©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

VECTOR ALGEBRA

Solved Examples

1. Classify the following as scalars and vector: 5 seconds

- Watch Video Solution

2. Classify the following as scalars and vector: 10 kg
3. Classify the following as scalars and vector: 40^{0}

- Watch Video Solution

4. Classify the following as scalars and vector: $20 \frac{\mathrm{~m}}{\mathrm{sec}^{2}}$

- Watch Video Solution

5. Classify the following as scalars and vector: 2 meters north west

- Watch Video Solution

6. Classify the following as scalars and vector: 10^{-19} Coulomb

- Watch Video Solution

7. Classify the following as scalar and vector quantity: work
8. Classify the following as scalar and vector quantity: intensity

- Watch Video Solution

9. Classify the following as scalar and vector quantity: time period

- Watch Video Solution

10. Classify the following as scalar and vector quantity: momentum

- Watch Video Solution

11. Classify the following as scalar and vector quantity: force
12. Classify the following as scalar and vector quantity: distance

- Watch Video Solution

13. Represent graphically a displacement of $40 \mathrm{~km}, 30 \mathrm{oeast}$ of north.

- Watch Video Solution

14. Represent the following graphically: A displacement of 20 km ,south east

- Watch Video Solution

15. In the given figure identify the following vectors: equal

- Watch Video Solution

16. In the given figure identify the following vectors: collinear but not equal

- Watch Video Solution

17. In the given figure identify the following vectors: cointial

- Watch Video Solution

18. Answer the following as true or false: Two colliner vectors are always equal in magnitude.

- Watch Video Solution

19. Answer the following as true or false: Two vectors having same magnitude are collinear
20. Answer the following as true or false: Two collinear vectors having the same magnitude are equal

- Watch Video Solution

21. Answer the following as true or false: \vec{a} and $\overrightarrow{-} a$ are collinear.

- Watch Video Solution

22. Answer the following as true or false: Zero vector is unique

- Watch Video Solution

23. If D is the mid-point of the side $B C$ of a triangle $A B C$, prove that $\vec{A} B+\vec{A} C=2 \vec{A} D$
24. Forces $\overrightarrow{P A} . \overrightarrow{P B}$ and $\operatorname{vec}(\mathrm{PC}) \div e r \geq \operatorname{omthep} \oint P$ and otherf or $\operatorname{cesvec}(\mathrm{AQ})$, $\operatorname{vec}(B Q), v e c(C Q)$
conver $\geq \rightarrow$ ap \oint Q. Showttherestantofsixsixf or cesisrepresented \in magnitude a $3 \mathrm{vec}(P Q)^{\prime}$

- Watch Video Solution

25. In a regular hexagon $A B C D E F$, prove that
$A B+A C+A D+A E+A F=3 A D$

D Watch Video Solution

26. If $D E$ and F be the mid ponts of the sides $B C, C A$ and $A B$ respectively of the $\triangle A B C$ and O be any point, then prove that $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{O D}+\overrightarrow{O E}+\overrightarrow{O F}$
27. Let O be the centre of the regular hexagon $A B C D E F$ then find
$\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O D}+\overrightarrow{O C}+\overrightarrow{O E}+\overrightarrow{O F}$

- Watch Video Solution

28. ABCDE is a pentagon prove that $A B+B C+C D+D E+E A=\overrightarrow{0}$

- Watch Video Solution

29. In $\triangle A B C$ whchofthefolloiwngis \neg true? $\mathrm{vec}(\mathrm{AB})+\mathrm{vec}(\mathrm{BC})+\mathrm{vec}(\mathrm{CA})=0(A)$

$$
\begin{aligned}
& \operatorname{vec}(A B)+\operatorname{vec}(B C)+\operatorname{vec}(C A)=0(B) \operatorname{vec}(A B)+\operatorname{vec}(B C)-\operatorname{vec}(A C)=0(C) \\
& \operatorname{vec}(A B)+\operatorname{vec}(B C)-\operatorname{vec}(C A)=0(D) \operatorname{vec}(A B)-\operatorname{vec}(C B)+\operatorname{vec}(C A)=0^{\prime}
\end{aligned}
$$

- Watch Video Solution

30. If \vec{a} and \vec{b} are the vectors determined by two adjacent sides of a regular hexagon $A B C D E F$, find the vector determined by the ther sides taken in order. Also find $A D$ and $C E$ in terms of \vec{a} and \vec{b}.

- Watch Video Solution

31. Vectors drawn form the origin O to the points A, B and C are respectively \vec{a}, b and $4 \vec{a}-\vec{b}$ Find $A C$ and $B C$

- Watch Video Solution

32. The position vectors of A, B, C, D are $\vec{a}, b, 2 \overrightarrow{+} 3 \vec{b}$ and $\vec{a}-2 \vec{b}$ respectively show that $\overrightarrow{D B}=3 \vec{b}-\vec{a}$ and $\overrightarrow{A C}=\vec{a}+3 \vec{b}$.

