisfying the given condition:

$$(1+x^2)\frac{dy}{dx} + 2xy = \frac{1}{1+x^2}; y = 0$$
 when $x = 1$
Vatch Video Solution

69. Find the particular solution of the differential equation.

 $rac{dy}{dx}+y\cot x=4x\ \cos ec\,x,\ (x
eq 0),\ {
m given that}\ y=0$ when $x=rac{\pi}{2}\cdot$

70. Solve :
$$ig(x+2y^3ig)rac{dy}{dx}=y$$

73. Solve the following differential equation: $\tan y \cdot \frac{dy}{dx} + \tan x = \cos y \cos^2 x$ Watch Video Solution

74. The Integrating Factor of the differential equation `(1-

y^2)(dx)/(dy)+y x=a y(-1

1. Find the order and degree of $\displaystyle rac{d^2y}{{dx}^2} + 4x = 0$ and also

state whether its linear or non-linear.

Watch Video Solution

3. Find the order and degree of $\left[1+\left(rac{dy}{dx}
ight)^2
ight]^{rac{3}{2}}=rac{d^2y}{dx^2}$

and also state whether its linear or non-linear.

4. Find the order and degree of $\frac{d^3y}{dx^3} + 3\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + y = 0$ and also state whether its

linear or non-linear.

Watch Video Solution

its linear or non-linear.

8. Determine order and degree (if defined) of differential

equations given y ' ' +2y ' $+\sin y=0$

12. Find the order and degree of
$$\displaystyle rac{d^2y}{dx^2} = \sqrt[3]{1+\left(rac{dy}{dx}
ight)^2}$$

and also state whether they are linear or non-linear.

Watch Video Solution 13. Find the order and degree of $\frac{d^4y}{dx^4} = \left[c + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}$ and also state whether they are linear or non-linear. Watch Video Solution

14. Find the order and degree of
$$\frac{d^3y}{dx^3} + \left(\frac{d^2y}{dx^2}\right)^3 + \frac{dy}{dx} + 4y = \sin x$$
 and also state

whether they are linear or non-linear.

15. Find the order and degree of
$$5rac{d^2y}{dx^2} = \left[1 + \left(rac{dy}{dx}
ight)^2
ight]^{rac{3}{2}}$$

and also state whether they are linear or non-linear.

16. Determine order and degree (if defined) of differential equations given $\left(\frac{ds}{dt}\right)^4 + 3s\frac{d^2s}{dt^2} = 0$

Watch Video Solution

17. Find the order and degree of
$$\frac{d^3y}{dx^3} + 2\left(\frac{d^2y}{dx^2}\right)^2 - \frac{dy}{dx} + y = 0$$

20. Find the order and degree of
$$\log \left(1 + rac{dy}{dx}\right) = rac{dy}{dx}$$

21. Find the order and degree of
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} = y\sin\left(\frac{d^2y}{dx^2}\right)$$

Watch Video Solution
22. Find the order and degree of $\frac{d^3y}{dx^3} - 2\sin\left(\frac{d^3y}{dx^3}\right) = 0$

23. Form a differential equation for the family of curves represented by $ax^2 + by^2 = 1$, where a and b are arbitrary constants.

24. The differential equation obtained by eliminating the constants a and b from $xy = ae^x + be^{-x} + x^2$ is

25. The differential equation satisfying all the curves $y = ae^{2x} + be^{-3x}$, where a and b are arbitrary constants, is

Watch Video Solution

26. If a is arbitrary constant, find the differential equation

of
$$x^2+y^2=a^2$$

27. Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b. $y = ae^{3x} + be^{-2x}$

Watch Video Solution

28. Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

$$rac{x}{a}+rac{y}{b}=1$$
29. Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b. $y = e^{2x}(a + bx)$

Watch Video Solution

30. if a, b are arbitrary constants, find the differential equation of $y = a \cos nx + b \sin nx$

Watch Video Solution

31. Find the differential equation of the family of curves

 $y = A \cos x + B \sin x$, where A, B are parameters.

32. Form the differential equation of the family of curves represented by the equation (a being the parameter): $(2x + a)^2 + y^2 = a^2$ $(2x - a)^2 - y^2 = a^2$ $(x - a)^2 + 2y^2 = a^2$

Watch Video Solution

33. Find the differential equation of the family of curves

 $\left(x+a
ight)^2-2y^2=a^2$, where a is an arbitrary constant.

34. Form the differential equation representing the family of curves given by $(x - a)^2 + 2y^2 = a^2$, where a is an arbitrary constant.

36. Form the differential equation of simple harmonic motion given by $x = A\cos(nt + \alpha)$, where n is fixed and

37. Form the differential equation of the family of circles

having centre on y-axis and radius 3 units.

Watch Video Solution

38. Form the differential equation of the family of

hyperbolas having foci on x-axis and centre at origin.

