©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

STRAIGHT LINES - FOR BOARDS

Solved Examples

1. What can be said regarding a line if its slope is i. positive ii. zero iii negative?

Watch Video Solution
2. Find the slope of a line whose inclination is 150°
3. Find the inclination of the line having slope (i) -1

- Watch Video Solution

4. Find the inclination of the line having slope (i) - 3

- Watch Video Solution

5. Find the slope of the line joining $(4,-6)$ and $(-2,-5)$.

- Watch Video Solution

6. Determine x so that 2 is the slope of the line through $(2,5)$ and $(x, 3)$.

- Watch Video Solution

7. Show that the line joining $(2,-3)$ and $(-5,1)$ is parallel to the line joining ($7,-1$) and (0,3).

Watch Video Solution

8. Show that the line joining $(2,-3)$ and $(-5,1)$ is : Perpendicular to the line joining $(4,5)$ and $(0,-2)$

- Watch Video Solution

9. Examine whether the line joining $(8,2)$ and $(-5,3)$ is parallel to or perpendicular to or neither parallel nor perpendicular to the line joining $(16,6)$ and $(3,15)$

- Watch Video Solution

10. Without using the Pythagoras theorem, show that the points (4,
,$(3, \quad 5)$ and $(1, \quad 1)$ are the vertices of a right angled triangle.

- Watch Video Solution

11. If points $(a, 0),(0, b)$ and (x, y) are collinear, using the concept of slope prove that $\frac{x}{a}+\frac{y}{b}=1$.

- Watch Video Solution

12. A quadrilateral has the vertices at the points $(-4,2),(2,6),(8,5)$ and $(9,-7)$. Show that the mid points of the sides of this quadrilateral are the vertices of a parallelogram.

- Watch Video Solution

13. Prove that the line joining the middle points of the two sides of a triangle is parallel to the third side.

- Watch Video Solution

14. If $A(2,0), B(0,2)$ and $C(0,7)$ are three vertices, thaken in order, of an isosceles trapezium $A B C D$ in which $A B|\mid D C$. find the coordinates of D.

- Watch Video Solution

15. In Figure, time and distance graph of a linear motion is given. Two positions of time and distance are recorded as, when $\mathrm{T}=0, \mathrm{D}=2$ and when $T=3, D=8$. Using die concept of slope, find law of motion, i.e., how distance depends upon time.

- Watch Video Solution

16. Consider the following population and year graph: find the slope of the line $A B$ and using it find what will be the population in the year 2010.

- Watch Video Solution

17. Find the equation of the line parallel to the y-axis and 3 units to the right of it.

- Watch Video Solution

18. Find the equation of the line parallel to x-axis and passing through the point $(3,-4)$.

- Watch Video Solution

19. Find the equation of the line perpendicular to x-axis and having intercept -2 on x -axis.
20. Find the equation of the line which cuts off an intercept -5 on y-axis and has slope $\frac{1}{2}$.

- Watch Video Solution

21. Find the equation of the line intersecting the y-axis at a distance 2 units above the origin and making an angle of 30° with the positive direction of x-axis.

- Watch Video Solution

22. Find the equation of the straight line which makes an angle of 15° with the positive direction of x-axis and which cuts and intercept of length 4 on then negative direction of y-axis.

- Watch Video Solution

23. Find eqn of line which cut off an intercept of 4 units on the x - axis and makes an angle of 30° with positive direction of y-axis.

(Watch Video Solution

24. Find the equation of the line passing through $(-4,3)$ and having slope $\frac{1}{2}$.

- Watch Video Solution

25. Find the equation of the straight line which passes through the point $(1,2)$ and makes an angle θ with the positive direction of x-axis where $\cos \theta=-\frac{1}{3}$.

- Watch Video Solution

26. A line through the point $A(2,0)$ which makes an angle of 30^{0} with the positive direction of x-axis is rotated about A in clockwise direction
through an angle 15^{0}. Find the equation of the straight line in the new position.

- Watch Video Solution

27. Find the lines through the point $(0,2)$ making angles $\frac{\pi}{3}$ and $\frac{2 \pi}{3}$ with the x-axis. Also, find the lines parallel to the cutting the y-axis at a distance of 2 units below the origin.

- Watch Video Solution

28. The mid-points of the sides of a triangle are $(2,1),(-5,7) \operatorname{adn}(-5,-5)$. Find the equations of the sides of the triangle.

- Watch Video Solution

29. If $A(1,4), B(2,-3)$ and $C(-1,-2)$ are the vertices of a $\triangle A B C$. Find (i) the equation of the median through A (ii) the equation of the altitude through A. (iii) the right bisector of the side $B C$.

- Watch Video Solution

30. Find the equation of the perpendicular beisector of the line segment joining the points $(1,1)$ and $(2,3)$.

- Watch Video Solution

31. Show that the perpendicular drawn from the point $(4,1)$ on the line segment joining $(6,5) \operatorname{and}(2,-1)$ divides it internally in the ratio $8: 5$.

- Watch Video Solution

32. One side of a square makes an angle α with x axis and one vertex of the square is at origin. Prote that the equations of its diagonals are $x(\sin \alpha+\cos \alpha)=y(\cos \alpha-\sin \alpha)$ or $x(\cos \alpha-\sin \alpha)+y(\sin \alpha+\cos \alpha)=a$, where a is the length of the side of the square.

- Watch Video Solution

33. Find the equation of the line joining the points $(-1,3)$ and $(4,-2)$.

- Watch Video Solution

34. Find the equations to the diagonals of the rectangle the equations of whose sides are $x=a, x=a^{\prime}, y=b a n d y=b$.

- Watch Video Solution

35. Find the equation of the internal bisector of angle BAC of the triangle ABC whose vertices A, B, C are $(5,2),(2,3)$ and $(6,5)$ respectively

- Watch Video Solution

36. A rectangle has two opposite vertices at the points $(1,2)$ and $(5,5)$. It these vertices lie on the line $x=3$, find the other vertices of the rectangle.

- Watch Video Solution

37. In what ratio is the line joining the pints $(2,3)$ and $(4,-5)$ divided by the line passing through the points $(6,8)$ and $(-3,-2)$.

- Watch Video Solution

38. The co-ordinates of the vertices $P, Q, R \& S$ of square $P Q R S$ inscribed in the triangle $A B C$ with vertices $A=(0,0), B(3,0) \& C=(2,1)$ given that two of its vertices P, Q are on the side $A B$ are respectively :

- Watch Video Solution

39. Find the equation of the straight line which passes through the point $(3,4)$ and whose intercept on y-axis is twice that on x-axis.

- Watch Video Solution

40. A straight line cuts intercepts from the axes of coordinates the sum of whose reciprocals is a constant. Show that it always passes though as fixed point.

- Watch Video Solution

41. Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and -6 , respectively.

Watch Video Solution

42. Find the equations of the line which passes through the point $(3,4)$ and the sum of its intercepts on the axes is 14 .

- Watch Video Solution

43. A straight line passes through the point $(3,-2)$. Find the locus of the middle point of theportion of the line intercepted between the axes.

- Watch Video Solution

44. Find the equation of the line upon which the length of perpendicular p from origin and the angle apha made by this perpendicular with the positive direction of x -axis are $p=5, \alpha=135^{0}$

- Watch Video Solution

45. Sketch roughly the line satisfying the following conditions and write their equations: Inclination $\theta=150^{\circ}$ and distance from origin $=3$

- Watch Video Solution

46. Find the equation of the straight line upon which the length of perpendicular from origin is $3 \sqrt{2}$ units and this perpendicular makes an angle of 75^{0} with the positive direction of x-axis.

- Watch Video Solution

47. Find the equation of the straight line upon which the length of the perpendicular from the origin is 2 and the slope of this perpendicular is $\frac{5}{12}$.
48. A canal is $4 \frac{1}{2} \mathrm{kms}$ from a place and the shortest route from this place to the cenal is exactly north-east. A village is 3 kms north and 4 kms east from the place. Does it lie on canal?

- Watch Video Solution

49. Find the equation of the straight line which makes a triangle of area $96 \sqrt{3}$ with the axes and perpendicular from the origin to it makes an angle of 30^{0} with y-axis.

- Watch Video Solution

50. Find the equation of the line through $(-2,1)$ in symmetric form when the angle made by the line with the positive direction of x-axis is 45^{0}
51. find the equation of the straight line which passes through the point $(3,2)$ and whose gradient is $\frac{3}{4}$.find the co-ordinate of the points on the line that are 5 units away from the point $(3,2)$.

- Watch Video Solution

52. Find the direction in which a straight line must be drawn through the point (1, 2) so that its point of intersection with the line $x \quad+\quad y \quad 4$ may be at a distance of 3 units from this point.

- Watch Video Solution

53. Find the distance of the point $(2,5)$ from the line $3 x+y+4=0$ measured parallel to a line having slope $3 / 4$.

- Watch Video Solution

54. A straight line through $Q(\sqrt{3}, 2)$ makes an angle $\frac{\pi}{6}$ with positive dircction of the x axis. If the straight line intersects $\sqrt{3} x-4 y+8=0 a t P$. Find distance $P Q ?$

- Watch Video Solution

55. Find the coordinatse of the points at a distance $4 \sqrt{2}$ units from the point $(-2,3)$ in the direction making an angle of 45^{0} with the positive direction of x-axis.

- Watch Video Solution

56. The co-ordinates of the extremities of one diagonal of a square are $(1,1)$ and $(1,-1)$ Find the co-ordinates of its other vertices and the equation of the other diagonal

- Watch Video Solution

57. In the given figure, PQR is an equilateral triangle and OSPT is a square. If $O T=2 \sqrt{2} \quad$ units \quad find \quad the equation of lines $O T, O S, S P, Q R, P R$, and $P Q$.

