©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

GP - FOR BOARDS

Solved Examples

1. Find the 15 th term of the G.P. $\frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \ldots \ldots$

(D) Watch Video Solution

2. Which term of the G.P. $5,20,80, \ldots, 5120$ is 1280 ?
3. How many terms are there in the G.P. $2,2 \sqrt{2}, 4, \ldots 128$?

- Watch Video Solution

4. The fifth term of a G.P. is 81 whereas its second term is 24 . Find the series and sum of its first eight terms.

- Watch Video Solution

5. The seventh term of a GL.P. is 8 times the fourth term and the term is 48 . Find the G.P.

- Watch Video Solution

6. The first term of a G.P. is 1 . The sum of the third and fifth terms is 90. Find the common ratio of the G.P.

Watch Video Solution

7. The third term of a G.P. is 3 . Find the product of its first five terms.

(D) Watch Video Solution

8. If the first and the nth terms of a G.P., are $a a n d b$, respectively, and if P is hte product of the first n terms prove that $P^{2}=(a b)^{n}$.

D Watch Video Solution

9. If a, b, c, be the pth,qth nd rth terms respectively of a Geometric progression, and $a, b, c g t 0$ then show that: $(q-r) \log a+(r-p) \log b+(p-q) \log c=0$
10. In a finite G.P. the product of the terms equidistant from the beginning and the end is always same and equal to the product of first and last term.

D Watch Video Solution

11. If the product of three numbers in G.P. be 216 and their sum sum is 19 , find the numbers.

- Watch Video Solution

12. If the continued product of three numbers in G.P. is 216 and the sum of their products in pairs is 156 , find the numbers.
13. The sum of three numbers in G.P. is 21 and the sum of their squares is 189 . Find the numbers.

- Watch Video Solution

14. The sum of first three terms of a G.P. is $\frac{39}{10}$ and their product is
15. Find the common ratio and the terms.

- Watch Video Solution

15. Find four numbers forming a geometric progression in which the third term is greater than the first term by 9 , and the second term is greater than the $4^{\text {th }}$ by 18.

- Watch Video Solution

16. A number consists of three digits in G. P. The sum of unit's digit and hundred's digit exceeds twice the ten's digit by 1 . The sum of the hundred's digit and ten's digit is two third of the sum of the ten's and unit's digits. Find the numbers

D Watch Video Solution

17. In a set of four numbers, the first three are in GP \& the last three are in AP, with common difference 6 . If the first number is the same as the fourth, find the four numbers.

- Watch Video Solution

18. Find the $1+1 / 2+\frac{1}{4}+\frac{1}{8}+\ldots \rightarrow n$ terms
19. Find the sum of n terms of the series $(a+b)+\left(a^{2}+2 b\right)+\left(a^{2}+3 b\right)+\ldots$.

- Watch Video Solution

20. Find the sum of n term so the G.P. $\sqrt{7}, \sqrt{21}, 3 \sqrt{7} \ldots$. . Also find the 8th term of the G.P.

D Watch Video Solution

21. Find the sum to n terms of the sequence, $8,88,888,8888 \ldots$.

- Watch Video Solution

22. How many terms of the series
$1+3+3^{2}+3^{3}+3+\ldots .+3^{n-1}$ must be taken to make the sum
equal to 3280 .

- Watch Video Solution

23. Find the value off $\sum_{k 1}^{10}\left(2+3^{k}\right)$

D Watch Video Solution

24. Evaluate: $\sum_{r=1}^{n}\left(3^{r}-2^{r}\right)$

- Watch Video Solution

25. If S_{1}, S_{2}, S_{3} be respectively the sums of $\mathrm{n}, 2 \mathrm{n}$ and 3 n terms of a G.P., prove that $S_{1}\left(S_{3}-S_{2}\right)=\left(S_{2}-S_{1}\right)^{2}$.
26. If f is a function satisfying $f(x+y)=f(x) \times f(y)$ for all $x, y \in N$ such that $f(1)=3$ and $\sum_{x=1}^{n} f(x)=120$, find the value of n.

