©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

SCALAR PRODUCT OF TWO VECTORS

Solved Examples

1. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ nd 2 respectively such that $\vec{a} \cdot \vec{b}=\sqrt{6}$

- Watch Video Solution

2. Find the magnitude of two vectors $\rightarrow a$ and $\rightarrow b$ having the same magnitude and such that the angle between them is 60 oand their scalar product is $\frac{1}{2}$.
3.

Find
the
scalar
product
of
vectors
$\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}-3 \hat{j}-5 \hat{k}$

- Watch Video Solution

4. Show that the vectors $2 \hat{i}-\hat{j}_{\hat{k}}$ and $\hat{k}-3 \hat{j}-5 \hat{k}$ are at righat angles.

- Watch Video Solution

5. Find the angle between the vectors $4 \hat{i}-2 \hat{j}+4 \hat{k}$ and $3 \hat{i}-6 \hat{j}-2 \hat{k}$.

- Watch Video Solution

6. If $\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}=3 \hat{i}+\hat{j}+2 \hat{k}$ show that the vectors $\vec{a}+\vec{b}$ and veca-vecb are perpendicular to other.
7. Find the angle between the vectors
$\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ if $\vec{a}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+\hat{j}-2 \hat{k}$.

- Watch Video Solution

8. If $\vec{a}=5 \hat{i}-\hat{j}+7 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\lambda \hat{k}, f \in d \lambda$ such that $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are orthogonal

- Watch Video Solution

9. Find the value of λ so that the vectors $2 \hat{i}+3 \hat{j}-\hat{k}$ and $-4 \hat{i}-6 \hat{j}+\lambda \hat{k}$ are parallel

- Watch Video Solution

10. Find the value of λ so that the two vectors $2 \hat{i}+3 \hat{j}-\hat{k}$ and $-4 \hat{i}-6 \hat{j}+\lambda \hat{k}$ are Perpendicular to each other

- Watch Video Solution

11. If \vec{a} makes equal angles with the coordinate axes and has magnitude 3,find the angle between \vec{a} and each of the three coordinate axes.

- Watch Video Solution

12. The vectors $\vec{a}=3 \hat{i}+x \hat{j}-\hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}+\hat{k}$ are mutually perpendicular. Given that $|\vec{a}|=|\vec{b}|$, find the of x and y .

- Watch Video Solution

13. Using dot product of vectors show that the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$ form a right angled
triangle

- Watch Video Solution

14. Prove that the points $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$ are the vertices of a righat angled triangle. Also find the remaining angles of the triangle.

- Watch Video Solution

15. Find a vector whose magnitude is 3 units and which is perpendicular $\begin{array}{ll}\text { the vectors } & \vec{a} \text { and } \vec{b} \\ \vec{a}=3 \hat{i}+\hat{j}-4 \hat{k} \text { and } \vec{b}=6 \hat{i}+\hat{j}-2 \hat{k} & \end{array}$

- Watch Video Solution

16. Let $\vec{a}=\hat{i}-\hat{j}, \vec{b}=\hat{i}-\hat{k}$ and $\vec{c}=7 \hat{i}-\hat{k}$. Find a vector \hat{d} which is perpendicular to vectors \vec{a} and \vec{b} and satisfies the condition $\vec{c} \cdot \vec{d}$

(Watch Video Solution

17. The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vedctor along the sum of the vectors $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of λ.

- Watch Video Solution

18. IF a unit vector \vec{a} makes angles $\frac{\pi}{4}$ and $\frac{\pi}{3}$ with x -axis and y -axis respectively and an acute angle theta with z-axis, then find theta and the (scalar and vector) coponents of \vec{a} along the axes.

- Watch Video Solution

19. Find the projection of $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ ON $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$.
20. Find the projection of the vector $2 \hat{i}-3 \hat{j}-6 \hat{k}$ on the line joining the points (5,6,-3) and (3,4,-2).