- Watch Video Solution

33. What is the geometricasl significasntce of the relation $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}| ?$

- Watch Video Solution

34. IN any $\triangle A B C$, a point p is on the side $B C$. If $P Q$ is the resultant of the vectors $A P, P B$ and $P C$ the prove that $A B Q C$ is a parallelogram and hence Q is a fixed point.

- Watch Video Solution

35. If sum of two unit vectors is a unit vector; prove that the magnitude of their difference is $\sqrt{3}$

- Watch Video Solution

36. P, Q, R are the points on the sides $A B, B C$ and $C A$ respectivelyh of \wedge
$\triangle A B C s u c h t \mathrm{AP}: \mathrm{PB}=\mathrm{BQ}: \mathrm{Qc}=\mathrm{AR}: \mathrm{RC}=1: 2^{2}$. Show that POBQR is a parallelogram

- Watch Video Solution

37. If O is the circumcentre and P the orthocentre of $\triangle A B C$, prove that
$\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{O P}$.

- Watch Video Solution

38. If O is the circumcentre and P the orthocentre of $\triangle A B C$, prove that
$\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{O P}$.
39. If the position vectors of P and Q be respectively $\hat{i}+3 \hat{j}-7 \hat{k}$ and $5 \hat{i}-2 \hat{j}+4 \hat{k}$ and $P Q$

- Watch Video Solution

40. Compute the magnitude of the following vectors. Also mention which of these are unit vector: $\vec{a}=\hat{i}+\hat{j}+\hat{k}$

- Watch Video Solution

41. Compute the magnitude of the following vectors. Also mention which of these are unit vector: $\vec{b}=2 \hat{i}-7 \hat{j}-3 \hat{k}$

- Watch Video Solution

42. Compute the magnitude of the following vectors. Also mention which
of these are unit vector: $\frac{\hat{i}}{\sqrt{3}}+\frac{\hat{j}}{\sqrt{3}}-\frac{\hat{k}}{\sqrt{3}}$

Watch Video Solution

43. Write two different vectors having same direction.

- Watch Video Solution

44. Write two different vectors having same magnitude.

- Watch Video Solution

45. If $P(-1,2)$ and $Q(3,-7)$ are two points, express the vectors $P Q$ in terms of unit vectors \hat{i} and \hat{j}. Also find the distance between points P and
Q. What is the unit vector in the direction of $P Q$? Verify that magnitude of unit vector indeed unity.

- Watch Video Solution

46. Write the direction ratios of the vector $\rightarrow a=\hat{i}+\hat{j}-2 \hat{k}$ and hence calculate its direction cosines.

- Watch Video Solution

47. If $\overrightarrow{O P}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\overrightarrow{O Q}=3 \hat{i}-4 \hat{j}+2 \hat{k}$ find the modulus and direction cosines of $P Q$.

- Watch Video Solution

48. Find the direction cosines of the vector joining the points
$A(1,2,-3) a \cap B(-1-2,1)$ directed from $A \rightarrow B$

- Watch Video Solution

49. Show that the vector $\hat{i}+\hat{j}+\hat{k}$ is equally inclined to the axes OX, OY and OZ.

Watch Video Solution

50. If $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}-\hat{k} f \in d \vec{a}+\vec{b}$. Also find as unity vector along $\vec{i}+\vec{b}$.

- Watch Video Solution

51. Find the unit vector in the direction of the resultant of vectgors $\hat{i}+2 \hat{j}+\hat{3} k,-\hat{i}+2 \hat{j}+\hat{k}$ and $3 \hat{i}+\hat{j}$

- Watch Video Solution

52. Find a vector in the direction of the vector $5 \hat{i}-\hat{j}+2 \hat{k}$ which has magnitude 8 units.

- Watch Video Solution

53.1 $|\vec{a}|=3 n d-4 \leq k \leq 1$, then what can you say about |kaveca|' ?

- Watch Video Solution

54. The position vectors of the point P, Q, R and S are respectively $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\hat{i}-6 \hat{j}-\hat{k}$. Prove that the lines PQ and RS are parallel and the ratio of their length is $\frac{1}{2}$

- Watch Video Solution

55. Show that the points A, B, and C with position vectgors $\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\overrightarrow{=} \hat{i}-3 \hat{j}-5 \hat{k}$ respectively form the veertices of a righat angled triangle

- Watch Video Solution

56. A tirangle hs vertices (1, 2, 4),($-2,2,1$)and ($2,4,-3$). Prove that the triangle is righat angled and find other angles

- Watch Video Solution

57. The two adjacent sides of a parallelogram are $2 \hat{i}+3 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$. Find the uit vectors along the diagonal of te parallelogram.

