©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

PROPERTIES OF TRIANGLE - FOR COMPETITION

Solved Examples

1. If in a triangle $\mathrm{ABC}, \frac{\tan A}{1}=\frac{\tan B}{2}=\frac{\tan C}{3}$ then prove that $6 \sqrt{2 a}=3 \sqrt{5 b}=2 \sqrt{10} c$

- Watch Video Solution

2. The sides of a triangle are $x^{2}+x+1,2 x+1$ and $x^{2}-1$. Prove that the greatest angle is 120^{0}
3. The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smalles one. Determine the sides of the triangle.

- Watch Video Solution

4. In a triangle ABC if $\cos A \cos B+\sin A \sin B \sin C=1$ show that the sides are in the proportion $1: 1: \sqrt{2}$

- Watch Video Solution

5. In $A B C$, if $\sin ^{3} \theta=\sin (A-\theta) \sin (B-\theta) \sin (C-\theta)$, then prove that $\cot \theta=\cot A+\cot B+\cot C$.

- Watch Video Solution

6. If in a triangle of base ' a ', the ratio of the other two sides is $r(<1)$.Show that the altitude of the triangle is less than or equal to $\frac{a r}{1-r^{2}}$

- Watch Video Solution

7. Given the base of a triangle, the opposite angle A , and the product k^{2} of other two sides, show that it is not possible for a to be less than $2 k \sin \frac{A}{2}$

- Watch Video Solution

8. In a triangle $A B C$, the vertices A, B, C are at distances of p, q, r fom the orthocentre respectively. Show that $a q r+b r p+c p q=a b c$

- Watch Video Solution

9. Prove that a triangle $A B C$ is equilateral if and only if $\tan A+\tan B+\tan C=3 \sqrt{3}$.

Watch Video Solution

10. If a, b and c be in $A . P$. prove that $\cos A \cot \left(\frac{A}{2}\right), \cos B \cot \left(\frac{B}{2}\right)$, and $\cos C \cot \left(\frac{C}{2}\right)$ are in $A . P$.

- Watch Video Solution

11. If the sides of triangle $A B C$ are in G.P with common ratio $r(r<1)$, show that $r<\frac{1}{2}(\sqrt{5}+1)$

- Watch Video Solution

12. If in a triangle $r_{1}=r_{2}+r_{3}+r$, prove that the triangle is right angled.
13. If $A+B+C=\pi$, prove that
$\cot , \frac{A}{2}+\cot , \frac{B}{2}+\cot , \frac{C}{2}=\cot , \frac{A}{2} \cot , \frac{B}{2} \cot , \frac{C}{2}$

- Watch Video Solution

14. Let $A_{1}, A_{2}, \ldots . A_{n}$ be the vertices of an n -sided regular polygon such that , $\frac{1}{A_{1} A_{2}}=\frac{1}{A_{1} A_{3}}+\frac{1}{A_{1} A_{4}}$. Find the value of n.

- Watch Video Solution

15. Prove that the sum of the radii of the radii of the circles, which are, respectively, inscribed and circumscribed about a polygon of n sides, whose side length is a, is $\frac{1}{2} a \frac{\cot \pi}{2 n}$.

- Watch Video Solution

16. The sides of a quadrilateral are $3,4,5$ and 6 cms . The sum of a pair of opposite angles is 120°. Showttheareaofthe rilateralis3sqrt(30) sq.cm.

- Watch Video Solution

17. The two adjacent sides of a cyclic quadrilateral are $2 a n d 5$ and the angle between them is 60°. If the area of the quadrilateral is $4 \sqrt{3}$, find the remaining two sides.

- Watch Video Solution

18. A cyclic quadrilateral $A B C D$ of areal $\frac{3 \sqrt{3}}{4}$ is inscribed in unit circle. If one of its side $A B=1$, and the diagonal $B D=\sqrt{3}$, find the lengths of the other sides.

- Watch Video Solution

19. In a cyclic quadrilateral $A B C D$, prove that $\tan ^{2} \frac{B}{2}=\frac{(s-a)(s-b)}{(s-c)(s-d)}, a, b, c$, and d being the lengths of sides $A B C, C D$ and $D A$ respectively and s is semi-perimeter of quadrilateral.

- Watch Video Solution

20. In triangle $A B C$, prove that $\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \leq \frac{1}{8}$ and hence, prove that $\operatorname{cosec} \frac{A}{2}+\operatorname{cosec} \frac{B}{2}+\operatorname{cosec} \frac{C}{2} \geq 6$.

- Watch Video Solution

21. The sides of a triangle inscribed in a given circle subtends angles α, β, γ at the centre.Then, the minimum value of the arithmetic mean of $\cos \left(\alpha+\frac{\pi}{2}\right), \cos \left(\beta+\frac{\pi}{2}\right), \cos \left(\gamma+\frac{\pi}{2}\right)$ is

- Watch Video Solution

22. In a triangle ABC , prove that: $\tan ^{2}, \frac{A}{2}+\tan ^{2}, \frac{B}{2}+\tan ^{2}, \frac{C}{2} \geq 1$

- Watch Video Solution

23. Let $1<m<3$. In a triangle $A B C$, if $2 b=(m+1)$ a \& $\cos A=\frac{1}{2} \sqrt{\frac{(m-1)(m+3)}{m}}$ prove that the are two values to the third side, one of which is m times the other.

- Watch Video Solution

24. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$, be three angles such that $A=\frac{\pi}{4}$ and $\tan B, \tan C=p$. Find all possible values of p such that A, B, C are the angles of a triangle.
25. Two sides of a triangle are of lengths $\sqrt{6}$ and 4 and the angle opposite to smaller side is 30 . How many such triangles are possible? Find the length of their third side and area.

- Watch Video Solution

26. If the angle $A, B a n d C$ of a triangle are in an arithmetic propression and if a, bandc denote the lengths of the sides opposite to $A, B a n d C$ respectively, then the value of the expression $\frac{a}{c} \sin 2 C+\frac{c}{a} \sin 2 A$ is $\frac{1}{2}$ (b) $\frac{\sqrt{3}}{2}$ (c) 1 (d) $\sqrt{3}$

- Watch Video Solution

27. Let $A B C D$ be a quadrilateral with are 18 , side $A B$ parallel to the side $C D, \operatorname{and} A B=2 C D$. Let $A D$ be perpendicular to $A B a n d C D$. If a circle is drawn inside the quadrilateral $A B C D$ touching all the sides, then its radius is 3 (b) 2 (c) $\frac{3}{2}$ (d) 1
28. One angle of an isosceles triangle is 120° and the radius of its incricel is $\sqrt{3}$. Then the area of the triangle in sq. units is $7+12 \sqrt{3}$ (b) $12-7 \sqrt{3}$ $12+7 \sqrt{3}$ (d) 4π

- Watch Video Solution

29. a triangle $A B C$ with fixed base $B C$, the vertex A moves such that $\cos B+\cos C=4 \frac{\sin ^{2} A}{2}$. If $a, b a n d c$, denote the length of the sides of the triangle opposite to the angles A, B, $a n d C$, respectively, then $b+c=4 a$ (b) $b+c=2 a$ the locus of point A is an ellipse the locus of point A is a pair of straight lines