- Watch Video Solution

58. The length L (in centimetre) of a copper rod is a linear function of its Celsius temperature C. In an experiment, if $L=124.942$ when $C=20$ and $L=125.134$ when $C=110$, express L in terms of C .

- Watch Video Solution

59. The owner of a milk store finds that, he can sell 980 litres of milk each week at Rs $14 /$ litre and 1220 litres of milk each week at Rs 16 / litre. Assuming a linear relationship between selling price and demand, how many litres could he sell weekl
60. Transform equation $\sqrt{3} y-3 x=3$ to the slope intercept form and also find the angle which straight line makes with the x-axis.

- Watch Video Solution

61. Reduce $x+\sqrt{3} y+4=0$ to the : Slope intercepts form and find its slope and y -intercept.

- Watch Video Solution

62. Find the point of intersection of the line, $\frac{x}{3}-\frac{y}{4}=0$ and $\frac{x}{2}+\frac{y}{3}=1$

- Watch Video Solution

63. Find the coordinates of the incentre and centroid of the triangle whose sides have the
equations $3 x-4 y=0,12 y+5 x=0 a d n y-15=0$.

- Watch Video Solution

64. Find the area of the triangle whose sides are: $3 x-2 y+1=0,3 x+y+4=0$ and $3 x-5 y+34=0$

- Watch Video Solution

65. \The equation of the medians of a triangle formed by the lines $x+y-6=0, x-3 y-2=0$ and $5 x-3 y+2=0$ is

- Watch Video Solution

66. Find the coordinates of the circumcentre of the triangle whose vertices are $(5,7),(6,6)$ and $(2,-2)$

Watch Video Solution

67. Show that the lines $4 x+y-9=0, x-2 y+3=0,5 x-y-6=0$ make equal intercepts on any line of slope 2.

- Watch Video Solution

68. A line is such that its segment between the lines $5 x-y+4=0$ and
$3 x+4 y-4=0$ is bisected at the point (1,5). Obtain its equation.

- Watch Video Solution

69. Find the coordinates of the orthocentre of the triangle whose vertices are $(0,1),(2,-1)$ and $(-1,3)$
70. Two vertices of a triangle are $(3,-1) \operatorname{and}(-2,3)$ and its orthocentre is at the origin,. Find the coordinates of eth third vertex.

- Watch Video Solution

71. Two consecutive sides of a parallelogram are $4 x+5 y=0$ and $7 x+2 y=0$. If the equation of one diagonal is $11 x=7 y=9$, find the equation of the other diagonal.

- Watch Video Solution

72.

Prove
that
the
lines
$\sqrt{3} x+y=0, \sqrt{3} y+x=0, \sqrt{3} x+y=1$ and $\sqrt{3} y+x=1$ form a rhombus.
73. Prove that the straight lines ${ }^{4} 4 x+7 y=9,5 x-8 y+15=0$ and $9 x-y+6=0$ are concurrent.

- Watch Video Solution

74. Find the value of p, so that three lines $3 x+y=2=0, p x+2 y-3=0$ and $2 x-y=3$ are concurrent.

- Watch Video Solution

75. If the lines whose equations are $y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ and $y=m_{3} x+c_{3}$ meet in a point, then prove that: $m_{1}\left(c_{2}-c_{3}\right)+m_{2}\left(c_{3}-c_{1}\right)+m_{3}\left(c_{1}-c_{2}\right)=0$

- Watch Video Solution

76. If the lines $p_{1} x+q_{1} y=1, p_{2} x+q_{2} y=1$ and $p_{3} x+q_{3} y=1$ be concurrent, show that the points $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)$ and $\left(p_{3}, q_{3}\right)$ are colliner.

- Watch Video Solution

77. The lines
$(p-q) x+(q-r) y+(r-p)=0(q-r) x+(r-p) y+(p-q)=0,(x$

- Watch Video Solution

78. Prove that the medians of a triangle are concurrent and find the position vector of the point of concurrency (that is, the centroid of the triangle)

- Watch Video Solution

79. Find the angle between the lines $y-\sqrt{3} x-5=0$ and $\sqrt{3} y-x+6=0$.

- Watch Video Solution

$$
\begin{aligned}
& \text { 80. Find the angle between the lines } \\
& x-2 y+3=0 \text { and } 3 x+y-1=0 \text {. }
\end{aligned}
$$

- Watch Video Solution

81. Find the angle between the lines $3 x=5$ and $3 x+5 y-2=0$

- Watch Video Solution

82. Find the angle between $x+y=3$ and the line joining points (1,1) and
83. Prove that the points $(2,-1),(0,2),(3,3)$ and $(5,0)$ are vertices of a parallelogram. Also, find angle between its diagonals.

- Watch Video Solution

84. Is the triangle, whose vertices are $(5,-6),(1,2)$ and $(-7,-2)$, a right-angled triangle, an acute-angled triangle or an obtuse-angled triangle?

- Watch Video Solution

85. Prove that that s triangle which has one of the angle as 30° cannot have all vertices with integral coordinates.

- Watch Video Solution

86. Find the value of k if the straight line $2 x+3 y+4+k(6 x-y+12)=0$ is perpendicular to the line $7 x+5 y-4=0$.

- Watch Video Solution

87. Examine which of the following pair of lines are intersecting, parallel, coincident and perpendicular : $x+y+2=0$ and $2 x+2 y-7=0$

- Watch Video Solution

88. Examine which of the following pair of lines are intersecting, parallel, coincident and perpendicular : $x+y+2=0$ and $2 x-3 y+5=0$

- Watch Video Solution

89. Examine which of the following pair of lines are intersecting, parallel, coincident and perpendicular $x+y+2=0$ and $2 x+2 y+4=0$

- Watch Video Solution

90. Examine which of the following pair of lines are intersecting, parallel, coincident and perpendicular $2 x+y+2=0$ and $x-2 y+5=0$

- Watch Video Solution

91. If $A(2,0), B(0,2)$ and $C(0,7)$ are three vertices, thaken in order, of an isosceles trapezium $A B C D$ in which $A B|\mid D C$. find the coordinates of D.

- Watch Video Solution

92. . The points $(1,3),(5,1)$ are the opposite vertices of a rectangle. The other two vertices lie on the line $y=2 x+c$. Find c and remaining two vertices.

- Watch Video Solution

93. A, B and C are the points $(2,0),(5,0)$ and $(5,3)$ respectively. Find coordinates of D such that $A B C D$ is a square.

- Watch Video Solution

94. If the angle between two lines is $\frac{\pi}{4}$ and slope of one of the lines is $\frac{1}{2}$, find the slope of the other line.

- Watch Video Solution

95. Find the slope of the lines which make an angle of 45° with the line $3 x-y+5=0$.

- Watch Video Solution

96. The line $2 x-y=5$ turns about the point on it, whose ordinate and abscissae are through an angle of 45° in the anti-clockwise direction.

Find the equation of the line in the new position.

- Watch Video Solution

97. Find the equation of the lines through the point $(3,2)$ which make an angle of $45 o$ with the line $x-2 y=3$.

- Watch Video Solution

98. A vertex of an equilateral triangle is 2,3 and the opposite side is $x+y=2$. Find the equations of other sides.

- Watch Video Solution

99. On the portion of the line $x+3 y-3=0$ which is intercepted between the coordinate axes, a square is constructed on the side of the line away from the origin. Find the coordinates of the point of intersection of its diagonals. Also, find the equations of its sides.

- Watch Video Solution

100. Theorem : The area of a triangle the coordinates of whose vertices are $\left(x_{1} ; y_{1}\right) ;\left(x_{2} ; y_{2}\right)$ and $\left(x_{3} ; y_{3}\right)$ is $1 / 2 \mid\left(x_{-} 1\left(y_{-} 2-y_{-} 3\right)+x_{-} 2\left(y_{-} 3-y_{-} 1\right)+x_{-} 3\left(y_{-} 1-\right.\right.$ y_2)|'

- Watch Video Solution

101. A line $4 x+y=1$ passes through the point $\mathrm{A}(2,-7)$ and meets line BC at B whose equation is $3 x-4 y+1=0$, the equation of line AC such that $A B=A C$ is (a) $52 \mathrm{x}+89 \mathrm{y}+519=0$ (b) $52 \mathrm{x}+89 \mathrm{y}-519=0$ c) 82 x $+52 y+519=0$ (d) $89 x+52 y-519=0$

- Watch Video Solution

102. The st. lines $3 x+4 y=5$ and $4 x-3 y=15$ interrect at a point $A(3,-1)$. On these linepoints B and C are chosen so that $A B=A C$. Find the possible eqns of the line $B C$ pathrough the point $(1,2)$

- Watch Video Solution

103. A ray of light is sent along the line $x-2 y-3=0$ upon reaching the line $3 x-2 y-5=0$, the ray is reflected from it. Find the equation of the line containing the reflected ray.
104. The equation of the line through $(3,4)$ and parallel to the line $y=3 x+5$ is

- Watch Video Solution

105. Find the equation of the straight line through $(2,3)$ and perpendicular to the line $4 x-3 y=10$

- Watch Video Solution

106. The equation to the straight line passing through the point $\left(a \cos ^{3} \theta, a \sin ^{3} \theta\right)$ and perpendicular to the line $x \sec \theta+y \cos e c \theta=a$ is $\quad x \cos \theta-y \sin \theta=a \cos 2 \theta \quad x \cos \theta+y \sin \theta=a \cos 2 \theta$ $x \sin \theta+y \cos \theta=a \cos 2 \theta$ none of these

- Watch Video Solution

107. Find the equation of a straight line perpendicular to the line $x-2 y+3=0$ and having intercept 3 on x -axis.

- Watch Video Solution

108. Find the equation of the straight line which has y-intercept equal to
$4 / 3$ and is perpendicular to $3 x-4 y+11=0$.

