© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

MATRICES - FOR COMPETITION

Solved Examples

1. If A, B, C are three matrices such that
$A=\left[\begin{array}{lll}x & y & z\end{array}\right], B=\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right], C=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ Find ABC.

- Watch Video Solution

2. Find X if $Y=[3214]$ and $2 X+Y=[10-32]$.
3. If $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ -4 & 2 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 3 \\ 4 & 5 \\ 2 & 1\end{array}\right]$, find $A B$ and $B A$ and show that $A B \neq B A$

- Watch Video Solution

4. If $A=|122212221|$, verifty that $A^{2}-4 A-5 I=0$

- Watch Video Solution

5. If $A=[10-17]$, find k such that $A^{2}-8 A+k I=O$.

- Watch Video Solution

6. If $A=f(x)=\left[\begin{array}{ccc}\cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$, then the value of $A^{-1}=$ (A) $f(x)$ (B) $-f(x)$ (C) $f(-x)$ (D) $-f(-x)$
7. If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ then $\lim _{n \rightarrow \infty} \frac{A^{n}}{n} i s($ where $\theta \varepsilon R)$ (A) an idenity matrix (B) a zero matrix (C) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ (D) $\left[\begin{array}{cc}0 & 1 \\ -1 & -0\end{array}\right]$

(Watch Video Solution

8. If $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$ is a matrix of order 3 then the value of the matrix
$(I+A)-2 A^{2}(I-A)$, where I is a unity matrix is equal to (A)
$\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$
(B) $\left[\begin{array}{ccc}1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]$
(C) $\left[\begin{array}{ccc}1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$
(D) $\left[\begin{array}{lll}0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

- Watch Video Solution

9. If A and B are square matices of the same order such that $A^{2}=A, B^{2}=B, A B=B A=0 \quad$ then (A) $A B^{2}=0$
$(A+B)^{2}=A+B$ (C) $(A-B)^{2}=A+B$ (D) none of these
10. Let $f(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$, then \quad (A) $\quad(f(x))^{2}=-I$
$f(x+y)=f(x), f(y)$ (C) $f(x)^{-1}=f(-x)$ (D) $f(x)^{-1}=f(x)$

- Watch Video Solution

11. If D_{1} and D_{2} are diagonal matices of order 3×3 then (A) D_{1}^{n} is a diagonal matrix (B) $D_{1} D_{2}=D_{2} D_{1}$ (C) $D_{1}^{2}+D_{2}^{2}$ is diagonal matrix (D) $D_{1} D_{2}$ is a diagonal matix

- Watch Video Solution

12. For a matrix A of order 3×3 where
$A=\left[\begin{array}{ccc}1 & 4 & 5 \\ k & 8 & 8 k-6 \\ 1+k^{2} & 8 k+4 & 2 k+21\end{array}\right]$
(A) rank of
$A=2 f$ or $k=-1(B)$ rnkofA=1 or $\quad \mathrm{k}=-1(C)$ rankofA=2 for $\mathrm{k}=2$
(D) rankof $A=1 f$ or $k=2$

(D) Watch Video Solution

13. Let A and B be two matrices of the same order 3×3 such that $A=\left[\begin{array}{ccc}-5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 1 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 3\end{array}\right] x+y+2 z=1,3 x+2 y+z$ and $2 x+y+3 z=2$ be a system of equatons in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ The value of AB and hence solve the system of equation
(A) $\left[\begin{array}{ccc}-5 & 1 & 5 \\ 21 & 2 & -5 \\ 2 & -1 & 3\end{array}\right]$
(B) $\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right]$
(C) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
(D) $\left[\begin{array}{ccc}2 & -5 & 1 \\ 1 & 3 & 6 \\ 0 & 0 & -0\end{array}\right]$

- Watch Video Solution

Exercise

1. Given $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right]$ and $b=\left[\begin{array}{ccc}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{array}\right]$, find the matrix C such that $A+C=B$.
2. If $P(x)=\left[\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]$, then show that $P(x) . P(y)=P(x+y)=P(y) . P(x)$.

- Watch Video Solution

3. Find the product of the following two matrices $\left[\begin{array}{ccc}0 & c & -b \\ c & 0 & a \\ b & -a & 0\end{array}\right]$ and $\left[\begin{array}{ccc}a^{2} & a b & a c \\ a b & b^{2} & b c \\ a c & b c & c^{2}\end{array}\right]$.

(Watch Video Solution

4. If $f(x)=x^{2}-5 x+6$. Find $f(A)$, if $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$.

- Watch Video Solution

5. Let $A=[0-\tan (\alpha / 2) \tan (\alpha / 2) 0]$ and I be the identity matrix of order 2. Show that $I+A=(I-A)[\cos \alpha-\sin \alpha \sin \alpha \cos \alpha]$.

(D) Watch Video Solution

6. If $A=[3-41-1]$, then prove that $A^{n}=[1+2 n-4 \cap 1-2 n]$, where n is any positive integer.

- Watch Video Solution

7. Let $A=[0100]$ show that $(a I+b A)^{n}=a^{n} I+n a^{n-1} b A$, where I is the identitymatrix of order 2 and $n \in N$.

- Watch Video Solution

8. A man buys 8 dozens of magones, 10 dozens of appes and 4 dozens of basnanas. Mangoes cost Rs. 18 per dozen, apples Rs. 9 per dozen nd bananas Rs. 6 per dozen. Represent the quantities bought by a row matrix and the prices byka column matrix and hence obtain the total cost.
9. Express the following matrilx as the sum of a symmetric and skey symmetric matrix $\left[\begin{array}{ccc}1 & 2 & 4 \\ 6 & 8 & 1 \\ 3 & 5 & 7\end{array}\right]$

- Watch Video Solution

10. Solve the following system of linear equations by matrix method:
$3 x-2 y=7,5 x+3 y=1$

- Watch Video Solution

11. Use matrix method to solve the equations $5 x-7 y=2$ and $7 x-5 y=3$

- Watch Video Solution

12. Solve the following system of linear equations by matrix method:
$2 x+3 y+3 z=1,2 x+2 y+3 z=2, x-2 y+2 z=3$

Watch Video Solution

13. Solve the following system of linear equations by matrix method:
$x+y+z=3,2 x-y+z=2, x-2 y=3 z=2$

- Watch Video Solution

14. If A is an invertible symmetric matrix the A^{-1} is
A. a diagonal matrix
B. symmetric
C. skew symmetric
D. none of these

- Watch Video Solution

15. If A is a skew-symmetric matrix and n is odd positive integer, then A^{n} is a skew-symmetric matrix a symmetric matrix a diagonal matrix none of these

- Watch Video Solution

16. Which of the following is no true? (A) $\left(A^{\prime}\right)^{\prime}=A$
$(A-I)(A+I)=0 \quad$ such that $\quad A^{2}=I$
$(A B)^{n}=A^{n} B^{n}$ wherene N and $A B=B A$
$(A+B)(A-B)=A^{2}-B^{2}, A$ and B being square matrices of the same type

- Watch Video Solution

17. A square matrix A is invertible iff det (A) is equal to (A) -1 (B) 0 (C) 1 (D) none of these
18. If A, B and C be the three square matrices such that $A=B+C$ then $\operatorname{det} \mathrm{A}$ is necessarily equal to (A) $\operatorname{det} \mathrm{B}(\mathrm{B}) \operatorname{det} \mathrm{C}(\mathrm{C}) \operatorname{det} B+\operatorname{det} C$ (D) none of these

- Watch Video Solution

19. A square matix A is called idempotent if (A) $A^{2}=0$ (B) $A^{2}=I$ (C) $A^{2}=A$ (D) $2 A=I$

- Watch Video Solution

20. The value of det $\left|\begin{array}{cccc}a & 0 & 0 & 0 \\ 2 & b & 0 & 0 \\ 4 & 6 & c & 0 \\ 6 & 8 & 10 & d\end{array}\right| i s(A) 0(B) \mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}(C) \mathrm{abcd}^{\prime}(\mathrm{D})$ none of these
21. If A and B are any two square matrices of the same order then
(A) $(A B)^{T}=A^{T} B^{T}$
(B) $(A B)^{T}=B^{T} A^{T}$
(C) $\operatorname{Adj}(A B)=\operatorname{adj}(A) \operatorname{adj}(B)$
(D) $A B=0 \rightarrow A=0$ or $B=0$