- Watch Video Solution

27. If a, b, c, d be in G.P. show that
$(b-c)^{2}+(c-a)^{2}+(d-b)^{2}=(a-d)^{2}$.

D Watch Video Solution

28. If a, b, c, d be in G.P. show that
$\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$

- Watch Video Solution

29. If x, y, z are in G.P. and $a^{x}=b^{y}=c^{z}$, then (a) $\log b a=\log _{a} c$ (b) $\log _{c} b=\log _{a} c$ (c) $\log _{b} a=\log _{c} b$ (d) none of these

(D) Watch Video Solution

30. If $\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0)$, then show that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are in G.P.

- Watch Video Solution

31. If a, b, c, d and p are different real numbers such that: $\left(a^{2}+b^{2}+c^{2}\right) p^{I 2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \leq 0$ then show that a, b, c and d are in G.P.

- Watch Video Solution

32. Let a, b are roots of equation $x^{2}-3 x+p=0$ and c, d are roots of equation $x^{2}-12 x+q=0$. If a, b, c, d (taken in that order) are in geometric progression then $\frac{q+p}{q-p}$ is equal to (A) $\frac{5}{7}$
(B) $\frac{15}{17}$
(C) $\frac{17}{15}$
(D) $\frac{7}{5}$

(Watch Video Solution

33. If $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are in G.P. and the equations, $p x^{2}+2 q x+r=0$ and $d x^{2}+2 e x+f=0$ have a common root, then show that $\frac{d}{p}, \frac{e}{q}, \frac{f}{r}$ are in A.P.

D Watch Video Solution

34. What will Rs 500 amounts to in 10 years after its deposit in a bank which pays annual interest rate of 10% compounded annually?
35. A manufacturer reckons that the value of a machine, which costs him Rs. 15625 , will depreciate each year by 20%. Find the estimated value at the end of 5 years.

- Watch Video Solution

36. A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise

D Watch Video Solution

37. Insert seven geometric means between 2 and 162 .
38. Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ may be the geometric mean between $a a n d b$.

- Watch Video Solution

39. If a, x, y, z, b are in AP, then $x+y+z=15$ and if a, x, y, z, b are in HP. then $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{5}{3}$. Numbers a, b are

D Watch Video Solution

40. If $x>0$ prove that $x+\frac{1}{x} \geq 2$
41. Prove that the product n geometric means between two quantities is equal to the nth power of a geometric mean of those two quantities.

D Watch Video Solution

42. If the A.M. of two positive numbers $\operatorname{aandb}(a>b)$ is twice their geometric mean. Prove that : $a: b=(2+\sqrt{3}):(2-\sqrt{3})$.

- Watch Video Solution

43. If a, b, c, d are in A.P. and x, y, z are in G.P., then show that $x^{b-c} \dot{y}^{c-a} \dot{z}^{a-b}=1$.
44. If the pth, qth, rth, and sth terms of an A.P. are in G.P., t hen $p-q, q-r, r-s$ are in a. A.P. b. G.P. c. H.P. d. none of these

D Watch Video Solution

45. If p th, q th and r th terms of an A.P. and G.P. are both a, b and c respectively, show that $a^{b-c} \cdot b^{c-a} \cdot c^{a-b}=1$

D Watch Video Solution

46. If a, b, c are in A.P., prove that the following are also in A.P.

$$
\begin{equation*}
\frac{1}{b c}, \frac{1}{c a}, \frac{1}{a b}, \quad \text { (ii) } \quad b+c, c+a, a+b \tag{iii}
\end{equation*}
$$

$a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$
$a^{2}(b+c), b^{2}(c+a), c^{2}(a+b)$
$\left\{(c+c)^{2}-a^{2}\right\},\left\{(c+a)^{2}-b^{2}\right\},\left\{(a+b)^{2}-c^{2}\right\}$
$\frac{1}{\sqrt{b}+\sqrt{c}}, \frac{1}{\sqrt{c}+\sqrt{a}}, \frac{1}{\sqrt{a}+\sqrt{b}}$
47. If $a^{x}=b^{y}=c^{z}$ and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P. show that $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in A.P.

