

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

SCALAR PRODUCT OF TWO VECTORS

Solved Examples

1. Find the angle between two vectors \overrightarrow{a} and \overrightarrow{b} with magnitudes $\sqrt{3}$ nd 2 respectively such that $\overrightarrow{a} \cdot \overrightarrow{b} = \sqrt{6}$

Watch Video Solution

2. Find the magnitude of two vectors $\rightarrow a$ and $\rightarrow b$ having the same magnitude and such that the angle between them is 60o and their scalar product is $\frac{1}{2}$.

5. Find the angle between the vectors $4\hat{i}-2\hat{j}+4\hat{k}~~{
m and}~~3\hat{i}-6\hat{j}-2\hat{k}.$

Watch Video Solution

6. If $\overrightarrow{a} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\overrightarrow{b} = 3\hat{i} + \hat{j} + 2\hat{k}$ show that the vectors $\overrightarrow{a} + \overrightarrow{b}$ and veca-vecb` are perpendicular to other.

7. Find the angle between the vectors
$$\vec{a} + \vec{b}$$
 and $\vec{a} - \vec{b}$ if $\vec{a} = 2\hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + \hat{j} - 2\hat{k}$.

8. If
$$\overrightarrow{a} = 5\hat{i} - \hat{j} + 7\hat{k}$$
 and $\overrightarrow{b} = \hat{i} - \hat{j} + \lambda\hat{k}, f \in d\lambda$ such that $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$ are orthogonal

Watch Video Solution

9. Find the value of λ so that the two vectors $2\hat{i}+3\hat{j}-\hat{k}$ and $-4\hat{i}-6\hat{j}+\lambda\hat{k}$ are parallel

10. Find the value of λ so that the two vectors $2\hat{i} + 3\hat{j} - \hat{k}$ and $-4\hat{i} - 6\hat{j} + \lambda\hat{k}$ are Perpendicular to each other

Watch Video Solution

11. If \overrightarrow{a} makes equal angles with the coordinate axes and has magnitude 3, find the angle between \overrightarrow{a} and each of the three coordinate axes.

Watch Video Solution

12. The vectors $\overrightarrow{a} = 3\hat{i} + x\hat{j} - \hat{k}$ and $\overrightarrow{b} = 2\hat{i} + \hat{j} + \hat{k}$ are mutually perpedicular. Given that $\left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right|$, find the of x and y.

Watch Video Solution

13. Using dot product of vectors show that the vectors $2\hat{i} - \hat{j} + \hat{k}, \hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ form a righat angled

triangle

14. Prove that the points $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ are the vertices of a righat angled triangle. Also find the remaining angles of the triangle.

15. Find a vector whose magnitude is 3 units and which is perpendicular

to the vectors \overrightarrow{a} and \overrightarrow{b} where $\overrightarrow{a} = 3\hat{i} + \hat{j} - 4\hat{k}$ and $\overrightarrow{b} = 6\hat{i} + \hat{j} - 2\hat{k}$

Watch Video Solution

16. Let $\overrightarrow{a} = \hat{i} - \hat{j}$, $\overrightarrow{b} = \hat{i} - \hat{k}$ and $\overrightarrow{c} = 7\hat{i} - \hat{k}$. Find a vector \hat{d} which is perpendicular to vectors \overrightarrow{a} and \overrightarrow{b} and satisfies the condition $\overrightarrow{c} \cdot \overrightarrow{d}$

17. The scalar product of the vector $\hat{i} + \hat{j} + \hat{k}$ with a unit vedctor along the sum of the vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ .

Watch Video Solution

18. IF a unit vector \overrightarrow{a} makes angles $\frac{\pi}{4}$ and $\frac{\pi}{3}$ with x-axis and y-axis respectively and an acute angle theta with z-axis, then find theta and the (scalar and vector) coponents of \overrightarrow{a} along the axes.

Watch Video Solution

19. Find the projection of $\overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}$ ON $\overrightarrow{b} = \hat{i} - 2\hat{j} + \hat{k}$.