- Watch Video Solution

22. A square matix $A S$ is a called singular if det A is (A) negative (B) zero
(C) positive (D) non-zero

- Watch Video Solution

23. Let A by any $m \times n$ matrix then A^{2} can be found only when (A) $m<n$
(B) $m=n$ (C) $m>n$ (D) none of these

- Watch Video Solution

24. The matrix of the transformation reflection in the line $x+y=0$ is (A)
$\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
(B) $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
(C) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(D) $\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$

- Watch Video Solution

25. Rank of a non zero matrix is always (A) 0 (B) 1 (C) >1 (D) >0

- Watch Video Solution

26. The values of x for which the matrix $\left[\begin{array}{ccc}x+a & b & c \\ a & x+b & c \\ a & b & x+c\end{array}\right]$ is nonsingular are (A) $R-\{0\}$
(B) $\quad R-\{-(a+b+c)\}$
$R-\{0,-(a+b+c)\}(\mathrm{D})$ none of these

- Watch Video Solution

27. If $A=\left[\begin{array}{ccc}1 & 1 & 2 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right]$ then A is (A) nilpotent (B) idempotent (C) symmetric (D) none of these

- Watch Video Solution

28. If $A=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$ then (A) $A^{2}=I$ (B) $A^{2}=0$ (C) $A^{3}=0$ (D) none of these

- Watch Video Solution

29. If A and B are square matrices of order 3 then (A) $A B=0 \rightarrow|A|=0$ or $|B|=0$ (B) $A B=0 \rightarrow|A|=0$ and $|B|=0$
(C) $\operatorname{Adj}(A B)=\operatorname{Adj} A \operatorname{AdjB}$ (D) $(A+B)^{-1}=A^{-1}+B^{-1}$

- Watch Video Solution

30. If A a non singular matrix an A^{T} denotes the transpose of A then (A)
$\left|A A^{T}\right| \neq\left|A^{2}\right|$
(B) $\left|A^{T} A\right| \neq\left|A^{T}\right|^{2}$
(C) $|A|+\left|A^{T}\right| \neq 0$
(D) $|A| \neq\left|A^{T}\right|$

- Watch Video Solution

31. If A and B are square matrices of the same order then $(A+B)^{2}=A^{2}+2 A B+B^{2}$ implies (A) $A B=0$ (B) $A B+B A=0$ (C) $A B=B A(\mathrm{D})$ none of these

- Watch Video Solution

32. If $A=\left[\begin{array}{ccc}0 & 2 & -3 \\ -2 & 0 & -1 \\ 3 & 1 & 0\end{array}\right]$ then A is (A) diagonal matrix (B) symmetric matix (C) skew symmetric matrix (D) none of these

- Watch Video Solution

33. If $A=\left[\begin{array}{ll}2 & -4 \\ 1 & -1\end{array}\right]$ the value of A^{n} is (A) $\left[\begin{array}{cc}3^{n} & (-4)^{n} \\ 1 & (-1)^{n}\end{array}\right]$
$\left[\begin{array}{cc}3 n & -4 n \\ n & n\end{array}\right]$ (C) $\left[\begin{array}{cc}2+n & 5-n \\ n & -n\end{array}\right]$ (D) none of these

- Watch Video Solution

34. For a non singular matrix A of order n the rank of A is (A) less than n (B) equal to n (C) greater than n (D) none of these

- Watch Video Solution

35. Inverse of diagonal matrix is (A) a diagonal matrix (B) symmetric (C) skew symmetric (D) none of these

- Watch Video Solution

36. IF $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ then for all natural numbers $n A^{n}$ is equal to (A) $\left[\begin{array}{ll}1 & 0 \\ 1 & n\end{array}\right]$ (B) $\left[\begin{array}{ll}n & 0 \\ 1 & 1\end{array}\right]$ (C) $\left[\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right]$ (D) none of these

(D) Watch Video Solution

37. Prove that the product of the matrices $\left[\begin{array}{cc}\cos ^{2} \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin ^{2} \alpha\end{array}\right]$ and $\left[\begin{array}{cc}\cos ^{2} \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin ^{\beta}\end{array}\right]$ is the null matrix when α and β differ by an odd multiple of $\frac{\pi}{2}$.

- Watch Video Solution

38. For an invertible square matrix of order 3 with real entries $A^{-1}=A^{2}$ then $\operatorname{det} A=(A) 1 / 3$ (B) 3 (C) $0(D) 1$

- Watch Video Solution

39. If $\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] A\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ then a is equal to (A) $\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$
$\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
(C) $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
(D) $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$

- Watch Video Solution

40. The roots of the equation det $\left[\begin{array}{ccc}1-x & 2 & 3 \\ 0 & 2-x & 0 \\ 0 & 2 & 3-x\end{array}\right]=0$ are (A) 1 and 2 (B) 1 and 3 (C) 2 and 3 (D) 1,2, and 3

- Watch Video Solution

41. If $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ -1 & 1 & 2 \\ 2 & -1 & 1\end{array}\right]$ then $\operatorname{det}(\operatorname{Adj}(\operatorname{Adj} A))=$ (A) 13 (B) 13^{2} (C)
13^{4} (D) none of these

- Watch Video Solution

42. The transformation due of reflection of (x, y) through the origin is described by the matrix (A) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ (B) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ (C) $\left[\begin{array}{cc}0-1 & 0 \\ 0 & -1\end{array}\right]$
$\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$

(Watch Video Solution

43. If $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{n \times p}$ then $(A B)^{\prime}$ is equal to (A) $B A^{\prime}$ (B) $B^{\prime} A$ (C) $A^{\prime} B^{\prime}$ (D) $B^{\prime} A^{\prime}$

- Watch Video Solution

44. If A is a skew-symmetric matrix and n is odd positive integer, then A^{n} is a skew-symmetric matrix a symmetric matrix a diagonal matrix none of these

- Watch Video Solution

45. If A is a skew-symmetric matrix and n is odd positive integer, then A^{n} is a skew-symmetric matrix a symmetric matrix a diagonal matrix none of these

- Watch Video Solution

46. If A and B are symmetric of the same order, then (A) AB is a symmetric matrix (B) A-B is skew symmetric (C) AB-BA is symmetric matrix (D) AB+BA is a symmetric matrix

- Watch Video Solution

47. । $A=[x, y, z], B=\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right]$ and $C=[x, y, z]^{T}$, then $A B C$ is
(A) not defined (B) a 1×1 matrix (C) a 3×3 matrix (D) none of these

- Watch Video Solution

48. If for a square matrix $A, A^{2}=$ Athen $|A|$ is equal to (A) -3 or 3 (B)
-2 or $2(C) 0$ or $1(D)$ none of these

- Watch Video Solution

49. For a matrix A of $\operatorname{rank} \mathrm{r}(\mathrm{A}) \operatorname{rank}\left(A^{\prime}\right)<r(\mathrm{~B}) \operatorname{rank}\left(A^{\prime}\right)=r$. (C) rank $\left(A^{\prime}\right)>r(\mathrm{D})$ none of these

- Watch Video Solution

50. If $A=\left[\begin{array}{cccc}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{array}\right]$ then $\operatorname{det} A=(A) O$ (B) $-\left(80^{3}\right) \cdot 27$ (C) $\left(80^{3}\right) 27$
(D) 81^{3}

- Watch Video Solution

51. If $A=\left[\begin{array}{cc}a b & b^{2} \\ -a^{2} & -a b\end{array}\right]$ then matrix A is (A) scalar (B) involuntary (C) idemponent (D) nilpotent
52. If $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & \cos & \sin x \\ 0 & -\sin x & \cos x\end{array}\right]$ then $(\operatorname{Adj} A)^{-1}=$ (A) $\frac{1}{2} A$ (B) A (C) 2 A
(D) 4 A

- Watch Video Solution

53. Each diagonal element of a skew symmetric matrix is (A) zero (B) negative (C) positive (D) non real

- Watch Video Solution

54. If A is a non singular square matrix then $|a d j . A|$ is equal to (A) $|A|$
(B) $|A|^{n-2}$
(C) $|A|^{n-1}$
(D) $|A|^{n}$