- Watch Video Solution

109. Find coordinates of the foot of perpendicular, image and equation of perpendicular drawn from the point $(2,3)$ to the line $y=3 x-4$.

- Watch Video Solution

110. Find the image of the point $(-8,12)$ with respect to line mirror $4 x+7 y+13=0$.
111. The equations of two sides of a triangle are $3 x-2 y+6=0$ and $4 x+5 y-20$ and the orthocentre is (1,1). Find the equation of the third side.

- Watch Video Solution

112. One side of a rectangle lies along the line $4 x+7 y+5=0$. Two of its vertices are $(-3,1)$ and $(1,1)$. Then find the equations of other sides.

- Watch Video Solution

113. The equations of the perpendicular bisectors of the sides $A B a n d A C$ of triangle $A B C$ are $x-y+5=0$ and $x+2 y=0$, respectively. If the point A is $(1,-2)$, then find the equation of the line $B C$.

- Watch Video Solution

114. Find the equation of the straight line which passes through the point $(2,-2)$ and the point of intersection of the lines $5 x-y=9$ and $x+6 y=8$.

- Watch Video Solution

115. Find the equation of the straight line which passes through the intersection of the lines $x-y-1=\operatorname{and} 2 x-3 y+1=0$ and parallel (i) $x-a \xi s(i i) y-a \xi s(i i i) 3 x+4 y=14$.

- Watch Video Solution

116. Find the equation of the straight line which passes through the point of intersection of lines $3 x-4 y-7=0$ and $12 x-5 y-13=0$ and is perpendicular to the line $2 x-3 y+5=0$

- Watch Video Solution

117. Find the equations of the straight lines passing through the point of intersection of the lines $x+3 y+4=0$ and $3 x+y+4=0$ and equally inclined to the axes.

- Watch Video Solution

118. Coordinates of the orthocentre of the triangle whose sides are $3 x-2 y$ $=6,3 x+4 y+12=0$ and $3 x-8 y+12=0$ is

(Watch Video Solution

119. lines $L_{1}: a x+b y+c=0$ and $L_{2}: l x+m y+n=0$ intersect at the point P and make a angle θ between each other. find the equation of a line L different from L_{2} which passes through P and makes the same angle θ with L_{1}

- Watch Video Solution

120. Show that the straight lines given by $x(a+2 b)+y(a+3 b)=a$ for different values of $a a n d b$ pass through a fixed point.

Watch Video Solution

121. A straight line cuts intercepts from the axes of coordinates the sum of whose reciprocals is a constant. Show that it always passes though as fixed point.

- Watch Video Solution

122. Find the position of the points $(1,1)$ and $(2,-1)$ with respect to the line $3 x+4 y-6=0$.

- Watch Video Solution

123. The ratio in which the line segment joining $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ is divided by x -axis is $y_{1}: y_{2}$ (b) $y_{1}: y_{2}$ (c) $x_{1}: x_{2}$ (d) $x_{1}: x_{2}$

Watch Video Solution

124. Find the distance of the point $(4,5)$ from the straight line $3 x-5 y+7=0$.

- Watch Video Solution

125. The equation of the base of an equilateral triangle is $x+y=2$ and its vertex is $(2,-1)$. Find the length and equations of its sides.

- Watch Video Solution

126. Find the equation of the straight line which cuts off intercept on X axis which is twice that on Y-axis and is at a unit distance from the origin.
127. If p and q are the lengths of perpendiculars from the origin to the lines $x \cos \theta-y \sin \theta=k \cos 2 \theta \quad$ and $\quad x \sec \theta+y \operatorname{cosec} \theta=k \quad$, respectively, prove that $p^{2}+4 q^{2}=k^{2}$.

- Watch Video Solution

128. If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b , then show that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$.

- Watch Video Solution

129. Line L has intercepts $a a n d b$ on the coordinate axes. When the axes are rotated through a given angle keeping the origin fixed, the same line L has intercepts pandq. Then $a^{2}+b^{2}=p^{2}+q^{2} \frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}+\frac{1}{q^{2}}$ $a^{2}+p^{2}=b^{2}+q^{2}$ (d) $\frac{1}{a^{2}}+\frac{1}{p^{2}}=\frac{1}{b^{2}}+\frac{1}{q^{2}}$
130. Prove that the length of perpendiculars from points $P\left(m^{2}, 2 m\right) Q(m n, m+n) \operatorname{and} R\left(n^{2}, 2 n\right) \quad$ to the line $x \cos ^{2} \theta+y \sin \theta \cos \theta+\sin ^{2} \theta=0$ are in G.P.

Watch Video Solution

131. Find the distaance of the point $(1,2)$ from the straight line with slope 5 and passing through the point of intersection of $x+2 y=5$ and $x-3 y=7$.

- Watch Video Solution

132. The vertices of a triangle are $A(-2,1), B(6,-2)$ and $C(4,3)$. Find the equation of the altitudes of the triangle.

- Watch Video Solution

133. Find the distance between the parallel lines $a x+b y+c=0$ and $a x+b y+d=0$

- Watch Video Solution

134. Prove that the line $12 x-5 y-3$ is mid parallel to the lines $12 x-5 y+7=0$ and $12 x-5 y-13=0$

- Watch Video Solution

135. The equations of two sides of a square are $3 x+4 y-5=0$ and $3 x+4 y-15=0$ and $(6,5)$ is a point on the third side. Find the equation of the third side and the remaining side.

- Watch Video Solution

136. The angle between the diagonals of a quadrilateral formed by the lines $\frac{x}{a}+\frac{y}{b}=1, \frac{x}{b}+\frac{y}{a}=1, \frac{x}{a}+\frac{y}{b}=2$ and $\frac{x}{b}+\frac{y}{a}=2$ is

137.
 Find
 area
 parallelogram
 lines
 $y=m x, y=m x+1, y=n x$ and $y=n x+1$ equal to:

- Watch Video Solution

Exercise

1. What can be said regarding a line if its slope is i. positive ii. zero iii negative?

Watch Video Solution
2. Find the slope of the line whose inclination is: 0
3. Find the slope of the line whose inclination is : 60°

Watch Video Solution

4. Find the slope of a line whose inclination is 150°

- Watch Video Solution

5. Find the slope of line whose inclination is 45°

- Watch Video Solution

6. Find the slope of the line through the points: $(6,3)$ and $(9,3)$

- Watch Video Solution

7. Find the slope of the line through the points: $(1,2)$ and $(4,2)$
8. Find the slope of the line through the points: $(0,9)$ and $(-3,0)$

- Watch Video Solution

9. Find the slope of the line through the points: $(0,-4)$ and $(-6,2)$

- Watch Video Solution

10. Find the slope of the line through the points: $(3,-2)$ and $(3,4)$

- Watch Video Solution

11. Find the slope of the line through the points: $(3,-2)$ and $(-1,4)$

- Watch Video Solution

12. Find the slope of the line through the points: $(3,-2)$ and $(7,-2)$

Watch Video Solution

13. Show that the line joining $(5,6)$ and $(2,3)$ is parallel to the line through $(9,-2)$ and $(6,-5)$.

- Watch Video Solution

14. Show that the line through $(2,-5)$ and $(-2,5)$ is perpendicular to the line through $(6,3)$ and $(1,1)$

- Watch Video Solution

15. Examine whether the two lines in each of the parallel, perpendicular or neither parallel nor perpendicular : through $(-2,6)$ and $(4,8)$, through $(8,12)$ and $(4,24$.
16. State whether the tow lines in each of the following are parallel, perpendicular or nether: through (9,5) and ($-1,1$); through ($3,-5$) and ($8,-3$)

Watch Video Solution

17. $A(5,-3), B(8,2), C(0,0)$ are the vertices of a triangle. Show that the median from A is perpendicular to the side $B C$.

- Watch Video Solution

18. What is the value of y so that the line through $(3, y)$ and $(2,7)$ is parallel to the line through $(-1,4)$ and $(0,6)$?

- Watch Video Solution

19. Line through the points $(-2,6)$ and $(4,80$ is perpendicular to the line through the points $(8,12)$ and $(x, 24)$. Find the value of x.

- Watch Video Solution

20. Find the value of x for which the points $(x-1),(2,1)$ and $(4,5)$ are collinear.

- Watch Video Solution

21. Find the slope of the line, which makes an angle of 300 with the positive direction of yaxis measured anticlockwise.

- Watch Video Solution

22. Find the slope of the line which passes through the origin and the mid-point of the line segment joining the points $A(0,-4)$ and $B(8,0)$.
23. Find the angle between the X-axis and the line joining the points $(3,-1)$ and $(4,-2)$.

- Watch Video Solution

24. A line passes through $\left(x_{1}, y_{1}\right)$ and $(h, \quad k)$. If slope of the line is m, show that $k-y_{1}=m\left(h-x_{1}\right)$.

