©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

PROGRESSIONS (AP GP) - FOR COMPETITION

Solved Examples

1. If x, y, and z are positive real numbers different from 1 and $x^{18}=y^{21}=z^{28}$ show that $3,3 \log _{y} x, 3 \log _{z} y, 7 \log _{x} z$ are in A.P.

- Watch Video Solution

2. Four different integers form an increasing A. P One of these numbers is equal to the sum of the squares of the other three numbers. Then The smallest number is
3. If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first $(p+q)$ terms.

- Watch Video Solution

4. The ratio of the sums of n terms of two Aps is $(3 n-13):(5 n+21)$.

Find the ratio of the 24th terms of the two progressions.

- Watch Video Solution

5. If the sum of m terms of an $A . P$ is equal to these that n terms and also to the sum of the next p terms, prove $(m+n)\left(\frac{1}{m}-\frac{1}{p}\right)=(m+p)\left(\frac{1}{m}-\frac{1}{n}\right)$

- Watch Video Solution

6. If $s_{1}, s_{2}, s_{3}, \ldots \ldots \ldots s_{2 n}$ are the sums of infinite geometric series whose first terms are respectively $1,2,3, . .2 n$ and common ratioi are respectively $\frac{1}{2}, \frac{1}{3}, \ldots \ldots \ldots, \frac{1}{2 n+1} \quad$ find the value of $s_{1}^{2}+s_{2}^{2}+\ldots \ldots \ldots+s_{2 n-1}^{2}$

D Watch Video Solution

7. How many geometric progressions are possible containing 27,8 and 12 as three of its/their terms

(Watch Video Solution

8. The natural number a for which $\sum_{k=1, n} f(a+k)=16\left(2^{n}-1\right)$ where the function f satisfies the relation $f(x+y)=f(x) . f(y)$ for all natural numbers x, y and further $f(1)=2$ is:- A) 2 B$) 3 \mathrm{C}) 1 \mathrm{D})$ none of these

- Watch Video Solution

9. IF S_{1}, S_{2}, S_{3} denote the sum $n(>1)$ terms of three sequences in A.P., whose first terms are unity and common differences are in H.P.prove that $n=\frac{2 S_{3} S_{1}-S_{1} S_{2}-S_{2} S_{3}}{S_{1}-2 S_{2}+S_{3}}$

- Watch Video Solution

10. If $x_{1}, x_{2}, x_{3} \ldots, x_{n}$ are in H.P. prove that $x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+\ldots \ldots \ldots+x_{n-1} x_{n}=(n-1) x_{1} x_{n}$

- Watch Video Solution

11. If pth, q th , rth and sth terms of an AP are in GP then show that ($p-q$), $(q-r),(r-s)$ are also in GP

- Watch Video Solution

12. if $(m+1) t h,(n+1) t h$ and $(r+1) t h$ term of an AP are in GP.and m, n and r in HP. . find the ratio of first term of A.P to its common difference

- Watch Video Solution

13. If $y-z, 2(y-a), y-x$ are in H.P. prove that $x-a, y-a, z-a$ are in G.P.

- Watch Video Solution

14. A sequence $a_{1}, a_{2}, a_{3}, . a_{n}$ of real numbers is such that $a_{1}=0,\left|a_{2}\right|=\left|a_{1}+1\right|,\left|a_{3}\right|=\left|a_{2}+1\right|,>,|a n|=\left|a_{n-1}+1\right|$. Prove that the arithmetic mean $\frac{a_{1}+a_{2}+\ldots \ldots \ldots+a_{n}}{n}$ of these numbers cannot be les then $-1 / 2$.

- Watch Video Solution

15. Find the coefficient of x^{99} and x^{98} in the polynomial $(x-1)(x-2)(x-3) \ldots \ldots \ldots . .(x-100)$.

- Watch Video Solution

16. Find the sum to n terms of the series:
$\frac{1}{1+1^{2}+1^{4}}+\frac{1}{1+2^{2}+2^{4}}+\frac{1}{1+3^{2}+3^{4}}+$

- Watch Video Solution

17. Find the sum to n terms of the series : $5+11+19+29+41$:

- Watch Video Solution

18. $1+3+7+15+31+\ldots+$ to n terms
19. Find the $1+2.2+3.2^{2}+\ldots \ldots . .+t_{n}$

- Watch Video Solution

20.

If
a, b, c, d, e, x
are real and
$\left(a^{2}+b^{2}+c^{2}+d^{2}\right) x^{2}-2(a b+b c+c d+d e) x+\left(b^{2}+c^{2}+d^{2}+e^{2}\right) \leq$ then a, b, c, d, e are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

- Watch Video Solution

21. If S_{n} denote the sum of first n terms of an A.P. whose first term is $a a n d S_{n x} / S_{x}$ is independent of x, then $S_{p}=p^{3}$ b. $p^{2} a$ c. $p a^{2}$ d. a^{3}

- Watch Video Solution

22. If rational numbers a, b, c be th pth, qth, rth terms respectively of an A.P. then roots of the equation $a(q-r) x^{2}+b(r-p) x+c(p-q)=0$
are necessarily (A) imaginary (B) rational (C) irrational (D) real and equal

- Watch Video Solution

23. If $(r)_{n}$, denotes the number $r r r \ldots(n d i g i t s)$, where $r=1,2,3, \ldots, 9$ and $a=(6)_{n}, b=(8)_{n}, c=(4)_{2 n}$, then

- Watch Video Solution

24. If a_{1}, a_{2}, a_{3} are in G.P. having common ratio r such that $\sum_{k=1}^{n} a_{2 k-1}=\sum_{k=1}^{n} a_{2 k+2} \neq 0$ then number of possible value of r is (A) 1 (B) 2 (C) 3 (D) none of these

- Watch Video Solution

25. If $a_{1}, a_{2}, a_{3}, a_{4}$ are in H.P. then $\frac{1}{a_{1} a_{4}} \sum_{r=1}^{3} a_{r} a_{r+1}$ is a root of (A)

$$
\begin{align*}
& x^{2}-2 x-15=0 \quad \text { (B) } x^{2}+2 x+15=0 \quad \text { (C) } x^{2}+2 x-15=0 \tag{D}\\
& x^{2}-2 x+15=0
\end{align*}
$$

(Watch Video Solution

26. If a and b are digits between 0 and 9 the the rational number represented by $0 . a b a b a b$ is (A) $\frac{10 a+b}{99}$ (B) $\frac{9+b}{90}$ (C) $\frac{a+b}{99}$
$\frac{(99 a b+10 a+b)}{990}$

$$
\begin{equation*}
\frac{(99 a b+10 a+b)}{990} \tag{D}
\end{equation*}
$$

- Watch Video Solution

27. If $\frac{l+m x}{l-m x}=\frac{m+n x}{m-n x}=\frac{n+p x}{n-p x}, x \neq 0$. Then the number $\mathrm{I}, \mathrm{m}, \mathrm{n}$ and p are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

- Watch Video Solution

28. If $a_{1}, a_{2}, a_{3} \ldots \ldots . a_{n}$ are in H.P. and $f(k)=\sum_{r=1}^{n} a_{r}-a_{k}$ then $\frac{f(1)}{a_{1}}, \frac{f(2)}{a_{3}} \cdots \cdot \frac{f(n)}{a_{n}}$ are (A) A.P. (B) G.P. (C) H.P. (D) none of these
29. If $x=\sum_{n=0}^{\infty} a^{n}, y=\sum_{n=0}^{\infty} b^{n}, z=\sum_{n=0}^{\infty} c^{n}$ where a, b, c are in A.P and $|a|<1,|b<1,|c|<1$, then x, y, z are in

- Watch Video Solution

30. If $a+b+c=3$ and $a>0, b>0, c>0$ then the greatest value of $a^{2} b^{3} c^{2}=(\mathrm{A})\left(3^{2}\right)\left(2^{3}\right)\left(7^{2}\right)$ (B) $\frac{3^{10} 2^{4}}{7^{7}}$ (C) $\frac{3^{7} 2^{5}}{7^{2}}$ (D) $\frac{3^{7} 2^{4}}{7^{7}}$

- Watch Video Solution

31.