- Watch Video Solution

58. For any two vectors \vec{a} and \vec{b} prove that $|\vec{a}+|\leq|\vec{a}|+|\vec{b}|$

- Watch Video Solution

59. For any two vectors \vec{a} and \vec{b} prove that $|\vec{a}-|\leq|\vec{a}|+|\vec{b}|$
60. For any two vectors \vec{a} and \vec{b} prove that $|\vec{a}-|\geq|\vec{a}|-|\vec{b}|$

- Watch Video Solution

61. Find the values of x and y so that the vectors $2 \hat{i}+3 \hat{j} \& x \hat{i}+y \hat{j}$ are equal

- Watch Video Solution

62. Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.

- Watch Video Solution

63. Let $\vec{a}=2 \hat{i}-3 \hat{j}$ and $\vec{b}=3 \hat{i}+2 \hat{j}$. Is $|\vec{a}|=|\vec{b}|$? Are the vectors \vec{a} and \vec{b} equal?
64. If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}$ are non zero vectors then prove that they are paralel if and only if $a_{1} b_{2}-a_{2} b_{1}=0$

- Watch Video Solution

65. If the points ($2, \beta, 3$), $B(\alpha,-6,1)$ and $C(-1,11,9)$ are collinear find the values of α and β by vector method

- Watch Video Solution

66. If $\vec{a}=2 i-\hat{j}+\hat{k}, \vec{b}=\hat{i}+3 \hat{j}-\hat{k}, \vec{c}=-2 \hat{i}+\hat{j}-3 \hat{k}$ and $\vec{d}=3 \hat{i}+2 \hat{j}+5 \hat{k}$, find the scalars α, β and γ such that $\vec{d}=\alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}$

- Watch Video Solution

67. If $\vec{A} O+\vec{O} B=\vec{B} O+\vec{O} C$, prove that A, B, C are collinear points.

- Watch Video Solution

68. Show that the points A, B and C with position vectors
$-2 \hat{i}+3 \hat{j}+5 \hat{k}, \hat{i}+2 \hat{j}+3 \hat{k}$ and $7 \hat{i}-\hat{k}$ respectively are collinear

- Watch Video Solution

69. Prove that the three points $\vec{a}-2 \vec{b}+3 \vec{c}, 2 \vec{a}+3 \vec{b}-4 \vec{c}$ and $-7 \vec{b}+10 \vec{c}$ are collinear

- Watch Video Solution

70. prove that three points $A(1,-2,-8), B(5,0-2)$ and $C(11,3,7)$ are collinear and find the ratio in which B which B divides $A C$.
71. Show that the vectors $\vec{a}-2 \vec{b}+3 \vec{c},-2 \vec{a}+3 \vec{b}-4 \vec{c}$ and $-\vec{b}+2 \vec{c}$ are coplanar vector where $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors

- Watch Video Solution

72. Prove that the four points
$2 \vec{a}+3 \vec{b}-\vec{c}, \vec{a}-2 \vec{b}+3 \vec{c}, 3 \vec{a}+4 \vec{b}-2 \vec{c}$ and $\vec{a}-6 \vec{b}+6 \vec{c}$ are coplanar where $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors

- Watch Video Solution

73. Show that the vectors $\hat{i}-3 \hat{j}+2 \hat{k}, 2 \hat{i}-4 \hat{j}-\hat{k}$ and $3 \hat{i}+2 \hat{j}-\hat{k}$ are linearly independent

- Watch Video Solution

74. find the positio vectors of the ponts which divide the join of points $2 \vec{a}-3 \vec{b}$ and $3 \vec{a}-2 \vec{b}$ internally and externallyin the ratio 2:3.

- Watch Video Solution

75. If a and b are position vectors of A and B respectively the position vector of a point C on $A B$ produced such that $A C=3 A B$ is

- Watch Video Solution

76. Prove that the medians of a triangle are concurrent and find the position vector of the point of concurrency (that is, the centroid of the triangle)

- Watch Video Solution

77. Show that the points $\vec{a}+2 \vec{b}+3 c-2 \vec{a}+3 \vec{b}+5 \vec{c}$ and $7 \vec{a}-\vec{c}$ are colinear.

- Watch Video Solution

78. Let $O A C B$ be a parallelogram with O at the origin and $O C$ a diagonal.

Let D be the midpoint of $O A$ using vector methods prove that $B D a n d C O$ intersect in the same ratio. Determine this ratio.

- Watch Video Solution

79. Prove by vector method that the diagonals of a parallelogram bisect each other.

- Watch Video Solution

80. If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

Watch Video Solution

81. Prove that the line segments joints joining the mid-points of the adjacent sides of a quadrilateral from a parallelogram.

- Watch Video Solution

82. Write all the unit vectors in $X Y$ - plane

- Watch Video Solution

83. If the resultant of two forces is equal in magnitude to one of the components and perpendicular to it direction, find the other components using the vector method.
84. The wind is blowing due south with speed of $3 \mathrm{~m} / \mathrm{sec}$. How fast should a car travel due east in order that the wind shall hasve a speed of $5 \mathrm{~m} / \mathrm{sec}$ relative to the car.

