

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

PRINCIPLES OF MATHEMATICAL INDUCTION - FOR BOARDS

Solved Examples

1. Prove the following by using the principle of mathematical induction

for all
$$n \in N$$
: $1^3 + 2^3 + 3^3 + + n^3 = \left(rac{n(n+1)}{2}
ight)^2$

Watch Video Solution

2. Prove the following by the principle of mathematical induction: $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{n(n+1)} = \frac{n}{n+1}$

3. Prove the following by the principle of mathematical induction: $1.\ 2+2.\ 2^2+3.\ 2^3+\ +n.2^n=(n-1)2^{n+1}+2$

5. Prove the following by the principle of mathematical induction: $7+77+777++777++\ddot{n}-digits7=rac{7}{81}ig(10^{n+1}-9n-10ig)$ for all $n\in NB$.

6. Prove by the principle of mathematical induction that $rac{n^5}{5}+rac{n^3}{3}+rac{7n}{15}$

is a natural number for all $n\in N$ \cdot

7. Using principle of mathematical induction prove that $\cos \alpha \cos 2\alpha \cos 4\alpha \cos \left(2^{n-1} \alpha\right) = rac{s \in 2^n \alpha}{2^n s \in \alpha} f ext{ or } all nN$.

Watch Video Solution

8. Shwo that $n^3 + \left(n+1\right)^3 + \left(n+2\right)^3$ is divisible 9 for everynatural number n.

Watch Video Solution

9. Using the Principle of mathematical induction, show that $11^{n+2} + 12^{2n-1}$, where n is a natural number is a natural number is divisible by 133.

for all
$$n \in N{:}1+2+3+ \stackrel{.}{+}n < rac{1}{8}(2n+1)^2.$$

Watch Video Solution

14. Prove the following by using the principle of mathematical induction

for all $n\in N{:}(2n+7)<(n+3)^2.$

Watch Video Solution

15. Prove that $(1+x)^n \ge (1+nx),$ for all natural number n, where

 $x \succ 1.$

1. Prove that
$$:\!1^2+2^2+3^2+\ +n^2=rac{n(n+1)(2n+1)}{6}$$

Watch Video Solution

2. if P(n) be the statement 10n + 3 is a prime number", then prove that

P(1) and P(2) are true but P(3) is false.

3. Prove by induction that 4+8+12+ + 4n = 2n(n+1) for all nN_{\cdot}

Watch Video Solution

4. Prove by using the principle of mathemtical induction: `1+2+3+...+n =

(n(n+1))/2

5. Prove by the principle of mathematical induction that for all $n \in N$:

$$1^2 + 2^2 + 3^2 + + n^2 = rac{1}{6}n(n+1)(2n+1)$$

Watch Video Solution

6. Prove the following by the principle of mathematical induction: 2^n 1

$$1+3+3^2+ \ +3^{n-1}={3^n-1\over 2}$$

Watch Video Solution

7. Prove the following by using the principle of mathematical induction

for all
$$n \in N : rac{1}{2} + rac{1}{4} + rac{1}{8} + \ + rac{1}{2^n} = 1 - rac{1}{2^n}$$

Watch Video Solution

8. Prove the rule of exponents $(ab)^n = a^n b^n$ by using principle of mathematical induction for every natural number.

for all
$$n \in N$$
: $1^2 + 3^2 + 5^2 + + (2n-1)^2 = rac{n(2n-1)(2n+1)}{3}$

Watch Video Solution

10. Prove by using the principle of mathematical induction: $3.2^2 + 3.2^3 + \ldots + 3^n.2^{n+1} = \frac{12}{5}(6^n - 1)$

Watch Video Solution

11. Using the principle of mathematical induction prove that : $1.3+2.3^2+3.3^3++n.3^n=rac{(2n+1)3^{n+1}+3}{4}$ for all $n\in N$.

for all
$$n\in N{:}a+ar+ar^2++ar^{n-1}=rac{a(r^n-1)}{r-1}$$

Watch Video Solution

13. Prove the following by the principle of mathematical induction: $a+(a+d)+(a+2d)++(a+(n-1)d)=rac{n}{2}[2a+(n-1)d]$

Watch Video Solution

14. Prove by the principle of mathematical induction that for all nN:

$$\frac{1}{1.3} + \frac{1}{35} + \frac{1}{57} + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$$

Watch Video Solution

15.
$$\frac{1}{3.7} + \frac{1}{7.11} + \frac{1}{11.15} + \dots + \frac{1}{(4n-1)(4n+3)} = \frac{n}{3(4n+3)}$$

16. Prove the following by the principle of mathematical induction: $1.2+2.3+3.4++n(n+1)=rac{n(n+1)(n+2)}{3}$

Watch Video Solution

17.
$$1.3 + 3.5 + 5.7 + \dots + (2n-1)(2n+1) = \frac{n(4n^2 + 6n - 1)}{3}$$

Watch Video Solution

18. Prove the following by the principle of mathematical induction:

$$rac{1}{1.4} + rac{1}{4.7} + rac{1}{7.10} + + rac{1}{(3n-1)(3n+2)} = rac{n}{3n+1}$$

Watch Video Solution

19. Prove the following by the principle of mathematical induction: $\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \frac{1}{(3n-1)(3n+2)} = \frac{n}{6n+4}$

$$\frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \frac{1}{(2n+1)(2n+3)} = \frac{n}{3(2n+3)}$$

Watch Video Solution

21. Prove the following by using the principle of mathematical induction

for
$$all n \in N$$
:
 $\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \frac{1}{1} \frac{1}{n(n+1)(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$
Watch Video Solution

22. Using the principle of mathematical induction prove that
$$1+rac{1}{1+2}+rac{1}{1+2+3}+rac{1}{1+2+3+4}++rac{1}{1+2+3++n}=rac{2n}{n+1}$$
 for all $n\in N$

for all
$$n \in N$$
: $\left(1+rac{1}{1}
ight)\left(1+rac{1}{2}
ight)\left(1+rac{1}{3}
ight)1+rac{1}{n}=(n+1)$

Watch Video Solution

24. Prove, by induction, that $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$ for all

positive as well as negative integral values of

Watch Video Solution

25.
$$3.6 + 6.9 + 9.12 + \dots + 3n(3n + 3) =$$

26. prove using mathematical induction: -n(n+1)(n+5) is divisible by

6 for all natural numbers

30. Prove the following by using the principle of mathematical induction for all $n \in N$: 10^{2n-1} + 1is divisible by 11.

37. Using mathematical induction, prove the following: $1+2+3+...+n < \left(2n+1
ight)^2 orall n \in N$