- Watch Video Solution

30. Internal bisector of $\angle A$ of triangle ABC meets side BC at D . A line drawn through D perpendicular to $A D$ intersects the side $A C$ at E and the
side AB at F . If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ represent sides of $\triangle A B C$, then

- Watch Video Solution

31. If in a $\triangle A B C, \cos A \cdot \cos B+\sin A \cdot \sin B \cdot \sin C=1$, then (A) $A=B$ (B) $C=\frac{\pi}{2}$ (C) $A C=B C$ (D) $A B=\sqrt{2} A C$

- Watch Video Solution

32. In a $\triangle A B C$, if $r=r_{2}+r_{3}-r_{1}$ and $A>\frac{\pi}{3}$ then range of $\frac{s}{a}$ contains
(A) $\left(\frac{1}{2}, 2\right)$
(B) $[1,2)$
(C) $\left(\frac{1}{2}, 3\right)$
(D) $(3, \infty)$
33. Let us consider a triangle $A B C$ having $B C=5 \mathrm{~cm}, C A=4 \mathrm{~cm}, A B=3 \mathrm{~cm}, \mathrm{D}, \mathrm{E}$ are points on BC such $\mathrm{BD}=\mathrm{DE}=\mathrm{EC}, \angle C A E=\theta$, then:
$A E^{2}$ is equal to

- Watch Video Solution

34. In triangle $\mathrm{ABC}, R(b+c)=a \sqrt{b c}$, where R is the circumradius of the triangle. Then the triangle is

- Watch Video Solution

35. In acute angled triangle $A B C, A D$ is the altitude. Circle drawn with $A D$ as its diameter cuts $A B a n d A C a t P a n d Q$, respectively. Length of $P Q$ is equal to $/(2 R)$ (b) $\frac{a b c}{4 R^{2}} 2 R \sin A \sin B \sin C$ (d) $/ R$

- Watch Video Solution

36. Statement 1. If A is the area and $2 s$ is the perimeter of a $\triangle A B C$, then $A \leq \frac{s^{2}}{3} \sqrt{3}$,

Statement 2. $A . M>G . M$.
(A) Both Statements are false
(B) Both Statement 1 and Statement 2 are true
(C) Statement 1 is true but Statement 2 is false.
(D) Statement 1 is flse but Stastement 2 is true

- Watch Video Solution

37. Radius of circumcircle of $\triangle D E F$ is
(A) R
(B) $\frac{R}{2}$
(C) $\frac{R}{4}$
(D) none of these
38. If $\cot A+\cot B+\cot C=k\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}\right)$ then the value of k is
(A) R^{2}
(B) $2 R$
(C) $\triangle{ }^{`}(D) a^{2}+b^{2}+c^{2 `}$

Watch Video Solution

39. Let $A B C a n d A B C^{\prime}$ be two non-congruent triangles with sides $A B=4, A C=A C^{\prime}=2 \sqrt{2}$ and angle $B=30^{\circ}$. The absolute value of the difference between the areas of these triangles is

- Watch Video Solution

40. ABC is a triangle. Its area is $12 \mathrm{sq} . \mathrm{cm}$. and base is 6 cm . the difference of base angle is 60°. If A be the angle opposite to the base, then the value of by ${ } 8 \sin A-6 \cos A$ is......
41. Perpendiculars are drawn from the angles A, B and C of an acuteangled triangle onthe opposite sides, and produced to meet the circumscribing circle. If these produced parts are $\alpha ., \beta, \gamma$, respectively, then show that, then show that $\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}=2(\tan A+\tan B+\tan C)$.

- Watch Video Solution

42. The sides of a triangle are in AP. If the angles A and C are the greatest and smallest angle respectively, then $4(1-\cos A)(1-\cos C)$ is equal to

- Watch Video Solution

43. The radius of the circle passing through the vertices of the triangle $A B C$, is
44. Three circles touch each other externally. The tangents at their point of contact meet at a point whose distance from a point of contact is 4 . Then, the ratio of their product of radii to the sum of the radii is

- Watch Video Solution

45. Bisectors of angles A, B and C of a triangle $A B C$ intersect its circumcircle at D, E andF respectively. Prove that the angles of the triangle DEF are $90 o-\frac{1}{2} A, 90 o-\frac{1}{2} B$ and $90 o-\frac{1}{2} C$

- Watch Video Solution

Exercise

1. A ring, 10 cm in diameter, is suspended from a point 12 cm above its centre by 6 equal strings attached to its circumference at equal intervals.

Find the cosine of the angle between consecutive strings.

- Watch Video Solution

2. If the angles of a triangle are in the ratio $7: 2: 1$, then prove that the ratio of smallest side to the largest side is $\sqrt{5}-1: \sqrt{5}+1$.

(D) Watch Video Solution

3. If the base angles of triangle are $\frac{22}{12} \operatorname{and} 112 \frac{1}{2^{0}}$, then prove that the altitude of the triangle is equal to $\frac{1}{2}$ of its base.

- Watch Video Solution

4. If $\mathrm{f}, \mathrm{g}, \mathrm{h}$ are internal bisectoirs of the angles of a triangle $A B C$, show that $\frac{1}{f} \cos , \frac{A}{2}+\frac{1}{g} \cos , \frac{B}{2}+\frac{1}{h} \cos , \frac{C}{2}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$

- Watch Video Solution

5. The rational number which equals the number 2.357 with recurring decimal is $\frac{2355}{1001}$ b. $\frac{2379}{997}$ c. $\frac{2355}{999}$ d. none of these

- Watch Video Solution

6. A triangle side are few $7 \mathrm{~cm}, 4 \sqrt{3} \mathrm{~cm}$ and $\sqrt{13} \mathrm{~cm}$ then the smallest angle is

- Watch Video Solution

7. In an isosceles right angled triangle , a straight line drwan from the mid

- point of one of equal sides to the opposite angle. It divides the angle into two parts, θ and $(\pi / 4-\theta)$. Then $\tan \theta$ and $\tan [(\pi / 4)-\theta]$ are equal to

- Watch Video Solution

8. If the roots of the equation $x^{3}-p x^{2}+q x-r=0$ are in A.P., then

- Watch Video Solution

9. In any ! $A B C,(\Sigma)\left(\frac{\sin ^{2} A+\sin A+1}{\sin A}\right)$ is always greater than

- Watch Video Solution

10.

In
a
$\triangle A B C$,
$\sin ^{4} A+\sin ^{4} B+\sin ^{4} C=\frac{3}{2}+2 \cos A \cos B \cos C+\frac{1}{2} \cos 2 A \cos 2 B \cos 2$

- Watch Video Solution

11.