- Watch Video Solution

25. Using slopes, show that thepoints $(1,1),(2,3)$ and $(3,5)$ are collinear.

- Watch Video Solution

26. $A(3,4), B(-3,0)$ and $C(7,-4)$ are the vertices of a triangle. Show that the line joining the mid-points $D\left(x_{1}, y_{1}\right), E\left(x_{2}, y_{2}\right)$ and $F(x, y)$ are collinear. Prove that $\left(x-x_{1}\right)\left(y_{2}-y_{1}\right)=\left(x_{2}-x_{1}\right)\left(y-y_{1}\right)$

- Watch Video Solution

27. By using the concept of slope, show that $(-2,-1),(4,0),(3,3)$ and $(-3,2)$ are the vertices of a parallelogram.

- Watch Video Solution

28. A quadrilateral has vertices $(4,1),(1,7),(-6,0)$ AND $(-1,-9)$. Show that mid-points of the sides of this quadrilateral form a parallelogram.
29. Prove that a median of an equilateral triangle is perpendicular to the corresponding side.

- Watch Video Solution

30. By using the concept of slope, prove that the diagonals of a rhombus re at right angles.

- Watch Video Solution

31. Find the equation of the line which is parallel to x-axis and at a distance of 3 units below the x-axis.

- Watch Video Solution

32. Find the equation of the line perpendicular to x-axis and passing through the origin.
33. Find the equation of the straight lines which are : parallel to the x-axis at a distance of 5 units from it

- Watch Video Solution

34. Find the equation of the straight lines which are : parallel to the y-axis and at a distance of 4 units from it towards negative side of x-axis.

- Watch Video Solution

35. Find the equation of the straight lines which pass through $(5,3)$ and are respectively parallel and perpendicular to the x-axis.

- Watch Video Solution

36. Find the equation of the line which is parallel to $y l-a x i s ~ a n d ~ p a s s e s ~$ through the point $(3,-4)$.

- Watch Video Solution

37. Find the equation of the line perpendicular to the x-axis and passing through the point $(-1,,-1)$.

- Watch Video Solution

38. Find the equation of the line parallel to x-axis of and having intercept
-2 on y-axis.

- Watch Video Solution

39. Find the equation of the line with slope 3 and y intercept -2 .
40. Find the equation of the line which cuts off an intercept 7 on y-axis and has the slope 3 .

- Watch Video Solution

41. Find the equation of the line which makes an angle of 75^{0} with x-axis and cuts an intercept of length 3 on the positive direction of y-axis.

- Watch Video Solution

42. Find the equation of the straight lines which cut off an intercept 4 from the y-axis and are equally inclined to the axes.

- Watch Video Solution

43. Find the equation of the straight line which cuts off an intercept-5 from the y-axis and makes an angle of $\sin ^{-1}\left(\frac{12}{13}\right)$ with the x-axis.

- Watch Video Solution

44. Find the equation of the line which intercepts a length 2 on the positive direction of the x-axis and is inclined at an angle of 135° with the positive direction of y -axis .

- Watch Video Solution

45. Find the equation of a line which cuts off an intercept 4 on the x-axis and has the slope 2 .

- Watch Video Solution

46. Find the equation of the line for which $\tan \theta=\frac{1}{2}$, where θ is the inclination of the line and i. x-intercept equal to 4 . li. y-intercepts is $-\frac{3}{2}$.

- Watch Video Solution

47. The perpendicular from the origin to the line $y=m x+c$ meets it at the point $(-1,2)$. Find the value of m and c.

- Watch Video Solution

48. The line through the points $(h, 3)$ and $(4,1)$ intersects the line $7 x-9 y-19=0$ at right angle. Find the value of A .

- Watch Video Solution

49. Find the values of k for which the line $(k-3) x-\left(4-k^{2}\right)$ $y+k^{2}-7 k+6=0$ is (a) Parallel to the xaxis, (b) Parallel to the vaxis, (c)

Passing through the origin.

- Watch Video Solution

50. Find the equation of a line through the origin which makes an angle of 45^{0} with the positive direction of x-axis.

- Watch Video Solution

51. Find the equation of the line through the point ($-1,2$) and having slope 4.

- Watch Video Solution

52. Find the equation of the line throught ($-2,3$) and having slope -4 .

- Watch Video Solution

53. Find the equation of the line passing through (0,0) with slope m.

- Watch Video Solution

54. Find the equation of the line passing through $(-4,3)$ and having slope $\frac{1}{2}$.

- Watch Video Solution

55. Find the equation of the line passing through the point $(2,2)$ and inclined to x-axis at 45^{0}.

- Watch Video Solution

56. Find the eqution of the line passing through the point ($-1,-2$) andhaving slope $\frac{4}{7}$.
57. Find the equation of the linepassing through the point $(\sqrt{2}, 2 \sqrt{2})$ and having slope $\frac{2}{3}$.

- Watch Video Solution

58. Find the equation of the line intersecting x-axis at a distance of 3 units to the left of the origin with slope -2 .

- Watch Video Solution

59. Find the eqution of a line which passes through the point $(-2,3)$ and makes an angle of 60° with thepositive direction of x-axis.

- Watch Video Solution

60. Find the equation of the straight line passing through ($3,-2$) and making an angle of 60° with the positive direction of y-axis.

Watch Video Solution

61. Find the eqn of lines which pass through the point $(1,2)$ and equally inclined to the co- ordinate axes.

- Watch Video Solution

62. Find the equation of the straight line which passes through the point $(1,2)$ and makes such an angle with the positive direction of x-axis whose sine is $\frac{3}{5}$.

- Watch Video Solution

63. Find the slope of the line passing through the points $(3,4)$ and $(1,2)$. Also find its equation.

Watch Video Solution

64. Find the equation of the line passing through $(-3,5)$ and perpendicular to the line through the points $(2,5)$ and $(-3,6)$.

- Watch Video Solution

65. Find the equation of the right bisector of the line segment joining eth points $A(1,0)$ and $B(2,3)$

- Watch Video Solution

66. Find the equation of the right bisector of the line segment joining the points (3, 4) and (1, 2).
67. The perpendicular from the origin to a line meets it at the point $(-2,9)$ find the equation of the line.

- Watch Video Solution

68. A line perpendicular to the in segment joining the points $(1,0)$ and $(2,3)$ divides it in the ratio $1: n$. Find the equation of the line.

- Watch Video Solution

69. Find the equation of the line through the point $(0,2)$ making an angle $\frac{\pi}{6}$ with the positive x-axis. Also find the equation of the line parallel to it and crossing the y-axis at a distance of 2 units below the origin.

- Watch Video Solution

70. Find the equation of the linepassing through the point $(2,3)$ and $(5,-2)$.

- Watch Video Solution

71. Find the equation of the line passing through the following pair of points ($0 .-3$) and (5,0)

- Watch Video Solution

72. Find the equation of the line passing through the pair of points:
$(-1,1)$ and $(2,-4)$

- Watch Video Solution

73. Find the equation of the line passing through the pair of points:
$(1,-1)$ and $(3,5)$
74. Find the equation of the straight line whichpasses throought the two points: $(a, b),(a+r \cos \alpha, b+r \sin \alpha)$

- Watch Video Solution

75. Find the equation of the straight line whichpasses throought the two points: $\left(a t_{1}^{2}, 2 a t_{1}\right),\left(a t_{2}^{2}, 2 a t_{2}\right)$

- Watch Video Solution

76. Find the equation of the sides of the triangle whose vertices are $(2,1),(-2,3)$ and $(4,5)$

- Watch Video Solution

77. By using the concept of equation of a line, prove that the three points
$(3, \quad 0),(2$,
$2)$ and (8,
2) are collinear.

- Watch Video Solution

78. The vertices of $\mathrm{A} P \mathrm{PQ}$ are $P(2,1), Q(2,3)$ and $R \quad(4, \quad 5)$. Find equation of the median through the vertex R.

- Watch Video Solution

79. The Fahrenheit temperature F and absolute temperature K satisfy a linear equation. Given that $K=273$ when $F=32$ and that $K=373$ when $F=212$. Express K in terms of F and find the value of F , when $K=0$.

- Watch Video Solution

80. Find the equation of the line whose intercepts on x and y axes are 2 and -3 respectively.

- Watch Video Solution

81. Find the equation of the line, which makes intercepts -3 , and 2 on the x and y-axes respectively.

- Watch Video Solution

82. Find the equation of the straight line whichpasses through the point
$(2,3)$ and cuts off equal intercepts on the axes. (A) `

- Watch Video Solution

83. Find the equation of the straight line which cuts off equal and positive intercepts from the axes andpasses through the point $(3,4)$.
84. Find the equation of the line which cuts off equal and positive intercepts from the axes and passes through the point (α, β).

- Watch Video Solution

85. Find the equation of the straight line which passes through the point $(2,3)$ and whose intercept on the x-axis is double that on the y-axis.

- Watch Video Solution

86. Find the equation of the straight line which passes through the point
$(2,3)$ and whose intercept on the y-axis is thrice that on the x-axis.

- Watch Video Solution

87. Find the equation of the straight line passing through the point ${ }^{`}(3$, $-4)$ and cutting off intercepts, equal but of opposite signs, from the axis.

- Watch Video Solution

88. A straight line passes through the point (α, β) and this point bisects the portion of the line intercepted between the axes. Show that the equation of the straight line is $\frac{x}{2 \alpha}+\frac{y}{2 \beta}=1$.

- Watch Video Solution

89. Find the equation of the straight lines each of which passes through the point $(3,2)$ and cuts off intercepts aandb respectively on xandy - axes such that $a-b=2$.