$$
\frac{1^{4}}{1.3}+\frac{2^{4}}{3.5}+\frac{3^{4}}{5.7}+\ldots \ldots+\frac{n^{4}}{(2 n-1)(2 n+1)}=\frac{n\left(4 n^{2}+6 n+5\right)}{48}+\frac{}{16}
$$

- Watch Video Solution

32. The sum of
the
$1+2^{2} x+3^{2} x^{2}+4^{2} x^{3}+\ldots . . \infty$ where $-1<x<1=$
$\frac{1+x}{((1-x))^{3}}$
(B) $\frac{x}{(1+x)^{3}}$
(C) $\frac{1-x^{2}}{(1+x)^{3}}$
(D) none of these

- Watch Video Solution

33. For a positive integer n let $a(n)=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{\left(2^{n}\right)-1}$. Then $a(100) \leq 100$ b. $a(100)>100$ c. $a(200) \leq 100$ d. $a(200) \leq 100$

- Watch Video Solution

34. Let $\Delta(x)=\left|\begin{array}{ccc}x+a & x+b & x+a-c \\ x+b & x+c & x-1 \\ x+c & x+d & x-b+d\end{array}\right|$ and $\int_{0}^{2} \Delta(x) d x=-16$, where a, b, c, d are in A.P. then the common difference (i) 1 (ii) 2 (iii) 3 (iv) 4

- Watch Video Solution

35. If a, b, c are in A.P and a^{2}, b^{2}, c^{2} are in H.P then
36. Sum of n terms of the series $\frac{1}{1.2 .3 .4 .}+\frac{1}{2.3 .4 .5}+\frac{1}{3.4 .5 .6}+\ldots$.

- Watch Video Solution

37. If $a_{n}=\int_{0}^{\pi} \frac{\sin (2 n-1) x}{\sin x} d x$, then $a_{1} a_{2} a_{3}$ are in (A) A.P. (B) G.P. (C) H.P.
(D) none of these

Watch Video Solution

38. Find the sum of series $\left(3^{3}=2^{3}\right)+\left(5^{3}=4^{3}\right)+\left(7^{3}=6^{3}\right)+$ to n terms

- Watch Video Solution

39. The three digit number whose digits are in G.P. and the digits of the number obtained from it by subtracting 400 form an A.P. is equal to.
40. The value of x for which the numbers $\log _{3} 2, \log _{3}\left(2^{x}-5\right)$ and $\log _{3}\left(2^{x}-\frac{7}{2}\right)$ are in A.P. $=$

- Watch Video Solution

Exercise

1. If $a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots a_{n}$ are in A.P, where $a_{i}>0$ for all i show that
$\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\ldots \ldots .+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}=\frac{n-1}{\sqrt{a_{1}}+\sqrt{a_{n}}}$

- Watch Video Solution

2. If $a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots \ldots . a_{n}$ are in A.P. whose common difference is d , show tht $\sum_{2}^{n} \frac{\tan ^{-1} d}{1+a_{n-1} a_{n}}=\tan ^{-1}\left(\frac{a_{n}-a_{1}}{1+a_{n} a_{n}}\right)$

D Watch Video Solution

3. If $a_{1}, a_{2}, a_{3}, \ldots \ldots . a_{n}, a_{n+1}, \ldots \ldots$. be A.P. whose common difference is d and $S_{1}=a_{1}+a_{2}+\ldots \ldots .+a_{n}, S_{2}=a_{n+1}+\ldots \ldots \ldots \ldots+a_{2 n}, S_{3}=a_{2 n+1}$ etc show that $S_{1}, S_{2}, S_{3}, S_{4} \ldots \ldots \ldots \ldots$ are in A.P. whose common difference is $n^{2} d$.

- Watch Video Solution

4. If $\log 2, \log \left(2^{x}-1\right)$ and $\log 2 \log \left(2^{x}+3\right)$ are in A.P., write the value of x.

- Watch Video Solution

5. If $I_{n}=\int_{0}^{\pi} \frac{1-\cos 2 n x}{1-\cos 2 x} d x$ or $\int_{0}^{\pi} \frac{\sin ^{2} n x}{\sin ^{2} x} d x$, show that $I_{1}, I_{2}, I_{3} \ldots \ldots \ldots \ldots$ are inA.P.
6. A cashier has to count a bundle of Rs. 12,000 one rupee notes. He counts at the rate of Rs. 150 per minute for an hour, at the end of which he begins to count at the rate of Rs. 2 less every minute then he did the previous minute. Find how long he will take to finish his task and explain the double answer.

- Watch Video Solution

7. If a, b, c, d and p are different real numbers such that $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \leq 0$, then show that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are in G.P.

- Watch Video Solution

8. If $\log _{x} a, a^{\frac{x}{2}}$ and $\log _{b} x$ are in G.P. then find x .
9. Find the sum of n terms of series $(x+y)+\left(x^{2}+x y+y^{2}\right)+\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+$

D Watch Video Solution

10. Prove that in a sequence of numbers $49,4489,444889,44448889$ in which every number is made by inserting 48-48 in the middle of previous as indicated, each number is the square of an integer.

- Watch Video Solution

11. Solve the following equations for x and y : $\log _{10} x+\log _{10}(x)^{\frac{1}{2}}+\log _{10}(x)^{\frac{1}{4}}+\ldots .=y$ $\frac{1+3+5+\ldots+(2 y-1)}{4+7+10+\ldots+(3 y+1)}=\frac{20}{7 \log _{10} x}$

(Watch Video Solution

12. Find the values of $x \in(-\pi, \pi)$ which satisfy the equation $8^{1+|\cos x|+\left|\cos ^{2} x\right|+\mid \cos ^{2 x \mid+}}=4^{3}$

- Watch Video Solution

13. The sum oif the first ten terms of an A.P. is equal to 155 , and the sum of the first two terms of a G.P. is 9 . Find these progressionsif the first term of the A.P. equals the common ratio of the G.P. and the 1st term of G.P. equals the common difference of A.P.

- Watch Video Solution

14. If an A.P. and a G.P. have the same 1st and 2nd terms then show that every other term of the A.P. will be less than the corresponding term of G.P. all the terms being positive.

- Watch Video Solution

15. Find the sum of all the numbers of the form n^{3} which lie between 100 and 10000 .

- Watch Video Solution

16. Prove that the numbers of the sequence $121,12321,1234321, \ldots \ldots \ldots \ldots$. are each a perfect square of odd integer.

Watch Video Solution

17. The sum to n terms of the series

$$
\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{2}+2^{2}+3^{2}} \pm------ \text { is }
$$

- Watch Video Solution

18.

Show
that
$\frac{1}{x+1}+\frac{2}{x^{2}+1}+\frac{4}{x^{4}+1}+\ldots .+\frac{2^{n}}{x^{2 n}+1}=\frac{1}{x-1}-\frac{2^{n+1}}{x^{2^{n+1}}-1}$
19. The sum of n terms of the series
$5 / 1 \cdot 2.1 / 3+7 / 2 \cdot 3.1 / 3^{\wedge} 2+9 / 3.4 .1 / 3^{\wedge} 3+11 / 4.5 .1 / 3^{\wedge} 4+. . i s(A) 1+1 / 2^{\wedge}(\mathrm{n}-1) .1 / 3^{\wedge} \mathrm{n}(B)$
$1+1 /(\mathrm{n}+1) \cdot 1 / 3^{\wedge} \mathrm{n}(C) 1-1 /(\mathrm{n}+1) \cdot 1 / 3^{\wedge} \mathrm{n}(D) 1+1 / 2 \mathrm{n}-1 \cdot 1 / 3^{\wedge} \mathrm{n}{ }^{\wedge}$

- Watch Video Solution

20. If $x+y+z=a$, show that $\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^{-1} \geq \frac{9}{a}$

- Watch Video Solution

21. If x and y are positive real numbers and m, n are any positive integers, then $\frac{x^{n} y^{m}}{\left(1+x^{2 n}\right)\left(1+y^{2 m}\right)}<\frac{1}{4}$

- Watch Video Solution

22. If the arthmetic mean of $(b-c)^{2},(c-a)^{2}$ and $(a-b)^{2}$ is the same as that of $(b+c-2 a)^{2},(c+a-2 b)^{2}$ and $(a+b-2 c)^{2}$ show that $a=b=c$.