- Watch Video Solution

21. Find the vector components of a vector $2 \hat{i}+3 \hat{j}+6 \hat{k}$ along and perpendicular to the non zero vector $2 \hat{i}+\hat{j}+2 \hat{k}$

- Watch Video Solution

22. Find λ when the scalar projection of $\vec{a}=\lambda \hat{i}+\hat{j}+4 \hat{k}$ on $\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$ is 4 units.

- Watch Video Solution

23. Find the perpendicular distance of the point $A(1,0,1)$ to the line through the points $\mathrm{B}(2,3,4)$ and $\mathrm{C}(-1,1,-2)$

- Watch Video Solution

24. Show that the perpendicular distance from a point $A(\vec{a})$ to the line $\vec{r}=\vec{b}+t \vec{c} i s\left|\vec{b}+\frac{(\vec{a} \cdot \vec{b}) \cdot \vec{c}}{c^{2}} \vec{c}-\vec{a}\right|$

- Watch Video Solution

25. Express the vector $\vec{a}=(5 \hat{i}-2 \hat{j}+5 \hat{k})$ as sum of two vectors such that one is paralle to the vector $\vec{b}=(3 \hat{i}+\hat{k})$ and the other is perpendicular to \vec{b}.

- Watch Video Solution

26. Let $\vec{b}=4 \hat{i}+3 \hat{j}$ and \vec{c} be two vectors perpendicular to each other in the $x y$-plane. Find all vetors in te same plane having projection 1 and 2 along \vec{b} and \vec{c} respectively.

- Watch Video Solution

27. If for all real x the vector $c x \hat{i}-6 \hat{j}+3 \hat{k}$ and $x \hat{i}+2 \hat{j}+2 c x \hat{k}$ makes an obtuse angle with one another then find the value of c

- Watch Video Solution

28. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vector and $\vec{n} \cdot \vec{a}=\vec{n} \cdot \vec{b}=\vec{n} \cdot \vec{c}=0$, Show that \vec{n} is a zero vector

- Watch Video Solution

29. Find the angel between any two diagonals of a cube.
30. A line makes angles α, β, γ and δ with the diagonals of a cube, prove that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$

- Watch Video Solution

$$
\begin{aligned}
& \text { 31. Prove by } \quad \text { vector } \\
& \left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2}<+\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)
\end{aligned}
$$

- Watch Video Solution

32. Show that the vector of magnitude $\sqrt{51}$ which makes equal anges
with the vectors
$\vec{a}=\frac{1}{3}(\hat{i}-2 \hat{j}+2 \hat{k}), \vec{b}=\frac{1}{5}(-4 \hat{i}-3 \hat{k})$ and $\vec{c}=\hat{j}, i s,-5 \hat{i}+\hat{j}+$

- Watch Video Solution

33. If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|,(\vec{a}, \vec{b} \neq \overrightarrow{0})$ show that the vectors \vec{a} and \vec{b} are perpendicular to each other.

- Watch Video Solution

34. Find $|\vec{x}|$, if for a unit vector $\vec{a},(\vec{x}-\vec{a}) \vec{x}+\vec{a}=15$.

- Watch Video Solution

35. If \widehat{a} and \hat{b} are unit vectors and theta is the angle between them show that $\sin \left(\frac{\theta}{2}\right)=\frac{1}{2}|\widehat{a}-\hat{b}|$

- Watch Video Solution

36. For any two vectors \vec{a} and \vec{b} prove that $|\vec{a} \cdot \vec{b}|<+|\vec{a}||\vec{b}|$

- Watch Video Solution

37. For any two vectors \vec{a} and \vec{b} prove that $|\vec{a}+\vec{b}|<+|\vec{a}|+|\vec{b}|$

- Watch Video Solution

38. Given \vec{a} is perpendicular to $\vec{b}+\vec{c} \vec{b}$, is perpendicular to $\vec{c}+\vec{a}$ and \vec{c} is perpendicular to $\vec{a}+\vec{b}$. If $|\vec{a}|=1,|\vec{b}|=2,|\vec{c}|=3$, find $|\vec{a}+\vec{b}+\vec{c}|$

- Watch Video Solution

39. If $\hat{a}, \hat{b}, \hat{c}$ are unit vectors such that $\widehat{a}+\hat{b}+\hat{c}=0$ then find the value of $\widehat{a} . \hat{b}+\hat{b} . \hat{c}+\hat{c} . \widehat{a}$

- Watch Video Solution

40. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitude show that $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to \vec{a}, \vec{b} and \vec{c}
41. (Pythagorass Theorem) Prove by vector method that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

- Watch Video Solution

42. Prove that the mid point of the hypotenuse of a right triangle is equidistant from its vertices.

- Watch Video Solution

43. In any triangle ABC , prove that $A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$, where D is the midpoint of $B C$.