39. Find the differential equation of all the circles which

42. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: $y = e^x + 1: y'' - y' = 0$

Watch Video Solution

43. Verify that the given function is a solution of the corresponding differential equation: $y = Ax : xy' = y(x \neq 0)$

Watch Video Solution

44. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:

$$y=\cos x+C$$
 : $y'+\sin x=0$

45. In each of the following verify that the given function (explicit or implicit) is a solution of the corresponding differentia equation: $y = x \sin x$ ii. $y = \sqrt{a^2 - x^2}$

Watch Video Solution

46. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: $xy = \log y + C : y' = \frac{y^2}{1 - xy} (xy \neq 1)$

47. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: $x + y = \tan^{-1} y : y^2 y' + y^2 + 1 = 0$

Watch Video Solution

48. Verify that $y = 4 \sin 3x$ is a solution of the differential

equation $rac{d^2y}{dx^2}+9y=0.$

Watch Video Solution

49. Show that the function $y = A \cos 2x + B \sin 2x$ is a

solution of the differential equation $\displaystyle rac{d^2y}{dx^2} + 4y = 0$

51. Show that the differential equation of which $y=2ig(x^2-1ig)+ce^{-x}\hat{\ }2$ is a solution, is $rac{dy}{dx}+2xy=4x^3.$

52. Verify the solution problems: Show that $y = e^{-x} + ax + b$ is solution of the differential equation $e^x \frac{d^y}{dx^2} = 1$

Watch Video Solution

53. Verify that $y=e^x(a\cos x+c\sin x)$ is a solution of the

differential equation
$$rac{d^2y}{dx^2} - 2rac{dy}{dx} + 2y = 0$$

Watch Video Solution

54. Verify that $y = ce^{tan - 1_x}$ is a solution of differential

equation
$$ig(1+x^2)rac{d^2y}{dx^2}+xrac{dy}{dx}=0.$$

55. Verify that the function $y = c_1 eax \cos bx + c_2 eax \sin bx$, where c_1 , c_2 are arbitrary constants is a solution of the differential equation. $\frac{d^2y}{dx^2} - 2a\frac{dy}{dx} + (a^2 + b^2)y = 0$

Watch Video Solution

57. Solve the equation: $ig(1+x^2) an^{-1}x\cdot rac{dy}{dx}+y=0$

61. Solve the equation: $2\sin 3y dx + 3x\cos 3y dy = 0$

64. Solve the equation:
$$\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}$$

66. Solve the equation:
$$(x+1)rac{dy}{dx}=2xy$$

Watch Video Solution

67. Solve the equation:
$$e^x\sqrt{1-y^2}dx+rac{y}{x}dy=0$$

Solve the following differential equation:

$$yig(1-x^2ig)rac{dy}{dx}=xig(1+y^2ig)$$

Watch Video Solution

69. Solve
$$rac{dy}{dx} = xy + x + y + 1$$

Watch Video Solution

70. Solve:
$$\displaystyle rac{dy}{dx} = e^{x-y} + x^2 e^{-y}$$

73. Solve the following differential equation: $5rac{dy}{dx}=e^xy^4$

74. Solve:
$$rac{dy}{dx}=rac{1}{\sin^4x+\cos^4x}$$
 (ii) $rac{dy}{dx}=rac{3e^{2x}+3e^{4x}}{e^x+e^{-x}}$

75.
$$\sqrt{1+x^2}dy+\sqrt{1+y^2}dx=0$$

Watch Video Solution

76.
$$rac{dy}{dx} an y = \sin(x+y) + \sin(x-y)$$

Watch Video Solution

77. Solve the differential equation $x(x^2-1)\frac{dy}{dx}=1$, given that when x=2, y=0.

 $x=\pi/2.$

Watch Video Solution

79. Solve the differential equation $(x-1)rac{dy}{dx}=2xy$,

given that y(2) = 1

80. Find the particular solution of $\cos\left(rac{dy}{dx}
ight)=a$, given

that y=2 when x=0

81. Find the equation of the curve passing through the point (1, 1) whose differential equation is $xdy = \left(2x^2 + 1
ight)dx(x
eq 0).$

Watch Video Solution

82. The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3

seconds it is 6 units. Find the radius of balloon after t seconds.