- Watch Video Solution

23. If $p t h, q t h, r t h$ terms of an AP are in GP whose common ratio is k, then the root of equation $(q-r) x^{+}(r-p) x+(p-q)=0$ other than unity is

- Watch Video Solution

24. If n be the number of sequence a, b, c, d, e satisfying the conditions
(i) a,b,c,d,e are in A.P and G.P. both,(ii) $c=3,7$ then $n=$

- Watch Video Solution

25. If a, b, c are non zero real numbers such that $3\left(a^{2}+b^{2}+c^{2}+1\right)=2(a+b+c+a b+b c+c a)$ then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in (A) A.P. only (B) G.P. only (C) A.P., G.P., and H.P. (D) A.P. and G.P.both

- Watch Video Solution

26. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are distinct integers in A. P. Such that $d=a^{2}+b^{2}+c^{2}$, then $a+b+c+d$ is

- Watch Video Solution

27. If $a_{n}=\int_{0}^{\pi} \frac{\sin (2 n-1) x}{\sin x} d x$. Then the number $a_{1}, a_{2}, a_{3} \ldots . . .$. . Are in
(A) A.P (B) G.P (C) H.P (D) none of these

- Watch Video Solution

28. If $a, b, c, d, e \quad$ are
in
H.P.,
then
$\frac{a}{b+c+d+e}, \frac{b}{a+c+d+e}, \frac{c}{a+b+d+e}, \frac{d}{a+b+c+e}, \frac{e}{a+b+c}$ are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

- Watch Video Solution

29. If a, b, c are proper fractiion are in H.P. and $x \sum_{n=1}^{\infty} a^{n}, y=\sum_{n=1}^{\infty} b^{n}, z=\sum_{n=1}^{\infty} c^{n}$ then x, y, z are in (A) A.P. (B) G.P. (C) H.P.
(D) none of these

- Watch Video Solution

30. If $S_{1}, S_{2}, S_{3}, \ldots \ldots \ldots \ldots S_{n}$ denote the sum of $1,2,3$. . terms of an A.P. having first term a and $\frac{S_{k x}}{S_{x}}$ is independent of x then $S_{1}+S_{2}+S_{3}+\ldots \ldots+S_{n}=\quad$ (A) $\quad \frac{n(n+1)(2 n+1) a}{6}$
${ }^{\wedge}(n+2) C_{3} a(\mathrm{C}) \wedge(n+1) C_{3} a$ (D) none of these
31. If a, b, c, d are rational and are in G.P. then the rooots of equation $(a-c)^{2} x^{2}+(b-c)^{2} x+(b-x)^{2}-(a-d)^{2}=$ are necessarily (A) imaginary (B) irrational (C) rational (D) real and equal

- Watch Video Solution

32. Sum
$\frac{1}{\sqrt{2}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{11}}+\frac{1}{\sqrt{11}+\sqrt{14}}+\ldots \rightarrow n$
terms=
(A) $\frac{n}{\sqrt{3 n+2}-\sqrt{2}}$
(B) $\quad \frac{1}{3}(\sqrt{2}-\sqrt{3 n+2}$
$\mathrm{n} /(\mathrm{sqrt}(3 \mathrm{n}+2)+\mathrm{sqrt}(2))^{\prime}(\mathrm{D})$ none of these

- Watch Video Solution

33. If a,b,c are $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ term of an AP and GP both, then the product of the roots of equation $a^{b} b^{c} c^{a} x^{2}-a b c x+a^{c} b^{c} c^{a}=0$ is equal to :
34. If a, b, c, be the pth, qth and rth terms respectivley of a G.P., then the equation $a^{q} b^{r} c^{p} x^{2}+p q r x+a^{r} b^{-p} c^{q}=0$ has (A) both roots zero (B) at least one root zero (C) no root zero (D) both roots unilty

Watch Video Solution

35.

$a=1111(55$ digits $), b=1+10+1=^{2}++10^{4}, c=1+10^{5}+10^{10}+10$
then $a=b+c b . a=b c \mathrm{c} . b=a c \mathrm{~d} . c=a b$

- Watch Video Solution

36. If a, b, c, d, x are real and the roots of equation $\left(a^{2}+b^{2}+c^{2}\right) x^{2}-2(a b+b c+c d) x+\left(b^{2}+c^{2}+d^{2}\right)=0 \quad$ are real and equal then a,b,c,d are in (A) A.P (B) G.P. (C) H.P. (D) none of these
37. If an A.P., a G.P. and a H.P. have the same first term and same $(2 n+1)$ th term and their $(n+1)^{n}$ terms are a,b,c respectively, then the radius of the circle. $x^{2}+y^{2}+2 b x+2 k y+a c=0$ is

- Watch Video Solution

38. If $\sum_{r=1}^{n} t_{r}=\sum_{k=1}^{n} \sum_{j=1}^{k} \sum_{i=1}^{j} 2$, then $\sum_{r=1}^{n} \frac{1}{t_{r}}=$

- Watch Video Solution

39. Consecutive odd integers whose sum is $25^{2}-11^{2}$ are

- Watch Video Solution

40. If a, b, c, d are distinct positive then $\frac{a^{n}}{b^{n}}>\frac{c^{n}}{d^{n}}$ for all εN if a, b, c, d are in (A) A.P. (B) G.P. (C) H.P. (D) none of these
41. If $a=\sum_{r=1}^{\infty}\left(\frac{1}{r}\right)^{2}, b=\sum_{r=1}^{\infty} \frac{1}{(2 r-1)^{2}}$, then $\frac{a}{b}=$ (A) $\frac{5}{4}$ (B) $\frac{4}{5}$ (C) $\frac{3}{4}$
(D) none of these

- Watch Video Solution

42. If $\sum n^{2}=2870$, then $\sum n^{3}=$ (A) 44100 (B) 48400 (C) 52900 (D) none of these

- Watch Video Solution

43. If $9 A . M$. ' s and $9 H . M$ ' s be inserted between 2 and 3 and A be any
$A . M$. and H be the corresponding $H . M$. , then $H(5-A)$

- Watch Video Solution

44. If $\left.a-b, a x-b y, a x^{2}-b y^{2} a, b \neq 0\right)$ are in G.P., then $x, y \frac{a x-b y}{a-b}$ are in (A) A.P. only (B) G.P.only (C) A.P., G.P. (D) A.P., and G.P and H.P

- Watch Video Solution

45. If the square of differences of three numbers be in A.P., then their differences re in (A) A.P. (B) G.P. (C) H.P. (D) none of these

- Watch Video Solution

46. $1,3,9$ can be terms of (A) an A.P. out not of a G.P (B) G.P. but not of an A.P. (C) A.P. and G.P both (D) neither A.P nor G.P

- Watch Video Solution

47. If $t_{r}=2^{\frac{r}{3}}+2^{-\frac{r}{3}}$, then $\sum_{r=1}^{100} t_{r}^{3}-3 \sum_{r=1}^{100} t_{r}+1=$ (A) $\frac{2^{101}+1}{2^{100}}$
$\frac{2^{101}-1}{2^{100}}$ (C) $\frac{2^{201}+1}{2^{100}}$ (D) none of these

(Watch Video Solution

48. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be the sum of n term of three $A . P^{\prime} s$ whose first terms are unity and common differences are in H.P., then $\mathrm{n}=(A) \frac{2 a c+a b+b c}{a+c-a b}$ $\frac{2 a c-a b-b c}{a+c-a b}$ (C) $\frac{2 a c-a b-b c}{a+c-a b}$ (D) $\frac{2 a c-a b+b c}{a+c-a b}$

- Watch Video Solution

49. If a, b, c in G.P. x, y be the A.M.|'s between a, b and b, c respectively then $\left(\frac{a}{x}+\frac{c}{y}\right)\left(\frac{b}{x}+\frac{b}{y}\right)=$ (A) 2 (B) -4 (C) 4 (D) none of these

- Watch Video Solution

50. If positive numbers a, b, c are in H.P., then equation $x^{2}-k x+2 b^{101}-a^{101}-c^{101}=0(k \in R)$ has both roots positive both roots negative one positive and one negative root both roots imaginary
51. $\sum_{n=1}^{\infty}\left(\tan ^{-1}\left(\frac{4 n}{n^{4}-2 n^{2}+2}\right)\right)$ is equal to (A) $\tan ^{-1}(2)+\tan ^{-1}(3)$
(B) $4 \tan ^{-1}(1)$ (C) $\frac{\pi}{2}$ (D) $\sec ^{-1}(-\sqrt{2})$

Watch Video Solution

52.