- Watch Video Solution

55. If $A=\left[\begin{array}{cc}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]\left[\begin{array}{cc}1 & \tan \theta \\ -\tan \theta & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ then (A)
$a=b=-1$
(B) $a=\sin 2 \theta, b=\cos 2 \theta$
(C) $a=\cos 2 \theta, b=\sin 2 \theta$
none of these

- Watch Video Solution

56. If $A=\left[\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]$ and $A .\left(\operatorname{adjA)}=k\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right.$ then the value of k is

- Watch Video Solution

57. If I_{n} is the identity matrix of order n then $\left(I_{n}\right)^{-1}$ (A) does not exist (B) $=0(\mathrm{C})=I_{n}(\mathrm{D})=n I_{n}$

- Watch Video Solution

58. The number of all possible matrices of order 3×3 with each entry 0 or 1 is:(a) 27 (b) 18 (c) 81 (d) 512

- Watch Video Solution

59. The number of all the possible matrices of order 2×2 with each entry 0,1 or 2 si (A) 12 (B) 64 (C) 81 (D) none of these

- Watch Video Solution

60. If A is an invertible matrix then $\operatorname{det}\left(A^{-1}\right)$ is equal to (A) 1 (B) $\frac{1}{|A|}$
$|A|$ (D) none of these

- Watch Video Solution

61. If A and B are two invertible matrices of same order, the $(A B)^{-1}$ is (A$)$ AB (B) BA (C) $B^{-1} A^{-1}$ (D) does not exist
62. If A dn B be 3×3 matrices the $\mathrm{AB}=0$ implies (A) $A=0$ or $B=0$ (B) $A=0$ and $B=0$ (C) $|A|=0$ or $|B|=0$ (D) $|A|=0$ and $|B|=0$

- Watch Video Solution

63. If A and B are two matrices such that $A B=B$ and $B A=A$ then $A^{2}+B^{2}=(\mathrm{A}) 2 \mathrm{AB}$ (B) 2 BA (C) $\mathrm{A}+\mathrm{B}$ (D) AB

- Watch Video Solution

64. If A is a square matrix which of the following is not as symmetrixc matrix? (A) $A-A^{\prime}$ (B) $A+A^{\prime}$ (C) $A A^{\prime}$ (D) $A+B$
65. If A is invertible then which of the following is not true? (A)
$A^{-1}=|A|^{-1}$
(B) $\left(A^{\prime}\right)^{-1}=\left(A^{-1}\right)^{\prime}$
(C) $\left(A^{2}\right)^{-1}=\left(A^{-1}\right)^{2}$
(D) none of these

- Watch Video Solution

66. If $A=\left[a_{i j}\right]_{m \times n}$ is a matrix of rank r then (A) $r<\min \{m, n\}$
$r \leq \min \{m, n\}$ (C) $r=\min \{m, n\}$ (D) none of these

- Watch Video Solution

67. If A and B are symmetric matrices, then $A B A$ is

- Watch Video Solution

68. $\cos \theta\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]+\sin \theta\left[\begin{array}{cc}\sin \theta & -\cos \theta \\ \cos \theta & \sin \theta\end{array}\right]$ is equal to (A) $\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$
(B) $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ (C) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ (D) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
69. Consider the set A of all determinants of order 3 with entries 0 or 1 only. Let B be the subset of A consisting of all determinants with value 1 . Let C be the subset of the set of all determinants with value -1 . Then

- Watch Video Solution

70. If A is an $m \times n$ matrix such that $A B$ and $B A$ are both defined, then B is (A) $m \times n$ matrix (B) $n \times n$ matrix (C) $m \times n$ matrix (D) $n \times m$ matrix

- Watch Video Solution

71. If A is a skew-symmetric matrix of odd order n, then $|A|=0$

- Watch Video Solution

72. If $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ then A^{4} is (A) $\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$
(B) $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
(C) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

- Watch Video Solution

73. If $A=\left[\begin{array}{ccc}\alpha & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$ and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are non zero real numbers, then A^{-1} is
(A) $\frac{1}{a b c}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ (B) $\frac{1}{a b c}\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & c & 0\end{array}\right]$ (C) $\frac{1}{a b c}\left[\begin{array}{ccc}a^{-1} & 0 & 0 \\ 0 & b^{-1} & 0 \\ 0 & c^{-1} & 1\end{array}\right]$
$\left[\begin{array}{ccc}a^{-1} & 0 & 0 \\ 0 & b^{-1} & 0 \\ 0 & c^{-1} & 1\end{array}\right]$

- Watch Video Solution

74. The trnsformation orthogonal projection on X -axis is given by the matrix (A) $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ (B) $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ (C) $\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ (D) $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$

- Watch Video Solution

75. If $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ and $n \varepsilon N$ then A^{n} is equal to (A) $2^{n-1} A$ (B) $2^{n} A$ (C) $n A$ (D) none of these

- Watch Video Solution

76. If $A=\left[\begin{array}{cc}1 & 0 \\ \frac{1}{2} & 1\end{array}\right]$ then A^{50} is (A) $\left[\begin{array}{cc}1 & 25 \\ 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{cc}1 & 0 \\ 25 & 1\end{array}\right]$ (C) $\left[\begin{array}{cc}1 & 0 \\ 0 & 50\end{array}\right]$
(D) $\left[\begin{array}{cc}1 & 0 \\ 50 & 1\end{array}\right]$

- Watch Video Solution

77. If $\left[\begin{array}{cc}a & b \\ c & -a\end{array}\right]$ is a square root of the 2×2 identity matrix then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ satisfy the relation (A) $1-a^{2}-b c=0$
(B) $1-a^{2}+b c=0$
$1+a^{2}-b c=0(\mathrm{D}) 1+a^{2}+b c=0$

- Watch Video Solution

78. Find the following system of equations is consistent, $(a+1)^{3} x+(a+2)^{3} y=(a+3)^{3} \quad(a+1) x+(a+2) y=a+3 \quad+=1$, then find the value of a.

- Watch Video Solution

79. Let $A=\left[a_{i j}\right]_{n \times n}$ be a square matrix and let $c_{i j}$ be cofactor of $a_{i j}$ in A. If $C=\left[c_{i j}\right]$, then

- Watch Video Solution

80.

If
$F(\alpha)=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$ and $G(\beta)=\left[\begin{array}{ccc}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta\end{array}\right]$, then $[F(،$
is equal to (A) $F(-\alpha) G(-\beta) \quad$ (B) $\quad G(-\beta) F(-\alpha 0$
$F\left(\alpha^{-1}\right) G\left(\beta^{-1}\right)$
(D) $G\left(\beta^{-1}\right) F\left(\alpha^{-1}\right)$

- Watch Video Solution

81. If A is a square matrix of order $n \times n$ and λ is a scalar then $|\lambda A|$ is (A) $\lambda|A|$ (B) $\lambda^{n}|A|$ (C) $|\lambda||A|$ (D) none of these

Watch Video Solution

82. If neither α nor β is a multiple of $\frac{\pi}{2}$ and the product AB of matrices $A=\left[\begin{array}{cc}\cos ^{2} \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin ^{2} \alpha\end{array}\right]$ and $B=\left[\begin{array}{cc}\cos ^{2} \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin ^{2} \beta\end{array}\right]$ is a null matrix then $\alpha-\beta$ is (A) O (B) an odd mutiple of $\frac{\pi}{2}$ (C) a multiple of π (D) none of these

- Watch Video Solution

83. If A and B are two matrices such that $A B=A, B A=B$, then A^{25} is equal to
(A) A^{-1}
(B) A
A
C) $B^{-1}(D) \mathrm{B}^{`}$

- Watch Video Solution

84. If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ then $\lim _{n \rightarrow \infty} \frac{1}{n} A^{n}$ is (A) an identity matrix (B) $\left[\begin{array}{cc}0 & 10 \\ -1 & 0\end{array}\right]$ (C) a null matrix (D) none of these

- Watch Video Solution

85. If $A=\left[\begin{array}{lll}a & b & c \\ x & y & z \\ p & q & r\end{array}\right]$ and $B=\left[\begin{array}{ccc}q & -b & y \\ -p & a & -x \\ r & -c & z\end{array}\right]$ then (A) $|A|=|B|$
(B) $|A|=-|B|$ (C) $|A|=2|B|$ (D) none of these