23. Find the perpendicular distance of the point A(1,0,1) to the line through the points B(2,3,4) and C(-1,1,-2)

24. Show that the perpendicular distance from a point $A\left(\overrightarrow{a}\right)$ to the line

$$ec{r} = ec{b} + t ec{c} \, is ec{b} + rac{\left(ec{a} \, . \, ec{b}
ight) . \, ec{c}}{c^2} ec{c} - ec{a}$$

Watch Video Solution

25. Express the vector $\vec{a} = (5\hat{i} - 2\hat{j} + 5\hat{k})$ as sum of two vectors such that one is paralle to the vector $\vec{b} = (3\hat{i} + \hat{k})$ and the other is perpendicular to \vec{b} .

26. Let $\overrightarrow{b} = 4\hat{i} + 3\hat{j}$ and \overrightarrow{c} be two vectors perpendicular to each other in the xy-plane. Find all vetors in te same plane having projection 1 and 2 along \overrightarrow{b} and \overrightarrow{c} respectively.

Watch Video Solution

27. If for all real x the vector $cx\,\hat{i}\,-\,6\hat{j}\,+\,3\hat{k}\,$ and $\,x\,\hat{i}\,+\,2\hat{j}\,+\,2cx\hat{k}\,$ makes

an obtuse angle with one another then find the value of c

Watch Video Solution

28. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are non coplanar vector and $\overrightarrow{n}, \overrightarrow{a} = \overrightarrow{n}, \overrightarrow{b} = \overrightarrow{n}, \overrightarrow{c} = 0$, Show that \overrightarrow{n} is a zero vector

Watch Video Solution

29. Find the angel between any two diagonals of a cube.

30. A line makes angles α , β , γ and δ with the diagonals of a cube, prove

that
$$\cos^2lpha+\cos^2eta+\cos^2\gamma+\cos^2\delta=rac{4}{3}$$

Watch Video Solution

Watch Video Solution

32. Show that the vector of magnitude $\sqrt{51}$ which makes equal anges

with the vectors $ec{a}=rac{1}{3}ig(\hat{i}-2\hat{j}+2\hat{k}ig), ec{b}=rac{1}{5}ig(-4\hat{i}-3\hat{k}ig) ext{ and } ec{c}=\hat{j}, is, \ -5\hat{i}+\hat{j}+2\hat{k}ig)$

33. If
$$\left| \overrightarrow{a} + \overrightarrow{b} \right| = \left| \overrightarrow{a} - \overrightarrow{b} \right|, \left(\overrightarrow{a}, \overrightarrow{b} \neq \overrightarrow{0} \right)$$
 show that the vectors \overrightarrow{a} and \overrightarrow{b} are perpendicular to each other.
Watch Video Solution

34. Find
$$\left| \overrightarrow{x} \right|$$
 , if for a unit vector \overrightarrow{a} , $\left(\overrightarrow{x} - \overrightarrow{a} \right) \overrightarrow{x} + \overrightarrow{a} = 15$

35. If \hat{a} and \hat{b} are unit vectors and theta is the angle between them show that $\sin\left(\frac{\theta}{2}\right) = \frac{1}{2}|\hat{a} - \hat{b}|$

Watch Video Solution

36. For any two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} prove that $\left|\overrightarrow{a}, \overrightarrow{b}\right| < + \left|\overrightarrow{a}\right| \left|\overrightarrow{b}\right|$

37. For any two vectors \overrightarrow{a} and \overrightarrow{b} prove that $\left|\overrightarrow{a} + \overrightarrow{b}\right| < + \left|\overrightarrow{a}\right| + \left|\overrightarrow{b}\right|$

Watch Video Solution

38. Given \overrightarrow{a} is perpendicular to $\overrightarrow{b} + \overrightarrow{c} \overrightarrow{b}$, is perpendicular to $\overrightarrow{c} + \overrightarrow{a}$ and \overrightarrow{c} is perpendicular to $\overrightarrow{a} + \overrightarrow{b}$. If $|\overrightarrow{a}| = 1$, $|\overrightarrow{b}| = 2$, $|\overrightarrow{c}| = 3$, find $|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|$

Watch Video Solution

39. If $\hat{a}, \hat{b}, \hat{c}$ are unit vectors such that $\hat{a} + \hat{b} + \hat{c} = 0$ then find the value of $\hat{a}. \hat{b} + \hat{b}. \hat{c} + \hat{c}. \hat{a}$

Watch Video Solution

40. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are mutually perpendicular vectors of equal magnitude show that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is equally inclined to \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c}

41. (Pythagorass Theorem) Prove by vector method that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Watch Video Solution

42. Prove that the mid point of the hypotenuse of a right triangle is equidistant from its vertices.

Watch Video Solution

43. In any triangle ABC, prove that $AB^2 + AC^2 = 2(AD^2 + BD^2)$, where D is the midpoint of BC.

44. Show that the diagonals of a rhombus bisect each other at right

angles.

