

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

SPECIAL SERIES - FOR BOARDS

Solved Examples

1. Find the sum of n terms of the series whose nth term is $12n^2 - 6n + 5$.

Watch Video Solution

2. Find the sum to n term of the series whose nth term is n(n+1)(n+4)

7. Find the sum to n terms of the series $1.2.3+2.3.4+3.4.5+\ldots$

11. Find the sum to n terms of the series : $1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) + \frac{1}{2}$

Watch Video Solution

12. Find the sum of the series
$$\frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 3} + \frac{1^3 + 2^3 + 3^3}{1 + 3 + 5} +$$
up to n

terms.

Watch Video Solution

13. Find the sum of series $\left(3^3=2^3
ight)+\left(5^3=4^3
ight)+\left(7^3=6^3
ight)+$ to n

terms

14.
$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + ...$$
 to *n* terms

17. Natural numbers are divided into groups in the following way: 1, (2, 3), (4, 5, 6), (7, 8, 9, 10), Show that the sum of the numbers in the nth group is $\frac{n(n^2 + 1)}{2}$

21. Find the sum of the following series: $\left(\sqrt{2}-1
ight)+1+\left(\sqrt{2}-1
ight)+\infty$

Watch Video Solution

23. The first term of G.P. is 2 and the sum to infinity is 6. Find the common

ratio.

Watch Video Solution

24. Prove that: $3^{rac{1}{2}} imes 3^{rac{1}{4}} imes 3^{rac{1}{8}} imes ...=3$

25. If
$$S=1+a+a^2+a^3+a^4+\ldots\ldots \to \infty$$
 then prove that $a=rac{S-1}{S}$

26.

 $x=2+a+a^2+\infty, where |a|<1 and y=1+b+b^2+\infty, where |b|<1$ prove that: $1+ab+a^2b^2+\infty=rac{xy}{x+y-1}$

Watch Video Solution

27. If $S_1, S_2, S_3, \ldots, S_p$ are the sum of infinite geometric series whose first terms are 1,2,3,...p and whose common ratios are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{.1}{p+1}$ respectively, prove that $S_1 + S_2 + \ldots + S_p = p \frac{p+3}{2}$

Watch Video Solution

28. The sum of an infinite geometric series is 15 and the sum of the squares of these terms is 45. Find the series.

Watch Video Solution

If

29. Prove that in an infinite G.P. whose common ratio r is numerically less than one, the ratio of any term to the sum of all the succeeding terms is $\frac{1-r}{r}$

30. The sum of first two terms of an infinite geometric series is 15 and each term is equal to the sum of all the terms following it, find the series.

Watch Video Solution

31. Find the rational number having $0.4\overline{23}$ as its expansion.

32. Find a rational number, which when expressed as a decimal will have

0.6 as its expansion.

Exercise

1. Find the sum of n terms of the series whose nth term is: n(n-1)(n+1)

Watch Video Solution

2. Find the sum of n terms of the series whose nth term is: $nig(n^2+1ig)$

Watch Video Solution

3. Find the sum of n terms of the series whose nth term is: n(n+3)

12. Find the sum of the following series to n term: $3.1^2 + 5.2^2 + 7.3^2 + \ldots$

13. Find the nth term of the series $3.8+6.11+9.14+12.17+\ldots$ (A)

$$3n(3n+5)$$
 (B) $3n(n+5)$ (C) $n(3n+5)$ (D) $n(n+5)$

Watch Video Solution

14. Find sum of series 1.2 + 2.3 + 3.4... upto n terms

15. Find the nth term and hence the 20th term of series `2.4+4.6+6.8+......

Also find the sum of its 20 terms.

16. Show that
$$rac{1 imes 2^2+2 imes 3^2+\ +\ n imes (n+1)^2}{1^2 imes 2+2^2 imes 3+\ +\ n^2 imes (n+1)}=rac{3n+5}{3n+1}.$$

Watch Video Solution

17. Find
$$1+rac{1}{1+2}+rac{1}{1+2+3}+\ldots$$
 . $ightarrow n$ terms.

D Watch Video Solution

18. Find the sum to
$$n$$
 terms of the series: $rac{1}{1.3}+rac{1}{3.5}+rac{1}{5.7}+$

Natch Video Solution

19. Find the sum to *n* terms of the series:

$$\frac{1}{1+1^2+1^4} + \frac{1}{1+2^2+2^4} + \frac{1}{1+3^2+3^4} + \frac{1}{1+3^2+3^4}$$

I

22. Find the nth term and sum to n tems of the following series: 3+6+11+18+...

23. Find the nth term and sum to n tems of the following series:3+15+35+63+......

Vatch Video Solution									
24.	Find	the	sum	of	n	terms	of	the	series
1 + 9 + 24 + 46 + 75									
Vatch Video Solution									

25. Find the nth term and sum to n tems of the following series: 1+5+12+22+.....

26. Find the nth term and sum to n tems of the following series: 2+6+12+20+...3+7+13+21+31+.....

29. Find the sum of the series 2+5+14+41+122 +.... up to n terms

and hence evaluate S_a .

34. Find the sum to infinity of the following Geometric Progression: $1 \quad 1 \quad 1$

$$1, \frac{1}{3}, \frac{1}{9}, .$$

35. Find the sum to infinity of the following geometric progression:

$$3, -1, \frac{1}{3}, -\frac{1}{9}, \ldots \ldots$$

Watch Video Solution

36. Find the sum to infinity of the following geometric progression: $\frac{1}{5} + \frac{1}{7} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$

Watch Video Solution

37. Find the sum of the infinite geometric series $1 + 3x + 9x^2 + 27x^3 + \dots$

38. Find the value of
$$9^{\frac{1}{3}}$$
, $9^{\frac{1}{9}}$. $9^{\frac{1}{27}}$... up to ∞ .

Watch Video Solution

39. Prove that:
$$a^{rac{1}{2}} \cdot a^{rac{1}{4}} \cdot a^{rac{1}{8}}, \ldots \to \infty = a.$$

Watch Video Solution

40. If
$$y=x+x^2+x^3+\ldots\ldots\infty,$$
 prove that $x=rac{y}{1+y}$

41. The first term of as G.P. is 3 and the sum to infinity is 12. Find the common ratio.

42. The sum of intinite number of terms of a decreasing G.P.is 4 and the sum of the squares of its terms to infinity is $\frac{16}{3}$ find the G.P.

Watch Video Solution

44. If
$$A=1+r^a+r^{2a}+$$
 to $\infty and B=1+r^b+r^{2b}+\infty$, prove that

$$r=\left(rac{A-1}{A}
ight)^{1/a}=\left(rac{B-1}{B}
ight)^{1/a}$$

Watch Video Solution

45. Express $0.\overline{54}$ as a rational number.

46. Find the value of the recuring decimal $1.\overline{15}$ considering it as a geometric series.