- Watch Video Solution

86. The number of different mastrices which can be formed using 12 different real numbers is (A) 6(12)! (B) $3(12)$! (C) 2(10)! (D) $4(10)$!|

- Watch Video Solution

87. Which of the following is a non singular matrix? (A) $\left[\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right]$
(B) $\left[\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right]$ where omega is non real and $\omega^{2}=1$
$\left[\begin{array}{ccc}1^{2} & 2^{2} & 3^{2} \\ 2^{2} & 3^{2} & 4^{2} \\ 3^{2} & 4^{2} & 5^{2}\end{array}\right]$ (D) $\left[\begin{array}{ccc}0 & 2 & -3 \\ -2 & 0 & 5 \\ 3 & -5 & 0\end{array}\right]$

D Watch Video Solution

88. If A and B are two $n \times n$ matrices such that $|A|=|B|$ then (A)
$A^{\prime}=A$ (B) $A=B(\mathrm{C}) A^{\prime}=B^{\prime}(\mathrm{D})$ none of these

- Watch Video Solution

89. If $A=\left[a_{i j}\right]$ is a scalar matrix, then trace of A is

- Watch Video Solution

90. If for a matrix $A, A^{2}+I=0$, whereI is an identity matrix then A equals (A) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ (C) $\left[\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right]$ (D) $\left[\begin{array}{cc}-i & 0 \\ 0 & -i\end{array}\right]$

- Watch Video Solution

91. The system of linear equations $a x+b y=0, c x+d y=0$ has a non trivial solution if (A) $a d+b c=0$ (B) $a d-b c=0$ (C) $a d-b c, 0$ (D) $a d-b c .0$

- Watch Video Solution

92. The equation $2 x+y+z=0, x+y+z=1,4 x+3 y+3 z=2$ have (A) no solution (B) only one solution (C) infinitely many solutions (D) none of these

- Watch Video Solution

93. The value of a for which the system of linear equations $a x+y+z=0, a y+z=0, x+y+z=0 \quad$ possesses non-trivial solution is

- Watch Video Solution

94. The system of equations
$3 x+y-z=0,5 x+2 y-3 z=0,15 x+6 y-9 z=5 \quad$ has (A) no solution (B) a unique solution (C) two distinct solutions (D) infinitely many solutions

- Watch Video Solution

95. $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$, then adjoint of A is equal to (A) $\left[\begin{array}{cc}1 & -2 \\ -2 & 1\end{array}\right]$
$\left[\begin{array}{ll}2 & 1 \\ 2 & 1\end{array}\right]$ (C) $\left[\begin{array}{cc}1 & -2 \\ -2 & 1\end{array}\right]$ (D) $\left[\begin{array}{cc}-1 & 2 \\ 2 & -1\end{array}\right]$

- Watch Video Solution

96. If $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], J=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then $B=$
(A) $I \cos \theta+J \sin \theta$
(B) $I \cos \theta-J \sin \theta$
(C) $I \sin \theta+J \cos \theta$
(D)
$-I \cos \theta+J \sin \theta$

- Watch Video Solution

97. If $A=\left[(1,0,0),(0,1,0),(1, b,-10]\right.$ then A^{2} is equal is (A) unit matrix (B) null matrix (C) A (D) $-A$

- Watch Video Solution

98. If A and B are two matrices such that $A+B$ and $A B$ are both defined then (A) A and B can be any matrices (B) A, B are squre matrices not necessarily of same order (C) A,B are square matrices of same order (D) nuber of columns of $A=$ number of rows of B

- Watch Video Solution

99. If A and B are symmetric matrices of order $n(A \neq B)$ then (A$) \mathrm{A}+\mathrm{B}$ is skew symmetric (B) $A+B$ is symmetric (C) $A+B$ is a diagonal matrix (D) $A+B$ is a zero matrix

- Watch Video Solution

100. The number of solution of $2 x+y=4, x-2 y=2,3 x+5 y=6$ is
(A) zero (B) one (C) two (D) infinitely many

- Watch Video Solution

101. If $A=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right], B=\left[\begin{array}{ccc}-5 & 4 & 0 \\ 0 & 2 & -1 \\ 1 & -3 & 2\end{array}\right]$ then (A) $A B=\left[\begin{array}{c}-2 \\ -1 \\ 4\end{array}\right]$
(B) $\quad A B=[-2,-1,4]$
(C) $A B=[4,-1,2]$
$A B=\left[\begin{array}{ccc}-5 & 4 & 0 \\ 0 & 4 & -2 \\ 3 & -9 & 6\end{array}\right]$
(Watch Video Solution
102. If A and B are any 2×2 matrices then $\operatorname{det}(A+B)=0$ implies (A) $\operatorname{det} A+\operatorname{det} B=0 \quad$ (B) $\quad \operatorname{det} A=0$ or $\operatorname{det} B=0$
$A B=0 \rightarrow|A|=0$ and $|B|=0$ (D) $A B=0 \rightarrow A=0$ or $B=0$

- Watch Video Solution

103. From the matrix equation $A B=A C$ we can conclude that $B=C$ provide (A) A is singular (B) A is non singular (C) A is symmetric (D) A is square

- Watch Video Solution

104. If each element of a 3×3 matrix A is multiplied by 3 then the determinant of the newly formed matrix is (A) $3 \operatorname{det} A$ (B) $9 \operatorname{det} A$ (C) $(\operatorname{det} A)^{3}(\mathrm{D}) 27 \operatorname{det} A$

- Watch Video Solution

105. If A and Bare two non-zero square matrices of the same order, such that $A B=0$, then (a) at least one of A and B is singular (b) both A and B are singular (c) both A and B are non-singular (a) none of these

- Watch Video Solution

106. If A and B are two matrices such that $A B=B$ and $B A=A$ then
$A^{2}+B^{2}=(\mathrm{A}) 2 \mathrm{AB}$ (B) $2 \mathrm{BA}(\mathrm{C}) \mathrm{A}+\mathrm{B}$ (D) AB

- Watch Video Solution

107. The system of linear equations
$x+y+z=2$
$2 x+y-z=3$
$3 x+2 y+k z=4$ has a unique solution if

- Watch Video Solution

108. If $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ then $A^{\wedge} 4=$ (A) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{cc}1 & 1 \\ 0 & 10\end{array}\right]$ (C) $\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$ $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

- Watch Video Solution

109. The order of $[x, y, z],\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right],\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is
(A) 3×1
(B) 1×1
(C) 1×3
(D) 3×3

- Watch Video Solution

110. $\left[\begin{array}{cc}1 & 3 \\ 3 & 10\end{array}\right]^{-1}=(\mathrm{A})\left[\begin{array}{cc}10 & 3 \\ 3 & 1\end{array}\right]$
(B) $\left[\begin{array}{cc}10 & -3 \\ -3 & 1\end{array}\right]$
(C) $\left[\begin{array}{cc}1 & 3 \\ 3 & 10\end{array}\right]$
$\left[\begin{array}{cc}-1 & -3 \\ -3 & -10\end{array}\right]$
111. If $A+B=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $A-2 B=\left[\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right]$ then $A=(A)$ $\frac{1}{3}\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]$ (B) $\frac{1}{3}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ (C) $\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]$ (D) none of these

- Watch Video Solution

112. If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$ then $A^{2}=$ (A) $\left[\begin{array}{cc}8 & -5 \\ -5 & 3\end{array}\right]$ (B) $\left[\begin{array}{cc}8 & -5 \\ 5 & 3\end{array}\right]$
$\left[\begin{array}{cc}8 & -5 \\ -5 & -3\end{array}\right]$ (D) $\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right]$

- Watch Video Solution

113. The inverse of the matrix $\left[\begin{array}{cc}2 & 3 \\ -4 & 7\end{array}\right]$ is (A) $\left[\begin{array}{cc}-2 & -3 \\ 4 & -7\end{array}\right]$
$\frac{1}{26}\left[\begin{array}{cc}7 & -3 \\ 4 & 2\end{array}\right]$
(C) $\left[\begin{array}{cc}7 & 4 \\ -3 & 2\end{array}\right]$
(D) $\left[\begin{array}{cc}7 & -3 \\ 4 & 2\end{array}\right]$