If
any
triangle $\quad A B C$
that:
$\frac{a \sin (B-C)}{b^{2}-c^{2}}=\frac{b \sin (C-A)}{c^{2}-a^{2}}=\frac{c \sin (A-B)}{a^{2}-b^{2}}$
12. In any triangle $A B C$ prove that: $\sin \left(\frac{B-C}{2}\right)=\left(\frac{b-c}{a}\right) \frac{\cos A}{2}$

- Watch Video Solution

13. If in a ! $A B C$,
$\sin ^{3} A+\sin ^{3} B+\sin ^{3} C=3 \sin A \sin B \sin C$, then
$\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$

- Watch Video Solution

14. In a triangle $A B C$, Prove that:
$\sin ^{3} A+\sin ^{3} B+\sin ^{3} C=3 \cos , \frac{A}{2} \cos , \frac{B}{2} \cos , \frac{C}{2}+\cos , \frac{3 A}{2} \cos , \frac{3 B}{2} \cos$,

- Watch Video Solution

15. Prove that $\left(\frac{\cot A}{2}+\frac{\cot B}{2}\right)\left(a \frac{\sin ^{2} B}{2}+b \frac{\sin ^{2} A}{2}\right)=o t \frac{C}{2}$
16. If pandq are perpendicular from the angular points A and B of $A B C$ drawn to any line through the vertex C, then prove that $a^{2} b^{2} \sin ^{2} C=a^{2} p^{2}+b^{2} q^{2}-2 a b p q \cos C$.

- Watch Video Solution

17. Let O be a point inside a triangle $A B C$ such that $\angle O A B=\angle O B C=\angle O C A=\omega$, then Show that:

- Watch Video Solution

18. If x, y, z are respectively perpendiculars from the circumcentre on the sides of the $\triangle A B C$, the value of $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}-\frac{a b c}{4 x y z}=$

- Watch Video Solution

19. Prove that a triangle $A B C$ is equilateral if and only if ${ }^{\prime} \tan \mathrm{A}+\tan \mathrm{B}+\tan \mathrm{C}=3 \mathrm{sqrt}(3)$.

- Watch Video Solution

20. In a triange $A B C$, if $\sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right) \sin \left(\frac{C}{2}\right)=\frac{1}{8}$ prove that the triangle is equilateral.

- Watch Video Solution

21. If the sides of triangle in A.P. and $L C=90+L A$ then prove that sides will be in ratio $\sqrt{7}+1: \sqrt{7}: \sqrt{7}-1$

- Watch Video Solution

22. If in a triangle $A B C, \cos A+2 \cos B+\cos C=2$ prove that the sides of the triangle are in $A P$
23. In a triangle ABC , if $\frac{a-b}{b-c}=\frac{s-a}{s-c}$, then r_{1}, r_{2}, r_{3} are in

- Watch Video Solution

24. In a $\Delta A B C, I f \tan \left(\frac{A}{2}\right), \tan \left(\frac{B}{2}\right), \tan \left(\frac{C}{2}\right)$, are in H.P.,then a,b,c are in

- Watch Video Solution

25. If the sides of triangle in A.P. and $L C=90+L A$ then prove that sides will be in ratio $\sqrt{7}+1: \sqrt{7}: \sqrt{7}-1$

- Watch Video Solution

26. If the sides a, b, c of a triangle are in Arithmetic progressioni then find the value of $\tan , \frac{A}{2}+\tan , \frac{C}{2}$ in terms of $\cot , \frac{B}{2}$
27. Prove that $r_{1}+r_{2}+r_{3}-r=4 R$

- Watch Video Solution

28. provet $\widehat{:} \triangle A B C, \frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}=\frac{1}{r}$

- Watch Video Solution

29. provet $\widehat{:} \frac{1}{r^{2}}+\frac{1}{r_{1}^{2}}+\frac{1}{r_{2}^{2}}+\frac{1}{r_{3}^{2}}=\frac{a^{2}+b^{2}+c^{2}}{\triangle^{2}}$

- Watch Video Solution

30. If A, A_{1}, A_{2} and A_{3} are the areas of the inscribed and escribed circles
of a triangle, prove that $\frac{1}{\sqrt{A}}=\frac{1}{\sqrt{A_{1}}}+\frac{1}{\sqrt{A_{2}}}+\frac{1}{\sqrt{A_{3}}}$
31. Prove that : $\frac{r_{1}}{b c}+\frac{r_{2}}{c a}+\frac{r_{3}}{a b}=\frac{1}{r}-\frac{1}{2 R}$

- Watch Video Solution

32. $A B C$ is an isosceles triangle inscribed in a circle of radius r. If $A B=A C$ and h is the altitude from A to $B C$, then triangle $A B C$ has perimeter $P=2\left(\sqrt{2 h r-h^{2}}+\sqrt{2 h r}\right)$ and area $A=$ \qquad \ldots and also $(\lim)_{x \rightarrow} \frac{A}{P^{3}}={ }_{-} \quad{ }_{-}$

- Watch Video Solution

33. If p_{1}, p_{2}, p_{3} re the altitudes of the triangle ABC from the vertices A, B and C respectivel. Prove that $\frac{\cos A}{p_{1}}+\frac{\cos B}{p^{2}}+\frac{\cos C}{p_{3}}=\frac{1}{R}$

- Watch Video Solution

34. Three circles whose radii are a, b and c and c touch one other externally and the tangents at their points of contact meet in a point. Prove that the distance of this point from either of their points of contact is $\left(\frac{a b c}{a+b+c}\right)^{\frac{1}{2}}$.

- Watch Video Solution

35. In a triangle ABC prove that
$r_{1} r_{2} r_{3}=r^{3} \cot ^{2}\left(\frac{A}{2}\right) \cdot \cot ^{2}\left(\frac{B}{2}\right) \cdot \cot ^{2}\left(\frac{C}{2}\right)$

- Watch Video Solution

36. Prove that : $\left(r_{1}+r_{2}\right) \frac{\tan (C)}{2}=\left(r_{3}-r\right) \frac{\cot (C)}{2}=c$

- Watch Video Solution

37. Prove that : $4 R s \in A \sin B s \in C=a \cos A+b \cos B+\mathrm{os} C$.

(D) Watch Video Solution

38. $\left(r_{1}-r\right)\left(r_{2}-r\right)\left(r_{3}-r\right)=4 R r^{2}$

- Watch Video Solution

> 39. In a \quad triangle $\quad \mathrm{ABC}$, $r^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2}=16 R^{2}-a^{2}-b^{2}-c^{2}$.

- Watch Video Solution

40. If 1 is the incentre and $1_{1}, 1_{2}, 1_{3}$ are the centre of escribed circles of the $\triangle A B C$. Prove that

$$
I I_{1}, I I_{2}, I I I_{3}=16 R^{2} r .
$$

- Watch Video Solution

41. If 1 is the incentre and $1_{1}, 1_{2}, 1_{3}$ are the centre of escribed circles of the $\triangle A B C$. Prove that
$I I_{1}, I I_{2}, I I I_{3}=16 R^{2} r$.