$b_{i}=1-a_{i}, n a=\sum_{i=1}^{n} a_{i}, n b=\sum_{i=1}^{n} b_{i}$, then $\sum_{i=1}^{n} a_{i}, b_{i}+\sum_{i=1}^{n}\left(a_{i}-a\right)^{2}=$ $a b$ b. $n a b c .(n+1) a b$ d. $n a b$

- Watch Video Solution

53. If the sum of the series $\sum_{n=0}^{\infty} r^{n},|r|<1 i s s$, then find the sum of the series $\sum_{n=0}^{\infty} r^{2 n}$.

- Watch Video Solution

54. Four numbers are such that the first three are in.A.P while the last three are in G.P. If the first number is 6 and common ratio of G.P. is $\frac{1}{2}$ the the number are (A) 6,8,4,2 (B) 6,10,14,7 (C) 6,9,12,6 (D) 6,4,2,1

- Watch Video Solution

55. The sum of all two digit odd natural numbers in (A) 5049 (B) 2475 (C) 4905 (D) 2530

- Watch Video Solution

56.

The
series
$2 \frac{x}{x+30+\left(2 \frac{x}{(x+3)^{2}}\right)+\left(2 \frac{x}{(x+3)^{3}}\right)+\ldots \ldots \ldots \rightarrow \infty}$ will have a
definite sum when (A) $-1<x<3$ (B) $0<x<1$ (C) $x=0$ (D) none of these

- Watch Video Solution

57. if $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ harmonic mean of $a \& b$ then n is

- Watch Video Solution

58. The nth term of the series $2 \frac{1}{2}+1 \frac{7}{3}+1 \frac{1}{9}+\frac{20}{23}+\ldots \ldots \ldots . I s(A)$ $20 /(5 \mathrm{n}+3)(B) 20 /(5 \mathrm{n}-3)(C) 20(5 \mathrm{n}+3)(D) 20 /\left(5 \mathrm{n}^{\wedge} 2+3\right)^{\wedge}$

- Watch Video Solution

59. Let $a_{1}, a_{2}, \ldots \ldots a_{10}$ be in A.P. and $h_{1}, h_{2}, \ldots h_{10}$ be in H.P. If $a_{1}=h_{1}=2$ and $a_{10}=h_{10}=3$, thena $_{4} h_{7}$ is (A) 2 (B) 3 (C) 5 (D) 6

- Watch Video Solution

60. If a,b,c,d are positive real number with $a+b+c+d=2$,then $M=(a+b)(c+d)$ satisfies the inequality
61. If $a=1+b+b^{2}+b^{3}+\ldots . \rightarrow \infty$ where $|b|<1$ then roots of equation $a x^{2}+x-a b=0$ are (A) $-1, a b$ (B) $1, b$ (C) $-1, b$ (D) $-1, a$

- Watch Video Solution

62. If the sum of the first $2 n$ terms of the A.P. $2,5,8, \ldots$, is equal to the sum of the first n terms of A.P. $57,59,61, \ldots$, then n equals 10 b .12 c .11 d .13

- Watch Video Solution

63. If the prth term of an A.P. is q and qth term is p, then rth term is (A)
$q-p+r$
(B) $p-q+r$
(C) $p+q+r$
(D) $p+q-r$

- Watch Video Solution

64. If the numbers p,q, r are in A.P. then $m^{7 p}, m^{7 q}, m^{7 r}(m>0)$ are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

- Watch Video Solution

65. $1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right),+\ldots$. upto 22 nd term is (A) 22368
(B) 23276 (C) 22376 (D) none of these

- Watch Video Solution

66. If $1^{2}+2^{2}+3^{2}+n^{2}=1015$ then the value of n is equal to
(A) 13
(B) 14
(C) 15
(D) none of these
67. Sum of the first n terms of the series $\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+$ is equal to $(1988,2 \mathrm{M}) 2^{n}-n-1$ (b) $1-2^{-n} n+2^{-n}-1$ (d) $2^{n}+1$

- Watch Video Solution

68. If the sum of the roots of the equation $a x^{2}+b x+c=0$ is equal to sum of the squares of their reciprocals, then $b c^{2}, c a^{2}, a b^{2}$ are in

- Watch Video Solution

69. The third term of a geometric progression is 4 . The production of the first five terms is 4^{3} b. 4^{5} c. 4^{4} d. none of these

- Watch Video Solution

70. If A_{1}, A_{2} be two A.M. and G_{1}, G_{2} be two G.K.s between $a a n d b$ then $\frac{A_{1}+A_{2}}{G_{1} G_{2}}$ is equal to $\frac{a+b}{2 a b}$ b. $\frac{2 a b}{a+b}$ c. $\frac{a+b}{a b}$ d. $\frac{a+b}{\sqrt{a b}}$
71. If a, b, c are distinct positive real numbers in G.P and $\log _{c} a, \log _{b} c, \log _{a} b$ are in A.P, then find the common difference of this A.P

- Watch Video Solution

$72.1+\frac{3}{2}+\frac{5}{2^{2}}+\frac{7}{2^{3}}+\ldots \ldots . \rightarrow \infty$ is equal to (A) 3 (B) 6 (C) 9 (D) 12

- Watch Video Solution

73. If $x^{a}=y^{b}=c^{c}$, where a, b, c are unequal positive numbers and x, y, z are in GP, then $a^{3}+c^{3}$ is :

- Watch Video Solution

74. If G_{1} and G_{2} are two geometric means and A the asrithmetic mean inserted between two numbers, then the value of $\frac{G_{1}^{2}}{G_{2}}+\frac{G_{2}^{2}}{G_{1}}$ is (A) $\frac{A}{2}$
$\mathrm{A}(\mathrm{C}) 2 A$ (D) none of these

- Watch Video Solution

75. If the sum of n terms of an A.P. is $3 n^{2}+5 n$ and its mth term is 164 , find the value of m.

- Watch Video Solution

76. The rational number, which equals the number $2 . \overline{357}$ with recurring decimal is:

- Watch Video Solution

77. If $x \in\{1,2,3, \ldots, 9\}$ and $f_{n}(x)=x x x \ldots x$ (n digits), then
$f_{n}^{2}(3)+f_{n}(2)$

- Watch Video Solution

78. Let $S_{n}=\sum_{r=0}^{\infty} \frac{1}{n^{r}}$ and $\sum_{n=1}^{k}(n-1) S_{n}=5050$ thenk $=(\mathrm{A}) 50$ (B) 505 (C) 100 (D) 55

- Watch Video Solution

79. If $\sum_{n=1}^{k}\left[\frac{1}{3}+\frac{n}{90}\right]=21$ where $[\mathrm{x}]$ dentes the integeral part of x , then $k=(A) 84$ (B) 80 (C) 85 (D) none of these

D Watch Video Solution

80. Let $f: R \rightarrow R$ such that $f(x)$ is continuous and attains only rational value at all real x and $\mathrm{f}(3)=4$. If $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ are in H.P. then $\sum_{r=1}^{4} a_{r} a_{r+1}=(A) f(3) \cdot a_{1} a_{5}$ (B) $f(3) \cdot a_{4} a_{5}$ (C) $f(3) \cdot a_{1} a_{2}$ (D) $f(2) \cdot a_{1} a_{3}$

- Watch Video Solution

81. The roots of equation $x^{2}+2(a-3) x+9=0$ lie between -6 and 1 and $2, h_{1}, h_{2}, \ldots, h_{20}[a]$ are in H.P., where [a] denotes the integeral part of a and $2, a_{1}, a_{2}, \ldots a_{20}$ [a] are in A.P. then $a_{3} h_{18}=$ (A) 6 (B) 12 (C) 3 (D) none of these

- Watch Video Solution

82. If three successive terms of as G.P. with commonratio $r>1$ form the sides of a triangle and $[r]$ denotes the integral part of x the $[r]+[-r]=(\mathrm{A}) 0(\mathrm{~B}) 1(\mathrm{C})-1(\mathrm{D})$ none of these

- Watch Video Solution

83. । $a_{n}=\int_{0}^{\frac{\pi}{2}} \frac{1-\cos 2 n x}{1-\cos 2 x} d x$ then $_{1}, a_{2}, a_{3}, \ldots \ldots . ., a_{n}$ are in (A) A.P. only (B) G.P.only (C) H.P. only (D) A.P., G.P. and H.P.