- Watch Video Solution

114. the order of the single matrix obtained from $\left[\begin{array}{cc}1 & -1 \\ 0 & 2 \\ 2 & 3\end{array}\right]\left\{\left[\begin{array}{ccc}-1 & 0 & 2 \\ 2 & 0 & 1\end{array}\right]-\left[\begin{array}{lll}0 & 1 & 23 \\ 1 & 0 & 21\end{array}\right]\right\}$ is (A) 2×3 (B) 2×2
3×2 (D) 3×3

Watch Video Solution

115. The inverse of the matrix $\left[\begin{array}{lll}1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1\end{array}\right]$ is (A) $\left[\begin{array}{ccc}1 & 0 & 0 \\ -a & 1 & 0 \\ b & c & 1\end{array}\right]$
$\left[\begin{array}{ccc}1 & 0 & 0 \\ -a & 1 & 0 \\ a c & b & 1\end{array}\right]$ (C) $\left[\begin{array}{ccc}1 & -a & a c-b \\ -0 & 1 & -c \\ 0 & 0 & 1\end{array}\right]$ (D) $\left[\begin{array}{ccc}1 & 0 & 0 \\ -a & 1 & 0 \\ a c-b & -c & 1\end{array}\right]$

- Watch Video Solution

116. If the matrix A is both symmetric and skew symmetric, then (A) A is a diagonal matrix (B) A is a zero matrix (C) A is a square matrix (D) None of these
117. If A is a non singular matrix of order 3 then $|\operatorname{adj}(\operatorname{adj} A)|$ equals (A)
$|A|^{4}$
(B) $|A|^{6}$
(C) $|A|^{3}$
(D) none of these

- Watch Video Solution

118. If $A=\left[\begin{array}{ccc}4 & -5 & -2 \\ 5 & -4 & 2 \\ 2 & 2 & 8\end{array}\right]$, then $A(\operatorname{adj} A) \quad$ equals
$\left[\begin{array}{ccc}36 & -36 & 18 \\ 36 & 36 & -18 \\ 18 & -18 & 9\end{array}\right]$ (В) $\left[\begin{array}{ccc}-36 & 36 & 18 \\ -36 & 36 & -18 \\ -18 & 18 & 9\end{array}\right]$ (С) $\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -0 & 0\end{array}\right]$ (D) none of these

- Watch Video Solution

119. If $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 1\end{array}\right]$, then $A^{-1}=$ (A) $\left[\begin{array}{cc}-1 & -2 \\ 4 & 1\end{array}\right]$ (B) $\frac{1}{7}\left[\begin{array}{cc}1 & 2 \\ -4 & -1\end{array}\right]$
$\frac{1}{7}\left[\begin{array}{cc}-1 & -2 \\ 4 & 1\end{array}\right]$ (D) $\frac{1}{9}\left[\begin{array}{ll}1 & 2 \\ 4 & 1\end{array}\right]$

- Watch Video Solution

120. Value of $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$ is (A) $\quad(a-b)(b-c)(c-a)$
$\left(a^{2}-b^{2}\right)\left(b^{2}-c^{2}\right)\left(c^{2}-a^{2}\right)$ (C) $(a-b+c)(b-c+a)(c+a-b)$
none of these

(Watch Video Solution

121. $\left[\begin{array}{lll}7 & 1 & 2 \\ 9 & 2 & 1\end{array}\right]\left[\begin{array}{l}3 \\ 3 \\ 5\end{array}\right]+2\left[\begin{array}{l}4 \\ 2\end{array}\right]=$ (A) $\left[\begin{array}{l}43 \\ 44\end{array}\right]$ (B) $\left[\begin{array}{l}43 \\ 45\end{array}\right]$ (C) $\left[\begin{array}{l}45 \\ 44\end{array}\right]$ (D) none of these

- Watch Video Solution

122. Multiple inverse of the matrix $\left[\begin{array}{ll}2 & 1 \\ 7 & 4\end{array}\right]$ is (A) $\left[\begin{array}{ll}4 & -1 \\ 7 & -2\end{array}\right]$
$\left[\begin{array}{cc}-4 & -1 \\ 7 & -2\end{array}\right]$ (C) $\left[\begin{array}{cc}4 & -1 \\ 7 & 2\end{array}\right]$ (D) $\left[\begin{array}{cc}4 & -1 \\ -7 & -2\end{array}\right]$

- Watch Video Solution

123. If $f(x)=x^{2}+4 x-5$ and $A=\left[\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right] \operatorname{thenf}(A)=$
$\left[\begin{array}{cc}0 & -4 \\ 8 & 8\end{array}\right]$
(B) $\left[\begin{array}{cc}0 & -4 \\ 8 & 8\end{array}\right]$
(C) $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
(D) $\left[\begin{array}{ll}8 & 4 \\ 8 & 0\end{array}\right]$

- Watch Video Solution

124. The inverse of the matrix $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$ is (A) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
$\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right]$ (C) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ (D) $\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2}\end{array}\right]$

- Watch Video Solution

125. If $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1\end{array}\right] A^{-1}=\left[\begin{array}{ccc}\frac{1}{2} & \frac{-1}{2} & \frac{1}{2} \\ -4 & 3 & c \\ \frac{5}{2} & \frac{-3}{2} & \frac{1}{2}\end{array}\right]$, then
126. If $A=\left[\begin{array}{ccc}0 & -1 & 2 \\ 1 & 0 & 3 \\ -2 & -3 & 0\end{array}\right]$, then $A+2 A^{t}$ equals (A) a (B) $-A^{t}$ (C) A^{t} (D) $2 A^{2}$

- Watch Video Solution

127. The adjoint of the matrix $\left[\begin{array}{ll}2 & 5 \\ 3 & 1\end{array}\right]$ is (A) $\left[\begin{array}{ll}2 & 5 \\ 3 & 1\end{array}\right]$ (B) $\left[\begin{array}{cc}1 & -5 \\ -3 & 2\end{array}\right]$
$\left[\begin{array}{cc}1 & -3 \\ -5 & 2\end{array}\right]$ (D) $\left[\begin{array}{cc}-1 & 3 \\ 5 & -2\end{array}\right]$

- Watch Video Solution

128. If A is a square matrix then $A-A^{\prime}$ is a
A. diagonal matrix
B. skew symmetric matrix
C. symmetric matrix
D. none of these

- Watch Video Solution

129. If $A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]$ then $9 A^{-1}$ is equal to (A) A^{\prime} (B) 2 A (C) $\frac{1}{2} A$ (D) A

- Watch Video Solution

130. The matrix X in the equation $A X=B$, such that $A=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$ is given by (A) $\left[\begin{array}{cc}1 & 0 \\ -3 & 1\end{array}\right]$
$[(1,-4), 0,1)]$ (C) $\left[\begin{array}{cc}1 & -3 \\ 0 & 1\end{array}\right]$ (D) $\left[\begin{array}{cc}0 & -1 \\ -3 & 1\end{array}\right]$

- Watch Video Solution

131. If $\left[\begin{array}{lll}1 & a & 2 \\ 1 & 2 & 5 \\ 2 & 1 & 1\end{array}\right]$ is non invertible then $a=(A) 2$ (B) 1 (C) 0 (D) -1
132. If $A=\left[\begin{array}{ccc}-a^{2} & a b & a c \\ a b & -b^{2} & b c \\ a c & b c & -c^{2}\end{array}\right]$ then $\operatorname{det} \mathrm{A}$ is equal to (A) $4 a b c$
$4 a^{2} b^{2} c^{2}$ (C) $-4 a b c$ (D) $-4 a^{2} b^{2} c^{2}$

- Watch Video Solution

133. If $A=\left[\begin{array}{cc}1 & \tan \left(\frac{\theta}{2}\right) \\ -\tan \left(\frac{\theta}{2}\right) & 1\end{array}\right]$ and $A B=I$, then $B=$
$\left\{\cos ^{2}\left(\frac{\theta}{2}\right)\right\} A(\mathrm{~B})\left\{\cos ^{2}\left(\frac{\theta}{2}\right)\right\} A^{\prime}$ (C) $\left\{\cos ^{2}\left(\frac{\theta}{2}\right)\right\} I(\mathrm{D})$ none of these