Watch Video Solution

85. Let $A B$ be a vector in two dimensional plane with magnitude 4 units. And making an anle of 60° with x-axis, and lying in first quadrant. Find the components of $A B$ in terms of unit vectors \hat{i} and \hat{j}. so verify that calculation of components is correct.

- Watch Video Solution

86. A girl walks 4 km towards west, and then she walks 3 km in a direction
30^{0} east of north and stops. Determine the girls displacement from her
initial point of departure.

- Watch Video Solution

87. Let $\vec{r}_{1}, \vec{r}_{2}, \ldots \ldots . \vec{r}_{n}$ be the position of points $P_{1}, P_{2}, \ldots \ldots \ldots, P_{n}$ respectively relative to an origin O . Show that if the vector equation $a_{1} \vec{r}_{1}+a_{2} \vec{r}_{2}+\ldots+a_{n} \vec{r}_{n}=\overrightarrow{0}$ holds, then a similar equation will also hold good wilth respect to any other origin if $a_{1}+a_{2}+\ldots . .+a_{n}=0$

- Watch Video Solution

88. Prove that the vector relation $p \vec{a}+q \vec{b}+r \vec{c}+\ldots .=0$ will be inependent of the orign if and only if $p+q+r+.=0$, wherep, $q, r \ldots \ldots .$. are scalars.

- Watch Video Solution

89. A vector a has components a_{1}, a_{2}, a_{3} in a right handed rectangular cartesian coordinate system OXYZ the coordinate axis is rotated about z axis through an angle $\frac{\pi}{2}$. The components of a in the new system

- Watch Video Solution

90. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ be the position vectors of points A, B, C, D respectively and $\vec{b}-\vec{a}=2(\vec{d}-\vec{c})$ show that the pointf intersection of the straighat lines $A D$ and $B C$ divides these line segments in the ratio 2:1.

- Watch Video Solution

91. If G_{1} is the mean centre of A_{1}, B_{1}, C_{1} and G_{2} that of A_{2}, B_{2}, C_{2} then
show thast $A_{1} A_{2}+B_{1} B_{2}+C_{1} C_{2}=3 G_{1} G_{2}$

- Watch Video Solution

92. The position vectors of the points A, B, C, D are
$3 i-2 j-\vec{k}, 2 i+3 j-4 k-\vec{i}+\vec{j}+2 k$ and $4 j+5 j+\lambda k$ respectively Find λ if $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are coplanar.

Watch Video Solution

93. If the vectors $a \vec{i}+\vec{j}+\vec{k}, \vec{i}+b \vec{j}+\vec{k}, \vec{i}+\vec{j}+c \vec{k}$ are coplanar find the value of $\frac{1}{1-a}+\frac{1}{a-b}+\frac{1}{1-c}$

- Watch Video Solution

94. If \vec{a}, \vec{b} be two non zero non parallel vectors then show that points whose position vectors are $p_{1} \vec{a}+q_{1} \vec{b}, p_{2} \vec{a}+q_{2} \vec{b}, p_{3} \vec{a}+q_{3} \vec{b}$ are collinear if
$\left|\begin{array}{lll}1 & p_{1} & q_{1} \\ 1 & p_{2} & q_{2} \\ 1 & p_{3} & q_{3}\end{array}\right|=0$
95. Show that the vectors $\vec{i}-3 \vec{j}+2 \vec{k}, 2 \vec{i}-4 \vec{j}-\vec{k}$ and $3 \vec{i}+2 \vec{j}-\vec{k}$ are linearly independent.

- Watch Video Solution

96. if $\vec{a}, \vec{b}, \vec{c}$ are non coplanar and non zero vectors such that $\vec{b} \times \vec{c}=\vec{a}, \vec{a} \times \vec{b}=\vec{c}$ and $\vec{c} \times \vec{a}=\vec{b}$ then
$(a)|a|=1(b)|a|=2(c)|a|=3(d)|a|=4$

- Watch Video Solution

97. if $\vec{a}, \vec{b}, \vec{c}$ are non coplanar and non zero vectors such that $\vec{b} \times \vec{c}=\vec{a}, \vec{a} \times \vec{b}=\vec{c}$ and $\vec{c} \times \vec{a}=\vec{b}$ then 2.
(a) $|a|-|b|+|c|=4(b)|a|-|b|+|c|=\frac{2}{3}(c)|a|-|b|+|c|=1(d)$ none of these
98. if $\vec{a}, \vec{b}, \vec{c}$ are non coplanar and non zero vectors such that $\vec{b} \times \vec{c}=\vec{a}, \vec{a} \times \vec{b}=\vec{c}$ and $\vec{c} \times \vec{a}=\vec{b} \quad$ then 3.
(a) $|a|+|b|+|c|=0(b)|a|+|b|+|c|=2(c)|a|+|b|+|c|=3$ (d) none of these`