83. Solve:
$$(x-y)^2 \frac{dy}{dx} = 1$$

Watch Video Solution

84. Solve:
$$rac{dy}{dx} = \cos(x+y)$$

Watch Video Solution

85. Solve the equation $(x+y+1)\left(rac{dy}{dx}
ight)=1$

87. Solve:
$$rac{dy}{dx} = \sin(x+y) + \cos(x+y)$$

88. Solve:
$$ig(x^2+2xy+y^2+1ig)rac{dy}{dx}=2(x+y)$$

89. Solve:
$$(x-y)^2 rac{dy}{dx} = a^2$$

Watch Video Solution

91. Solve: $x^2 dy + y(x+y) dx = 0$

92. Solve the following differential equations:

$$\frac{dy}{dx} - \frac{y-x}{y+x}$$

93.
$$2xyrac{dy}{dx}=x^2+y^2$$

Watch Video Solution

94. Solve:
$$xy \frac{dy}{dx} = x^2 - y^2$$

Watch Video Solution

95. Solve the differential equation (x+y)dy = (x-y)dx

97.
$$\displaystyle rac{dy}{dx} + \displaystyle rac{x-2y}{2x-y} = 0$$

98.
$$y^2+x^2rac{dy}{dx}=xyrac{dy}{dx}$$

99. Solve:
$$ig(x^2+y^2ig)dx+3xydy=0$$

100. Solve
$$x\left(rac{dy}{dx}
ight) = y(\log y - \log x + 1)$$

101. Solve:
$$(x-y)rac{dy}{dx}=x+3y$$

102.
$$\left(x^3 + 3xy^2
ight)dx + \left(y^3 + 3x^2y
ight)dy = 0$$

103. Solve:
$$\left(x-\sqrt{xy}
ight)dy=ydx$$

105. Solve:
$$y^2 dx + ig(x^2 + xy + y^2ig) dy = 0$$

106. Solve the following differential equation:

$$x \frac{dy}{dx} \sin\left(\frac{y}{x}\right) + x - y \sin\left(\frac{y}{x}\right) = 0$$

107. Solve the differential equation
 $x^2 dy + y(x + y) dx = 0$, given that $y = 1$ when $x = 1$.
108. Solve the differential equation
 $(x + y) dy + (x - y) dx = 0$; given that $y = 1$ when $x = 1$.
108. Solve the differential equation
 $(x + y) dy + (x - y) dx = 0$; given that $y = 1$ when $x = 1$.
108. Watch Video Solution

109. Solve the differential equation :
$$\Big(x\sin^2\Big(rac{y}{x}\Big)-y\Big)dx+xdy=0$$
 given $y=rac{\pi}{4}$ when $x=1.$

111. Solve:
$$x \cos x rac{dy}{dx} + y(x \sin x + \cos x) = 1$$

112. Solve:
$$ig(1-x^2ig)rac{dy}{dx} - xy = x$$

113. Solve
$$ig(x^2+1ig)rac{dy}{dx}+2xy=\sqrt{x^2+4}$$

114. Solve:
$$\displaystyle rac{dy}{dx} + 2y = e^{-x}$$

115. Solve the following differential equation:
$$4\frac{dy}{dx} + 8y = 5 e^{-3x}$$

119. Solve:
$$\displaystyle rac{dy}{dx} + 3y = e^{-2x}$$

120. Solve the each of the following differential equation:

$$xrac{dy}{dx}+2y=x^2,\;x
eq 0$$

Watch Video Solution

121. Solve:
$$rac{dy}{dx} + y = \cos x$$

122. Solve:
$$rac{dy}{dx} + y = e^x$$

123. Solve:
$$x rac{dy}{dx} - y = x + 1$$

Watch Video Solution

124. Solve:
$$rac{dy}{dx} + y = \cos x - \sin x$$

Watch Video Solution

125. Solve:
$$rac{dy}{dx} + rac{y}{x} = x^n$$

Match Midae Colution

126. Solve:
$$rac{dy}{dx} - y an x = e^x \sec x$$

127. Solve:
$$ig(1+x^2ig)rac{dy}{dx}+2xy=\cos x$$

Watch Video Solution

128. Solve:
$$(\sec x) \frac{dy}{dx} = y + \sin x$$

129. Solve:
$$rac{dy}{dx} + y \cos x = \sin x \cos x$$

130. Solve:
$$rac{dy}{dx}+2y\cot x=3x^2\cos ec^2x$$

Watch Video Solution

131. Solve:
$$rac{dy}{dx} + y an x = 2x + x^2 an x$$

Watch Video Solution

132. Solve:
$$x \frac{dy}{dx} = y(\log y - \log x - 1)$$

Alatah Midaa Calutian

133.
$$ig(1-x^2ig)rac{dy}{dx}+xy=ax$$

134. Solve
$$\frac{dy}{dx} + y \cot x = 2x + x^2 \cot x$$
, given that y=0

when x=0

Watch Video Solution

135. Solve the equation $ydx+ig(x-y^2ig)dy=0$

136. Solve:
$$ig(x+3y^2ig)rac{dy}{dx}=y(y>0)$$

137. Solve:
$$ig(x-y^3ig)rac{dy}{dx}+y=0$$

Watch Video Solution

138. Solve:
$$rac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$$

139. Solve
$$x rac{dy}{dx} + y = y^2 \ln x$$
140. Solve:
$$\displaystyle rac{dy}{dx} = x^3y^3 - xy$$

O Watch Video Solution