- Watch Video Solution

42. $\frac{1}{b c}+\frac{1}{c a}+\frac{1}{a b}=$

- Watch Video Solution

43. $\frac{r_{1}}{(s-b)(s-c)}+\frac{r_{2}}{(s-c)(s-a)}+\frac{r_{3}}{(s-a)(s-b)}=\frac{3}{r}$

- Watch Video Solution

44. If the distances of the vertices of a triangle =ABC from the points of contacts of the incercle with sides are $\alpha, \beta a n d \gamma$ then prove that $r^{2}=\frac{\alpha \beta \gamma}{\alpha=\beta+\gamma}$
45. If in a triangle $\left(1-\frac{r_{1}}{r_{2}}\right)\left(1-\frac{r_{1}}{r_{3}}\right)=2$ then the triangle is right angled (b) isosceles equilateral (d) none of these

- Watch Video Solution

46. In a triangle $A B C$, prove that the ratio of the area of the incircle to that of the triangle is $\pi: \cot \left(\frac{A}{2}\right) \cot \left(\frac{B}{2}\right) \cot \left(\frac{C}{2}\right)$

- Watch Video Solution

47. For a regular polygon, let r and R be the radii of the inscribed and the circumscribed circles. A false statement among the following is There is a regular polygon with $\frac{r}{R}=\frac{1}{\sqrt{2}}$ (17) There is a regular polygon with $\frac{r}{R}=\frac{2}{3}$ (30) There is a regular polygon with $\frac{r}{R}=\frac{\sqrt{3}}{2}$ (47) There is a regular polygon with $\frac{r}{R}=\frac{1}{2}$ (60)
48. A square whose side is 2 cm , has its corners cut away so as to form a regular octagon, find its area.

- Watch Video Solution

49. An equilateral triangle and a regular hexagon has same perimeter.

Find the ratio of their areas.

- Watch Video Solution

50. The ratio of the area of a regular polygon of n sides inscribed in a circle to that of the polygon of same number of sides circumscribing the same is 3:4. Then the value of n is 6 (b) 4 (c) 8 (d) 12

- Watch Video Solution

51. A cyclic quadrilateral $A B C D$ of areal $\frac{3 \sqrt{3}}{4}$ is inscribed in unit circle. If one of its side $A B=1$, and the diagonal $B D=\sqrt{3}$, find the lengths of the other sides.

- Watch Video Solution

52. If the number of sides of two regular polygons having the same prerimeter be n and $2 n$ respectiely, prove that their areas are in the ratio $2 \frac{\cos \pi}{n}:\left(1+\frac{\cos \pi}{n}\right)$

- Watch Video Solution

53. In a $\triangle A B C$, the median to the side $B C$ is of length $\frac{1}{\sqrt{11-6 \sqrt{3}}}$ and it divides the $\angle A$ into angles 30° and $45 \circ$. Find the length of the side $B C$.
54. In an acute-angled triangle $\mathrm{ABC}, \tan A+\tan B+\tan C$

- Watch Video Solution

55. If in a triamgle ABC, θ is the angle determined by $\cos \theta=(a-b) / c$, then

- Watch Video Solution

56. If R be the circum radius and r the in radius of a triangle $A B C$, show that $R \geq 2 r$

- Watch Video Solution

57. If $\cos A=\tan B, \cos B=\tan C$ and $\cos C=\tan A$,

Show that $\sin A=\sin B=\sin C=2 \cdot \sin 18^{\circ}$

- Watch Video Solution

58. If $A+B+C=\pi$, prove that: $\cot ^{2} A+\cot ^{2} B+\cot ^{2} C \geq 1$

- Watch Video Solution

59. In acute angled $\triangle A B C$ prove that $\tan ^{2} A+\tan ^{2} B+\tan ^{2} C \geq 9$.

- Watch Video Solution

60. In $\triangle A B C$, prove that $\operatorname{cosec} \frac{A}{2}+\operatorname{cosec} \frac{B}{2}+\operatorname{cosec} \frac{C}{2} \geq 6$.

- Watch Video Solution

61. Prove that in $\triangle A B C, \cos A B \cos C \leq \frac{1}{8}$.

- Watch Video Solution

62. Three equal circles each of radius r touch one another. The radius of the circle touching all the three given circles internally is $(2+\sqrt{3}) r$ (b) $\frac{(2+\sqrt{3})}{\sqrt{3}} r \frac{(2-\sqrt{3})}{\sqrt{3}} r(\mathrm{~d})(2-\sqrt{3}) r$

(Watch Video Solution

63. In a $\triangle A B C$, prove that
$\sum_{r=0}^{n}{ }^{n} C_{r} a^{r} b^{n-r} \cos (r B-(n-r) A)=c^{n}$.

- Watch Video Solution

64. If \triangle is the area and 2 s is the perimeter of $\triangle A B C$, then prove that $\triangle \leq \frac{s^{2}}{3 \sqrt{3}}$

- Watch Video Solution

65. The sides of a triangle are $3 x+4 y, 4 x+3 y$ and $5 x+5 y$ units, where $x>0, y>0$. The triangle is

Watch Video Solution

66. In a $\triangle A B C, \cos e c A[\sin B \cdot \cos C+\cos B \cdot \sin C]=$
(A) $\frac{c}{a}$
(B) $\frac{a}{c}$
(C) 1
(D) none of these

- Watch Video Solution

67. If the data given to construct a triangle $A B C$ are $a=5, b=7$, sin $A=3 / 4$, then it is possible to construct

- Watch Video Solution

68. If the angles of a triangle are in the ratio $1: 2: 3$,the corresponding sides are in the ratio

- Watch Video Solution

69. If three sides a, b, c of a triangle $A B C$ are in arithmetic progression, then the value of $\cot , \frac{A}{2}, \cot , \frac{C}{2}$ is (A) 1 (B) 2 (C) 3 (D) None of these

- Watch Video Solution

70. If $b=3, c=4, \operatorname{and} B=\frac{\pi}{3}$, then find the number of triangles that can be constructed.

- Watch Video Solution

71. In a triangle $A B C, a=4, b=3, \angle A=60^{\circ}$ then c is root of the equation $c^{2}-3 c-7=0$ (b) $c^{2}+3 c+7=0$ (c) $c^{2}-3 c+7=0$ (d) $c^{2}+3 c-7=0$
72. If in a triangle $A B C, 3 \sin A=6 \sin B=2 \sqrt{3} \sin C$, then the angle A is

- Watch Video Solution

73. The number of triangles $A B C$ that can be formed with $\sin A=\frac{5}{13}, a=3$ and $b=8$ is

- Watch Video Solution

74. The lengths of the sides of a triangle are $\alpha-\beta, \alpha+\beta$ and $\sqrt{3 \alpha^{2}+\beta^{2}},(\alpha>\beta>0)$. Its largest angle is
75. In a $\triangle P Q R$ (as shown in figure) if $x: y: z=2: 3: 6$, then the value of $\angle Q P R$ is :

- Watch Video Solution

76. If in $\triangle \mathrm{ABC}, \angle c=90^{\circ}$ then the maximum value of $\sin A \sin B$ is

0
 Watch Video Solution

77. In an isosceles right angled triangle $\mathrm{ABC}, \angle B=90^{\circ}, A D$ is the median then $\frac{\sin \angle B A D}{\sin \angle C A D}$ is (A) $\frac{1}{\sqrt{2}}$ (B) $\sqrt{2}$ (C) 1 (D) none of these