- Watch Video Solution

99. Prove that the internal bisectors of the angles of a triangle are concurrent

- Watch Video Solution

100. If f is the centre of a circle inscribed in a triangle $A B C$, then $|\overrightarrow{B C}| \overrightarrow{I A}+|\overrightarrow{C A}| \overrightarrow{I B}+|\overrightarrow{A B}| \overrightarrow{I C}$ is

- Watch Video Solution

101. Let $O A C B$ be a parallelogram with O at the origin and $O C$ a diagonal.

Let D be the midpoint of $O A$ using vector methods prove that BDandCO intersect in the same ratio. Determine this ratio.

- Watch Video Solution

102. In a $\triangle O A B, E$ is the mid point of $O B$ and D is the point on $A B$ such that $A D: D B=2: 1$ If $O D$ and $A E$ intersect at P then determine the ratio of $O P: P D$ using vector methods

- Watch Video Solution

103. Find the vector equation of the through the points $2 \vec{i}+\vec{j}-3 \vec{k}$ and parallel to vector $\vec{i}+2 \vec{j}+\vec{k}$

- Watch Video Solution

104. Find the vector equation of the line through the points (1, - 2, 1) and ($0,-2,3$).

- Watch Video Solution

105. Find the equation of the plane passing through three given points
$A(-2 \vec{i}+6 \vec{j}-6 \vec{k}), B(-3 \vec{i}+10 \vec{j}-9 \vec{k})$ and $C(-5 \vec{i}+6 \vec{k})$

- Watch Video Solution

106. Find the equation of the plane through the origin and the points
$4 \vec{j}$ and $2 \vec{i}+\vec{k}$. Find also the point in which this plane is cut by the line joining points $\vec{i}-2 \vec{j}+\vec{k}$ and $3 \vec{k}-2 \vec{j}$.

- Watch Video Solution

107. O is any point in the plane of the triangle $A B C, A O, B O$ and $C O$ meet the sides $B C, C A$ nd $A B$ in D, E, F respectively show that $\frac{O D}{A D}+\frac{O E}{B E}+\frac{O F}{C F}=1$.

- Watch Video Solution

108. Find the perpendicular distance of the points $A(1,0,1)$ to the ine thorugh the points $B(2,3,4)$ and $C(-1,1,-2)$.

- Watch Video Solution

109. If vector $\vec{a}, \vec{b}, \vec{c}$ are coplanar show that $\left|\begin{array}{ccc}\vec{a} & \vec{b} & \vec{c} \\ \vec{a} . \vec{a} & \vec{a} . \vec{b} & \vec{a} . \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c}\end{array}\right|$
110. If vector $\vec{a}, \vec{b}, \vec{c}$ are coplanar then find the value of \vec{c} in terms of \vec{a} and \vec{b}

- Watch Video Solution

111. If n be integer gt 1 , then prove that $\sum_{r=1}^{n-1} \frac{\cos (2 r \pi)}{n}=-1$

- Watch Video Solution

112. let $A B C$ be a triangle with $A B=A C$. If D is the mid-point of $B C, E$ the foot of the perpendicular drawn from D to $A C, F$ is the mid-point of $D E$. Prove that $A F$ is perpendicular to $B E$.

(Watch Video Solution

113. Let $A B C$ and $P Q R$ be any two triangles in the same plane. Assume that the perpendiculars from the points A, B, C to the sides $Q R, R P, P Q$
respectively are concurrent. Using vector methods or otherwise,prove that the perpendiculars from $P, Q, R \rightarrow B C, C A, A B$ respectively are also concurrent.

- Watch Video Solution

114. P and Q re tow interior points on te side $B C$ of $\triangle A B C$ such that, $B P|\mid B Q$ and $B C . P Q=B P . C Q$ and $A Q$ bisects $\angle P A C$ using vector method prove that $A Q$ and $A B$ are mutually perpendicular

- Watch Video Solution

115. Find the equation of the plane through the point $2 \vec{i}-\vec{j}+\vec{k}$ and perpendiulr to the vector $4 \vec{i}+2 \vec{j}-3 \vec{k}$. Determine the perpendicular distance of this plane from the origin.

- Watch Video Solution

116. Find the equation of a plane passing throug the piont $A(3,-2,1)$ and perpendicular to the vector $4 \vec{i}+7 \vec{j}-4 \vec{k}$. If PM be perpendicular from the point $P(1,2,-1)$ to this plane find its length.