- Watch Video Solution

90. Find the equations to the straight lines which pass through the point $(-2,3)$ and cut the axes at $A(a, 0)$ and $B(0, b)$ so that $a+b=2$

- Watch Video Solution

91. Find equation of the line passing through the point $(2,2)$ and cutting off intercepts on the axes whose sum is 9 .

- Watch Video Solution

92. A straight line passes through the point $(3,-2)$ and this point bisects theportion of the line intercepted between the axes, find the equation of the line

- Watch Video Solution

93. Point $R(h, k)$ divides a line segment between the axes m the ratio $1: 2$. Find equation of the line.

- Watch Video Solution

94. Find the equation of the line which passes through $P(1,-7)$ and meets the axes at $A a n d B$ respectively so that $4 A P-3 B P=0$.

- Watch Video Solution

95. Find the equation of straight line which passes through the point $P(2,6)$ and cuts the coordinate axis at the point A and B respectively so that $A P: B P=2: 3$.

- Watch Video Solution

96. For the straight line $\sqrt{3} y-3 x=3$, find the intercepts on the x-axis and y -axis.

Watch Video Solution

97. Find the equation of the straight line whose intercepts on the axes are twice the intercepts of the straight line $3 x+4 y=6$.

- Watch Video Solution

98. find the equation of the straight line passing through $(2,1)$ and bisecting the portion of the straight line $3 x-5 y=15$ lying between the axes.

- Watch Video Solution

99. Find the equations of the straight lines which pass through the origin and trisect the portion of the straight line $2 x+3 y=6$ which is intercepted between the axes.

- Watch Video Solution

100. Prove that the points whose coordinates are respectively (5,1), (1,-1) and $(11,4)$ lie on a straight line and find its intercepts on the axes

- Watch Video Solution

101. find the gradient and intercepts on the axes of the straight line passing through the point $(1,-3)$ and $(4,5)$.

- Watch Video Solution

102. Find the equation of the line where the perpendicular distance p of the line from origin and the angle α made by the perpendicular with x axis are given as: $p=3, \alpha=45^{0}$

- Watch Video Solution

103. Find the equation of the line where the perpendicular distance p of the line from origin and the angle α made by the perpendicular with x axis are given as: $p=1, \alpha 90^{0}$

- Watch Video Solution

104. Find the equation of the line where the perpendicular distance p of the line from origin and the angle α made by the perpendicular with x axis are given as: $p=1, \alpha=90^{\circ}$

- Watch Video Solution

105. Find the equation of the line where the perpendicular distance p of the line from origin and the angle α made by the perpendicular with x axis are given as: $p=4, \alpha=15^{0}$

- Watch Video Solution

106. Find the equation of the line which satisfy the given conditions :

Perpendicular distance from the origin is 5 units and the angle made by the perpendicular with the positive xaxis is $30 o$.

(Watch Video Solution

107. the length of the perpendicular from the origin to a line is 7 and a line makes an angle of 150° with the positive direction of y-axis . then the equation of the line is:

- Watch Video Solution

108. Find the equation of the straight line upon which the length of the perpendicular from the origin is 2 and this perpendicular makes an angle of 30^{0} with the positive direction of y -axis (in clockwise direction).

- Watch Video Solution

109. Find the equation of the line which is at a distance 5 from the origin and the perpendicular from the origin to the line makes an angle 60° with thepositive direction of the x-axis.

- Watch Video Solution

110. Find the equation of the straight line upon which the length of the perpendicular from the origin is 5and the slope of this perpendicular is $\frac{3}{4}$.

- Watch Video Solution

111. A straight road is at a distance of $5 \sqrt{2} \mathrm{~km}$ from a place. The shortest distance of the road from the place is in the N.E. direction. Do the following villages which (i) is 6 km East and 4 km North from the place lie on the road or no, (ii) is 4 km East and 3 km North from the place, lie on the road or not?

- Watch Video Solution

112. Find the co-ordinates of the point at at a distance 6 units from the point $(1,1)$ in the direction making an angle of 60° with the positive direction of the x - axis.

- Watch Video Solution

113. Find the direction in which a straight line must be drawn through the point (1, 2)so that its point of intersection with the line $x+y 4$ may be at a distance of 3 units from this point.
114. Find the distance of the line $2 x+y=3$ from the point ($-1,3$) in the direction whose slope is 1 .

- Watch Video Solution

115. Find the distance of the line $4 x y=0$ from the point $\mathrm{P}(4,1)$ measured along the line making an angle of 135 owith the positive xaxis.

- Watch Video Solution

116. The straight line through $P\left(x_{1}, y_{1}\right)$ inclined at an angle θ with the x axis meets the line $a x+b y+c=0 \in Q$. Find the length of $P Q$.

- Watch Video Solution

117. a line drawn through $A(4,-1)$ parallel to the line $3 x-4 y+1=0$. Find the coordinates of two points on this line which are at a distance of 5 units from A

- Watch Video Solution

118. Find the distance of the point $(3,5)$ from the line $2 x+3 y=14$ measured parallel to the line $x-2 y=1$.

- Watch Video Solution

119. Find the distance of the line $4 x+7 y+5=0$ from the point $(1,2)$ along the line $2 x-y=0$.

- Watch Video Solution

120. The co-ordinates of the extremities of one diagonal of a square are $(1,1)$ and $(1,-1)$ Find the co-ordinates of its other vertices and the equation of the other diagonal

- Watch Video Solution

121. $A B$ is a side of a regular hexagon $A B C D E F$ and is of length a with
A as the origin and $A B$ and $A E$ as the x-axis andy-axis respectively. Find the equation of lines $A C, A F$ and $B E$

- Watch Video Solution

122. Reduce each of the following equations into slope-intercept from $7 x+3 y-6=0$

- Watch Video Solution

123. Reduce each of the following equations into slope-intercept from $6 x+3 y-5=0$

- Watch Video Solution

124. Reduce each of the following equations into slope-intercept from (A) $3 X+3 Y=5$

- Watch Video Solution

125. Reduce each of the following equations into slope-intercept from $2 x-4 y=5$

- Watch Video Solution

126. Reduce each of the following equations into slope-intercept from
$y=0$
127. Reduce the following equations into slope intercept form and find their slopes and the y intercepts.(i) $x+7 y=0$, (ii) $6 x+3 y 5=0$, (iii) $y=0$.

- Watch Video Solution

128. Reduce the equations to the intercept form $2 x-3 y=5$

- Watch Video Solution

129. Reduce the equations to the intercept form $3 x-4 y=10$

- Watch Video Solution

130. Reduce the equations to the intercept form $\sqrt{3} y-3 x=3$
131. Reduce the equations to the intercept form $4 x-3 y=6$

- Watch Video Solution

132. Reduce the following equations into intercept form and find their intercepts on the axes.(i) $3 x+2 y 12=0$, (ii) $4 x 3 y=6$, (iii) $3 y+2=0$.

- Watch Video Solution

133. Reduce the following equations into intercept form and find their intercepts on the axes.(i) $3 x+2 y 12=0$, (ii) $4 x 3 y=6$, (iii) $3 y+2=0$.

- Watch Video Solution

134. Reduce each of the equations to the normal form and find the length of the perpendicular from origin to the line $\sqrt{3} x+y-8=0$

Watch Video Solution

135. Reduce each of the equations to the normal form and find the length of the perpendicular from origin to the line $4 x+3 y-9=0$

- Watch Video Solution

136. Reduce each of the equations to the normal form and find the length of the perpendicular from origin to the line $3 x-4 y+10=0$

- Watch Video Solution

137. Reduce each of the equations to the normal form and find the length of the perpendicular from origin to the line $x+y-2=0$

- Watch Video Solution

138. Reduce the following equations to the normal form and find p and α in each case: $y-2=0$

- Watch Video Solution

139. Reduce each of the equations to the normal form and find the length of the perpendicular from origin to the line $x-4=0$

- Watch Video Solution

140. Reduce each of the equations to the normal form and find the length of the perpendicular from origin to the line $x-y=4$

- Watch Video Solution

141. Reduce each of the equations to the normal form and find the length of the perpendicular from origin to the line $x-\sqrt{3} y+8=0$
142. Reduce each of the equations to the normal form and find the length of the perpendicular from origin to the line $\sqrt{3} x+y+2=0$

- Watch Video Solution

143. Equation of a line is $3 x-4 y+10=0$. Find its (i) slope, (ii) x and yintercepts.

- Watch Video Solution

144. For the straight line $8 x-15 y+51=0$, find the length of the perpendicular from the origin to this line and the inclination of this perpendicular with the x-axis.

- Watch Video Solution

145. Find the equation of the line joining the points $(1,2)$ and $(-3,1)$.

Find its inter-cepts on the axes. If p be the length of the perpendicular from the origin to the line find the value of p.

- Watch Video Solution

146. Find the point of intersection of the lines $2 x-3 y+8=0$ and $4 x+5 y=6$

- Watch Video Solution

147. Find the points of intersection of the following pair of lines:
$2 x+3 y-6=0,3 x-2 y-6=0$

- Watch Video Solution

148. Find the points of intersection of the following pair of lines:
$x=0,2 x-y+3=0$

Watch Video Solution

149. For what value of m the line $m x+2 y+5=0$ will pass through the point of intersection of the lines $x-4 y=3$ and $x+2 y=0$?

- Watch Video Solution

150. Find the point of intersection of lines : $y t_{1}=x+a t_{1}^{2}$ and $y t_{2}=x+a t_{2}^{2}$

- Watch Video Solution

151. If the straight line $\frac{x}{a}+\frac{y}{b}=1$ passes through the line point of intersection of the lines $x+y=3 a n d 2 x-3 y=1$ and is parallel to $x-y-6=0$, find $a a n d b$.