- Watch Video Solution

78. If in a $\triangle A B C, \mathrm{c}=3 \mathrm{~b}$ and $\mathrm{C}-\mathrm{B}=90^{\circ}$, then $\tan \mathrm{B}=$

- Watch Video Solution

79. If the lengths of the sides of a triangle are $3,5,7$, then its largest angle of the triangle is

- Watch Video Solution

80. In a $!A B C$ if $\mathrm{a}=7, \mathrm{~b}=8$ and $\mathrm{c}=9$, then the length of the line joining B to the mid-points of $A C$ is
81. If H is the orthocenter of $\triangle A B C$ and if $A H=x, B H=y, C H=z$, then $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=$

- Watch Video Solution

82. If the sides of a triangle are in the ratio $3: 7: 8$, then find $R: r$

- Watch Video Solution

83. If in a $\triangle A B C, \sin ^{2} A+\sin ^{2} B+\sin ^{2} C=2$, then \triangle is always a an
(A) isosceles triangle (B) right angled triangle (C) acute angled triangle
(D) obtuse angled triangle

- Watch Video Solution

84. For a $\triangle A B C$, if $\cot A \cdot \cot B \cdot \cot C>0$, then nature of the triangle is
(A) acute angled triangle
(B) right angled triangle
(C) obtuse angled triangle
(D) none of these

- Watch Video Solution

85. If the sides of a triangle are in G.P., and its largest angle is twice the smallest, then the common ratio r satisfies the inequality ${ }^{\circ} 0$

- Watch Video Solution

86. If in a $\triangle A B C, a^{2} \cos ^{2} A=b^{2}+c^{2}$, then angle A is (A) less than 45^{0} (B) more than of 45° and $\leq \operatorname{ssthan} 90^{\circ}$ (C) right angled (D) obtuse angle
87. The perimeter of a $\triangle A B C$ is 6 times the A.M. of the sines of its angles. If the side 'a' is 1 , then the angle A is

- Watch Video Solution

88. If angle C of a triangle $A B C$ be obtuse, then (A) $0<\tan A \tan B<1$
(B) $\tan A \tan B>1$ (C) $\tan A \tan B=1$ (D) none of these

- Watch Video Solution

89. In an equilateral triangle, inradius r, circumradius R and ex-radius r_{1} are in
90. The ratio of the area of triangle inscribed in ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ to that of triangle formed by the corresponding points on the auxiliary circle is 0.5 . Then, find the eccentricity of the ellipse.

(Watch Video Solution

91. If in a triangle ABC , the altitude AM be the bisector of $\angle B A D$, where D is the mid point of side BC , then prove that $\left(b^{2}-c^{2}\right)=\frac{a^{2}}{2}$.

- Watch Video Solution

92. In a $\fallingdotseq / _A B C, \tan , A / 2=5 / 6$ and $\tan , C / 2=2 / 5$ then $(A) a, c, b$ are in A.P. (B) a, b, c are in A.P. (C) b, a, c are in A.P. (D) a,b,c are in G.P.

- Watch Video Solution

93. The sides of a triangle are $3 x+4 y, 4 x+3 y$ and $5 x+5 y$ units, where $x>0, y>0$. The triangle is

- Watch Video Solution

94. In triangle $A B C, A D$ is the altitude from A. If $b>c, \angle C=23^{0}, a n d A D=\frac{a b c}{b^{2}}-c^{2}$, then $\angle B=_{-}{ }_{-}$

- Watch Video Solution

95. A circle is inscribed in an equilateral triangle of side a. The area of any square inscribed in this circle is (A) $\frac{a^{2}}{12}$ (B) $\frac{a^{2}}{6}$ (C) $\frac{a^{2}}{3}$ (D) $2 a^{2}$

- Watch Video Solution

96. Let $A_{0} A_{1} A_{2} A_{3} A_{4} A_{5}$ be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths the line segments $A_{0} A_{1}, A_{0} A_{2}$
and $A_{0} A_{4}$ is

- Watch Video Solution

97. Let $f(x+y)=f(x) . f(y)$ for all x and y and $f(1)=2$. If in as triangle ABC, $a=f(3), b=f(1)+f(3), c=f(2)+f(3)$, then $2 A=$ (A) C (B) 2 C (C) 3 C (D) 4 C

- Watch Video Solution

98. In a triangle $A B C$ the angle B is greater than angle C. If the measure of angles B and C satisfy the equation $4 \sin ^{3} x-3 \sin x+0.75=0$ then the measure of angle A is (A) $\frac{\pi}{2}$ (B) $\frac{2 p}{3}$ (C) $\frac{\pi}{6}$ (D) $\frac{5 \pi}{6}$

- Watch Video Solution

99. In a $\triangle A B C, \angle B=\frac{\pi}{3}, \angle C=\frac{\pi}{4}$ and D divides $B C$ internally in the ratio 1:3 Then $\frac{\angle B A D}{\angle C A D}=$ is equal to (a) $\frac{1}{\sqrt{6}}$ (b) $\frac{1}{3}$ (c) $\frac{1}{\sqrt{3}}$ (d) $\sqrt{\frac{2}{3}}$

- Watch Video Solution

100. If a, b, c be the sides foi a triangle $A B C$ and if roots of equation
$a(b-c) x^{2}+b(c-a) x+c(a-b)=0 \quad$ are equal then $\frac{\sin ^{2} A}{2}, \sin ^{2}, \frac{B}{2}, \frac{\sin ^{2} C}{2}$ are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

Watch Video Solution

101. In a $\triangle A B C, b^{2}+c^{2}=1999 a^{2}$, then $\frac{\cot B+\cot C}{\cot A}=$ (A) $1 / 1999$
(B) 36161 (C) 999 (D) 1999

(Watch Video Solution

102. If $(1+a x)^{n}=1+8 x+24 x^{2}+\ldots$. . then the value of a and n is

- Watch Video Solution

103. If equations $a x^{2}+b x+c=0$ and $4 x^{2}+5 x+6=0$ have a comon root, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the sides of $\triangle A B C$ opposite to angles A, B, C respectively, then $2 A=(A) C(B) 2 C(C) 3 C(D) 4 C$

- Watch Video Solution

104. If in $\triangle A B C, \frac{2 \cos A}{a}+\frac{\cos B}{b}+\frac{2 \cos C}{c}=\frac{a}{b c}+\frac{b}{c a}$, then $\angle A$ is equal to

- Watch Video Solution

105. In triangle $A B C, a: b: c=4: 5: 6$. The ratio of the radius of the circumcircle to that of the incircle is \qquad .

- Watch Video Solution

106. In triangle $\mathrm{ABC}, \frac{\sin A+\sin B+\sin C}{\sin A+\sin B-\sin C}$ is equal to
107. If $\cos \mathrm{A}+\cos \mathrm{B}=4 \sin ^{2}\left(\frac{C}{2}\right)$, then

- Watch Video Solution

108. If twice the square of the diameter of the circle is equal to half the sum of the squares of the sides of incribed triangle $A B C$,then $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C$ is equal to

- Watch Video Solution

109. If the base angles of triangle are $\frac{22}{12}$ and $112 \frac{1}{2^{0}}$, then prove that the altitude of the triangle is equal to $\frac{1}{2}$ of its base.