- Watch Video Solution

117. Find the projection of the line $\vec{r}=\vec{a}+t \vec{b}$ on the plane given by $\vec{r} \cdot \vec{n}=q$.

- Watch Video Solution

118. A particle acted on by constant forces $4 \vec{i}+\vec{j}-3 \vec{k}$ and $3 \vec{i}+\vec{j}-\vec{k}$ is displaced from the point $\vec{i}+2 \vec{j}+3 \vec{k}$ to the point $5 \vec{i}+4 \vec{j}+\vec{k}$. Find the total work done by the forces

- Watch Video Solution

119. $A_{1}, A_{2}, \ldots, A_{n}$ are the vertices of a regular plane polygon with n sides and O as its centre. Show that $\sum_{i=1}^{n} \overrightarrow{O A_{i}} \times \overrightarrow{O A}_{i+1}=(1-n)\left(\overrightarrow{O A_{2}} \times \overrightarrow{O A_{1}}\right)$

- Watch Video Solution

120. Let $\vec{O} A-\vec{a}, \hat{O} B=10 \vec{a}+2 \vec{b}$ and $\vec{O} C=\vec{b}$, where O, AandC are noncollinear points. Let p denotes the areaof quadrilateral OACB, and let q denote the area of parallelogram with OAandOC as adjacent sides. If $p=k q$, then find k

- Watch Video Solution

121. If A, B, C, D are any four points in space prove that $A B \times C D+B C x A D+C A \times B D=2 A B \times C A$

- Watch Video Solution

122. $A, B, C a n d D$ are any four points in the space, then prove that $|\vec{A} B \times \vec{C} D+\vec{B} C \times \vec{A} D+\vec{C} A \times \vec{B} D|=4$ (area of $A B C$.)

- Watch Video Solution

123. Show that the equation of as line perpendicular to the vectors \vec{b} and \vec{c} and passing through point \vec{a} is $\vec{r}=\vec{a}+t(\vec{b} \times \vec{c})$ where t is a scalar.

- Watch Video Solution

124.

$A(t)=f_{1}(t) \vec{i}+f_{2}(t) \vec{j}$ and $\vec{B}(t)=g_{1}(t) \vec{i}+g_{2}(t) \vec{j}, t \varepsilon[0,1]$ wheref $_{1}, f_{2}, g_{1}, g_{2}$ are continuous functions. If $\vec{A}(t)$ and $\vec{B}(t)$ are non zero for all $t \varepsilon[0,1]$ and $\vec{A}(0)=2 \vec{i}+3 \vec{j}, \vec{A}(1)=6 \vec{i}=2 \vec{j}, \vec{B}(0)=3 \vec{i}+2 \vec{j}$ and $\vec{B}(1)=2 \vec{i}+6$ prove that $\vec{A}(t)$ and $\vec{B}(t)$ are parallel for some $t(0,1)$

- Watch Video Solution

125. Given that $\vec{A}, \vec{B}, \vec{C}$ form triangle such that $\vec{A}=\vec{B}+\vec{C}$. Find $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ such that area of the triangle is $5 \sqrt{6}$ where
$\vec{A}=a \vec{i}+b \vec{i}+c \vec{k} \cdot \vec{B}=d \vec{i}+3 \vec{j}+4 \vec{k}$ and $\vec{C}=3 \vec{i}+\vec{j}-2 \vec{k}$.

- Watch Video Solution

126. Position vectors of two points A and C re $9 \vec{i}-\vec{j}+7 \vec{i}-2 \vec{j}+7 \vec{k}$ respectively THE point intersection of vectors $\overrightarrow{A B}=4 \vec{i}-\vec{j}+3 \vec{k}$ and $\overrightarrow{C D}=2 \vec{i}-\vec{j}+2 \vec{k}$ is P. If vector $\overrightarrow{P Q}$ is perpendicular to $A B$ and $C D$ and $P Q=15$ units find the position vector of Q.

- Watch Video Solution

127. A, B, C, D are four pints such that
$\overrightarrow{A B}=m(2 \vec{i} 6 \vec{j}+2 \vec{k}), \overrightarrow{B C}=\vec{i}+2 \vec{j}$ and $\overrightarrow{C D}=n(-6 \vec{i}+15 \vec{j}-3 \vec{k})$. Find the conditions on the scalar m and n so that $C D$ interesects $a B$ at some point H.Also find the area of $\triangle B C H$
128. In a $\triangle A B C$ points D, E, F are taken on the sides $B C, C A$ and $A B$ respectively such that $\frac{B D}{D C}=\frac{C E}{E A}=\frac{A F}{F B}=n \quad$ prove that $\triangle D E F=\frac{n^{2}-n+1}{(n+1)^{2}} \triangle A B C$

(D) Watch Video Solution

129. The position vectors of the vertices A, B and C of a tetrahedron $A B C D$ are $\hat{i}+\hat{j}+\hat{k}, \hat{k}, \hat{i}$ and $\hat{3} i$,respectively. The altitude from vertex D to the opposite face $A B C$ meets the median line through Aof triangle $A B C$ at a point E. If the length of the side $A D$ is 4 and the volume of the tetrahedron is $2 / 2 / 3$, find the position vectors of the point E for all its possible positfons