- Watch Video Solution

152. Find the vertices and the area of the triangle whose sides are $x=y, y=2 x$ and $y=3 x+4$.

- Watch Video Solution

153. The sides of a triangle are given by
$x-2 y+9=0,3 x+y-22=0$ and $x+5 y+2=0 . \quad$ Find \quad the vertices of the triangle.

- Watch Video Solution

154. Find the vertices of the triangle whose sides are $y+2 x=3,4 y+x=5$ and $5 y+3 x=0$

- Watch Video Solution

155. Find the area of the triangle formed by the lines $y-x=0, x+y=0$ and $x-k=0$.

- Watch Video Solution

156. If m_{1} and m_{2} are the roots of the equation $x^{2}+(\sqrt{3}+2) x+\sqrt{3}-1=0$, then the area of the Δ formed by lines $y=m_{1} x, y=m_{2} x, y=c$ is: $\mathrm{a} .\left(\frac{\sqrt{33}+\sqrt{11}}{4}\right) c^{2} \mathrm{~b} .\left(\frac{\sqrt{32}+\sqrt{11}}{16}\right) c$ c. $\left(\frac{\sqrt{33}+\sqrt{10}}{4}\right) c^{2}$ d. $\left(\frac{\sqrt{33}+\sqrt{21}}{4}\right) c^{3}$

D Watch Video Solution

157. Three sides $A B, A C a n d C A$ of triangle $A B C$ are $5 x-3 y+2=0, x-3 y-2=0 a n d x+y-6=0$ respectively. Find the equation of the altitude through the vertex A.

- Watch Video Solution

158. Find the equation of line parallel to the y-axis and drawn through the point of intersection of $x 7 y+5=0$ and $3 x+y 7=0$.

- Watch Video Solution

159. Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines $x-7 y+5=0$ and $3 x+y=0$.

- Watch Video Solution

160. Find the coordinates of the foot of perpendicular from a point $(-1,3)$ to the line $3 x-4 y-16=0$

- Watch Video Solution

161. Two lines cut on the axis of x intercepts 4 and -4 and on the axis of y intercepts 2 and 6 respectively. Find the coordinates of their point of intersection.

- Watch Video Solution

162. Find the coordinates of the orthocentre of a triangle whose vertices are $(-1,3)(2,-1)$ and $(0,0)$. [Orthocentre is the point of concurrency of three altitudes].

- Watch Video Solution

163. Find the coordinates of the incentre and centroid of the triangle

| whosesides

 $3 x-4 y=0,12 y+5 x=0 a d n y-15=0$. | the equations |
| :--- | :---: | :--- |
| $3 x=0$ | |

- Watch Video Solution

164. Find the coordinats of the incentre of the triangle whose sides are $x=3, y=4$ and $4 x+3 y=12$. Also find the centroid.

- Watch Video Solution

165. Find the circumcentre of the triangle whose sides are $3 x-y+3=0,3 x+4 y+3=0$ and $x+3 y+11=0$.

- Watch Video Solution

166. Find the circumcentre of the triangle whose vertices are $(-2,-3),(-1,0),(7,-6)$.

- Watch Video Solution

167. Find the orthocentre of the triangle whose vertices are $(0,0),(6,1)$ and $(2,3)$.

- Watch Video Solution

168. Two vertices of a triangle are $(4,-3) \&(-2,5)$. If the orthocentre of the triangle is at (1, 2), find coordinates of the third vertex.
169. Find the orthocentre of the triangle the equations of whose sides are $x+y=1,2 x+3 y=6 a n d 4 x-y+4=0$.

- Watch Video Solution

170. Find if the following lines are concurrent. $5 x-3 y-4=0, x-5 y+7=0,6 x-17 y+24=0$

- Watch Video Solution

171. Examine whether the following three lines are concurrent or not. If yes, find the point of concurrenty
$2 x+3 y-4=0, x-5 y+7=0,6 x-17 y+24=0$

- Watch Video Solution

172. Find the value of m so that the straight lines $y=x+1, y=2(x+1)$ and $y=m x+3$ are concurrent.

- Watch Video Solution

173. Find the value of m so that the lines $3 x+y+2=0,2 x-y+3=0$ and $x+m y-3=0 \quad$ may be concurrent.

- Watch Video Solution

174. Find the value of m for which the lines
$m x+(2 m+3) y+m+6=0 a n d m x+(2 m+1) x+(m-6) y+9=0$ intersect at a; point on $y-a \xi s$.

- Watch Video Solution

175. Find the value of m so that lines $y=x+1,2 x+y=16$ and $y=m x-4$ may be concurrent.

Watch Video Solution

176. If the lines $2 a+y 3=0,5 x+k y 3=0$ and $3 x y 2=0$ are concurrent, find the value of k.

- Watch Video Solution

177.

the
three
lines
$a x+a^{2} y+1=0, b x+b^{2} y=1=0$ and $c x+c^{2} y+1=0 \quad$ are concurrent, show that at least two of three constants a, b, c are equal.

- Watch Video Solution

$L_{1}=(b+c) x+a y+1=0, L_{2}=(c+a) x+b y+1=0 n d L_{3}=(a+b$
are concurrent.

- Watch Video Solution

179. Given a tringle with vertices $A(-2,3), B(-4,1)$ and $C(2,5)$.

Find the equations of the medians and show that they meet in one point.

- Watch Video Solution

180. The coordinates of points A, B and C are $(1,2),(-2,1)$ and $(0,6)$. Verify if the medians of the triangle ABC are concurrent..

- Watch Video Solution

181. Show that the perpendicular bisectors of the sides of the triangle with vertices $(7,2),(5,-2)$ and $(-1,0)$ are concurrent. Also find the coordinates of the point of concurrence (circumcentre).

- Watch Video Solution

182. Show that the perpendicular bisectors of the sides of a triangle are concurrent.

- Watch Video Solution

183. Altitudes the perpendiculars drawn from the vertices of a triangle to the opposite side are known as the altitudes of the triangle.

- Watch Video Solution

184. Find the angle between the lines $x+3 y-8=0$ and $2 x-3 y+6=0$.

- Watch Video Solution

185. Find the obtuse angle between the straight lines $9 x+3 y-4=0$ and $2 x+4 y+5=0$.

- Watch Video Solution

186. Find the angle between the lines $x=a$ and $b y+c=0$.

- Watch Video Solution

187. Find the angle between the lines $3 x=5$ and $3 x+5 y-2=0$.

- Watch Video Solution

188. Find angles between the lines $\sqrt{3} x+y=1$ and $x+\sqrt{3} y=1$.

- Watch Video Solution

189. Find the tangent of the angle between the lines which have intercepts 3,4 , and 1,8 on the x and y axes respectively.

- Watch Video Solution

190. Find the tangent of the angle between the lines whose intercepts on the axes are respectively, $p,-q$ and $q,-p$.

- Watch Video Solution

191. Find the angle between the line joining the points $(2,0),(0,3)$ and the line $x+y=1$.
192. The line through $(4,3)$ and $(-6,0)$ intersects the line $5 x+y=0$.

Find the angles of intersection.

- Watch Video Solution

193. Prove that the line $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}-\frac{y}{a}=1$ are perpendicular to each other.

- Watch Video Solution

194. Show that the line joining $(2,-3)$ and $(-1,2)$ is perpendicular to the line joining $(3,7)$ and $(-2,4)$.

- Watch Video Solution

195. A line passing through the points $(a, 2 a)$ and $(-2,3)$ is perpendicular to the line $4 x+3 y+5=0$, find the value of a.

- Watch Video Solution

196. If the vertices of a triangle have rational coordinates, then prove that the triangle cannot be equilateral.

D Watch Video Solution

197. Prove that the line $k^{2} x+k y+1=0$ is perpendicular to the line $x-k y=1$ for all real values of $k(\neq 0)$.

- Watch Video Solution

198. For what value of k is the line $x-y+2+k(2 x+3 y)=0$ parallel to the line $3 x+y=0$?

- Watch Video Solution

199.

$2 x-3 y+1=0, x+y=3,2 x-3 y=2$ and $x=4-y \quad$ form \quad a parallelogram.

- Watch Video Solution

200. If $x \cos \theta+y \sin \theta=2$ is perpendicular to the line $x-y=3$ then what is one of the value of θ ?

- Watch Video Solution

201. If the line $x-3 y+5+k(x+y-3)=0$, is perpendicular to the line $x+y=1$, and k.

- Watch Video Solution

202. The line through the points $(h, 3)$ and $(4,1)$ intersects the line $7 x-9 y-19=0$ at right angle. Find the value of A .

- Watch Video Solution

203. Examine which of the pair of lines are intersecting, parallel, perpendicular or coincident : $x-2 y+3=0$ and $2 x-4 y+5=0$

- Watch Video Solution

204. Examine which of the pair of lines are intersecting, parallel, perpendicular or coincident : $2 x+3 y+5=0$ and $4 x+6 y+10=0$

- Watch Video Solution

205. Examine which of the pair of lines are intersecting, parallel, perpendicular or coincident : $x-y+1=0$ and $x+y+2=0$
206. Examine which of the pair of lines are intersecting, parallel, perpendicular or coincident : $x-y+2=0$ and $2 x-3 y+5=0$

- Watch Video Solution

207. Two lines passing through the point $(2,3)$ make an angle of 45^{0}. If the slopeof one of the lines is 2 , find the slope of the other

- Watch Video Solution

208. Two lines passing through the point $(2,3)$ intersect each other at an angle 60°. If slope of one lineis 2 , find the equation of the other line.

- Watch Video Solution

209. Find the slope of the lines which makee an angle of 45^{0} with the line $x-2 y=3$

- Watch Video Solution

210. Find the equation of the straight lines passing through $(2,-1)$ and making an angle of 45^{0} with the line $6 x+5 y=8$.