- Watch Video Solution

110. Let $A B C$ be an isosceles triangle with base $B C$. If r is the radius of the circle inscribsed in $\triangle A B C$ and r_{1} is the radius of the circle ecribed opposite to the angle A , then the product $r_{1} r$ can be equal to (where R is the radius of the circumcircle of $\Delta A B C$)

(Watch Video Solution

111. If represents the area of acute angled triangle $A B C$, then $\sqrt{a^{2} b^{2}-4^{2}}+\sqrt{b^{2} c^{2}-4^{2}}+\sqrt{c^{2} a^{2}-4^{2}}=a^{2}+b^{2}+c^{2} \frac{a^{2}+b^{2}+c^{2}}{2}$ $a b \cos C+b o s A+c a \cos B a b \sin C+b c \sin A+c a \sin B$

- Watch Video Solution

112. If in a $\triangle A B C, a=6, b=3$ and $c(A-B)=\frac{4}{5}$ then (A) $C=\frac{\pi}{4}$
(B) $A=\frac{\sin ^{-1} 2}{\sqrt{5}}$ (C) $\operatorname{ar}(\triangle A B C)=9$ (D) none of these

- Watch Video Solution

113. In a triangle the lengths of the two larger are 10 and 9 respectively.lf the angles are in A.P., the , length of the third side can be (A) $5-\sqrt{6}$ (B) $3 \sqrt{3}$ (C) 5 (D) $5+\sqrt{6}$

- Watch Video Solution

114. In a triangle $A B C$, points D and E are taken on side $B C$ such that $B D=$ $\mathrm{DE}=\mathrm{EC}$. If angle $\mathrm{ADE}=$ angle $\mathrm{AED}=\theta$, then: $(\mathrm{A}) \tan \theta=3 \tan \mathrm{~B}(\mathrm{~B}) 3 \tan \theta=$ $\tan \mathrm{C}$

- Watch Video Solution

115. Which of the following holds goods for any tiangle $A B C, a, b, c$ are the lengths of the sides R is circumradius
$\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}$
$\frac{\sin A}{a}+\frac{\sin B}{b}+\frac{\sin C}{c}=\frac{3}{2 R 0} \quad$ (C) $\frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c} \quad$ (D)
$\frac{\sin 2 A}{a} 62=\frac{\sin 2 B}{b^{2}}=\frac{\sin 2 C}{c^{2}}$
116. If the vertices P, Q, R of a triangle $P Q R$ are rational points, which of the following points of thetriangle $P Q R$ is/are always rational point(s) ?(A) centroid(B) incentre(C) circumcentre(D) orthocentreAgrawn Korouteden36

- Watch Video Solution

117. The value of $L t_{x \rightarrow 0}\left\{\frac{\int_{0}^{x^{2}} \sec ^{2} t d t}{x \sin x}\right\}$ is (A) 0 (B) 3 (C) 2 (D) 1

- Watch Video Solution

118. If a and b be the length of the sides and c the length of hypotenuse of a right anlged triangle then

$$
\begin{equation*}
\text { (A) } a+b>c \text { (B) } a^{2}+b^{2}=c^{2} \tag{C}
\end{equation*}
$$

$$
a^{3}+b^{3}<c^{3} \text { (D) } a^{n}+b^{n}<c^{n} \text { for } n \geq 3, n=Z
$$

119. If in $\triangle A B C, \angle A=90^{\circ}$ and c , $\sin \mathrm{B} \cos \mathrm{B}$ are rational numbers, then show a and b are rational .

Watch Video Solution

120. In triangle $A B C$, the value of $\left|\begin{array}{ccc}e^{-i 2 A} & e^{i C} & e^{i B} \\ e^{i C} & e^{-i 2 B} & e^{i A} \\ e^{i B} & e^{i A} & e^{-i 2 C}\end{array}\right|$

- Watch Video Solution

121. If a, b, c, d and p are different real numbers such that $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \leq 0$, then show that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are in G.P.

- Watch Video Solution

122. If in a triangle $A B C, a^{2}+b^{2}+c^{2}=c a+a b \sqrt{3}$, then the triangle is
123. If all the vertices of a triangle have integral coordinates, then the triangle may be right-angled (b) equilateral isosceles (d) none of these

- Watch Video Solution

124. In a triangle, the lengths of the two larger sides are 10 and 9 , respectively. If the angles are in A.P., then the length of the third side can be $5-\sqrt{6}$ (b) $3 \sqrt{3}$ (c) 5 (d) $5+\sqrt{6}$

- Watch Video Solution

125. If the tangents of the angles A, B of a $\triangle A B C$...satisfy the equation $a b x^{2}-c^{2} x+a b=0$, then

- Watch Video Solution

126. In a triangle $A B C$, points D and E are taken on side $B C$ such that $B D=$ $\mathrm{DE}=\mathrm{EC}$. If angle $\mathrm{ADE}=$ angle $\mathrm{AED}=\theta$, then: $(\mathrm{A}) \tan \theta=3 \tan \mathrm{~B}(\mathrm{~B}) 3 \tan \theta=$ $\tan \mathrm{C}$

- Watch Video Solution

127. In a triangle ABC if $a^{4}+b^{4}+c^{4}=2 c^{2}\left(a^{2}+b^{2}\right)$, then angle C is equal to (A) 60^{0} (B) 120^{0} (C) 45^{0} (D) 135^{0}

- Watch Video Solution

128. Statement-1: If the measures of two angles of a triangle are 45° and 60°, then the ratio of the smallest and the greatest sides are $(\sqrt{3}-1): 1$

Statement-2: The greatest side of a triangle is opposite to its greatest angle.
129. Statement 1. In a triangle $A B C$, if $a: b: c=4: 5: 6$, then $R: r=16: 7$, Statement 2. In a triangle ABC, $R: r=a b c: 4 s$
(A) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1
(B) Both Statement 1 and Statement 2 are true and Statement 2 is not the correct explanatioin of Statement 1
(C) Statement 1 is true but Statement 2 is false.
(D) Statement 1 is false but Stastement 2 is true

- Watch Video Solution

130. Area of circle inscribed in the equilateral $\triangle A B C$ is (A) $\frac{2}{3} \pi R^{2}$ $\frac{1}{4} \pi R^{2}$ (C) $\frac{1}{3} \pi R^{2}$ (D) none of these

- Watch Video Solution

131. $\sin \left\{2 \cos ^{-1}\left(-\frac{3}{5}\right)\right\}$ is equal to $6 / 25$ (b) $24 / 25$ (c) $4 / 5$

- Watch Video Solution

132. Three circles touch one-another externally. The tangents at their point of contact meet at a point whose distance from a point contact is 4 . Then, the ratio of the product of the radii of the sum of the radii of circles is

- Watch Video Solution

133. If $A+B+C=\pi$, prove that
$\cot , \frac{A}{2}+\cot , \frac{B}{2}+\cot , \frac{C}{2}=\cot , \frac{A}{2} \cot , \frac{B}{2} \cot , \frac{C}{2}$

- Watch Video Solution

134. Given the base of a triangle, the opposite angle A , and the product k^{2} of other two sides, show that it is not possible for a to be less than $2 k \sin \frac{A}{2}$
135. In a triangle $A B C$ the sides b and c are the roots of the equation $x^{2}-61 x+820=0$ and $A=\tan ^{-1}\left(\frac{4}{3}\right)$ thena ${ }^{2}+3$ is equal to

- Watch Video Solution

136. v37

- Watch Video Solution

137. If in a triangle $A B C, \operatorname{Rr}(\sin A+\sin B+\sin C)=96$ then the square of the area of the triangle $A B C$ is.......

