

# MATHS

# **BOOKS - KC SINHA MATHS (HINGLISH)**

# TRIGONOMTERY - JEE MAINS AND ADVANCED QUESTIONS - FOR COMPETITION

### Exercise

**1.** Period of 
$$\sin^2 \theta$$
 is(A)  $\pi^2$  (B)  $\pi$  (C)  $2\pi$  (D)  $\frac{\pi}{2}$ 



**2.** the period of the 
$$f(x) = \sin^4 x + \cos^4 x$$
 is

3. 
$$\sin^2 \theta = \frac{4xy}{(x+y)^2}$$
 is true if and only if (A)  $x - y \neq 0$  (B)  $x = -y$   
(C)  $x + y \neq 0$  (D)  $x \neq 0, y \neq 0$ 

**4.** The value of 
$$rac{1- an^2 \, 15^\circ}{1+ an^2 \, 15^\circ} = \,$$
 (A) 1 (B)  $\sqrt{3}$  (C)  $rac{\sqrt{3}}{2}$  (D) 2

Watch Video Solution

5. If 
$$\tan \theta = -\frac{4}{3}$$
, then  $\sin \theta$  is  $-\frac{4}{5}but \neg \frac{4}{5}$  (b)  $-\frac{4}{5}$  or  $\frac{4}{5}$   
 $\frac{4}{5}but \neg -\frac{4}{5}$  (d) none of these

### Watch Video Solution

6. if  $\sin(\alpha + \beta) = 1$  and  $\sin(\alpha - \beta) = \frac{1}{2}$   $0 \le \alpha, \beta, \le \frac{\pi}{2}$ , then find  $\tan(\alpha + 2\beta)$  and  $\tan(2\alpha + \beta)$ 





10. Prove that: 
$$an^{-1} igg( rac{1}{4} igg) + an^{-1} igg( rac{2}{9} igg) = rac{1}{2} \cos^{-1} igg( rac{3}{5} igg)$$

11. In a 
$$\Delta ABC, 2ac\sinigg(rac{A-B+C}{2}igg)$$
 is equal to (a)  $a^2+b^2-c^2$  (b)  $c^2+a^2-b^2$  (c)  $b^2-c^2-a^2$  (d)  $c^2-a^2-b^2$ 

12. In a triangle ABC,  $a=4, b=3, \angle A=60^0$  then c is root of the equation  $c^2-3c-7=0$  (b)  $c^2+3c+7=0$  (c)  $c^2-3c+7=0$  (d)  $c^2+3c-7=0$ 

Watch Video Solution

13. In a riangle ABC,  $an rac{A}{2} = rac{5}{6}$  and  $an rac{C}{2} = rac{2}{5}$  then (A) a,c,b are in

A.P. (B) a,b,c are in A.P. (C) b,a,c are in A.P. (D) a,b,c are in G.P.

14. The trigonometric equation  $\sin^{-1}x = 2\sin^{-1}a$  has a solution for

all real values (b) 
$$|a| < rac{1}{a} \; |a| \leq rac{1}{\sqrt{2}}$$
 (d)  $rac{1}{2} < |a| < rac{1}{\sqrt{2}}$ 

#### Watch Video Solution

**15.** If in a triangle 
$$ABC$$
,  $a\cos^2\left(\frac{C}{2}\right)\cos^2\left(\frac{A}{2}\right) = \frac{3b}{2}$ , then the sides

 $a, b, andc\,$  are in A.P. b. are in G.P. c. are in H.P. d. satisfy  $a+b=\,\cdot\,$ 

Watch Video Solution

**16.** In a  $\triangle ABC$ , medians AD and BE are drawn. If  $AD = 4, \angle DAB = \frac{\pi}{6}$  and  $\angle ABE = \frac{\pi}{3}$  then the area of  $\triangle ABC$  is

17. 10. The upper  $\frac{3}{4}$  portion of a vertical pole subtends an angle  $\tan^{-1}\left(\frac{3}{5}\right)$  at the point in the horizontal plane through its foot. The tangent of the angle subtended by the pole at the same point is Watch Video Solution **18.** The sum of radii of inscribed and circumscribed circles of an n sided regular polygon of side a is Watch Video Solution  $\pi < lpha - eta < 3\pi$ , $\sinlpha + \sineta = -rac{21}{65}$ , $\coslpha + \coseta = -rac{27}{65}$ 19. ,then  $\cos\left(\frac{\alpha-\beta}{2}\right) = (A) - \frac{6}{65}(B) - \frac{3}{\sqrt{130}}(C) \frac{3}{\sqrt{130}}(D) \frac{6}{65}$ 