- Watch Video Solution

211. Find the equation of the legs of a right isosceles triangle if the equation of its hypotenuse is $x-2 y-3=0$ and the vertex of the right angle is at the point $(1,6)$,

- Watch Video Solution

212. The hypotenuse of a right angled triangle has its ends at the points $(1,3)$ and $(4,1)$. Find the equation of the legs (perpendicular sides) of the triangle.

- Watch Video Solution

213. Find the equation of the straight liens passing through the origin making an angle 45^{0} with straight line $\sqrt{3} x+y=11$

- Watch Video Solution

214. Find the equation of the two straight lines through $(1,2)$ forming the two sides of a square of which $4 x+7 y=12$ is one diagonal

- Watch Video Solution

215. A line through the point $P(1,2)$ makes an angle of 60° with the positive direction of x-axis and is rotated about P in the clockwise direction through an angle 15^{0}. Find the equation of the straight line in the new position.

- Watch Video Solution

216. Find the equation of the straight lines passing through the origin making an angle α with the straight line $y=m x+c$.

- Watch Video Solution

217. A line $x-y+1=0$ cuts the y-axis at A. This line is rotated about A in the clockwise direction through 75°. Find the equation of the line in the new position (A) $\sqrt{y}+x=\sqrt{3}$ (B) $\sqrt{x}+y=\sqrt{3}$ (C) $x+\sqrt{y}=1$
(D) $\sqrt{x}+y=1$
218. The slope of a line is double of the slope of another line. If tangent of the angle between them is $\frac{1}{3}$, find the slopes of the lines.

- Watch Video Solution

219. Find the equations of the lines which pass through the point $(4,5)$ and make equal angles with the lines $5 x-12 y+6=0$ and $3 x=4 y+7$

- Watch Video Solution

220. If the lines $y=3 x+1$ and $2 y=x+3$ are equally inclined to the liney $=m x+4$, find the value of m.

- Watch Video Solution

221. A ray of light passing through the point $P(1,2)$ reflects on the x-axis at the point A and the reflected ray passes through the point $Q(5,3)$.Find the
coordinates of the point A .

- Watch Video Solution

222. Let $(2,1),(-3,-2)$ and (a, b) form a triangle. Show that the collection of the points (a, b) form a line for which the triangle is isosceles. Find the equation of that line.

- Watch Video Solution

223. Find the equation of the straight line parallel to $x+2 y=3$ and passing through the point $(3,4)$.

- Watch Video Solution

224. Find the equation of the line through $(-2,3)$ parallel to the line $3 x-4 y+2=0$
225. Find the equation of the line through $(-2,-1)$ and parallel to line $x=0$.

- Watch Video Solution

226. Find the equation to the straight line parallel to $3 x-4 y+6=0$ and passing through the middle point of the joint of points (2,3), and (4,-1).

- Watch Video Solution

227. Find the equation to the straight line passing through the point $(2,1)$ and parallel to the line joining to point $(2,3)$ and $(3,-1)$

- Watch Video Solution

228. Find the equation of the straight line which passes through the point (α, β) and is parallel to the line $l x+m y+n=0$

Watch Video Solution

229. Find the equaiton of the line that has y-intercept 4 and is parallel to the line $2 x-3 y=7$.

- Watch Video Solution

230. Prove that the line through the point $\left.x_{1}, y_{1}\right)$ and parallel to the line $A x+B y+C=0$ is $A\left(x-x_{1}\right)+B\left(y-y_{1}\right)=0$.

- Watch Video Solution

231. Find the equation of a straight line parallel to $2 x+3+11=0$ and which is such that the sum of its intercepts on the axes is 15 .
232. Find the equation of the line through point $(-2,-1)$ and perpendicular to the line $y=x$.

- Watch Video Solution

233. Find the equation of the straight line passing through the point
$(2,5)$ and perpendicular to the line $2 x+5 y=31$.

- Watch Video Solution

234. Find the equation of a line perpendicular to the line $x-2 y+3=0$ and passing through the point $(1,-2)$.

- Watch Video Solution

235. Find equation of the line perpendicular to the line $x \quad 7 y+5=0$ and having x intercept 3.

- Watch Video Solution

236. Find the equation of a line drawn perpendicular to the line $\frac{x}{4}+\frac{y}{6}=1$ through the point where it meets the y axis.

- Watch Video Solution

237. Find the equation of the straightline perpendicular to the line $7 x+2 y+7=0$ and passing through the origin.

- Watch Video Solution

238. Find the equation of the straight line through the point (α, β) and perpendiculasr to the line $l x+m y+n=0$.
239. Find the equation of the straight line through $(a \cos \theta, b \sin \theta)$ perpendicular to the line $\frac{x}{a \cos \theta}+\frac{y}{b \sin \theta}=1$.

- Watch Video Solution

240. Find the equation to the line through the point $(-4,-3)$ and perpendicular to the line joining the points $(1,3)$ and 2,7$)$.

- Watch Video Solution

241. Find the equation of the perpendicular bisector of the line segment joining the origin and the point $(4,6)$.

- Watch Video Solution

242. The line $y=0$ divides the line joining the points $(3,-5)$ and $(-4,7)$ in the ratio :

- Watch Video Solution

243. Find the equation of the straight line perpendicular to $2 x-3 y=5$ and cutting off an intercept 1 on the positives direction of the x-axis.

- Watch Video Solution

244. Find the equation of the straight line through $\left(x_{1}, y_{1}\right)$ perpendicular to the line joining $\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$.

- Watch Video Solution

245. Find the equation of the line that has y-intercept -3 and is perpendicular to the line $3 x+5 y=4$.
246. Find the equation of a straight line drawn perpendicular to the line $\frac{x}{a}+\frac{y}{b}=1$ through the point where it meets the y-axis.

- Watch Video Solution

247. Find the coordinates of the foot of the perpendicular drawn from the point ($1,-2$) on the line $y=2 x+1$.

- Watch Video Solution

248. Find the coordinates of the foot of the perpendicular from the point $(-1,3)$ to the line $3 x-4 y-16=0$.

- Watch Video Solution

249. Find the projection of the point $(1,0)$ on the line joining the points $` \mathrm{P}(-1,2)$ and $\mathrm{Q}(5,4)$.

Watch Video Solution

250. Find the image of the point $(1,-2)$ with respect to the line mirror $2 x-y+1=0$

- Watch Video Solution

251. Assuming that straight lines work as the plane mirror for a point, find the image of the point $(1,2)$ in the line $x 3 y+4=0$.

- Watch Video Solution

252. Find the image of the point $(3,8)$ with respect to the line $x+3 y=7$ assuming the line to be a plane mirror.
253. If the image of the point $(2,1)$ with respect to a line mirror be $(5,2)$, find the equation of the mirror.

- Watch Video Solution

254. If (h, r) is the foot of the perpendicular from $\left(x_{1}, y_{1}\right)$ to
$l x+m y+n=0$, prove that $: \frac{x_{1}-h}{l},=\frac{y_{1}-r}{m},=\frac{l x_{1}+m y_{1}+n}{l^{2}+m^{2}}$

- Watch Video Solution

255. Find the equation of the straight line passing through the point $(2,-6)$ and the point of intersection of the lines $5 x-2 y+14=0$ and $2 y=8-7 x$.

- Watch Video Solution

256. Find the equation of the straight line whichpasses through the point $(1,1)$ and the point of intersection of the lines $3 x+2 y=0$ and $x-2 y=0$

- Watch Video Solution

257. Find the equation of the line through the point of intersection of $x+2 y=5$ and $x-3 y=7$ and passing through the point $(0,-1)$

- Watch Video Solution

258. Find the equation of the line through the intersection of $5 x-3 y=1$ and $2 x+3 y-23=0$, and perpendicular to the line whose equation is: $x=0$

- Watch Video Solution

259. Find the equation of the line through the intersection of $5 x-3 y=1$ and $2 x+3 y-23=0$, and perpendicular to the line whose equation is: $y=0$

- Watch Video Solution

260. Find the equation of the line through the intersection of $5 x 3 y=\backslash 1$ and $2 x+\backslash 3 y \backslash 23 \backslash=\backslash 0$ and perpendicular to the line $5 x \backslash 3 y \backslash 1 \backslash=\backslash 0$.

- Watch Video Solution

261. Find the equation of the line through the intersection of lines $x+2 y 3=0$ and $4 x y+7=0$ and which is parallel to $5 x+4 y 20=0$

- Watch Video Solution

262. Find the equation of line parallel to the y-axis and drawn through the point of intersection of $x 7 y+5=0$ and $3 x+y 7=0$.

- Watch Video Solution

263. Find the equation to the straight line which passes through the point of intersection of the straight lines $x+2 y=5$ and $3 x+7 y=17$ and is perpendicular to the straight line $3 x+4 y=10$

- Watch Video Solution

264. Find the equation to the straight line drawn through the point of intersection of $x+2 y+3=0$ and $3 x+4 y+7=0$ and perpendicular to $y-x=8$.

- Watch Video Solution

265. A person standing at the junction (crossing) of two straight paths represented by the equations $2 x-3 y+4=0$ and $3 x+4 y-5=0$ wants to reach the path whose equation is $6 x-7 y+8=0$ in the least time. Find equation of the path that he should follow.

- Watch Video Solution

266. Find the equation of the straight line passing through the point of intersection of $2 x+3 y+1=0 \operatorname{and} 3 x-5 y-5=0$ and equally inclined to the axes.