(Watch Video Solution

134. If $A=\left[\begin{array}{cccc}-1 & 0 & 0 & 1 \\ -1 & 1 & 0 & 2 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$, $\operatorname{then} A(\operatorname{adj} A)$ equals (A) $\left[\begin{array}{cccc}1 & 5 & 0 & 2 \\ 5 & 1 & 7 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 5 & 0\end{array}\right]$
(B) zero matrix (C) a scalar quantity (D) identity matrix

- Watch Video Solution

135. I $A=\left[\begin{array}{ll}0 & 5 \\ 0 & 0\end{array}\right]$ and $f(x)=1+x+x^{2}+\ldots+{ }^{16}, \operatorname{thenf}(A)=(\mathrm{A})$
O (B) $\left[\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right]$
(C) $\left[\begin{array}{ll}1 & 5 \\ 0 & 0\end{array}\right]$
(D) $\left[\begin{array}{ll}0 & 5 \\ 1 & 1\end{array}\right]$

- Watch Video Solution

136. If A is a non singular square matrix 3 then $\left|\operatorname{adj}\left(A^{3}\right)\right|$ equals (A) $|A|^{8}$ (B) $|A|^{6}$ (C) $|A|^{9}$ (D) $|A|^{12}$

- Watch Video Solution

137. If A is a square matrix of order $n \times n$ and k is a scalar, then $\operatorname{adj}(k A)$ is equal to (1) $k a d j A$ (2) $k^{n} a d j A$ (3) $k^{n-1} a d j A$ (4) $k^{n+1} a d j A$

- Watch Video Solution

138. If $A=\left[\begin{array}{ccc}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$ 2-3 41 then show that $A^{-1}=A^{1}$.
139. If $A=[(1,0),,(2,0)]$ and $B=\left[\begin{array}{cc}0 & 0 \\ 1 & 12\end{array}\right]$ then=
$A B=0, B A=0 \quad$ (B) $A B=0, B A \neq 0 \quad$ (C) $A B \neq 0, B A=0$
$A B \neq 0, B A \neq)$

- Watch Video Solution

140. The value of a for which system of equation , $a^{3} x+(a+1)^{3} y+(a+2)^{3} z=0, a x+(a+1) y+(a+2) z=0, x+y+$ has a non-zero solution is:

- Watch Video Solution

141. If I_{3} is the identity matrix of order 3 then I_{3}^{-1} is (A) 0 (B) $3 I_{3}$ (C) I_{3} (D) does not exist

- Watch Video Solution

142. If the matrix $\mathrm{AB}=0$ then (A) $A=0$ or $B=0$ (B$) A=0$ and $B=0$ (C) It is not necessary that either $\mathrm{A}=0$ or $\mathrm{B}=0$ (D) $A \neq 0, B \neq 0$

- Watch Video Solution

143. The matrix $[05-7-50117-110]$ is (a) a skew-symmetric matrix (b) a symmetric matrix (c) a diagonal matrix (d) an upper triangular matrix

- Watch Video Solution

144. A square matrix $A=\left[a_{i j}\right]$ in which $a_{i j}=0$ for $i \neq j$ and $[a]_{i j}=k$ (constant) for $\mathrm{i}=\mathrm{j}$ is called a(A) unit matrix (B) scalar matrix (C) null matrix (D) diagonal matrix

- Watch Video Solution

145. If $A=\left[\begin{array}{cc}2 & 2 \\ -3 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \operatorname{then}\left(B^{-1} A^{-1}\right)^{-1}=(\mathrm{A})$
$\left[\begin{array}{cc}2 & -2 \\ 2 & 3\end{array}\right]$
(B) $\left[\begin{array}{cc}3 & -2 \\ 2 & 3\end{array}\right]$
(C) $\frac{1}{10}\left[\begin{array}{cc}2 & 2 \\ -2 & 3\end{array}\right]$
(D) $\frac{1}{10}\left[\begin{array}{cc}3 & -2 \\ -2 & 2\end{array}\right]$

- Watch Video Solution

146. If $A=[023-4]$ and $k A=[03 a 2 b 24]$, then the values of k, a, b, are respectively (a) $-6,-12,-18$ (b) $-6,4,9$ (c) $-6,-4,-9$ (d) $-6,12,18$

- Watch Video Solution

147. If $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$, then $A^{n}=$ (A) $\left[\begin{array}{cc}1 & 2 n \\ 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{cc}2 & n \\ 0 & 1\end{array}\right]$ (C) $\left[\begin{array}{cc}1 & 2 n \\ 0 & -1\end{array}\right]$ (D) $\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]$

- Watch Video Solution

148. For the matrix $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 0\end{array}\right]$ which of the following is correct? (A)
$A^{3}+3 A^{2}-I=0$
(B) $A^{3}-3 A^{2}-I=0$
(C) $A^{3}+2 A^{2}-I=0$
$A^{3}-+A^{2}-+I=0$

(Watch Video Solution

149. If $A^{2}-A+I=0$, then the inverse of A is: (A) $A+I$ (B) A (C) $A-I$ (D) $I-A$

- Watch Video Solution

150. If $\left[\begin{array}{ccc}2+x & 3 & 4 \\ 1 & -1 & 2 \\ x & 1 & -5\end{array}\right]$ is a singular matrix then x is (A) $\frac{13}{25}$ (B) $-\frac{25}{13}$
(C) $\frac{5}{13}$ (D) $\frac{25}{13}$

- Watch Video Solution

151. If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{array}\right]$ then A^{2} is equal to (A) null matrix (B) unit matrix (C) $-A$ (D) A

- Watch Video Solution

152. If $A=\left[\begin{array}{cc}1 & 2 \\ 3 & -5\end{array}\right]$ then A^{-1} is
A. $\left[\begin{array}{cc}-5 & -2 \\ -3 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}\frac{5}{11} & \frac{2}{11} \\ \frac{3}{11} & -\frac{1}{11}\end{array}\right]$
C. $\left[\begin{array}{rr}-\frac{5}{11} & -\frac{2}{11} \\ -\frac{3}{11} & -\frac{1}{11}\end{array}\right]$
D. $\left[\begin{array}{cc}5 & 2 \\ 3 & -1\end{array}\right]$

- Watch Video Solution

153. If A and B are two square matrices of the same order then $(A-B)^{2}$
is (A) $A^{2}-A B-B A+B^{2}$
(B) $A^{2}-2 A B+B^{2}$
(C) $A^{2}-2 B A+B^{2}$
(D) $A^{2}-B^{2}$

(D) Watch Video Solution

154. If $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$ and i is the unit matrix of order 2 , then A^{2} is equal to (A) $4 A-3 I$ (B) $3 A-4 I$ (C) $A-I$ (D) $A+I$

- Watch Video Solution

155. If $P=\left[\begin{array}{ccc}i & 0 & -i \\ 0 & -i & i \\ -i & i & 0\end{array}\right]$ and $Q=\left[\begin{array}{cc}-i & i \\ 0 & 0 \\ i & -i\end{array}\right]$ then PQ is equal to
(A) $\left[\begin{array}{cc}-2 & 2 \\ 1 & -1 \\ 1 & -1\end{array}\right]$ (B) $\left[\begin{array}{cc}2 & -2 \\ -1 & -1 \\ -1 & 1\end{array}\right]$ (C) $\left[\begin{array}{cc}2 & 2 \\ -1 & 1\end{array}\right]$ (D) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(Watch Video Solution
156. Let R be a square matrix of order greater than 1 such that R is lower triangular.Further suppose that none of the diagonal elements of the square matrix R vanishes. Then (A) R must be non singular (B) R^{-1} does
not exist (C) R^{-1} is an upper triangular matrix (D) R^{-1} is a lower triangular matrix

- Watch Video Solution

157. If $A^{-1}=\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & 1\end{array}\right]$ then (A) A is non-singular (B) A is skew
symmetric (C) $|A|=2$ (D) $\operatorname{Adj} A=\left[\begin{array}{ccc}\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & -1 & \frac{1}{2} \\ 0 & 0 & -\frac{1}{2}\end{array}\right]$