- Watch Video Solution

48. If reciprocals of $\frac{x+y}{2}, y, \frac{y+z}{2}$ are in A.P., show that $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in G.P.

- Watch Video Solution

49. If distinct numbers x, y, z are in G.P. and $\frac{1}{x+a}, \frac{1}{y+a}, \frac{1}{z+a}$ are in A.P., prove that $a=y$.

- Watch Video Solution

50. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P., $\mathrm{b}, \mathrm{c}, \mathrm{d}$ are in G.P. and $\frac{1}{c}, \frac{1}{d}, \frac{1}{e}$ are in A.P. prove that $\mathrm{a}, \mathrm{c}, \mathrm{e}$ are in G.P.

- Watch Video Solution

51. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P., $\mathrm{b}, \mathrm{c}, \mathrm{d}$ are in G.P. and $\frac{1}{c}, \frac{1}{d}, \frac{1}{e}$ are in A.P. prove that $\mathrm{a}, \mathrm{c}, \mathrm{e}$ are in G.P.

- Watch Video Solution

52. If three positive numbers a, b, c are in $A . P$. and $\frac{1}{a^{2}}, \frac{1}{b^{2}}, \frac{1}{c^{2}}$ also in $A . P$. then

- Watch Video Solution

1. Find the 10th term of the G.P. $5,25,125, \ldots$. Also find its nth term.

- Watch Video Solution

2. Find the 8 th term of the G.P. $0.3,0.06,0.012, \ldots .$.

- Watch Video Solution

3. Fidnteh 20th and nth term of the G.P. $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots$.

-
 Watch Video Solution

4. Find the $12^{\text {th }}$ term of a G.P. whose 8 th term is 192 and the common ratio is 2 .
5. Which term of the geometric sequence: $2 \sqrt{3}, 6,6 \sqrt{3}, \ldots . . i s 1458 ?$

D Watch Video Solution

6. Which term of the G.P.: $\sqrt{3}, 3,3, \sqrt{3}, i s 729$?

- Watch Video Solution

7. Which term of the G.P., $2,8,32, \ldots$ up to n terms in 131072 ?

(D) Watch Video Solution

8. Which term of the progression $0.004,0.02,0.1$, is 125 .?
9. Which term of the G.P.: $\frac{1}{3}, \frac{1}{9}, \frac{1}{27} i s \frac{1}{19683}$?

- Watch Video Solution

10. Which term of the geometric sequence: $\frac{1}{4},-\frac{1}{2}, 1, \ldots . I s 64$?

- Watch Video Solution

11. How many terms are there in the G.JP.
$0.03,0.06,0.12, \ldots . ., 3.84 ?$

- Watch Video Solution

12. If 5th nd 8 th of a G.P. be 48 and 384 respectively. Find the G.P. if term of G.P. are real numbers.
13. If the 6th and 10th terms of a G.P. are $\frac{1}{16}$ and $\frac{1}{256}$ respectively.

Find the G.P. if its terms are real numbers.

D Watch Video Solution

14. If the $p t h, q t h, r t h$ terms of a $G . P$. be a, b, c respectively, prove that $a^{q-r} b^{r-p} c^{p-q}=1$

- Watch Video Solution

15. If 5th, 8th, and 11th terms of a G.P. are p, q and s respectively, prove that $q^{2}=p s$.

- Watch Video Solution

16. If the $4^{\text {th }}, 10^{\text {th }}$ and $16^{\text {th }}$ terms of a G.P. are x, y and z , respectively. Prove that x, y, z are in G.P.

- Watch Video Solution

17. The $4^{\text {th }}$ term of a G.P. is square of its second term, and the first term is 3 . Determine its $7^{\text {th }}$ term.