0	Watch Video Solution	
---	----------------------	--

45. Using dot product of vectors, prove that a parallelogram, whose diagonals are equal, is a rectangle

Watch Video Solution

46. Prove using vectors: The median to the base of an isosceles triangle is

perpendicular to the base.

47. Prove using vectors: If two medians of a triangle are equal, then it is

isosceles.

48. Prove that an angle inscribed in a semi-circle is a right angle using vector method.

Watch Video Solution

49. Altitudes the perpendiculars drawn from the vertices of a triangle to

the opposite side are known as the altitudes of the triangle.

O Watch Video Solution

50. Show that the perpendicular bisectors of the sides of a triangle are

concurrent.

51. In any triangle, ABC prove that: $ac\cos B - bc\cos A = a^2 - b^2$

vectors

55. Constant forces $\overrightarrow{p}_{=}2\hat{i}-5\hat{j}+6\hat{k}$ and $\overrightarrow{Q}_{=}-\hat{i}+2\hat{j}-\hat{k}$ act on a particle. Determine the work done when the particle is displaced form a point A with position vector $4\hat{i}-3\hat{j}+2\hat{k}$ to point B with position vector $6\hat{i}+\hat{j}-3\hat{k}$.

Watch Video Solution

56. A paticle acted on by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ is displaced from the point $\hat{i} + 2\hat{j} + 3\hat{k} \rightarrow 5\hat{i} + 4\hat{j} + \hat{k}$. Find the work done

Watch Video Solution

Exercise

1. Find the scalar product of vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} , where :
 $\widehat{a} = 2\hat{i} + 4\hat{k}, \ \hat{b} = 3\hat{j} - 2\hat{k}$

4. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\overrightarrow{b} = 2\hat{i} - \hat{j}$ and $\overrightarrow{c} = 3\hat{j} + \hat{k}$ then verify the following: $\left(\overrightarrow{a} + \overrightarrow{b}\right)$. $\left(\overrightarrow{a} - \overrightarrow{b}\right) = a^2 - b^2$.

5. Find the angle between two vectors \overrightarrow{a} and \overrightarrow{b} with magnitudes 1 and 2 respectively and satisfying \overrightarrow{a} . \overrightarrow{b} . = 1

Watch Video Solution

6. IF
$$|\overrightarrow{a}| = \sqrt{3}, |\overrightarrow{b}| = 2$$
 and $|\overrightarrow{a} - \overrightarrow{b}| = 3$ find the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

7. Find the angel between the following pairs of vectors $3\hat{i}+2\hat{j}-6\hat{k},4\hat{i}-3\hat{j}+\hat{k}$

Watch Video Solution

8. Find the angel between the following pairs of vectors $2\hat{i} - 3\hat{j} + \hat{k}, 3\hat{i} - \hat{j} - 2\hat{k}$

10. Find the angel between the following pairs of vectors $\hat{i}-2\hat{j}+3\hat{k},3\hat{i}-2\hat{j}+\hat{k}$

Watch Video Solution

11. Prove that the following vectors are at righat angle: $2\hat{i}-\hat{j}+\hat{k},\,\hat{i}-3\hat{j}+5\hat{k}$

$$2\hat{j}+3\hat{j}+6\hat{k},3\hat{i}-6\hat{j}+2\hat{k},6\hat{i}+2\hat{j}-3\hat{k}$$

16. Show that the following vectors are perpendicular to each other: $6\hat{i} + 3\hat{j} + 2\hat{k}, 2\hat{i} - 6\hat{j} + 3\hat{k}, -3\hat{i} + 2\hat{j} + 6\hat{k}$