- Watch Video Solution

44. Show that the diagonals of a rhombus bisect each other at right angles.

Watch Video Solution

45. Using dot product of vectors, prove that a parallelogram, whose diagonals are equal, is a rectangle

- Watch Video Solution

46. Prove using vectors: The median to the base of an isosceles triangle is perpendicular to the base.

- Watch Video Solution

47. Prove using vectors: If two medians of a triangle are equal, then it is isosceles.
48. Prove that an angle inscribed in a semi-circle is a right angle using vector method.

- Watch Video Solution

49. Altitudes the perpendiculars drawn from the vertices of a triangle to the opposite side are known as the altitudes of the triangle.

- Watch Video Solution

50. Show that the perpendicular bisectors of the sides of a triangle are concurrent.
51. In any triangle, ABC prove that: $a c \cos B-b c \cos A=a^{2}-b^{2}$

- Watch Video Solution

52. In any $A B C$, prove that:
$2(b o s A+c a \cos B+a b \cos C)=a^{2}+b^{2}+c^{2}$

- Watch Video Solution

53. Prove by vector metod the following formula of plane trigonometry $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$

- Watch Video Solution

54. In any $\triangle A B C$, prove that $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$ with the help of vectors
55. Constant forces $\vec{p}=2 \hat{i}-5 \hat{j}+6 \hat{k}$ and $\vec{Q}=-\hat{i}+2 \hat{j}-\hat{k}$ act on a particle. Determine the work done when the particle is displaced form a point A with position vector $4 \hat{i}-3 \hat{j}+2 \hat{k}$ to point B with position vector $6 \hat{i}+\hat{j}-3 \hat{k}$.

- Watch Video Solution

56. A particle acted on by constant forces $4 \hat{i}+\hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{j}-\hat{k}$ is displaced from the point $\hat{i}+2 \hat{j}+3 \hat{k} \rightarrow 5 \hat{i}+4 \hat{j}+\hat{k}$. Find the work done

- Watch Video Solution

Exercise

1. Find the scalar product of vectors \vec{a} and \vec{b}, where : $\widehat{a}=2 \hat{i}+4 \hat{k}, \hat{b}=3 \hat{j}-2 \hat{k}$

(D) Watch Video Solution

2. Find the scalar product of vectors \vec{a} and \vec{b}, where : $\vec{a}=2 \hat{i}-3 \hat{k}, \vec{b}=3 \hat{i}+4 \hat{j}$

- Watch Video Solution

3. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}$ and $\vec{c}=3 \hat{j}+\hat{k}$ then verify the following: $\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$.

- Watch Video Solution

4. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}$ and $\vec{c}=3 \hat{j}+\hat{k}$ then verify the following: $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=a^{2}-b^{2}$.

- Watch Video Solution

5. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes 1 and 2 respectively and satisfying $\vec{a} \cdot \vec{b} \cdot=1$

- Watch Video Solution

6. IF $|\vec{a}|=\sqrt{3},|\vec{b}|=2$ and $|\vec{a}-\vec{b}|=3$ find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

7. Find the angel between the following pairs of vectors
$3 \hat{i}+2 \hat{j}-6 \hat{k}, 4 \hat{i}-3 \hat{j}+\hat{k}$

- Watch Video Solution

8. Find the angel between the following pairs of vectors $2 \hat{i}-3 \hat{j}+\hat{k}, 3 \hat{i}-\hat{j}-2 \hat{k}$
9. Find the angel between the following pairs of vectors $\hat{i}+\hat{j}-\hat{k}, \hat{i}-\hat{j}+\hat{k}$