- Watch Video Solution

267. Find the equation of the straight line which passes through the point of intersection of the lines $3 x-y=5$ and $x+3 y=1$ and makes equal and positive intercepts on the axes.
268. The sides $A B$ and $A D$ of a parallelogram $A B C D$ are $2 x-y+1=0$ and $x+3 y-10=0$ respectively and C is the point $(-1,-2)$. Find the equation of the diagonals $A C$ and $B D$.

- Watch Video Solution

269. Find the equation of the line through the intersection of lines $3 x+4 y=7$ and $x-y+2=0$ and whose slope is 5.

- Watch Video Solution

270. Find the equation of the line through the intersection of the lines $2 x+\backslash 3 y \backslash 4 \backslash=\backslash 0$ and $x \backslash 5 y=\backslash 7$ that has its x-intercept equal to $\backslash 4$.

- Watch Video Solution

271. Find the equation of the line passing through the intersection of the lines $4 x+7 y-3=0$ and $2 x-3 y+1=0$ that has equal intercepts on the axes.

- Watch Video Solution

272. Prove that the family of lines represented by $x(1+\gamma)+y(2-\gamma)+5=0 \gamma$ being arbitrary, passes through a fixed point. Also find the fixed point.

- Watch Video Solution

273. Prove that the line $x(a+2 b)+y(a-3 b)=a-b$ passes through a fixed point for different values of a and b. Also find the fixed point.

- Watch Video Solution

274. Prove that the equation represent a family of lines which pass through a fixed point. Also find the fixed point : $(\gamma-1) x+\gamma y=1-3 \gamma$

- Watch Video Solution

275. Prove that the equation represent a family of lines which pass through a fixed point. Also find the fixed point : (ii) $\gamma x+y=4$

- Watch Video Solution

276. prove that all lines represented by the equation : $(2 \cos \theta+3 \sin \theta) x+(3 \cos \theta-5 \sin \theta) y-(5 \cos \theta-2 \sin \theta)=0$ pass through a fixed point for all values of θ. Find the coordinates of that point.

- Watch Video Solution

277. Examine whether the points $(3,-4)$ and $(2,6)$ are on the same or opposite sides of the line $3 x-4 y=9 ?$

- Watch Video Solution

278. Prove that the point $(2,-1)$ and $(1,1)$ are on the opposite sides of the straight line $3 x+4 y-6=0$.

D Watch Video Solution

279. Find the position of the points $(3,4)$ and $(-1,1)$ with respect to the line $6 x+y-1=0$.

- Watch Video Solution

280. Prove that the points of intersection of the line $x-y=2$ with the parallel lines $2 x+y=7$ and $2 x+y=16$ are on the opposite sides of the line $x+y=5$.

- Watch Video Solution

281. Which one of the points $(1,1),(-1,2)$ and $(2,3)$ lies on the side of the line $4 x+3 y-5=0$ on which the origin lies?

- Watch Video Solution

282. Find the length of the perpendicular from the point $(-3,4)$ to theline $3 x+4 y-5=0$

- Watch Video Solution

283. Find the distance of the point $(3,5)$ from the line $3 x \quad 4 y \quad 26=0$.

- Watch Video Solution

284. Find the distance of the point P from the line l in that : $l: 12 x-7=0 \equiv(3,-1)$

Watch Video Solution

285. Find the distance of the point P from the line l in that :
$l: 12(x+6)=5(y-2)$ and $\mathrm{P}=(-3,-4)^{\prime}$

- Watch Video Solution

286. Find the distance of the point P from the line l in that :
$l: \frac{x}{a}-\frac{y}{b}=1$ and $P \equiv(b, a)$

- Watch Video Solution

287. Find the distance of the point P from the line l in that : $l: 12(x+6)=5(y-2)$ and $P \equiv(-1,1)$
288. Find the distance of the point of intersection of the lines $2 x+3 y=21$ and $3 x-4 y+11=0$ from the line $8 x+6 y+5=0$

- Watch Video Solution

289. In the triangle $A B C$ with vertices $A(2,3), B(4,1)$ and $C(1,2)$, find the equation and length of altitude from the vertex A.

- Watch Video Solution

290. What are the points on x-axis whose perpendicular distance from the line $4 x+3 y=12$ is 4 ?

- Watch Video Solution

291. What are the points on the yaxis whose distance from the line $\frac{x}{3}+\frac{y}{4}=1$ is 4 units.

Watch Video Solution

292. Find the points on $y-a \xi s$ whose perpendicular distance from the line $4 x-3 y-12=0$ is 3 .

- Watch Video Solution

293. Find the length of the perpendicular fdrawn from the origin upon the line joining the points ${ }^{(}(\mathrm{a}, \mathrm{b})$ and (b, a) ?

- Watch Video Solution

294. Find the length of the perpendicular from the point $4,-7$) to the line joining the origin and the point of intersection of the lines
$2 x-3 y+14=0$ and $5 x+4 y-7=0$.

- Watch Video Solution

295. Find the equation of two straight lines which are parallel to $x+7 y+2=0$ and at unit distance from the point $(1,-1)$.

- Watch Video Solution

296. Find the equations of lines parallel to $3 x-4 y-5=0$ at a unit distance from it.

- Watch Video Solution

297. The equations of two lines through ($0, a$), which are at distance 'a' units from the point (2a, 2a) are
298. Find the equation of the line through the point of intersection of, the lines $x-3 y+1=0$ and $2 x+5 y-9-0$ and whose distance from the origin is $\sqrt{5}$

- Watch Video Solution

299. Find the equation of the straight line passing through the point of intersection of the lines $x-y+1=0$ and $2 x-3 y+5=0$ and at a distance $\frac{7}{5}$ from the point $(3,2)$

- Watch Video Solution

300. If the length of the perpendicular from the point $(1,1)$ to the line $a x-b y+c=0$ be, show that $\frac{1}{c}+\frac{1}{a}-\frac{1}{b}=\frac{c}{2 a b}$

- Watch Video Solution

301. Find perpendicular distance from the origin of the line joining the points $(\cos \theta, \sin \theta)$ and $(\cos \varphi, \sin \varphi)$.

- Watch Video Solution

302. If p and p_{1} be the lengths of the perpendiculars drawn from the origin upon the straight lines $x \sin \theta+y \cos \theta=\frac{1}{2} a \sin 2 \theta$ and $x \cos \theta-y \sin \theta=a \cos 2 \theta, \quad$ prove that $4 p^{2}+p^{2}{ }_{-} 1=a^{2}$.

- Watch Video Solution

303. Prove that the perpendicular distance between the lines $4 x+3 y=11$ and $8 x+6 y=15$ is $\frac{7}{10}$.

- Watch Video Solution

304. Find the distance between the parallel lines $3 x 4 y+7=0$ and $3 x 4 y+5=0$.

Watch Video Solution

305. If sum of the perpendicular distances of a variable point $P(x, y)$ from the lines $x+y 5=0$ and $3 x 2 y+7=0$ is always 10 . Show that P must move on a line.

- Watch Video Solution

306. Determine the distance between the pair of parallel lines : $4 x-3 y-9=0$ and $4 x-3 y-24=0$

- Watch Video Solution

307. Find the distance between parallel lines (i) $15 x+8 y 34=0$ and $15 x+8 y+31=0$ (ii) $|(x+y)+p=0|(x+y) \quad r=0$.

- Watch Video Solution

308. Find the distance between the parallel lines $3 x 4 y+7=0$ and $3 x 4 y+5=0$.

- Watch Video Solution

309. Find the distance between parallel lines
$15 x+8 y 34=0$ and $15 x+8 y+31=0$
(ii) $|(x+y)+p=0|(x+y) \quad r=0$.

- Watch Video Solution

310. Prove that the lines $2 x+3 y=19$ and $2 x+3 y+7=0$ are equidistant from the line $2 x+3 y=6$.

- Watch Video Solution

311. Find the equation of the line midway between the parallel lines
$9 x+6 y-7=0$ and $3 \mathrm{x}+2 \mathrm{y}+6=0{ }^{`}$

- Watch Video Solution

312. Find the distance between the lines $y=x m+c$ and $y=m x+d$.

- Watch Video Solution

313. If two sides of a square are along $5 x-12 y+26=0$ and $5 x-12 y-65=0$ then find its area.
314. The equations of two sides of a square whose area is 25 sq.units are $3-4 y=0$ and $4 x+3 y=0$. The equation of the other two sides of the square are

- Watch Video Solution

315. Prove that the diagonals of the parallelogram formed by the lines $\sqrt{3} x+y=0, \sqrt{3} y+x=0, \sqrt{3} x+y=1$ and $\sqrt{3} y+x=1 \quad$ are at right angles.

- Watch Video Solution

316. Prove that the diagonals of the parallelogram formed by the four lines $3 x+y=0,3 y+x=0,3 x+y=4,3 y+x=4$ are at right angles.
317. The equation of one side of a rectangle is $3 x-4 y-10=0$ and the coordinates of two of its vertices are $(-2,1)$ and $(2,4)$. Find the area of the rectangle and the equation of that diagonal of the rectangle which passes through the point $(2,4)$.

- Watch Video Solution

318. Area of the rhombus bounded by the four lines, $a x \pm b y \pm c=0$ is

- Watch Video Solution

319. Prove that the product of the length of the perpendiculars from the points $\left(\sqrt{a^{2}-b^{2}}, 0\right)$ and $\left(-\sqrt{a^{2}-b^{2}}, 0\right)$ to the line $\frac{x}{a} \cos \theta+\frac{y}{a} \cos \theta+\frac{y}{b} \sin \theta=1$ is

- Watch Video Solution