17. Show that the following vectors are perpendicular to each other: $3\hat{i}+\hat{j}+2\hat{k},\,\hat{i}-\hat{j}-5\hat{j}-4\hat{k}$

Watch Video Solution

18. If $\overrightarrow{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\overrightarrow{b} = \hat{i} + \lambda\hat{j} + 3\hat{k}$, find the value λ so that $\overrightarrow{a} + \overrightarrow{b}$ is perpendicular to $\overrightarrow{a} - \overrightarrow{b}$

19. If $a = 4\hat{i} + 2\hat{j} - \hat{k}$ and $\overrightarrow{b} = 5\hat{i} + 2\hat{j} - 3\hat{k}$ find the angle between the vectors $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$

Watch Video Solution

20. If $\overrightarrow{a} = 5\hat{i} - \hat{j} + 3\hat{k}$ and $\overrightarrow{b} = \hat{i} + 3\hat{j} - 5\hat{k}$ then show that the vectors $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$ are perpendicular.

Watch Video Solution

21. For what value of λ are the vectors $\overrightarrow{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\overrightarrow{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ perpendicular to each other ?

Watch Video Solution

22. If $\overrightarrow{OA} = 2\hat{i} - \hat{j} + \hat{k}, \overrightarrow{OB} = \hat{i} - 3\hat{j} - 5\hat{k}$ and $\overrightarrow{OC} = 3\hat{i} - 3\hat{j} - 3\hat{k}$

then show that CB is perpendicular to AC.

23. If $\overrightarrow{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\overrightarrow{b} = -\hat{i} + 2\hat{j}\hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j}$ such that

 $\overrightarrow{a} + \lambda \overrightarrow{b} is$ perpendicular to vecc` then the find the value of lamda.

Watch Video Solution

24. Show that each of the following three vectors is a unit vector $\frac{1}{7}(2\hat{i}+3\hat{j}+6\hat{k}), \frac{1}{7}(3\hat{i}-6\hat{j}+2\hat{k})\frac{.1}{7}(6\hat{i}_2\hat{j}-3\hat{k})$. Also show that

they are mutually perpendicular to each other.

Watch Video Solution

25. Show that the thre angles of the triangle with vertices (1,-1,1), (2,3,-1)

and
$$(3, 0, 2)$$
 are, respectively, $\cos^{-1}\left(\frac{2}{\sqrt{114}}, \frac{\cos^{-1}4}{\sqrt{176}} \text{ and } \frac{\cos^{-1}17}{\sqrt{399}}\right)$

26. Find the scalar components of a unit vector which is perpendicular to

each of the vectors $\hat{i} + 2\hat{j} - \hat{k}$ and $3\hat{i} - \hat{j} + 2\hat{k}$.

Watch Video Solution

27. If
$$\Rightarrow 2\hat{i} - \hat{j} + \hat{k}, \vec{b} = \hat{i} - 3\hat{j} - 5\hat{k}$$
. Find a vector \vec{c} such that $\vec{a}, \vec{b}, \vec{c}$ from the sides of a righat angled tringle taken in order.

Watch Video Solution

28. Find the vector magnitude $\sqrt{2}$ which lies in zx-plane and is at righat angles to the vector $2\hat{i} + \hat{j} + 2\hat{k}$

Watch Video Solution

29. Find the values of x for which the angle between the vectors $\vec{a} = -3\hat{i} + x\hat{j} + \hat{k}$ and $\vec{b} = x\hat{i} + 2x\hat{j} + \hat{k}$ is acute nd the angle between \vec{b} and x-axis lies between `pi/2 and pi.

30. The diagonals of as parallelogram are given by $\overrightarrow{a} = 3\hat{i} - 4\hat{j} - \hat{k}$ and $\overrightarrow{b} = 2\hat{i} + 3\hat{j} - 6\hat{k}$ Show that the parallelogram

is as rhombus and determine the length of its sides, and the angles.