- Watch Video Solution

84. If $a_{1}, a_{2}, a_{3} \ldots \ldots \ldots$ are in H.P. and $f(k)=\sum_{r=1}^{n} a_{r}-a_{k}$, the $\frac{a_{1}}{f(1)}, \frac{a_{2}}{f(2)}, \frac{a_{3}}{f(3)}, \ldots \ldots \ldots, \frac{a_{n}}{f(n)}$ are in (A) A.P. (B) G.P (C) H.P. (D) none of these

- Watch Video Solution

85. If the sides of a triangle are in G.P., and its largest angle is twice the smallest, then the common ratio r satisfies the inequality ${ }^{\circ} 0$

- Watch Video Solution

86. The sum of n terms of the series
$\frac{5}{1.2} \frac{.1}{3}+\frac{7}{2.3} \frac{.1}{3^{2}}+\frac{9}{3.4} \frac{.1}{3^{3}}+\frac{11}{4.5} \frac{.1}{3^{4}}+\ldots \quad$ is (A) $1+\frac{1}{2^{n-1}} \frac{.1}{3^{n}}$
$1+\frac{1}{n+1} \frac{.1}{3^{n}}$ (C) $1-\frac{1}{n+1} \frac{.1}{3^{n}}$ (D) $1+\frac{1}{2} n-\frac{1.1}{3^{n}}$

- Watch Video Solution

87. If $\frac{b+c}{a+d}=\frac{b c}{a d}=3\left(\frac{b-c}{a-d}\right)$ then a, b, c, d are in (A) H.P. (B) G.P. (C)
A.P. (D) none of these

- Watch Video Solution

88. If $\log \left(\frac{2 b}{3 c}\right), \log \left(\frac{4 c}{9 a}\right)$ and $\log \left(\frac{8 a}{27 b}\right)$ are in A.P. where a, b, c and are in G.P. then a, b, c are the length of sides of (A) a scelene triangle (B) anisocsceles tirangel (C) an equilateral triangle (D) none of these

D Watch Video Solution

89. If S_{r} denotes the sum of r terms of an A.P. and $\frac{S_{a}}{a^{2}}=\frac{S_{b}}{b^{2}}=c$. Then $S_{c}=(\mathrm{A}) c^{3}$ (B) $\frac{c}{a} b$ (C) $a b c$ (D) $a+b+c$

- Watch Video Solution

90. If S_{p} denotes the sum of the series $1+r^{p}+r^{2 p}+\rightarrow \infty$ ands s_{p} the sum of the series $1-r^{2 p} r^{3 p}+\rightarrow \infty,|r|<1$, then $S_{p}+s_{p}$ in term of $S_{2 p}$ is $2 S_{2 p}$ b. 0 c. $\frac{1}{2} S_{2 p}$ d. $-\frac{1}{2} S_{2 p}$

- Watch Video Solution

91. If $a, b a n d c$ are in $A P$, then the straight line $a x+b y+c=0$ will always pass through a fixed point whose coordinates are

- Watch Video Solution

92. The value of $10^{3}+11^{3}+12^{3}+\ldots \ldots \ldots .+100^{3}$ is equal to (A) 25500475 (B) 25500000 (C) 25000000 (D) none of these

- Watch Video Solution

93. If $a_{n}=$ the digit at units palce in the number o $1!+2!+3!+\ldots \ldots \ldots n!$ for $n \geq 4$ the $a_{4}, a_{5}, a_{6}, \ldots \ldots \ldots$ are in (A) A.P. only (B) G.P. only (C) A.P. and G.P. only (D) A.P., G.P. and H.P.

- Watch Video Solution

94. Let a, b, c be positive real numers such that $b x^{2}+\left(\sqrt{\left((a+c)^{2}+4 b^{2}\right)} x+(a+c),=0, \forall x \varepsilon R\right.$, then a,b,c are in (A) G.P. (B) A.P. (C) H.P. (D) none of these

(D) Watch Video Solution

95. The coefficient of x^{49} in the product $(x-1)(x-3)(x+99) i s-99^{2}$
b. 1 c. -2500 d . none of these

- Watch Video Solution

96. if $a, a_{1}, a_{2}, a_{3}, \ldots \ldots . ., a_{2 n}, b$ are in $A . P$. and $a, g_{1}, g_{2}, \ldots \ldots \ldots . g_{2 n}, b$ are in $G . P$. and h is $H . M$. of a, b then $\frac{a_{1}+a_{2 n}}{g_{1} \cdot g_{2 n}}+\frac{a_{2}+a_{2 n-1}}{g_{2} \cdot g_{2 n-1}}+\ldots \ldots \ldots \ldots+\frac{a_{n}+a_{n+1}}{g_{n} \cdot g_{n+1}}$ is equal

(Watch Video Solution

97. Let α be the A.M. and β, γ be two G.M.|'s between two positive numbes then the value of $\frac{\beta^{3}+\gamma^{3}}{\alpha \beta \gamma}$ is (A) 1 (B) 2 (C) 0 (D) 3

(Watch Video Solution

98. If the sum of n positive number is $2 n$, then the product of these numbers is $(\mathrm{A}) \leq 2^{n}(\mathrm{~B}) \geq 2^{n}(\mathrm{C})$ divisible by $2^{n}(\mathrm{D})$ none of these

- Watch Video Solution

99. Let $p, q, r \varepsilon R^{+}$and $27 p q r \geq(p+q+r)^{3}$ and $3 p+4 q+5 r=12$ then $p^{3}+q^{4}+r^{5}$ is equal to

- Watch Video Solution

100. Sum of the first n terms of an A.P. having positive terms is given by $S_{n}=\left(1+2 T_{n}\right)\left(1-T_{n}\right)\left(w h e r e T_{n}\right.$ is the nth term of the series). The value of T_{2}^{2} is (A) $\frac{\sqrt{2}+1}{2 \sqrt{2}}$ (B) $\frac{\sqrt{2}-1}{2 \sqrt{2}}$ (C) $\frac{1}{2 \sqrt{2}}$ (D) none of these

(Watch Video Solution

101. Let a be the A.M. and b,c bet wo G.M ${ }^{\prime}$'s between two positive numbers. Then $b^{3}+c^{3}$ is equal to (A) $a b c$ (B) $2 a b c$ (C) $3 a b c$ (D) $4 a b c$

- Watch Video Solution

102. If $a>0, b>0, c>0$ and the minimum value of $a^{2}(b+c)+b^{2}(c+a)+c^{2}(a+b)$ is kabc, then k is (A) 1 (B) 3 (C) 6 (D) 4

- Watch Video Solution

103. If $(2+x)\left(2+x^{2}\right)\left(2+x^{3}\right) \ldots \ldots \ldots . .\left(2+x^{100}\right)=\sum_{r=0}^{n} k_{r} x^{r}$, then $n=(A) 2550$ (B) 5050 (C) 2^{8} (D) none of these

- Watch Video Solution

104. Let S_{1}, S_{2}, be squares such that for each $n \geq 1$, the length of a side of S_{n} equals the length of a diagonal of S_{n+1}. If the length of a side of $S_{1} i s 10 \mathrm{~cm}$, then for which of the following value of n is the area of S_{n} less than 1 sq. cm? a. 5 b. 7 c. 9 d. 10

- Watch Video Solution

105. The next term of the G.P. $x, x^{2}+2, a n d x^{3}+10$ is $\frac{729}{16}$ b. 6 c. 0 d. 54

- Watch Video Solution

106. If ${ }^{\wedge} n C_{4},{ }^{n} C_{5}$ and ${ }^{n} C_{6}$ are in A.P. then the value of n will be (A) 14
(B) 11 (C) 7 (D) 8

- Watch Video Solution

107.

a, b, care $\in G . P$. and $x, y b e t h e A M$ 'sbetweena, b and b, crespectivelyth
$\frac{1}{a}+\frac{1}{b}=\frac{x+y}{6}(B) a x+c y=b$ (C) $\frac{a}{x}+\frac{c}{y}=2$ (D) $\frac{1}{x}+\frac{1}{y}=\frac{2}{b}$

- Watch Video Solution

108. If $a_{n}=\int_{0}^{\pi} \frac{\sin (2 n-1) x}{\sin x} d x$. Then the number $a_{1}, a_{2}, a_{3} \ldots \ldots .$. . Are in
(A) A.P (B) G.P (C) H.P (D) none of these
109. If the first two terms of a progression are $\log _{2} 256$ and $\log _{3} 81$ respectively, then which of the following stastement (s) is (are) true: (A) if the third term is $2 \log _{61}$ the the terms are in A.P. (B) if the third term is $\log _{2} 8$, the the terms are in A.P. (C) if the third term is $\log _{4} 16$ the the terms are in G.P. (D) if the third term is $\frac{2}{3} \log _{2} 16$ the the terms are in H.P.