- Watch Video Solution

18. if a G.P $(p+q)$ th term $=m$ and $(p-q)$ th term $=n$, then find its p th term

- Watch Video Solution

19. The product of three consecutive terms of a GP Is -64 and the first term is four times the third. Find the terms.

- Watch Video Solution

20. Find a G.P. for which sum of the first two terms is 4 and the fifth term is 4 times the third term.

- Watch Video Solution

21. Find three numbers in G.P. whose sum is 13 and the sum of whose squares is 91 .

- Watch Video Solution

22. The sum of first three terms of a G.P. is $13 / 12$ and their product is -1 . Find the G.P.

- Watch Video Solution

23. The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128 . Determine the first term, the common ratio and the sum to n terms of the GP.

- Watch Video Solution

24. The first term of a G.P. is 1 . The sum of the third term and fifth term is 90 . Find the common ratio of G.P.

- Watch Video Solution

25. Three numbers whose sum is 15 are in A.P. If $1,4,19$ be added to them respectively the resulting numbers re in G.P. Find the numbers.

D Watch Video Solution

26. The sum of three numbers in GP. Is 56 . If we subtract $1,7,21$ from these numbers in that order, we obtain an arithmetic progression.

Find the numbers.

- Watch Video Solution

27. Find three numbers in G.P. whose sum is 52 and the sum of whose products i pairs is 624.
28. From thre numbers in G.P., other three numbers in G.P. are subtracted and the remainder are also found to be in G.P. Prove that the three sequences have the same common ratio.

- Watch Video Solution

29. Find the sum of indicated terms of each of the following geometric progression: 1,2,4,8,......,12 terms

- Watch Video Solution

30. Find the sum of indicated terms of each of the following geometric progression: $1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots, n$ terms
31. Find the sum to indicated number of terms in each of the geometric progressions : $0.15,0.015,0.0015, \ldots, 20$ terms.

- Watch Video Solution

32. Find the sum of indicated terms of each of the following geometric progression: $1,-\frac{1}{2}, \frac{1}{4},-\frac{1}{8}, \ldots, n$ terms

- Watch Video Solution

33. Find the sum of the following geometric progression: $1,3,9,27$, to 8 terms.

- Watch Video Solution

34. Find the sum of indicated terms of each of the following geometric progression: 1,-3,9,-27, 9 terms

- Watch Video Solution

35. Find the sum of indicated terms of each of the following geometric progression: $x^{2}, x^{4}, x^{6}, \ldots, n t e r m s(x \neq \pm 1)$

- Watch Video Solution

36. Find the sum to indicated number of terms in each of the geometric progressions : $1,-a, a^{2}-a^{3}, \ldots n$ terms (if a $\neq-1$)

- Watch Video Solution

37. Find the sum of indicated terms of each of the following geometric progression: $1+\frac{2}{3}+\frac{4}{9}+\ldots ., n$ terms and 5 terms

- Watch Video Solution

38. A G.P. has first term 729 and 7 th term 64 . Find the sum of its first 7 terms.

- Watch Video Solution

39. Find the sum of the products of the corresponding terms of the sequences $2,4,8,16,32$ and $128,32,8,2, \frac{1}{2}$.

- Watch Video Solution

40. Find the sum to n terms of the following series: $\left(x+\frac{1}{x}\right)^{2}+\left(x^{2}+\frac{1}{x^{2}}\right)^{2}+\left(x^{3}+\frac{1}{x^{3}}\right)^{2}+\left(x^{4}+\frac{1}{x^{4}}\right)^{2}+$

- Watch Video Solution

41. Evaluate : $\sum_{k=1}^{n}\left(2^{k}+3^{k-1}\right)$

D Watch Video Solution

42. How many terms of the series $1+2+2^{2}+\ldots$. . must be taken to make 511?

- Watch Video Solution

43. How many terms of the G.P. $3,3 / 2,3 / 4$, be taken together to make $\frac{3069}{512}$?

- Watch Video Solution

44. The sum of some terms of G. P. is 315 whose first term and the common ratio are 5 and 2 , respectively. Find the last term and the number of terms.