Watch Video Solution

31. Let
$$\overrightarrow{a} = \hat{i} + 4\hat{j} + 2\hat{k}$$
, $\overrightarrow{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\overrightarrow{c} = 2\hat{i} - \hat{j} + 3\hat{k}$.
Find as vector \overrightarrow{d} which is perpendicular to both a veca and vecb and $satilies \overrightarrow{c} \cdot \overrightarrow{d} = 15$

Watch Video Solution

32. Find the projection of
$$\overrightarrow{b} + \overrightarrow{c}$$
 on \overrightarrow{a} where $\overrightarrow{a} = \hat{i} + 2\hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{i} + 3\hat{j} + \hat{k}$ and $\overrightarrow{c} = \hat{i} + \hat{k}$.

33. Find the projection of the vector $\hat{i} - 2\hat{j} + \hat{k}$ on the vector $4\hat{i} - 4\hat{j} + 7\hat{k}$.

Watch Video Solution

34. If
$$\overrightarrow{OA} = 2\hat{i} + 3\hat{j} - 4\hat{k}$$
 and $\overrightarrow{OB} = \hat{j} + \hat{k}$ are two vectors through the origin O, find the projection of \overrightarrow{OA} and \overrightarrow{OB}

Watch Video Solution

35. If $\overrightarrow{OA} = 2\hat{i} + 3\hat{j} - 4\hat{k}$ and $\overrightarrow{OB} = \hat{j} + \hat{k}$ are two vectors through the origin O, find the projection of \overrightarrow{OBonOA} .

36. Let
$$\overrightarrow{a} = \hat{i} + 3\hat{j} + 7\hat{k}$$
 and $\overrightarrow{b} = 7\hat{i} - \hat{j} + 8\hat{k}$ find the projection of \overrightarrow{a} on \overrightarrow{b}

37. Let $\overrightarrow{a} = \hat{i} + 3\hat{j} + 7\hat{k}$ and $\overrightarrow{b} = 7\hat{i} - \hat{j} + 8\hat{k}$ find the projection of \overrightarrow{b} on \overrightarrow{a}

Watch Video Solution

38. Find the projection oif $\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ on the vector $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}.$

Watch Video Solution

39. Find the projection of the vecto $\,\hat{i}\,-\,\hat{j}$ on the vector $\,\hat{i}\,+\,\hat{j}$

40. Find the vector component of $\overrightarrow{F} = \hat{i} + 2\hat{j} + 2\hat{k}$ along and perpendicular to the direction of $\overrightarrow{p} = -3\hat{i} - 4\hat{j} + 12\hat{k}$ in the plane of \overrightarrow{F} and \overrightarrow{P} ,

Watch Video Solution

41. P,Q,R,S are points $\hat{i} - \hat{j} - \hat{k}$, $-\hat{i} + \hat{j}$, $2\hat{i} - 3\hat{k}$ and $3\hat{i} - 2\hat{j} - \hat{k}$ respectivley. Show that the projection of PQ on RS is equal to that of RS on PQ each beign $/\frac{4}{3}$. Also fid the cosine of their inclination.

Watch Video Solution

42. If $\overrightarrow{a} = 4\hat{i} + 6\hat{j}$ and $\overrightarrow{b} = 3\hat{i} + 4\hat{k}$ find the vector component of \overrightarrow{a} alond \overrightarrow{b} .

43. Evaluate:
$$\left(3\overrightarrow{a} - 5\overrightarrow{b}\right)$$
. $\left(2\overrightarrow{a} + 7\overrightarrow{b}\right)$

44. Prove that:
$$\left(rac{ec{a}}{a^2}-rac{ec{b}}{b^2}
ight)^2=\left(rac{ec{a}-ec{b}}{ab}
ight)^2$$

45. Given that

$$\overrightarrow{p} = \overrightarrow{a} + \overrightarrow{b}$$
 and $\overrightarrow{q} = \overrightarrow{a} - \overrightarrow{b}$ and $|\overrightarrow{a}| = |\overrightarrow{b}|$, $showt \widehat{\overrightarrow{p}} \cdot \overrightarrow{a} = 0$
Watch Video Solution

46. Find
$$\left|\overrightarrow{a} - \overrightarrow{b}\right|$$
, if two vectors \overrightarrow{a} and \overrightarrow{b} are such that $\left|\overrightarrow{a}\right| = 2$, $\left|\overrightarrow{b}\right| = 3$ and \overrightarrow{a} . $\overrightarrow{b} = 4$.