- Watch Video Solution

158. If $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$ then (A) $A^{-1}=\frac{1}{5}\left(A-4 I_{3}\right)$
$A^{2}-4 A-5 I_{3}=0$ (C) A^{2} is invertible (D) A^{3} is non invertible

- Watch Video Solution

159. Which of the following is a triangular matrix? (A) a scalar matrix (B) a lower triangular matrix (C) an upper triangular matrix (D) a diagonal matrix

- Watch Video Solution

160. If A and B are square matrices of the same order such that $A B=B A$, then (A) $(A-B)(A+B)=A^{2}-B^{2}$ (B) $(A+B)^{2}=A^{2}+2 A B+B^{2}$
(C) $(A+B)^{3}=A^{3} A^{2} B+3 A B^{2}+B^{3}$
(D) $(A B)^{2}=A^{2} B^{2}$

- Watch Video Solution

161. The homogeneous system $A X=)$ of n linear equation in n variables has (A) a unique solutions if $|A| \neq 0$ (B) infinitely many solution if $|A|=0$ (C) no solution (D) none of these

- Watch Video Solution

162. The homogeneous system $A X=O$ of n linear equation in n variables has (A) a unique solutions if $|A| \neq 0$ (B) infinitely many solution if $|A|=0$ (C) no solution (D) none of these

- Watch Video Solution

163. Let A, B, C be 2×2 matrices with entries from the set of real numbers. Define operations as follows $A \cdot B=\frac{1}{2}(A B+B A)$ then (A)
$A \cdot I=A$
$A \cdot A=A^{2}$
(C)
$A \cdot B=B \cdot A$
(D)
$A \cdot(B+C)=A \cdot B+A \cdot C$
A. $A \cdot B=B \cdot A$
B. $A \cdot A=A^{2}$
C. $A \cdot(B+C)=A \cdot B+A \cdot C$
D. $A \cdot I=A$

Answer: A , B , C , D
164. If $A=\left[\begin{array}{ccc}0 & \sin \alpha & \sin \alpha \sin \beta \\ -\sin \alpha & 0 & \cos \alpha \cos \beta \\ -\sin \alpha \sin \beta & -\cos \alpha \cos \beta & 0\end{array}\right]$ then (A) $|A|$ is independent of α and β (B) A^{-1} depends only on beta (C) A^{-1} does not exist (D) none of these

- Watch Video Solution

165. Let $A=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right]$, where $0 \leq \theta<2 \pi$ then (A)
$|A|=0$
(B) $|A| \varepsilon[2,4]$
(C) $|A| \varepsilon)(0, \infty)$
(D) $|A| \varepsilon(2, \infty)$

- Watch Video Solution

166. If $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ then (A) $A^{-n}=\left[\begin{array}{cc}1 & 0 \\ -n & 1\end{array}\right], n \varepsilon N$
$\lim _{n \rightarrow 00} \frac{1}{n^{2}} A^{-n}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ (C) $\lim _{n \rightarrow \infty} \frac{1}{n} A^{-n}=\left[\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right]$ (D) none of these
167. If A and B are symmetric matrices of the same order then (A) $A-B$ is skew symmetric (B) $A+B$ is symmetric (C) $A B-B A$ is skew symmetric (D) $A B+B A$ is symmetric

- Watch Video Solution

168. If A and B are two matrices such that $\mathrm{A}=\mathrm{BA}$, then for every $n \varepsilon N(\mathrm{~A})$
$(A B)^{n}=A^{n} B^{n}$
$A^{n} B=B A^{n}$
$\left(A^{2 n}-B^{2 n}\right)=\left(A^{n}-B^{n}\right)\left(A^{n}+B^{n}\right)$
$(A+B)^{n}={ }^{n} C_{0} A^{n}+{ }^{n} C_{1} A^{n-1} B+{ }^{n} C_{n} B^{n}$

- Watch Video Solution

169. Which of the following is a symmetric matrix? (A) a null matrix (B) a triangular matrix (C) an idenity matrix (D) a diagonal matrix
170. If A and B are square matrices of the same order then $(A+B)^{2}=A^{2}+2 A B+B^{2}$ implies (A) both AB and BA are defined (B) $(A B)^{t}=B^{t} A^{t}$ (C) $(A B)^{-1}=B^{-1} A^{-1}$ if $|A| \neq 0$ (D) $A B=B A$

- Watch Video Solution

171. If A is an invertible matrix of order $n \times n,(n \geq 2)$, $\operatorname{then}(A) A$ is symmetric (B) $a d j A$ is invertible (C) $\operatorname{Adj}(\operatorname{Adj} A)=|A|^{n-2} A$ (D) none of these

- Watch Video Solution

172. If A is an invertible matrix then which of the following are true?
A. $A \neq 0$
B. $|A| \neq 0$
C. $\operatorname{adj} A \neq 0$
D. $A^{-1}=|A| a d j A$

Answer: (A, B, C)

- Watch Video Solution

173. If A and B are invertible matrices of the same order then (A)
$\operatorname{Adj}(A B)=(a d j B)(a d j A)$
(B) $\quad(A+B)^{-1}=A^{-1}+B^{-1}$
$(A B)^{-1}=B^{-1} A^{-1}(\mathrm{D})$ none of these

- Watch Video Solution

174. The system $x+y+z=6, x+2 y+3 z=10, x+2 y+\lambda z=\gamma$ of simultaneous equations has (A) a unique solutions if $\lambda \neq 3$ (B) no solution if $\lambda=3, \gamma \neq 10$ (C) infinitely many solutions if $\lambda=3, \gamma=10$
(D) none of these
175. A square matrix A is said to be orthogonal if $A^{T} A=I$ If A is a square matrix of order n and k is a scalar, then $|k A|=K^{n}|A|$. Also $\left|A^{T}\right|=|A|$ and for any two square matrix A and B of same order $|A B|=|A||B|$ On the basis of above information answer the following question: If $A=\left[\begin{array}{lll}p & q & r \\ q & r & p \\ r & p & q\end{array}\right] \quad$ be an orthogonal matrix and $p q r=1$, thenp ${ }^{3}+q^{3}+r^{3}$ may be equal to (A) 2 (B) 1 (C) 3 (D) -1

- Watch Video Solution

176. A square matrix A is said to be orthogonal if $A^{T} A=I$ If A is a square matrix of order n and k is a scalar, then $|k A|=K^{n}|A| A l s o\left|A^{T}\right|=|A|$ and for any two square matrix Ad B of same order $A B|=|A|| B \mid$ On the basis of above information answer the following question: IF A is a 3×3 orthogonal matrix such that $|A|=1$, then $|A-I|=$ (A) 1 (B) -1 (C) 0 (D) none of these

- Watch Video Solution

177. A square matrix A is said to be orthogonal if $A^{T} A=I$ if A is a sqaure matrix of order n and k is a scalar, then $|k A|=K^{n}|A| A l s o\left|A^{T}\right|=|A|$ and for any two square matrix $\mathrm{A} d \mathrm{~B}$ of same order $A B|=|A|| B \mid$ On the basis of abov einformation answer the following question: If A is an orthogonal matrix then (A) A^{T} is an orthogonal matrix but A^{-1} is not an orthogonal matrix (B) A^{T} is not an orthogonal mastrix but A^{-1} is an orthogonal matrix (C) Neither A^{T} nor A^{-1} is an orthogonal matrix (D) Both A^{T} and A^{-1} are orthogonal matices.