**20.** If  $f\!:\!R o S$  defined by  $f(x)=\sin x-\sqrt{3}\cos x+1$  is onto , then

the interval of S is :



**21.** The sides of a triangle are  $\sin \alpha$ ,  $\cos \alpha$  and  $\sqrt{1 + \sin \alpha \cos \alpha}$  for some  $\alpha$ ,  $0 < \alpha < \frac{\pi}{2}$ . Then the greatest angle of the triangle is

Watch Video Solution

**22.** A person standing on the bank of a river observes that the angle of elevation of the top of a tree on the opposite bank of the river is  $60^{\circ}$  and where he retires 40 meters away from the tree the angle of elevation becomes  $30^{\circ}$ . The breadth of the river is



23. If 
$$\cos^{-1}x - \cos^{-1} \Big(rac{y}{2}\Big) = lpha$$
 then  $4x^2 - 4xy\coslpha + y^2 =$ 

24. In triangle ABC, let  $\angle c = \frac{\pi}{2}$ . If r is the inradius and R is circumradius of the triangle, then 2(r+R) is equal to a+b (b) b+cc+a (d) a+b+c

Watch Video Solution

25. If in a  $\Delta ABC$ , the altitudes from the vertices A, B, C on opposite

sides are in H.P, then sin A, sin B, sin C are in

**26.** A triangle 
$$PQR, \angle R = 90^{\circ}$$
 and  $an\left(rac{P}{2}
ight)$  and  $an\left(rac{Q}{2}
ight)$  roots of

the  $ax^2+bx+c=0$  then prove that a+b=c



**29.** If 
$$\sin^{-1}\left(\frac{x}{5}\right) + \cos ec^{-1}\left(\frac{5}{4}\right) = \frac{\pi}{2}$$
 then a value of x is: (1) 1 (2) 3 (3) 4 (4) 5

**30.** A tower stands at the centre of a circular park. A and B are two points on the boundary of the park such that AB(=a) subtends an angle of 60*o* at the foot of the tower, and the angle of elevation of the top of the tower from A or B is 30*o*. The height of the tower is (1)  $\frac{2a}{\sqrt{3}}$  (2)  $2a\sqrt{3}$  (3)  $\frac{a}{\sqrt{3}}$  (4)  $a\sqrt{3}$ 

Watch Video Solution

**31.** The value of 
$$\cot\left(\cos ec^{-1}\frac{5}{3} + \frac{\tan^{-1}2}{3}\right)$$
 is: (1)  $\frac{6}{17}$  (2)  $\frac{3}{17}$  (2)  $\frac{4}{17}$  (4)  $\frac{5}{17}$  (4)  $\frac{5}{17}$  **Watch Video Solution**

**32.** AB is a vertical pole with B at the ground level and A at the top. A man finds that the angle of elevation of the point A from a certain point C on the ground is 60o. He moves away from the pole along the line BC to a point D such that CD = 7m. From D the angle of

elevation of the point A is 45o. Then the height of the pole is (1)

$$\frac{7\sqrt{3}}{2}\frac{1}{\sqrt{3}-1}m$$
 (2)  $\frac{7\sqrt{3}}{2}\sqrt{3}+1m$  (3)  $\frac{7\sqrt{3}}{2}\sqrt{3}-1m$  (4)  $\frac{7\sqrt{3}}{2}\frac{1}{\sqrt{3}+1}m$ 

#### Watch Video Solution

33. If  $\coslpha+\coseta+\cos\gamma=0=\sinlpha+\sineta+\sin\gamma$ , then which of

the following is/are true:- (a)  $\cos(\alpha - \beta) + \cos(\beta - \gamma) + \cos(\gamma - \delta) = -\frac{3}{2}$ (b)  $\cos(\alpha - \beta) + \cos(\beta - \gamma) + \cos(\gamma - \delta) = -\frac{1}{2}$ (c)  $\sum \cos 2\alpha + 2\cos(\alpha + \beta) + 2\cos(\beta + \gamma) + 2\cos(\gamma + \alpha) = 0$ (d)  $\sum \sin 2\alpha + 2\sin(\alpha + \beta) + 2\sin(\beta + \gamma) + 2\sin(\gamma + \alpha) = 0$ 