47. If \overrightarrow{a} is unit vector and $\left(\overrightarrow{x} - a\right)$. $\left(\overrightarrow{x} + a\right) = 12$ then find |x|.

Watch Video Solution

48. Find
$$\left|\overrightarrow{a}\right|$$
 and $\left|\overrightarrow{b}\right|$ if $\left(\overrightarrow{a}+\overrightarrow{b}\right)$. $\left(\overrightarrow{a}-\overrightarrow{b}\right)=8$ and $\left|\overrightarrow{a}\right|=8\left|\overrightarrow{b}\right|$.

Watch Video Solution

49. Show that
$$\left|\overrightarrow{a}\right|\overrightarrow{b} + \left|\overrightarrow{b}\right|\overrightarrow{a}$$
 is perpendicular to $\left|\overrightarrow{a}\right|\overrightarrow{b} - \left|\overrightarrow{b}\right|\overrightarrow{a}$ for any two non zero vectors \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

50. The angle between \overrightarrow{a} and \overrightarrow{b} , is 30^0 and the angle between \overrightarrow{b} and \overrightarrow{c} is, 60^0 the angle being measured in each case from the first vectro to the second vector nd in counter clockwise dirction. Compute $\left|\overrightarrow{a} + 2\overrightarrow{b} - 3\overrightarrow{c}\right|$, given that \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three coplanar unit vectors.

51. If
$$\left|\overrightarrow{a}\right| = 1$$
, $\left|\overrightarrow{b}\right| = 2$, $\left|\overrightarrow{c}\right| = 3$ and $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$ the show that $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a} = -7$

Watch Video Solution

52. prove by vector method that the sum of the squares of the diagonals

of a parallelogram is equal to the sum of the squares of its sides.

53. In
$$\triangle ABC$$
, prove that $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ by vector method.
Watch Video Solution

54. In any triangle ABC, prove the projection formula $a = b \cos C + \operatorname{os} B$ using vector method.

55. Prove by vector method that $\cos(A+B)\cos A\cos B - \sin A\sin B$.

56. Find the equation of the plane passing through the point $\hat{i} - \hat{j} + \hat{k}$ and perpendicular to the vectro $3\hat{i} - \hat{j} - 2\hat{k}$ and show that the point $2\hat{i} + 4\hat{j}$ lies on the plane.

Watch Video Solution

57. If $\overrightarrow{\alpha}$ is a constant vectro and $\overrightarrow{\gamma}$ is the position vector of a variable point (x,y,z), show that $(\overrightarrow{\gamma} - \overrightarrow{\alpha})\overrightarrow{\alpha} = 0$ is the equation of a plane through

58. A paticle acted on by constant forces $4\hat{i} = \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ is displaced from the point $\hat{i} + 2\hat{j} + 3\hat{k} \rightarrow 5\hat{i} + 4\hat{j} + \hat{k}$. Find the work done

Watch Video Solution

59. Froces acting on a particle have magnitude 5,3,1 and act in the direction of the vectors (6,2,3),(3m-2,6),(2,-3,-6) respectively. These remain constant while the particle is displaced form the point $A(4, -2, -6) \rightarrow B(7, -2, -2)$. Find the work done by the forces.

60. A force $\overrightarrow{F} = 2\hat{i} + \hat{j} - \hat{k}$ acts at a point A whose position vectro is $2\hat{i} - \hat{j}$. If the point aplication of \overrightarrow{F} moves from point A to point B, with position vector $2\hat{i} + \hat{j}$, find the workdown by \overrightarrow{F}

Watch Video Solution

61. Two forces $-\hat{i} + 2\hat{j} - \hat{k}$ and $2\hat{i} - 5\hat{j} + 6\hat{k}$ act on a particfle whose position vector is $4\hat{i} - 3\hat{j} + 2\hat{k}$ and displace it to another point whose positon vector is $6\hat{i} + \hat{j} - 3\hat{k}$. Find the total work done by the force.

Watch Video Solution

62. Two forces whose magnitudes are 2N and 3N act on a particle in the direction of the vectros $2\hat{i} + 4\hat{j} + 4\hat{k}$ and $4\hat{i} - 4\hat{j} + 2\hat{k}$ respectively. If the particle is displaced from the origin O to the point (1,2,2). Find the work done.