- Watch Video Solution

130. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are four distinct vectors satisfying the conditions $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times e c d \quad$ then prove that $\vec{a} \cdot \vec{b}+\vec{c} \cdot \vec{d} \neq \vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{d}$

- Watch Video Solution

131. If $\vec{A}=(1,1,1)$ and $\vec{C}=(0,1,-1)$ are given vectors then find a vector \vec{B} satisfying equations $\vec{A} \times \vec{B}=\vec{C}$ and $\vec{A} \cdot \vec{B}=3$

- Watch Video Solution

132. $\vec{A}=(2 \vec{i}+\vec{k}), \vec{B}=(\vec{i}+\vec{j}+\vec{k})$ and $\vec{C}=4 \vec{i}-\vec{j} j+7 \vec{k}$ determine a vector verR satisfying $\vec{R} \times \vec{B}=\vec{C} \times \vec{B}$ and $\vec{R} \cdot \vec{A}=0$

- Watch Video Solution

133. For any two vectors \vec{u} and \vec{v} prove that $\left(1+|\vec{u}|^{2}\left(1+|\vec{v}|^{20}=(1-\vec{u} \cdot \vec{c})^{2}+\mid \vec{u}+\vec{v}+\vec{u} \times \overrightarrow{\mid}^{2}\right.\right.$

- Watch Video Solution

134. Let points P, Q, and R hasve positon vectors $\vec{r}_{1}=3 \vec{i}-2 \vec{j}-\vec{k}, \vec{r}_{2}=\vec{i}+3 \vec{j}+4 v e r c k$ and $\vec{r}_{3}=2 \vec{i}+\vec{j}-2 \vec{k}$ relative to an origin O. Find the distance of P from the plane $O Q R$.

- Watch Video Solution

135. A non zero vector \vec{a} is parallel to the line of intersection of the plane determined by the vectors $\vec{i}, \vec{i}+\vec{j}$ and the plane determined by the vectors $\vec{i}-\vec{j}, \vec{i}+\vec{k}$ find the angle between \vec{a} and the vector $\vec{i}-2 \vec{j}+2 \vec{k}$.

- Watch Video Solution

136. The position ector sof points P, Q, R are
$3 \vec{i}+4 \vec{j}+5 \vec{k}, 7 \vec{i}-\vec{k}$ and $5 \vec{i}+5 \vec{j}$ respectivley. If A is a point sequidsictnat
form the lines $O P, O Q$ and $O R$ find a unit vector along OAwhere O is the origin.

- Watch Video Solution

137. A force of 15 units act iln the direction of the vector $\vec{i}-\vec{j}+2 \vec{k}$ and passes through a point $2 \vec{i}-2 \vec{j}+2 \vec{k}$. Find the moment of the force about the point $\vec{i}+\vec{j}+\vec{k}$.

- Watch Video Solution

138. A rigid body is spinning about a fixed point $(3,-2,-1)$ with an angular velocity of $4 \mathrm{rad} / \mathrm{s}$, the axis of rotation being in the direction of $(1,2,-2)$.

Find the velocity of the particle at point $(4,1,1)$.
139. Find the volume of the parallelopiped whose edges are represented by $\vec{a}=\overrightarrow{2 i}-\overrightarrow{j j}+\overrightarrow{4} k, \vec{b}=\vec{i}+2 \vec{j}-\vec{k}$ and $\vec{c}=\overrightarrow{3 i}-\vec{j}+\overrightarrow{2 k}$

- Watch Video Solution

140. Prove that the four points
$4 \vec{i}+5 \vec{i}+\vec{k},-(\vec{j}+\vec{k}), 3 \vec{i}+9 \vec{j}+4 \vec{k}$ and $4(-\vec{i}+\vec{j}+\vec{k})$ are coplanar

- Watch Video Solution

141. Prove that $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

142. If $\vec{a}, \vec{b}, \vec{c}$ are coplanar, show that $\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}$ are also coplanar.
143. If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of A, B, C respectively prove that $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is a vector perpendicular to the plane $A B C$.

- Watch Video Solution

144.

Examine
whether
the
vectors
$\vec{a}=2 \vec{i}+3 \vec{j}+2 \vec{k}, \vec{b}=\vec{i}-\vec{j}+2 \vec{k}$ and $\vec{c}=3 \vec{i}+2 \vec{j}-4 \vec{k}$ form a left handed or a righat handed system.