**34.** Let 
$$\cos(\alpha + \beta) = \frac{4}{5}$$
 and let  $s \in (\alpha\beta) = \frac{5}{13}$  where  $0 \le \alpha, \beta \le \frac{\pi}{4}$ , then  $tan2\alpha = (1) \frac{56}{33}$  (2)  $\frac{19}{12}$  (3)  $\frac{20}{7}$  (4)  $\frac{25}{16}$ 

**35.** For a regular polygon, let r and R be the radii of the inscribed and the circumscribed circles. A false statement among the following is There is a regular polygon with  $\frac{r}{R} = \frac{1}{\sqrt{2}}$  (17) There is a regular polygon with  $\frac{r}{R} = \frac{2}{3}$  (30) There is a regular polygon with  $\frac{r}{R} = \frac{\sqrt{3}}{2}$  (47) There is a regular polygon with  $\frac{r}{R} = \frac{1}{2}$  (60)

Watch Video Solution

**36.** If 
$$A = s \in {}^2 x + \cos^4 x$$
 , then for all real x : (1)  $\frac{3}{4} \le A \le 1$  (2)  $\frac{13}{16} \le A \le 1$  (3)  $1 \le A \le 2$  (4)  $\frac{3}{4} \le A \le \frac{13}{16}$ 

#### Watch Video Solution

**37.** The possible values of  $\theta \in (0, \pi)$  such that  $\sin(\theta) + \sin(4\theta) + \sin(7\theta) = 0$  are (1)  $\frac{2\pi}{9}, \frac{i}{4}, \frac{4\pi}{9}, \frac{\pi}{2}, \frac{3\pi}{4}, \frac{8\pi}{9}$  (2)

$$\frac{\pi}{4}, \frac{5\pi}{12}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{8\pi}{9} \qquad (3) \qquad \frac{2\pi}{9}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{35\pi}{36} \qquad (4)$$
$$\frac{2\pi}{9}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{8\pi}{9}$$

**38.** The equation  $e^{\sin x} - e^{-\sin x} - 4 = 0$  has (A) infinite number of real roots (B) no real roots (C) exactly one real root (D) exactly four real roots

Watch Video Solution

**39.** In riangle PQR if  $3\sin P + 4\cos Q = 6$  and  $4\sin Q + 3\cos P = 1$ 

then the angle R is equal to

Watch Video Solution

40.

$$rac{ an A}{1- an A}+rac{ an A A}{1- an A}=1+ an A+ an A+ an A=1+ an A an a$$

**41.** If x, y, z are in A.P. and  $tan^{-1}x$ ,  $tan^{-1}yandtan^{-1}z$  are also in A.P., then (1) 2x = 3y = 6z (2) 6x = 3y = 2z (3) 6x = 4y = 3z (4) x = y = z

Watch Video Solution

**42.** ABCD is a trapezium such that AB and CD are parallel and  $BC \perp CD$ . If  $\angle ADB = \theta$ , BC = pandCD = q, then AB is equal to (1)  $\frac{p^2 + q^2 \cos \theta}{p \cos \theta + q \sin \theta}$  (2)  $\frac{p^2 + q^2}{p^2 \cos \theta + q^2 \sin \theta}$  (3)  $\frac{(p^2 + q^2) \sin \theta}{(p \cos \theta + q \sin \theta)^2}$  (4)  $\frac{(p^2 + q^2) \sin \theta}{p \cos \theta + q \sin \theta}$ 

**43.** Let  $f_k(x)=rac{1}{k}\Big(\sin^k x+\cos^k x\Big)$  where  $x\in\mathbb{R}$  and  $k\geq 1$ . Then  $f_4(x)-f_6(x)$  equals

#### Watch Video Solution

**44.** A bird is sitting on the top of a vertical pole 20 m high and its elevation from a point O on the ground is 45o. It flies off horizontally straight away from the point O. After one second, the elevation of the bird from O is reduced to 30o. Then the speed (in m/s) of the bird is (1)  $40(\sqrt{2}-1)$  (2)  $40(\sqrt{3}-2)$  (3)  $20\sqrt{2}$  (4)  $20(\sqrt{3}-1)$ 