- Watch Video Solution

110. If first and $(2 n-1)^{t} h$ terms of an AP, GP. and HP. are equal and their nth terms are a, b, c respectively, then (a) $a=b=c(b) a+c=b$ (c) $a>b>c$ and $a c-b^{2}=0$ (d) none of these

- Watch Video Solution

111. The complex numbrs x and y such that $x, x+2 y, 2 x+y$ are n A.P. and $(y+1)^{2}, x y+5,(x+1)^{2}$ are in G.P. are (A) $x=3, y=1$
$x=-1+2 \sqrt{2} i, y=\frac{1}{3}(-1+2 \sqrt{2} i)$
$x=\sqrt{2}+i, y=3 \sqrt{5}-\sqrt{2} i(\mathrm{D}){ }^{`} \mathrm{x}=-1(1+2 \mathrm{sqrt}(2) \mathrm{i}), \mathrm{y}=-1 / 3(1+2 \mathrm{sqrt}(2) \mathrm{i})$

- Watch Video Solution

112. The values of x for which $\frac{1}{1+\sqrt{x}}, \frac{1}{1-x}, \frac{1}{1-\sqrt{x}}$ are in A.P. lie in the interval (A) $(0, \infty)$ (B) $(1, \infty)$ (C) $(0,1)$ (D) none of these

- Watch Video Solution

113. If pth, qth, rth terms of an A.P. are in G.P. then common ratio of ths G.P. is (A) $\frac{q-r}{p-q}$ (B) $\frac{q-s}{p-r}$ (C) $\frac{r-s}{q-r}$ (D) $\frac{q}{p}$

- Watch Video Solution

114. If A_{1}, A_{2} be two A.M.|'s G_{1}, G_{2} be the two G.M.|'s and H_{1}, H_{2} be the two H.M.|'s between a and b then (A) $\frac{A_{1}+A_{2}}{G_{1} G_{2}}=\frac{a+b}{a b}$

$$
\begin{equation*}
\frac{H_{1}+H_{2}}{H_{1} H_{2}}=\frac{a+b}{a} b \text { (C) } \frac{G_{1} G_{2}}{H_{1} H_{2}}=\frac{A_{1}+A_{2}}{H_{1}+H_{2}}(D) \frac{A_{1}+A_{2}}{H_{1} H_{2}}=\frac{a+b}{a-b} \tag{B}
\end{equation*}
$$

- Watch Video Solution

115. If $f(n)=1^{2}+2.2^{2}+3^{2}+2.4^{2}+5.6^{2}+2.6^{2}+\ldots+n$ terms ,then (A) $\quad f(n)=\frac{n(n+1)^{2}}{2}$, if $n \quad$ is even
$f(n)=\frac{n^{2}(n+2)^{2}}{2}$, if niseven $(C) \mathrm{f}(\mathrm{n})=$
, if $\operatorname{nisodd}(D) f(n)=\frac{n(n+3)^{2}}{2}$ if n is odd

- Watch Video Solution

116. Let T_{r} be the $r^{t h}$ term of an A.P whose first term is a and common difference is $d \mathrm{IF}$ for some integer $\mathrm{m}, \mathrm{n}, T_{m}=\frac{1}{n}$ and $T_{n}=\frac{1}{m}$ then $a-d=$

- Watch Video Solution

117. The G.M. of two positive numbers is 6 . Their arithmetic mean A and harmonic mean H satisfy the equation $90 A+5 H=918$, then A may be
equal to (A) $\frac{5}{2}$ (B) 10 (C) 5 (D) $\frac{1}{5}$

- Watch Video Solution

118. Let $a_{1}, a_{2}, a_{3} \ldots \ldots \ldots \ldots, a_{n}$ be positive numbers in G.P. For each n let A_{n}, G_{n}, H_{n} be respectively the arithmetic mean geometric mean and harmonic mean of $a_{1}, a_{2}, \ldots \ldots . ., a_{n}$ On the basis of above information answer the following question: A_{k}, G_{k}, H_{k} are in (A) A.P. (B) G.P. (C) H.P.
(D) none of these

- Watch Video Solution

119. .Let $a_{1}, a_{2}, \ldots \ldots \ldots .$. be positive real numbers in geometric progression. For each n , let $A_{n} G_{n}, H_{n}$, be respectively the arithmetic mean, geometric mean \& harmonic mean of $a_{1}, a_{2} \ldots \ldots \ldots . a_{n}$. Find an expression for the geometric mean of $G_{1}, G_{2}, \ldots \ldots . G_{n}$ in terms of $A_{1}, A_{2}, \ldots \ldots . ., A_{n}, H_{1}, H_{2}, \ldots \ldots . ., H_{n}$.
120. Let S_{n} denote the sum of first n terms of a G.P. whose first term and common ratio are a and r respectively. On the basis of above information answer the following question: $S_{1}+S_{2}+S_{2}+\ldots+S_{n}=$

$$
\begin{equation*}
\frac{n a}{1-r}-\frac{a r\left(1-{ }^{n}\right)}{(1-r)^{20}} \text { (B) } \frac{n a}{1-r}-\frac{a r\left(1+{ }^{n}\right)}{(1+r)^{20}} \text { (C) } \frac{n a}{1-r}-\frac{a\left(1-{ }^{n}\right)}{(1-r)^{20}} \tag{A}
\end{equation*}
$$

none of these

D Watch Video Solution

121. Let S_{n} denote the sum of first n terms of a G.P. whose first term and common ratio are a and r respectively. On the basis of above information answer the following question: The sum of product of first n terms of the G.P. taken two at a time in (A) $\frac{r+1}{r} S_{n} S_{n-1} \quad$ (B) $\frac{r}{r+1} S_{n}^{2}$ $\frac{r}{r+1} S_{n} S_{n-1}$
(D) none of these

(Watch Video Solution

122. If sum of n termsof a sequende is S_{n} then its nth term $t_{n}=S_{n}-S_{n-1}$. This relation is vale for all $n>-1$ provided $S_{0}=0$. But if $S_{\neq 0}$, then the relation is valid ony for $n \geq 2$ and in hat cast t_{1} can be obtained by the relation $t_{1}=S_{1}$. Also if nth term of a sequence $t_{1}=S_{n}-S_{n-1}$ then sum of n term of the sequence can be obtained by putting $n=1,2,3, . n$ and adding them. Thus $\sum_{n=1}^{n} t_{n}=S_{n}-S_{0}$. if $S_{0}=0$, then $\sum_{n=1}^{n} t_{n}=S_{n}$. On the basis of above information answer thefollowing questions: If the sum of n terms of a sequence is $10 n^{2}+7 n$ then the sequence is (A) an A.P. having common difference 20 (B) an A.P. having common difference 7 (C) an A.P. having common difference 27 (D) not an A.P.

- Watch Video Solution

123. If sum of n terms of a sequence is S_{n} then its nth term $t_{n}=S_{n}-S_{n-1}$. This relation is valid for all $n>-1$ provided $S_{0}=0$. But if $S_{1}=0$, then the relation is valid only for $n \geq 2$ and in hat cast t_{1} can be obtained by the relation $t_{1}=S_{1}$. Also if nth term of a sequence
$t_{1}=S_{n}-S_{n-1}$ then sum of n term of the sequence can be obtained by putting $n=1,2,3, . n$ and adding them. Thus $\sum_{n=1}^{n} t_{n}=S_{n}-S_{0}$. if $S_{0}=0$, then $\sum_{n=1}^{n} t_{n}=S_{n}$. On the basis of above information answer the following questions: If the sum of n terms of a sequence is $10 n^{2}+7 n$ then the sequence is (A) an A.P. having common difference 20 (B) an A.P. having common difference 7 (C) an A.P. having common difference 27 (D) not an A.P.