- Watch Video Solution

10. Find the angel between the following pairs of vectors $\hat{i}-2 \hat{j}+3 \hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

11. Prove that the following vectors are at righat angle:
$2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}+5 \hat{k}$

- Watch Video Solution

12. Prove that the following vectors are at righat angle: $2 \hat{i}+5 \hat{j}+\hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

13. Find the angle between the vectors $3 \hat{i}+4 \hat{j}$ and $2 \hat{j}-5 \hat{k}$.

- Watch Video Solution

14. Find the angle betwene the vectors $3 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$.

Also find the sine of the angle between them.

- Watch Video Solution

15. Show that the following vectors are perpendicular to each other:
$2 \hat{j}+3 \hat{j}+6 \hat{k}, 3 \hat{i}-6 \hat{j}+2 \hat{k}, 6 \hat{i}+2 \hat{j}-3 \hat{k}$
16. Show that the following vectors are perpendicular to each other: $6 \hat{i}+3 \hat{j}+2 \hat{k}, 2 \hat{i}-6 \hat{j}+3 \hat{k},-3 \hat{i}+2 \hat{j}+6 \hat{k}$

- Watch Video Solution

17. Show that the following vectors are perpendicular to each other:
$3 \hat{i}+\hat{j}+2 \hat{k}, \hat{i}-\hat{j}-5 \hat{j}-4 \hat{k}$

- Watch Video Solution

18. If $\vec{a}=3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\vec{b}=\hat{i}+\lambda \hat{j}+3 \hat{k}$, find the value λ so that $\vec{a}+\vec{b}$ is perpendicular to $\vec{a}-\vec{b}$

- Watch Video Solution

19. If $a=4 \hat{i}+2 \hat{j}-\hat{k}$ and $\vec{b}=5 \hat{i}+2 \hat{j}-3 \hat{k}$ find the angle between the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$

- Watch Video Solution

20. If $\vec{a}=5 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=\hat{i}+3 \hat{j}-5 \hat{k}$ then show that the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular.

- Watch Video Solution

21. For what value of λ are the vectors
$\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$ perpendicular to each other ?

- Watch Video Solution

22. If $\overrightarrow{O A}=2 \hat{i}-\hat{j}+\hat{k}, \overrightarrow{O B}=\hat{i}-3 \hat{j}-5 \hat{k}$ and $\overrightarrow{O C}=3 \hat{i}-3 \hat{j}-3 \hat{k}$ then show that $C B$ is perpendicular to $A C$.
23. If $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j} \hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ such that $\vec{a}+\lambda \vec{b} i s$ sperpendicular to vecc' then the find the value of lamda.

- Watch Video Solution

24. Show that each of the following three vectors is a unit vector $\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k}), \frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k}) \frac{.1}{7}\left(6 \hat{i}_{2} \hat{j}-3 \hat{k}\right)$. Also show that they are mutually perpendicular to each other.

- Watch Video Solution

25. Show that the thre angles of the triangle with vertices $(1,-1,1),(2,3,-1)$ and $(3,0,2)$ are, respectively, $\cos ^{-1}\left(\frac{2}{\sqrt{114}}, \frac{\cos ^{-1} 4}{\sqrt{176}}\right.$ and $\left.\frac{\cos ^{-1} 17}{\sqrt{399}}\right)$

- Watch Video Solution

26. Find the scalar components of a unit vector which is perpendicular to each of the vectors $\hat{i}+2 \hat{j}-\hat{k}$ and $3 \hat{i}-\hat{j}+2 \hat{k}$.

- Watch Video Solution

27. If $\Longrightarrow 2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}-3 \hat{j}-5 \hat{k}$. Find a vector \vec{c} such that $\vec{a}, \vec{b}, \vec{c}$ from the sides of a righat angled tringle taken in order.