### Watch Video Solution

**45.** Let 
$$\tan^{-1} y = \tan^{-1} x + \tan^{-1} \left( \frac{2x}{1 - x^2} \right)$$
, where  $|x| < \frac{1}{\sqrt{3}}$ .  
Then a value of y is : (1)  $\frac{3x - x^3}{1 - 3x^2}$  (2)  $\frac{3x + x^3}{1 - 3x^2}$  (3)  $\frac{3x - x^3}{1 + 3x^2}$  (4)  $\frac{3x + x^3}{1 + 3x^2}$ 

**46.** If the angles of elevation of the top of a tower from three collinear points A, B and C, on a line leading to the foot of the tower, are  $30^0$ ,  $45^0$  and  $60^0$  respectively, then the ratio, AB : BC, is : (1)  $\sqrt{3}$  : 1 (2)  $\sqrt{3}$  :  $\sqrt{2}$  (3) 1:  $\sqrt{3}$  (4) 2: 3

Watch Video Solution

**47.** A value of for which 
$$\frac{2+3i\sin\theta}{1-2i\sin\theta}$$
 purely imaginary, is : (1)  $\frac{\pi}{3}$  (2)  $\frac{\pi}{6}$   
(3)  $\sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$  (4)  $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$   
Watch Video Solution

**48.** A man is walking towards a vertical pillar in a straight path, at a uniform speed. At a certain point A on the path, he observes that the angle of elevation of the top of the pillar is  $30^0$ . After walking for 10

minutes from A in the same direction, at a point B, he observes that the angle of elevation of the top of the pillar  $is60^0$ . Then the time taken (in minutes) by him, from B to reach the pillar, is : (1) 6 (2) 10 (3) 20 (4) 5



**49.** If  $0 \le x < 2\pi$ , then the number of real values of x, which satisfy the equation  $\cos x + \cos 2x + \cos 3x + \cos 4x = 0$ , is : (1) 3 (2) 5 (3) 7 (4) 9

Watch Video Solution

50. If  $5( an^2x-\cos^2x)=2\cos 2x+9$ , then the value of cos4x is



**51.** Let a vertical tower AB have its end A on the level ground. Let C be

the mid-point of AB and P be a point on the ground such that AP-2AB. If

#### BPC- $\beta$ , then tan $\beta$ is equal to 12. 6 (2) 4 2 4



**52.** If 
$$\theta$$
 lies in 3rd quadrant, then the value of the expression  $\sqrt{4\sin^4\theta + \sin^2 2\theta} + 4\cos^2\left(\frac{\pi}{4} - \frac{\theta}{2}\right)$  is equal to

Watch Video Solution

53. The number of real solutions of the equation  $(\sin x - x)(\cos x - x^2) = 0$  is

### Watch Video Solution

54. If 
$$\sin^{-1}\left(x - \frac{x^2}{2} + \frac{x^3}{4} + \frac{x^4}{8} + \dots\right) = \frac{\pi}{6}$$
, where  $|x| < 2$  then the value of x is (A)  $\frac{2}{3}$  (B)  $\frac{3}{2}$  (C)  $-\frac{2}{3}$  (D)  $-\frac{3}{2}$ 

**55.** If 
$$f: \left[0, \frac{\pi}{2}\right) \to R$$
 is defined as  $f(\theta) = \begin{vmatrix} 1 & \tan \theta & 1 \\ -\tan \theta & 1 & \tan \theta \\ -1 & -\tan \theta & 1 \end{vmatrix}$ 

Then, the range of f is

Watch Video Solution

**56.** prove:cot 
$$^{-1}\left(\frac{1}{2}\right) - \frac{1}{2}$$
cot  $^{-1}\left(\frac{4}{3}\right) = \frac{\pi}{4}$ 

Watch Video Solution

57. The minimum value of  $\cos heta+\sin heta+rac{2}{\sin2 heta}$  for  $heta\in\left(0,rac{\pi}{2}
ight)$  is (A)

$$2+\sqrt{2}$$
 (B) 2 (C)  $1+\sqrt{2}$  (D)  $2\sqrt{2}$ 

Watch Video Solution

**58.** In a triangle ABC,  $a^2\cos^2 A = b^2 + c^2$  then triangle is



60. The trigonometric equation  $\sin^{-1}x = 2\sin^{-1}a$  has a solution for all real values (b)  $|a| < \frac{1}{a} |a| \le \frac{1}{\sqrt{2}}$  (d)  $\frac{1}{2} < |a| < \frac{1}{\sqrt{2}}$ 