- Watch Video Solution

138. The sides of a quadrilateral are $3,4,5$ and 6 cms . The sum of a pair of opposite angles is 120^{0}. Showtt̂heareaofthe rilateralis $3 \mathrm{sqrt}(30)^{`}$

D Watch Video Solution

139. Three circles touch one-another externally. The tangents at their point of contact meet at a point whose distance from a point contact is 4 . Then, the ratio of the product of the radii of the sum of the radii of circles is

- Watch Video Solution

140. In triangle $A B C, a: b: c=4: 5: 6$. The ratio of the radius of the circumcircle to that of the incircle is \qquad .

- Watch Video Solution

141. If p_{1}, p_{2}, p_{3} are the altitudes of a triangle from the vertices $A, B, C, \&$ denotes the area of the triangle, prove that
$\frac{1}{p_{1}}+\frac{1}{p_{2}}-\frac{1}{p_{3}}=\frac{2 a b}{(a+b+c)} \frac{\cos ^{2} C}{2}$

Watch Video Solution

142. If the sides of a quadrilateral $A B C D$ touch a circle prove that $A B+C D=B C+A D$.

- Watch Video Solution

143. If in triangle $\mathrm{ABC},\left(a=(1+\sqrt{3}) c m, b=2 c m\right.$, $a n d \angle C=60^{\circ}$, then find the other two angles and the third side.

- Watch Video Solution

144. If a circle is inscribed in right angled triangle $A B C$ with right angle at B , show that the diameter of the circle is equal to $A B+B C-A C$.
145. If a triangle is inscribed in a circle, then prove that the product of any two sides of the triangle is equal to the product of the diameter and the perpendicular distance of the thrid side from the opposite vertex.

- Watch Video Solution

146. $A B C$ is triangle. D is the middle point of $B C$. If $A D$ is perendicular to AC , then prove that
$\cos A \cos C=\frac{2\left(c^{2}-a^{2}\right)}{3 a c}$

- Watch Video Solution

147. Let the angles $A, B a n d C$ of triangle $A B C$ be in $A P$. and let $b: c$ be $\sqrt{3}: \sqrt{2}$. Find angle A.

- Watch Video Solution

148. The exradii r_{1}, r_{2}, and r_{3} of $\triangle A B C$ are in H.P. show that its sides a, b, and c are in A.P.

Watch Video Solution

149. 112. If in a $\triangle A B C, \cos A+\cos B+\cos c=\frac{3}{2}$. Prove that $\triangle A B C$ is an equilateral triangle.

- Watch Video Solution

150. With usual notion, if in triangle $A B C$, $\frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}$, thenprovethat $\frac{\cos A}{7}=\frac{\cos B}{19}=\frac{\cos C}{25}$

- Watch Video Solution

151. $A B$ is a diameter of a circle and C is any point on the circumference of the circle. Then the area of $A B C$ is maximum when it is isosceles the area
of $A B C$ is minimum when it is isosceles the perimeter of $A B C$ is minimum when it is isosceles none of these

- Watch Video Solution

152. In a $\triangle A B C$, the median to the side BC is of length $\frac{1}{\sqrt{11-6 \sqrt{3}}}$ and it divides the $\angle A$ into angles 30° and $45 \circ$. Find the length of the side BC.

- Watch Video Solution

153. In a triangle ABC if $\cos A \cos B+\sin A \sin B \sin C=1$ show that the sides are in the proportion $1: 1: \sqrt{2}$

- Watch Video Solution

154. If a, b and c are distinct positive numbers, then the expression
$(a+b-c)(b+c-a)(c+a-b)-a b c$ is:

- Watch Video Solution

155. In a triangle, the lengths of the two larger sides are 10 and 9 , respectively. If the angles are in A.P., then the length of the third side can be $5-\sqrt{6}$ (b) $3 \sqrt{3}$ (c) 5 (d) $5+\sqrt{6}$

- Watch Video Solution

156. If the angles of a triangle are 30° and 45° and the included side is $(\sqrt{3}+1) c m$ then the area of the triangle is \qquad .

- Watch Video Solution

157. $A B C$ is a triangle such that $\sin (2 A+B)=\sin (C-A)=-\sin (B+2 C)=\frac{1}{2}$. If A, B, and C are in $A P$. then the value of A, B and C are..
158. The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smallest one. Determine the sides of the triangle.

- Watch Video Solution

159. If in a triangle $A B C$,
$2 \frac{\cos A}{a}+\frac{\cos B}{b}+2 \frac{\cos C}{c}=\frac{a}{b c}+\frac{b}{c a}$,
then the value of the angle A, is

D Watch Video Solution

160. A circle is inscribed in an equilateral triangle of side a. The area of any square inscribed in this circle is \qquad .

- Watch Video Solution

161. Let $A_{1}, A_{2}, \ldots . A_{n}$ be the vertices of an n-sided regular polygon such that , $\frac{1}{A_{1} A_{2}}=\frac{1}{A_{1} A_{3}}+\frac{1}{A_{1} A_{4}}$. Find the value of n.

(D) Watch Video Solution

162. Consider the following statements concerning a $\triangle A B c$
(i) The sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and area of triangle are rational.
(ii) $a, \tan \frac{B}{2}, \tan \frac{C}{2}$
(iii) $a, \sin A \sin B, \sin C$ are rational .

Prove that $(i) \Rightarrow(i i) \Rightarrow(i i i) \Rightarrow(i)$

- Watch Video Solution

163. IF the lengths of the side of triangle are $3,5 A N D 7$, then the largest angle of the triangle is $\frac{\pi}{2}$ (b) $\frac{5 \pi}{6}$ (c) $\frac{2 \pi}{3}$ (d) $\frac{3 \pi}{4}$

- Watch Video Solution

164. In triangle $A B C, a: b: c=4: 5: 6$. The ratio of the radius of the circumcircle to that of the incircle is \qquad .

- Watch Video Solution

165. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$, be three angles such that $A=\frac{\pi}{4}$ and $\tan B, \tan C=p$. Find all possible values of p such that A, B, C are the angles of a triangle.

- Watch Video Solution

166. If in a triangle $P Q R ; \sin P, \sin Q, \sin R$ are in A.P; then

- Watch Video Solution

167. Prove that a triangle $A B C$ is equilateral if and only if ${ }^{\prime} \tan \mathrm{A}+\tan \mathrm{B}+\tan \mathrm{C}=3 \mathrm{sqrt}(3)$.
168. Let $A B C$ be a triangle having O and I as its circumradius and inradis, respectively then prove that $(I O)^{2}=R^{2}-2 R r$. Further show that the triangle BIO is a right angled triangle if and only if b is the rithmetic mean of a and c.