- Watch Video Solution

28. Find the vector magnitude $\sqrt{2}$ which lies in zx-plane and is at righat angles to the vector $2 \hat{i}+\hat{j}+2 \hat{k}$

- Watch Video Solution

29. Find the values of x for which the angle between the vectors $\vec{a}=-3 \hat{i}+x \hat{j}+\hat{k}$ and $\vec{b}=x \hat{i}+2 x \hat{j}+\hat{k}$ is acute nd the angle between \vec{b} and x -axis lies between ${ }^{\mathrm{p}} \mathrm{i} / 2$ and pi .

- Watch Video Solution

30. The diagonals of as parallelogram are given by $\vec{a}=3 \hat{i}-4 \hat{j}-\hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}-6 \hat{k}$ Show that the parallelogram is as rhombus and determine the length of its sides, and the angles.

- Watch Video Solution

31. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+3 \hat{k}$. Find as vector \vec{d} which is perpendicular to both a veca and vecb and satiies $\vec{c} \cdot \vec{d}=15$

- Watch Video Solution

32. Find the projection of $\vec{b}+\vec{c}$ on \vec{a} where $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=\hat{i}+3 \hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{k}$.
33. Find the projection of the vector $\hat{i}-2 \hat{j}+\hat{k}$ on the vector $4 \hat{i}-4 \hat{j}+7 \hat{k}$.

- Watch Video Solution

34. If $\overrightarrow{O A}=2 \hat{i}+3 \hat{j}-4 \hat{k}$ and $\overrightarrow{O B}=\hat{j}+\hat{k}$ are two vectors through the origin O , find the projection of $\overrightarrow{O A}$ and $\overrightarrow{O B}$

- Watch Video Solution

35. If $\overrightarrow{O A}=2 \hat{i}+3 \hat{j}-4 \hat{k}$ and $\overrightarrow{O B}=\hat{j}+\hat{k}$ are two vectors through the origin 0 , find the projection of $\overrightarrow{O B}$ on $\overrightarrow{O A}$.

- Watch Video Solution

36. Let $\vec{a}=\hat{i}+3 \hat{j}+7 \hat{k}$ and $\vec{b}=7 \hat{i}-\hat{j}+8 \hat{k}$ find the projection of \vec{a} on \vec{b}

Watch Video Solution

37. Let $\vec{a}=\hat{i}+3 \hat{j}+7 \hat{k}$ and $\vec{b}=7 \hat{i}-\hat{j}+8 \hat{k}$ find the projection of \vec{b} on \vec{a}

- Watch Video Solution

38. Find the projection oif $\vec{a}=2 \hat{i}+3 \hat{j}+2 \hat{k}$ on the vector $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$.

- Watch Video Solution

39. Find the projection of the vecto $\hat{i}-\hat{j}$ on the vector $\hat{i}+\hat{j}$

- Watch Video Solution

40. Find the vector component of $\vec{F}=\hat{i}+2 \hat{j}+2 \hat{k}$ along and perpendicular to the direction of $\vec{p}=-3 \hat{i}-4 \hat{j}+12 \hat{k}$ in the plane of \vec{F} and \vec{P},

- Watch Video Solution

41. P, Q, R, S are points $\hat{i}-\hat{j}-\hat{k},-\hat{i}+\hat{j}, 2 \hat{i}-3 \hat{k}$ and $3 \hat{i}-2 \hat{j}-\hat{k}$ respectivley. Show that the projectionof PQ on RS is equal to that of RS on PQ each beign $/ \frac{4}{3}$. Also fid the cosine of their inclination.

- Watch Video Solution

42. If $\vec{a}=4 \hat{i}+6 \hat{j}$ and $\vec{b}=3 \hat{i}+4 \hat{k}$ find the vector component of \vec{a} alond \vec{b}.

- Watch Video Solution

43. Evaluate: $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$

- Watch Video Solution

44. Prove that: $\left(\frac{\vec{a}}{a^{2}}-\frac{\vec{b}}{b^{2}}\right)^{2}=\left(\frac{\vec{a}-\vec{b}}{a b}\right)^{2}$

- Watch Video Solution

45.