- Watch Video Solution

178. A square matrix A is said to be orthogonal if $A^{T} A=I$ If A is a sqaure matrix of order n and k is a scalar, then $|k A|=K^{n}|A| A l s o\left|A^{T}\right|=|A|$ and for any two square matrix Ad B of same order $A B|=|A|| B \mid$ On the basis of abov einformation answer the following question:lf $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \quad$ and $\quad \mathrm{P} \quad$ is a orthogonal martix and
$B=P A P^{T}, P^{T} B^{2009} P=$ (A) $\left[\begin{array}{cc}1 & 2009 \\ 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{cc}1 & 2009 \\ 2009 & 1\end{array}\right]$
$\left[\begin{array}{cc}1 & 0 \\ 2009 & 1\end{array}\right]$ (D) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
179. If A is a square matrix of any order then $|A-x|=0$ is called the characteristic equation of matrix A and every square matrix satisfies its characteristic equation. For example if $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 5\end{array}\right]$, Then $[(A-x I)],=\left[\begin{array}{ll}1 & 2 \\ 1 & 5\end{array}\right]-\left[\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right]=\left[\begin{array}{cc}1-x & 2 \\ 1-0 & 5-u\end{array}\right]=\left[\begin{array}{cc}1-x & 2 \\ 1 & 5-x\end{array}\right]$ Characteristic equation of matri A is

$$
\left|\begin{array}{cc}
1-x & 2 \\
1 & 5-x
\end{array}\right|=0 \text { or }(1-x)\left(5-x 0-2=0 \text { or } x^{2}-6 x+3=0 .\right.
$$

Matrix A will satisfy this equation ie. $A^{2}-6 A+3 I=0$ then A^{-1} can be determined by multiplying both sides of this equation let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -2 & 4\end{array}\right]$ On the basis fo above information answer the following questions: If $6 A^{-1}=A^{2}+a A+b I$, then $(a, b) \quad$ is
$(-6,11)$ (B) $(-11,60$ (C) $(11,6)$ (D) $(6,11)$

- Watch Video Solution

180. If A is a square matrix of any order then $|A-x|=0$ is called the chracteristic equation of matrix A and every square matrix satisfies its chatacteristic equation. For example if $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 5\end{array}\right]$, Then $[(A-x I)],=\left[\begin{array}{ll}1 & 2 \\ 1 & 5\end{array}\right]-\left[\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right]=\left[\begin{array}{cc}1-x & 2 \\ 1-0 & 5-x\end{array}\right]=\left[\begin{array}{cc}1-x & 2 \\ 1 & 5-x\end{array}\right]$ Characteristic equation of matrix A is $\left|\begin{array}{cc}1-x & 2 \\ 1 & 5-x\end{array}\right|=0$ or $(1-x)(5-x)(0-2)=0$ or $x^{2}-6 x+3=0$ Matrix A will satisfy this equation ie. $A^{2}-6 A+3 I=0 A^{-1}$ can be determined by multiplying both sides of this equation let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -2 & 4\end{array}\right]$ On the basis for above information answer the following questions:Sum of elements of A^{-1} is (A) 2 (B) -2 (C) 6 (D) none of these

- Watch Video Solution

181. If A is a square matrix of any order then $|A-x|=0$ is called the characteristic equation of matrix A and every square matrix satisfies its characteristic equation. For example if $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 5\end{array}\right], \quad$ Then
$[(A-x I)],=\left[\begin{array}{ll}1 & 2 \\ 1 & 5\end{array}\right]-\left[\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right]=\left[\begin{array}{cc}1-x & 2 \\ 1-0 & 5-u\end{array}\right]=\left[\begin{array}{cc}1-x & 2 \\ 1 & 5-x\end{array}\right]$ Characteristic equation of matri A is $\left|\begin{array}{cc}1-x & 2 \\ 1 & 5-x\end{array}\right|=0$ or $(1-x)\left(5-x 0-2=0\right.$ or $x^{2}-6 x+3=0$ Matrix A will satisfy this equation ie. $A^{2}-6 A+3 I=0 A^{-1}$ can be determined by multiplying both sides of this equation let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -2 & 4\end{array}\right]$ ON the basis fo above information answer the following questions: $\left|A^{-1}\right|=$ (A) 6 (B) $\frac{1}{6}$ (C) 12 (D) none of these

- Watch Video Solution

182. If the matrix $\left[\begin{array}{ccc}1 & 3 & \lambda+2 \\ 2 & 4 & 8 \\ 3 & 5 & 10\end{array}\right]$ is singular then find λ

- Watch Video Solution

183. If $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 4\end{array}\right]$ and $A^{2}-x A-I=0$ then find x .
184. For a 3×3 matrix A if $|A|=4$, then find $|A d j A|$

- Watch Video Solution

185. Assertion: $|M|=0$, Reason: Determinant of a skew symmetric matrix is 0 . (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

186. Assertion: $\left|A A^{T}\right|=0$, Reason : A is a skew symmetric matrix (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

187. Assertion : A^{-1} exists, Reason: $|A|=0$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

188. Assertion: $|\operatorname{Aadj} A|=-1$, Reason : If A is a non singular square matrix of order n then $|\operatorname{adj} A|=|A|^{n-1}$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

189. Assertion: adj A is a no singular matrix., Reason: A is a no singular matix. (A) Both A and R are true and R is the correct explanation of A (B)

Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

190. Assertion: If $\left|A^{2}\right|=25$ then $A= \pm \frac{1}{5}$, Reason: $|A B|=|A||B|$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false.
(D) A is false but R is true.

- Watch Video Solution

191. Statement 1: The system of equations has unique solution for
$\lambda=-5$, Reason: The determinant $\left|\begin{array}{ccc}3 & -1 & 4 \\ 1 & 2 & -3 \\ 6 & 5 & \lambda\end{array}\right| \neq 0 f$ or $\lambda \neq-5$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false.
(D) A is false but R is true.
192. If M is a 3×3 matrix, where $\operatorname{det} M=1$ and $M M^{T}=1$, whereI is an identity matrix, prove theat det $(M-I)=0$.

- Watch Video Solution

193.

$P=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{20} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right], A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $Q=P A P^{T}$, then $P^{T} Q^{2005} P \quad$ is:
(A) $\left[\begin{array}{cc}1 & 2005 \\ 0 & 1\end{array}\right]$
(B) $\left[\begin{array}{cc}1 & 2005 \\ 2005 & 1\end{array}\right]$
(C) $\left[\begin{array}{cc}1 & 0 \\ 2005 & 1\end{array}\right]$
(D) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

- Watch Video Solution

194. If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4\end{array}\right], 6 A^{-1}=A^{2}+c A+d I$, then $(c, d)=$

- Watch Video Solution

195. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right], i t U_{1}, U_{2}$ and U_{3} are column matrices satisfying
$A U_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], A U_{2}=\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]$ and $A U_{3}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$ and Uisa $3 \times 3 \quad$ matrix
when columns are U_{1}, U_{2}, U_{3} now answer the following question: The value of $|U|$ is (A) 3 (B) -3 (C) $\frac{3}{2}$ (D) 2

- Watch Video Solution

196. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right]$, if U_{1}, U_{2} and U_{3} are column matrices
satisfying
$A U_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], A U_{2}=\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]$ and $A U_{3}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$ and Uisa $3 \times 3 \quad$ matrix
when columns are U_{1}, U_{2}, U_{3} now answer the following question: The sum of elements of U^{-1} is: (A) -1 (B) 0 (C) 1 (D) 3
197. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right], i t U_{1}, U_{2}$ and $U_{3} \quad$ are column matrices
satisfying $A U=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], A U_{2}=\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]$ and $A U_{3}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$ and Uisa 3×3 matrix when columns are U_{1}, U_{2}, U_{3} now answer the following question:

The value of determinant $\left[\begin{array}{lll}3 & 2 & 0\end{array}\right] I\left[\begin{array}{l}3 \\ 2 \\ 0\end{array}\right]$ is (A) 5 (B) $\frac{5}{2}$ (C) 4 (D) $\frac{3}{2}$

- Watch Video Solution

198. Consider the system of equations
$x-2 y+3 z=-1,-x+y-2 z=k, x-3 y+4 z=1 \quad$ Assertion:
The system of equations has no solution for $k \neq 3$ and Reason: The determinant $\left|\begin{array}{ccc}1 & 3 & -1 \\ -1 & -2 & k \\ 1 & 4 & 1\end{array}\right| \neq 0, f$ or $k \neq 3$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

199. Let A be the set of all 3×3 symmetric matrices all of whose entries are either 0 or 1 . Five of these entries are 1 and four of them are 0 . The number of matrices in A is

- Watch Video Solution

200. Let A be the set of all 3×3 symmetric matrices all of whose entries are either 0 or 1 . Five of these entries are 1 and four of them are 0 . The number of matrices in A is

- Watch Video Solution

201. Let A be the set of all 3×3 symmetric matrices all of whose entries are either 0 or 1 . Five of these entries are 1 and four of them are 0 . The number of matrices in A is
\square