- Watch Video Solution

45. A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
46. 2. (i) Sum upto n terms the series $6+66+666+$...

- Watch Video Solution

47. Find the sum of the following series:
$9+99+999+\rightarrow n$ terms

- Watch Video Solution

48. The sum of the following series $4+44+444+\ldots \ldots \ldots$. . to n term is:

- Watch Video Solution

49. Find the sum of the following series up to n terms: (i)
$5+55+555+\quad$.

(D) Watch Video Solution

50. Evaluate $7+77+777+\ldots$....upto n

(D) Watch Video Solution

51. Find the sum of the following series:
$0.6+0.66+0.666 \rightarrow n$ terms

- Watch Video Solution

52. Find the sum of the following series:
$0.5+0.55+0.555+\rightarrow n$ terms
(Watch Video Solution
53. Show that the ratio of the sum of first n terms of a G. P. to the sum of terms from $(n+1)$ to $(2 n)$ terms is $\frac{1}{r^{n}}$

(D) Watch Video Solution

54. if S is the sum , P the product and R the sum of reciprocals of n terms in G. P. prove that $P^{2} R^{n}=S^{n}$

- Watch Video Solution

 $(a+b)^{2},(b+c)^{2},(c+d)^{2}$ are in G.P.

- Watch Video Solution

56. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$..........are in G.P., then show that $(a-b)^{2},(b-c)^{2},(c-d)^{2}$ are in G.P.

D Watch Video Solution

57. If a, b, c are in G. P., prove that $a^{2}+b^{2}, a b+b c, b^{2}+c^{2}$ are also in $G . P$

D Watch Video Solution

58. If a, b, c, d are in G.P. prove that:
$\left(a^{2}+b^{2}\right),\left(b^{2}+c^{2}\right),\left(c^{2}+d^{2}\right) \quad$ are in G.P.
$\left(a^{2}-b^{2}\right),\left(b^{2}-c^{2}\right),\left(c^{2}-d^{2}\right) \quad$ are in G.P.
$\frac{1}{a^{2}+b^{2}}, \frac{1}{b^{2}+c^{2}}, \frac{1}{c^{2}+d^{2}}$
are
in G.P.
$\left(a^{2}+b^{2}+c^{2}\right),(a b+b c+c d),\left(b^{2}+c^{2}+d^{2}\right)$
59. If a, b, c are in G.P. prove that $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in G.P.

D Watch Video Solution

60. If a,b,c are in G.P., then show that $a(b-c)^{2}=c(a-b)^{2}$

D Watch Video Solution

61. If a, b, c are in G.P., then show that :

$$
\left(a^{2}-b^{2}\right)\left(b^{2}+c^{2}\right)=\left(b^{2}-c^{2}\right)\left(a^{2}+b^{2}\right)
$$

- Watch Video Solution

62. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P., then show that $: \log a, \log b, \log c$ are in A.P.

- Watch Video Solution

63. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P., then show that : $a\left(b^{2}+c^{2}\right)=c\left(a^{2}+b^{2}\right)$

- Watch Video Solution

64. For what values of x , the numbers $-\frac{2}{7}, x,-\frac{7}{2}$ are in G.P

- Watch Video Solution

65. Show that the products of the corresponding terms of the sequences a, $a r, a r^{2}, . . . a r^{n-1}$ and $A, A R, A R^{2}, . . ; A R^{n-1}$, form a G.P, and find the common ratio.

Watch Video Solution

66. A person has 2 parents, 4 grandparents, 8 great grand parents, and so on. Find the number of his ancestors during the ten generations preceding his one.

- Watch Video Solution

67. The number of bacteria in a certain culture doubles every hour.

If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of 2nd hour, 4th hour and nth hour?

- Watch Video Solution

68. A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in $15^{t h}$ year since he deposited the amount and also calculate the total amount after 20 years.
69. Shamshad Ali buys a scooter for Rs. 2200. He pays Rs. 4000 cash and agrees to pay the balance in annual instalments of Rs. 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him?

- Watch Video Solution

70. A farmer buys a used tractor for Rs. 12000. He pays Rs. 6000 cash and agrees to pay the balance in annual instalments of Rs. 500 plus 12% interest on the unpaid amount. How match the tractor cost him?
71. Insert 5 geometric means between 16 and $\frac{1}{4}$.