- Watch Video Solution

169. In triangle $A B C, 2 a c \sin \left(\frac{1}{2}(A-B+C)\right)$ is equal to $a^{2}+b^{2}-c^{2}$ (b) $c^{2}+a^{2}-b^{2} b^{2}-c^{2}-a^{2}$ (d) $c^{2}-a^{2}-b^{2}$

- Watch Video Solution

170. In a triangle ASBC, let $\angle C=\frac{\pi}{2}$. Ifr is the in radius and R is the circumrdius of the triangle then $2(r+R)$ is equal to (A) $a+b$ (B) $b+c$
(C) $c+a$ (D) $a+b+c$

- Watch Video Solution

172. Let $P Q a n d R S$ be tangent at the extremities of the diameter $P R$ of a circle of radius r. If $P S a n d R Q$ intersect at a point X on the circumference of the circle, then prove that $2 r=\sqrt{P Q x R S}$.

- Watch Video Solution

173. If Δ is the area of a triangle with side lengths a, b, c, then show that as $\Delta \leq \frac{1}{4} \sqrt{(a+b+c) a b c}$ Also, show that the equality occurs in the above inequality if and only if $a=b=c$.

- Watch Video Solution

174. Which of the following pieces of data does NOT uniquely determine an acute-angled triangle $A B C(R$ being the radius of the circumcircle $)$? $a, \sin A, \sin B$ (b) $a, b, c, a, \sin B, R$ (d) $a, \sin A, R$

(Watch Video Solution

175. If the angles of a triangle are in the ratio $4: 1: 1$, then the ratio of the longest side to the perimeter is- $\sqrt{3}:(2+\sqrt{3})$ b. $1: \sqrt{3}$ c. $1: 2+\sqrt{3} \mathrm{~d}$. 2: 3

- Watch Video Solution

176. The ratio of the sides of a triangle $A B C$ is $1: \sqrt{3}: 2$. The ratio $A: B: C$ is

- Watch Video Solution

177. In an equilateral triangle, three coins of radii 1 unit each are kept so that they touch each other and also the sides of the triangle. The area of
the triangle is (fig) $4: 2 \sqrt{3}$ (b) $6+4 \sqrt{3} 12+\frac{7 \sqrt{3}}{4}$ (d) $3+\frac{7 \sqrt{3}}{4}$

- Watch Video Solution

178. One angle of an isosceles triangle is 120° and the radius of its incricel is $\sqrt{3}$. Then the area of the triangle in sq. units is $7+12 \sqrt{3}$ (b) $12-7 \sqrt{3}$ $12+7 \sqrt{3}$ (d) 4π

- Watch Video Solution

179. Let a, b, c be the sides of a triangle. No two of them are equal and $\lambda \in R \quad$ If the roots of the equation $x^{2}+2(a+b+c) x+3 \lambda(a b+b c+c a)=0$ are real, then (a) $\lambda<\frac{4}{3}$ (b)
$\lambda>\frac{5}{3}$ (c) $\lambda \in\left(\frac{1}{5}, \frac{5}{3}\right)$ (d) $\lambda \in\left(\frac{4}{3}, \frac{5}{3}\right)$

- Watch Video Solution

180. Internal bisector of $\angle A$ of triangle $A B C$ meets side $B C$ at D. A line drawn through D perpendicular to AD intersects the side AC at E and the side AB at F . If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ represent sides of $\triangle A B C$, then

- Watch Video Solution

181. a triangle $A B C$ with fixed base $B C$, the vertex A moves such that $\cos B+\cos C=4 \frac{\sin ^{2} A}{2}$. If a, bandc, denote the length of the sides of the triangle opposite to the angles A, B, and C, respectively, then $b+c=4 a$ (b) $b+c=2 a$ the locus of point A is an ellipse the locus of point A is a pair of straight lines

- Watch Video Solution

182. Consider a triangle $A B C$ and let a, bandc denote the lengths of the sides opposite to vertices A, B, and C, respectively. Suppose $a=6, b=10$, and the area of triangle is $15 \sqrt{3}$. If $\angle A C B$ is obtuse and
if r denotes the radius of the incircle of the triangle, then the value of r^{2} is

- Watch Video Solution

183. If the angle $A, B a n d C$ of a triangle are in an arithmetic propression and if a, bandc denote the lengths of the sides opposite to $A, B a n d C$ respectively, then the value of the expression $\frac{a}{c} \sin 2 C+\frac{c}{a} \sin 2 A$ is $\frac{1}{2}$ (b) $\frac{\sqrt{3}}{2}$ (c) 1 (d) $\sqrt{3}$

- Watch Video Solution

184. Let $A B C$ be a triangle such that $\angle A C B=\frac{\pi}{6}$ and let a, bandc denote the lengths of the side opposite to A, B, and C respectively. The value(s) of x for which $a=x^{2}+x+1, b=x^{2}-1$, andc $=2 x+1$ is(are) $-(2+\sqrt{3})$ (b) $1+\sqrt{3} 2+\sqrt{3}$ (d) $4 \sqrt{3}$
185. the sum of the radii of inscribed and circumscribed circle of an n sides regular polygon of side a is (A) $\frac{a}{2} \cot \left(\frac{\pi}{2 n}\right)$ (B) $a \cot \left(\frac{\pi}{2 n}\right)$ $\left.\frac{a}{4} \cos , \frac{\pi}{2 n}\right)$ (D) $a \cot \left(\frac{\pi}{n}\right)$

- Watch Video Solution

186. In a $\triangle A B C$, medians $A D$ and $B E$ are drawn. If $A D=4, \angle D A B=\frac{\pi}{6}$ and $\angle A B E=\frac{\pi}{3}$ then the area of $\triangle A B C$ is

- Watch Video Solution

187. If in a triangle $A B C, a \cos ^{2}\left(\frac{C}{2}\right) \operatorname{os}^{2}\left(\frac{A}{2}\right)=\frac{3 b}{2}$, then the sides $a, b, a n d c$ are in A.P. b. are in G.P. c. are in H.P. d. satisfy $a+b=\cdot$

- Watch Video Solution

188. The sides of a triangle are $\sin \alpha, \cos \alpha$ and $\sqrt{1+\sin \alpha \cos \alpha}$ for some $\alpha, 0<\alpha<\frac{\pi}{2}$. Then the greatest angle of the triangle is

- Watch Video Solution

189. In triangle $A B C$, let $\angle c=\frac{\pi}{2}$. If r is the inradius and R is circumradius of the triangle, then $2(r+R)$ is equal to $a+b$ (b) $b+c$ $c+a$ (d) $a+b+c$

- Watch Video Solution

190. If in a $\triangle A B C$ the altitude from the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ on opposite side are in H.P. then $\sin A, \sin B, \sin C$ are in (A) H.P. (B) ArithmeticoGeometric progression (C) A.P. (D) G.P.

- Watch Video Solution