- Watch Video Solution

124. If sum of n termsof a sequende is S_{n} then its nth term $t_{n}=S_{n}-S_{n-1}$. This relation is vale for all $n>-1$ provided $S_{0}=0$.

But if $S_{\neq 0}$, then the relation is valid ony for $n \geq 2$ and in hat cast t_{1} can be obtained by the relation $t_{1}=S_{1}$. Also if nth term of a sequence $t_{1}=S_{n}-S_{n-1}$ then sum of n term of the sequence can be obtained by putting $n=1,2,3, . n$ and adding them. Thus $\sum_{n=1}^{n} t_{n}=S_{n}-S_{0}$. if $S_{0}=0$, then $\sum_{n=1}^{n} t_{n}=S_{n}$. On the basis of above information answer thefollowing questions:If nth term of a sequence is $\frac{n}{1+n^{2}+n^{4}}$ then
the sum of its first n terms is (A) $\frac{n^{2}+n}{1+n+n^{2}}$ (B) $\frac{n^{2}-n}{1+n+n^{2}}$
$\frac{n^{2}+n}{1-n+n^{2}}$ (D) $\frac{n^{2}+n}{2\left(1+n+n^{2}\right)}$

- Watch Video Solution

125. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are positive real numbers then $(1+a)^{7}(1+b)^{7}(1+c)^{7}$ (A) $<7^{7} a^{4} b^{4} c^{4}$ (B) $\leq 7^{7} a^{4} b^{4} c^{4}$ (C) $>7^{7} a^{4} b^{4} c^{4}$ (D) none of these

- Watch Video Solution

126. If $x \in R$, the numbers $5^{1+x}+5^{1-x}, \frac{a}{2}, 25^{x}+25^{-x}$ form an A.P. then a must lie in the interval

- Watch Video Solution

127. Find the sum of integers from 1 to 100 that are divisible by 2 or 5 .

- Watch Video Solution

128. Sum of infinite terms of series $3+5 . \frac{1}{4}+7 . \frac{1}{4^{2}}+\ldots$. is

- Watch Video Solution

129. The largest term common to the sequences $1,11,21,31, \rightarrow 100$ terms and $31,36,41,46, \rightarrow 100$ terms is 381 b. 471 c. 281 d. none of these

- Watch Video Solution

130. Assertion: $\left[\left(1+\frac{1}{10000}\right)^{10000}\right]=2$ where [.] is the greatest integer function. Reason: $2<\left(1+\frac{1}{n}\right)^{n}<2.5$ for all $\mathrm{n} \varepsilon N$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

131. Assertion: If n is odd then the sum of n terms of the series $1^{2}+2 \times 2^{2}+3^{2}+2 \times 4^{2}+5^{2}+2 \times 6^{2}+7^{2}+\ldots i s \frac{n^{2}(n+1)}{2}$. If n is even then the sum of n terms of the series. $1^{2}+2 \times 2^{2}+3^{2}+2 \times 4^{2}+5^{2}+2 \times 6^{2}+\ldots . i s \frac{n(n+1)^{2}}{2}(\mathrm{~A})$ Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

132. Assertion: one root of equation
$(a-d)^{2} x^{2}-\left[(b-c)^{2}\right\}(c-a)^{2} x-(d-b)^{2}=0 \quad$ is necessarily 1. Reason: $(a-d)^{2}=(b-c)^{2}+(c-a)^{2}+(d-b)^{2}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.
133. Assertion: x, y, z are in A.P., Reason: sum of an infinite G.P. having first term a and common ratio r is $\frac{a}{1-r}$ where $-1<r<1$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

D Watch Video Solution

134. Assertion: $x-a, y-a, z-a$ are in G.P., Reason: If a,b,c are in H.P. then $a-\frac{b}{2}, b-\frac{b}{2}, c-\frac{b}{2}$ are in G.P. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

135. Assertion: I_{1}, I_{2}, I_{3},......... are in A.P. Reason: $I_{n+2}+I_{n}-2 I_{n+1}=0$
(A) Both A and R are true and R is the correct explanation of $A(B)$ Both A
and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

136. Assetion: $a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots \ldots$ an are not in G.P. Reason: $a_{n+1}=a_{n}(\mathrm{~A})$ Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

137. Assertion: a^{2}, b^{2}, c^{2} are in A.P., Reason: $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

138. Assertion: $\frac{S_{1}}{S_{2}}=\frac{n}{n+1}$, Reason: Numbers of odd termsof A.P. is $(n+1)$ and numbers of even terms is n . (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

139. Let $n_{\text {th }}$ term of the sequence be given by $t_{n}=\frac{(n+2)(n+3)}{4}$ Assertion: $\quad \frac{1}{t_{1}}+\frac{1}{t_{2}}+\ldots \ldots \ldots .+\frac{1}{t_{2009}}=\frac{2009}{1509}, \quad$ Reason: $\frac{1}{(n+2)(n+3)}=\frac{1}{n+2}-\frac{1}{n+3}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

140. The real numbers x_{1}, x_{2}, x_{3} satisfying the equation $x^{3}-x^{2}+b x+\gamma=0$ ar ein A.P. Find the intervals in which $\beta a n d \gamma$ lie.
141. Let x be the arithmetic mean and y, z be the two geometric means between any two positive numbers, then $\frac{y^{3}+z^{3}}{x y z}=\cdot(1997 \mathrm{C}, 2 \mathrm{M})$

- Watch Video Solution

142. If $\cos (x-y),, \cos x$ and $\cos (x+y)$ are in H.P., are in H.P., then $\cos x \cdot \sec \left(\frac{y}{2}\right)=$

- Watch Video Solution

143. Let pandq be the roots of the equation $x^{2}-2 x+A=0$ and let rands be the roots of the equation $x^{2}-18 x+B=0$. If p

- Watch Video Solution

144. Let T_{r} be the rth term of an A.P., for $r=1,2,3$, If for some positive integers m, n, we have $T_{m}=\frac{1}{n} \operatorname{and} T_{n}=\frac{1}{m}$, then $T_{m n}$ equals $\frac{1}{m n}$ b. $\frac{1}{m}+\frac{1}{n} \mathrm{c} .1 \mathrm{~d} .0$

- Watch Video Solution

145. If $x>1, y>1, z>1$ are in G.P. then $\frac{1}{1+\operatorname{In} x}, \frac{1}{1+\operatorname{Iny}}, \frac{1}{1+\operatorname{In} z}$ are in (A) A.P. (B) H.P. (C) G.P. (D) none of these

- Watch Video Solution

146. If x_{1}, x_{2}, x_{3} as well as y_{1}, y_{2}, y_{3} are in G.P. with the same common ratio, then the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ (A) lie on a straight line (B) lie on a parabola (C) lie on a circle (D) are vertices of a triangle

- Watch Video Solution

147. The harmonic mean of the roots of the equation $(5+\sqrt{2}) x^{2}-(4+\sqrt{5}) x+8+2 \sqrt{5}=0$ is 2 b. 4 c. 6 d. 8

Watch Video Solution

148. Let $a_{1}, a_{2}, \ldots \ldots a_{10}$ be in A.P. and $h_{1}, h_{2}, \ldots . h_{10}$ be in H.P. If $a_{1}=h_{1}=2$ and $a_{10}=h_{10}=3$, thena $_{4} h_{7}$ is (A) 2 (B) 3 (C) 5 (D) 6

- Watch Video Solution

149. Let S_{1}, S_{2}, be squares such that for each $n \geq 1$, the length of a side of S_{n} equals the length of a diagonal of S_{n+1}. If the length of a side of $S_{1} i s 10 \mathrm{~cm}$, then for which of the following value of n is the area of S_{n} less than 1 sq. cm? a. 5 b. 7 c. 9 d. 10

- Watch Video Solution

150. If a, b, c, d are positive real umbers such that $a=b+c+d=2$, then $M=(a+b)(c+d)$ satisfies the relation $0 \leq M \leq 11 \leq M \leq 22 \leq M \leq 33 \leq M \leq 4$

- Watch Video Solution

151. Consider an infinite geometric series with first term a and common ratio r. If its sum is 4 and the second term is $3 / 4$, then $a=\frac{4}{7}, r=\frac{3}{7} \mathrm{~b}$. $a=2, r=\frac{3}{8}$ c. $a=\frac{3}{2}, r=\frac{1}{2}$ d. $a=3, r=\frac{1}{4}$

- Watch Video Solution

152. The fourth power of common difference of an arithmetic progression with integer entries is added to the product of any four consecutive terms of it. Prove that the resulting sum is the square of an integer.