Given
that
$\vec{p}=\vec{a}+\vec{b}$ and $\vec{q}=\vec{a}-\vec{b}$ and $|\vec{a}|=|\vec{b}|$, show $\widehat{\vec{p}} \cdot \vec{a}=0$

- Watch Video Solution

46. Find $|\vec{a}-\vec{b}|$, if two vectors \vec{a} and \vec{b} are such that $|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=4$.
47. If \vec{a} is unit vector and $(\vec{x}-a) \cdot(\vec{x}+a)=12$ then find $|x|$.

- Watch Video Solution

48. Find $|\vec{a}|$ and $|\vec{b}|$ if $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$.

- Watch Video Solution

49. Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$ for any two non zero vectors \vec{a} and \vec{b}.

- Watch Video Solution

50. The angle between \vec{a} and \vec{b},is 30^{0} and the angle between \vec{b} and \vec{c} is, 60° the angle being measured in each case from the first vectro to the second vector nd in counter clockwise diction. Compute $|\vec{a}+2 \vec{b}-3 \vec{c}|$, given that $\vec{a}, \vec{b}, \vec{c}$ are three coplanar unit vectors.

- Watch Video Solution

51. If $|\vec{a}|=1,|\vec{b}|=2,|\vec{c}|=3$ and $\vec{a}+\vec{b}+\vec{c}=0$ the show that $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=-7$

- Watch Video Solution

52. prove by vector method that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

- Watch Video Solution

53. In $\triangle A B C$, prove that $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$ by vector method.

- Watch Video Solution

54. In any triangle $A B C$, prove the projection formula $a=b \cos C+o s B$ using vector method.

Watch Video Solution

55. Prove by vector method that $\cos (A+B) \cos A \cos B-\sin A \sin B$.

- Watch Video Solution

56. Find the equation of the plane passing through the point $\hat{i}-\hat{j}+\hat{k}$ and perpendicular to the vectro $3 \hat{i}-\hat{j}-2 \hat{k}$ and show that the point $2 \hat{i}+4 \hat{j}$ lies on the plane.

- Watch Video Solution

57. If $\vec{\alpha}$ is a constant vectro and $\vec{\gamma}$ is the position vector of a variable point (x,y,z), show that $(\vec{\gamma}-\vec{\alpha}) \vec{\alpha}=0$ is the equation of a plane through
fixed point $\vec{\alpha}$

- Watch Video Solution

58. A paticle acted on by constant forces $4 \hat{i}=\hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{j}-\hat{k}$ is displaced from the point $\hat{i}+2 \hat{j}+3 \hat{k} \rightarrow 5 \hat{i}+4 \hat{j}+\hat{k}$. Find the work done

- Watch Video Solution

59. Froces acting on a particle have magnitude $5,3,1$ and act in the direction of the vectors $(6,2,3),(3 m-2,6),(2,-3,-6)$ respectively. These remain constant while the particle is displaced form the point $A(4,-2,-6) \rightarrow B(7,-2,-2)$. Find the work done by the forces.

- Watch Video Solution

60. A force $\vec{F}=2 \hat{i}+\hat{j}-\hat{k}$ acts at a point A whose position vectro is $2 \hat{i}-\hat{j}$. If the point aplication of \vec{F} moves from point A to point B , with position vector $2 \hat{i}+\hat{j}$, find the workdown by \vec{F}

- Watch Video Solution

61. Two forces $-\hat{i}+2 \hat{j}-\hat{k}$ and $2 \hat{i}-5 \hat{j}+6 \hat{k}$ act on a particfle whose position vector is $4 \hat{i}-3 \hat{j}+2 \hat{k}$ and displace it to another point whose positon vector is $6 \hat{i}+\hat{j}-3 \hat{k}$. Find the total work done by the force.

- Watch Video Solution

62. Two forces whose magnitudes are 2 N and 3 N act on a particle in the direction of the vectros $2 \hat{i}+4 \hat{j}+4 \hat{k}$ and $4 \hat{i}-4 \hat{j}+2 \hat{k}$ respectively. If the particle is displaced from the origin O to the point (1,2,2). Find the work done.
\square