Watch Video Solution

**61.** In a triangle the sum of two sides is x and the product of the same is y. If  $x^2 - c^2 = y$  where c is the third side. Determine the ration of the in-radius and circum-radius 62. Arithmetic mean of the non-zero solutions of the equation  $\tan^{-1}\left(\frac{1}{2x+1}\right) + \tan^{-1}\left(\frac{1}{4x+1}\right) = \tan^{-1}\left(\frac{2}{x^2}\right)$ Watch Video Solution

**63.** For  $x \in (0,\pi),$  the equation  $\sin x + 2s \in x - \sin 3x = 3$  has

infinitely many solutions three solutions one solution no solution

**64.** The number of distinct solutions of the equation  $\frac{5}{4}\cos^2 2x + \cos^4 x + \sin^4 x + \cos^6 x + \sin^6 x = 2$  in the interval  $[0, 2\pi]$  is

**65.** In a triangle  $\Delta XYZ$ , leta, bandc be the lengths of the sides opposite to the angles X, Y and Z respectively. If  $2(a^2 - b^2) = c^2$  and  $\lambda = \frac{\sin(X - Y)}{\sin Z}$  then possible values of n for which  $\cos(n\pi\lambda) = 0$  is (are)

Watch Video Solution

**66.** If 
$$\alpha = 3\sin^{-1}\left(\frac{6}{11}\right)$$
 and  $\beta = 3\cos^{-1}\left(\frac{4}{9}\right)$ , where the inverse

trigonometric functions take only the principal values, then the correct

option(s) is (are)

Watch Video Solution

**67.** Let `-pi/6beta\_1 and alpha\_2>beta\_2*then*alpha\_1+beta\_2` equals



**68.** Let  $S = \left\{ x \varepsilon (-\pi, \pi) : x \neq 0, + \frac{\pi}{2} \right\}$  The sum of all distinct solutions of the equation  $\sqrt{3} \sec x + \cos ecx + 2(\tan x - \cot x) = 0$  in the set S is equal to



**69.** Q. The value of is equal 
$$\sum_{k=1}^{13} \left( \frac{1}{\sin\left(\frac{\pi}{4} + (k-1)\frac{\pi}{6}\right)\sin\left(\frac{\pi}{4} + k\frac{\pi}{6}\right)} \right)$$

is equal

Watch Video Solution

**70.** In a triangle XYZ, let x, y, z be the lengths of sides opposite to the angles X, Y, Z, respectively, and 2s = x + y + z. If  $\frac{s-x}{4} = \frac{s-y}{3} = \frac{s-z}{2}$  of incircle of the triangle XYZ is  $\frac{8\pi}{3}$ 

 $f(x)|\cos(2x)\cos(2x)\sin(2x) - \cos x \cos x - \sin x \sin x \sin x \cos x|$ , then: f'(x) = 0 at exactly three point in  $(-\pi, \pi)$  f'(x) = 0 at more than three point in  $(-\pi, \pi)$  f(x) attains its maximum at x = 0 f(x)attains its minimum at x = 0

Watch Video Solution

**72.** Let  $\alpha and\beta$  be nonzero real numbers such that  $2(\cos\beta - \cos\alpha) + \cos\alpha\cos\beta = 1$ . Then which of the following is/are true?  $\sqrt{3}\tan\left(\frac{\alpha}{2}\right) + \tan\left(\frac{\beta}{2}\right) = 0$   $\sqrt{3}\tan\left(\frac{\alpha}{2}\right) - \tan\left(\frac{\beta}{2}\right) = 0$  $\tan\left(\frac{\alpha}{2}\right) + \sqrt{3}\tan\left(\frac{\beta}{2}\right) = 0 \tan\left(\frac{\alpha}{2}\right) - \sqrt{3}\tan\left(\frac{\beta}{2}\right) = 0$ 

### Watch Video Solution

**73.** Let O be the origin, and OXxOY, OZ be three unit vectors in the direction of the sides QR, RP, PQ, respectively of a triangle PQR. If

the triangle PQR varies, then the minimum value of  $\cos(P+Q) + \cos(Q+R) + \cos(R+P)$  is:  $-\frac{3}{2}$  (b)  $\frac{5}{3}$  (c)  $\frac{3}{2}$  (d)  $-\frac{5}{3}$