- Watch Video Solution

153. Let $\alpha a n d \beta$ be the roots of $x^{2}-x+p=0$ and $\gamma a n d \delta$ be the root of $x^{2}-4 x+q=0$. If $\alpha, \beta, a n d \gamma, \delta$ are in G.P., then the integral values of pand q, respectively, are $-2,-32$ b. $-2,3$ c. $-6,3$ d. $-6,-32$

D Watch Video Solution

154. If the sum of the first $2 n$ terms of the A.P. $2,5,8, \ldots$, is equal to the sum of the first n terms of A.P. 57, 59, 61, ..., then n equals 10 b .12 c .11 d . 13

(Watch Video Solution

155. Let the positive numebrs a, b, c, d be in A.P. Then $a b c, a b d, a c d, b c d$ re (A) not in A.P., G.P., H.P. (B) in A.P. (C) in G.P. (D) in H.P.

- Watch Video Solution

156. .Let $a_{1}, a_{2}, \ldots \ldots \ldots . .$. be positive real numbers in geometric progression. For each n , let $A_{n} G_{n}, H_{n}$, be respectively the arithmetic mean, geometric mean \& harmonic mean of $a_{1}, a_{2} \ldots \ldots \ldots . . a_{n}$. Find an expression for the geometric mean of $G_{1}, G_{2}, \ldots \ldots . G_{n}$ in terms of $A_{1}, A_{2}, \ldots \ldots . ., A_{n}, H_{1}, H_{2}, \ldots \ldots . ., H_{n}$.

- Watch Video Solution

157.

$\sin ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4}-\ldots.\right)+\cos ^{-1}\left(x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4}-\ldots.\right)=\frac{\pi}{2}$ for $0<|x|<\sqrt{2}$ then $x=$

- Watch Video Solution

158. If $a-1, a_{2},, a_{n}$ are positive real numbers whose product is a fixed number c, then the minimum value of $a_{1}+a_{2}++a_{n-1}+2 a_{n}$ is $a_{n-1}+2 a_{n}$ is b. $(n+1) c^{1 / n} 2 n c^{1 / n}(n+1)(2 c)^{1 / n}$
159. Suppose a,b,c are in A.P and a^{2}, b^{2}, c^{2} are in G.P If \mathfrak{a}

- Watch Video Solution

160. Let a, b be positive real numbers. If $a A_{1}, A_{2}, b$ be are in arithmetic progression a, G_{1}, G_{2}, b are in geometric progression, and a, H_{1}, H_{2}, b are in harmonic progression, show that
$\frac{G_{1} G_{2}}{H_{1} H_{2}}=\frac{A_{1}+A_{2}}{H_{1}+H_{2}}=\frac{(2 a+b)(a+2 b)}{9 a b}$

- Watch Video Solution

161. If $\alpha \in\left(0, \frac{\pi}{2}\right)$, then $\sqrt{x^{2}+x}+\frac{\tan ^{2} \alpha}{\sqrt{x^{2}+x}}$ is always greater than or equal to $2 \tan \alpha 12 \sec ^{2} \alpha$

- Watch Video Solution

162. If a, b, c are in A.P. and a^{2}, b^{2}, c^{2} are in H.P., then prove that either $a=b=c$ or $a, b, c=\frac{c}{2}$ form a G.P.

- Watch Video Solution

163. An infinite G.P has first term x and sum 5 then x belongs

- Watch Video Solution

164. If a, b, c, are positive real numbers, then prove that (2004, 4 M)
$\{(1+a)(1+b)(1+c)\}^{7}>7^{7} a^{4} b^{4} c^{4}$

- Watch Video Solution

165.

In
the
quadratic
$a x^{2}+b x+c=0, D=b^{2}-4 a c$ and $\alpha+\beta, \alpha^{2}+\beta^{2}, \alpha^{3}+\beta^{3}$, are in
G.P, where α, β are the roots of $a x^{2}+b x+c$, then (a) $\Delta \neq 0$ (b) $b \Delta=0$ (c) cDelta $=0(d)$ Delta $=0 `$

- Watch Video Solution

166.

$A_{n}=\left(\frac{3}{4}\right)-\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{3}+\ldots .+(-1)^{n-1}\left(\frac{3}{4}\right)^{n}$ and $B_{n}=1-$
. find the least odd natural numbers n_{0}, so that $B_{n}>A_{n} A$ for all $n \geq n_{0}$

- Watch Video Solution

167. Let V_{r} denote the sum of the first' ' terms of an arithmetic progression (A.P.) whose first term is'r and the common difference is $(2 r-1) . \quad$ Let $\quad T_{r}=V_{r+1}-V_{r}-2 \quad$ and $\quad Q_{r}=T_{r+1}-T_{r} \quad$ for $r=1,2, \ldots \ldots$. The sum $V_{1}+V_{2}+\ldots \ldots+V_{n}$ is

- Watch Video Solution

168. Let V_{r} denote the sum of the first r terms of an arithmetic progression (AP) whose first term is r and the common difference is $(2 r-1)$. Let $T_{r}=V_{r+1}-V_{r}-2$ and $Q_{r}=T_{r+1}-T_{r}$ for $r=1,2 T_{r}$ is always (A) an odd number (B) an even number (C) a prime number (D) a composite num,ber

- Watch Video Solution

169. Let V_{r} denote the sum of the first r terms of an arithmetic progression (AP) whose first term is r and the common difference is $(2 r-1)$. Let $T_{r}=V_{r+1}-V_{r}-2$ and $Q_{r}=T_{r+1}-T_{r}$ for $r=1,2$ Which one of the following is a correct statement? $Q_{1}, Q_{2}, Q_{3} \ldots \ldots \ldots \ldots$.......... are in A.P. with common difference 5
$Q_{1}, Q_{2}, Q_{3} \ldots \ldots \ldots \ldots$. are in A.P. with common difference 6
$Q_{1}, Q_{2}, Q_{3} \ldots \ldots \ldots \ldots$. , are in A.P. with common difference 11
$Q_{1}=Q_{2}=Q_{3}$
170. Let A_{1}, G_{1}, H_{1} denote the arithmetic, geometric and harmonic means respectively, of two distinct positive numbers. For $n>2$, let A_{n-1}, G_{n-1} and H_{n-1} has arithmetic, geometric and harmonic means as A_{n}, G_{N}, H_{N}, respectively.

- Watch Video Solution

171. Let A_{1}, G_{1}, H_{1} denote the arithmetic, geometric and harmonic means respectively, of two distinct positive numbers. For $n>2$, let A_{n-1}, G_{n-1} and H_{n-1} has arithmetic, geometric and harmonic means as A_{n}, G_{N}, H_{N}, respectively.

- Watch Video Solution

172. Let A_{1}, G_{1}, H_{1} denote the arithmetic, geometric and harmonic means respectively, of two distinct positive numbers. For $n>2$, let A_{n-1}, G_{n-1} and H_{n-1} has arithmetic, geometric and harmonic means as A_{n}, G_{N}, H_{N}, respectively.

- Watch Video Solution

173. Assertion: The numbers $b_{1}, b_{2}, b_{3}, b_{4}$ are neither in A.P. nor in G.P. Reason: The numbers $b_{1}, b_{2}, b_{3}, b_{3}$ are in H.P. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

(Watch Video Solution

174. If the sum of first n terms of an $A P$ is $c n^{2}$, then the sum of squares of these n terms is (2009) $\frac{n\left(4 n^{2}-1\right) c^{2}}{6} \quad$ (b) $\frac{n\left(4 n^{2}+1\right) c^{2}}{3}$ $\frac{n\left(4 n^{2}-1\right) c^{2}}{3}(\mathrm{~d}) \frac{n\left(4 n^{2}+1\right) c^{2}}{6}$