D Watch Video Solution

72. Insert two number between 3 and 81 so that the resulting sequence is G.P.

- Watch Video Solution

73. Insert three numbers between 1 and 256 so that the resulting sequence is a G.P.

(D) Watch Video Solution

74. Insert six G.M.''s between $\frac{8}{27}$ and $-5\left(\frac{1}{16}\right)$
75. The sum of two numbers is 6 times their geometric means, show that numbers are in the ratio $(3+2 \sqrt{2}):(3-2 \sqrt{2})$.

- Watch Video Solution

76. If odd number of G.M.|'s are inserted between two given quantities a and b , show that the middle G.M. $=\sqrt{a b}$

- Watch Video Solution

77. If A.M. and GM. of two positive numbers a and b are 10 and 8 , respectively find the numbers.

D Watch Video Solution

78. If A and G be A.M. and GM., respectively between two positive numbers, prove that the numbers are $A \pm \sqrt{(A+G)(A-G)}$.

D Watch Video Solution

79. If A.M. and G.M. between two numbers is in the ratio $m: n$ then prove that the numbers are in the ratio $\left(m+\sqrt{m^{2}-n^{2}}\right): \sqrt{\left(m-m^{2}-n^{2}\right)}$.

- Watch Video Solution

80. If one G.M., G and two A.M.|'s p and q be inserted between two given quantities, show that $G^{2}=(2 p-q)(2 q-p)$.

D Watch Video Solution

81. If one A.M. A and two G.M.l's p and q be inserted between two given numbers, shwo that $p^{2} q+\frac{q^{2}}{p}=2 A$

- Watch Video Solution

82. If a is the A.M. between b and c, b the G.M. between a and c, then show that $\frac{1}{a}, \frac{1}{c}, \frac{1}{b}$ are in A.P.

- Watch Video Solution

83. if a, b, c are the $p t h, q t h$ and $r t h$ terms of both an $A . P$. and also of a $G . P$. then $a^{b-c} \cdot b^{c-a} \cdot c^{a-b}$

D Watch Video Solution

84. An A.P. and a G.P. of positive terms have the same first term and the sum of their first, second and third terms are respectively, $1, \frac{1}{2}$ and 2. Show that the sum of their fourth terms is $\frac{19}{2}$

D Watch Video Solution

85. Let $a(a \neq 0)$ is a fixed real number and $\frac{a-x}{p x}=\frac{a-y}{q y}=\frac{a-z}{r z}$. If p, q, r are in A.P., show that $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in A.P.

- Watch Video Solution

86. 29. If a, b, c are in G. P. and $a^{\frac{1}{x}}=b^{\frac{1}{y}}=c^{\frac{1}{z}}$ prove that x, y, z are in $A . P$.
1. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ be in G.P. and $a^{x}=b^{y}=c^{z}=d^{w}$, prove that $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}, \frac{1}{w}$ are in A.P.

(D) Watch Video Solution

88. If reciprocals of $(y-x), 2(y-a),(y-z)$ are in A.P., prove that $x-a, y-a, z-a$ are in G.P.

D Watch Video Solution

89. (c) If a series of numbers be in G.P., show that their logarithms are in A.P

- Watch Video Solution

90. If $a, b, a n d c$ are in A.P. $p, q, a n d r$ are in H.P., and $a p, b q, a n d c r$ are in G.P., then $\frac{p}{r}+\frac{r}{p}$ is equal to $\frac{a}{c}-\frac{c}{a}$ b. $\frac{a}{c}+\frac{c}{a}$ c. $\frac{b}{q}+\frac{q}{b} \mathrm{~d}$. $\frac{b}{q}-\frac{q}{b}$

(D) Watch Video Solution

91. a, b, x are in A. P., a, b, y are in G. P. and a, b, z are in $H . P$. then:

(D) Watch Video Solution

92. If $\mathrm{x}, 1, \mathrm{z}$ are in A.P. $\mathrm{x}, 2, \mathrm{z}$ are in G.P., show thast $\frac{1}{x}, \frac{1}{4}, \frac{1}{z}$ are in A.P.

- Watch Video Solution