- Watch Video Solution

145. If $\vec{l}, \vec{m}, \vec{n}$ are three non coplanar vectors prove that
$[\vec{l} \vec{m} \vec{n}](\vec{a} \times \vec{b})=\left|\begin{array}{ccc}\overrightarrow{1} \cdot \vec{a} & \overrightarrow{1} \cdot \vec{b} & \overrightarrow{1} \\ \vec{m} \cdot \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \\ \vec{n} \cdot \vec{a} & \vec{n} \cdot \vec{b} & \vec{n}\end{array}\right|$
146. Show that $[\vec{a} \vec{b} \vec{c}]^{2}=\left|\begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c}\end{array}\right|$

- Watch Video Solution

147. Vector $\vec{O} A=\hat{i}+2 \hat{j}+2 \hat{k}$ turns through a right angle passing through the positive x-axis on the way. Show that the vector in its new position is $\frac{4 \hat{i}-\hat{j}-\hat{k}}{\sqrt{2}}$.

- Watch Video Solution

148.

If
is
given
that

vectors. Find the value of $\vec{x} \cdot(\vec{a}+\vec{b})+\vec{y} \cdot(\vec{c}+\vec{b})+\vec{z}(\vec{c}+\vec{a})$
149. If $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{b} \times \vec{c}=\vec{a}$, show that $\vec{a}, \vec{b}, \vec{c}$ are orthogonal in pairs.

Also show that $|\vec{c}|=|\vec{a}|$ and $|\vec{b}|=1$

- Watch Video Solution

150. If is given that $\vec{r} \times \vec{b}=\vec{c} \times \vec{b}, \vec{r} . \vec{a}=0$ and $\vec{a} . \vec{b} \neq 0$. What is the geometrical meaning of these equation separately? If the abvoe three statements hold good simultaneously, determine the vector \vec{r} in terms of \vec{a}, \vec{b} and \vec{c}.

- Watch Video Solution

151. If $\vec{x} \cdot \vec{a}=0 \vec{x} \cdot \vec{b}=0$ and $\vec{x} \cdot \vec{c}=0$ for some non zero vector \vec{x} then show that $[\vec{a} \vec{b} \vec{c}]=0$
152. Express $\vec{a}, \vec{b}, \vec{c}$ in terms of $\vec{b} \times \vec{c}, \vec{c} \times \vec{a}$ and $\vec{a} \times \vec{b}$.

Watch Video Solution

153. find x, y, and z if $x \vec{a}+y \vec{b}+z \vec{c}=\vec{d}$ and $\vec{a}, \vec{b}, \vec{c}$ are non coplanar.

- Watch Video Solution

154. $O A B C$ is a tetrahedron where O is the origin and A, B, C have position vectors $\vec{a}, \vec{b}, \vec{c}$ respectively prove that circumcentre of tetrahedron OABC

$$
\frac{a^{2}(\vec{b} \times \vec{c})+b^{2}(\vec{c} \times \vec{a})+c^{2}(\vec{a} \times \vec{b})}{2[\vec{a} \vec{b} \vec{c}]}
$$

- Watch Video Solution

155. Let \vec{u} and \vec{v} be unit vectors. If \vec{w} is a vector such that $\vec{w}+\vec{w} \times \vec{u}=\vec{v}$, then prove that $|(\vec{u} \times \vec{v}) \cdot \vec{w}| \leq \frac{1}{2}$ and that the equality holds if and only if
\vec{u} is perpendicular to \vec{v}.

- Watch Video Solution

156. Given that vectors \vec{a} and \vec{b} asre perpendicular to each other, find vector \vec{v} in erms of \vec{a} and \vec{b} satisfying the equations $\vec{v} \cdot \vec{a}=0, \vec{c} \cdot \vec{b}=1$ and $[\vec{v} \vec{a} \vec{b}]=1$

Watch Video Solution

157. $\vec{a}, \vec{b}, \vec{c}$ are three non coplanat unit vectors wuch that angle between any two is alpha. If $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}=l a+m \vec{b}+n \vec{c}$ then determine I,m,n in terms of α.

- Watch Video Solution

158. Prove that the formula for the volume V of a tetrahedron, in terms of the lengths of three coterminous edges and their mutul inclinations is
$V^{2}=\frac{a^{2} b^{2} c^{2}}{36}\left|\begin{array}{ccc}1 & \cos \phi & \cos \psi \\ \cos \phi & 1 & \cos \theta \\ \cos \psi & \cos \theta & 1\end{array}\right|$

- Watch Video Solution

159. Findthe value of $\vec{\alpha} \times(\vec{\beta} \times \vec{\gamma})$, where, $\vec{\alpha}=2 \vec{i}-10 \vec{j}+2 \vec{k}, \vec{\beta}=3 \vec{i}+\vec{j}+2 \vec{k}, \vec{\gamma}=2 \vec{i}+\vec{j}+3 \vec{k}$

- Watch Video Solution

160. Prove that $\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})=\overrightarrow{0}$

- Watch Video Solution

161. Prove that: $\vec{i} \times(\vec{a} \times \vec{i})+\vec{j} \times(\vec{a} \times \vec{j})+\vec{k} \times(\vec{a} \times \vec{k})=2 \vec{a}$
162. If $\vec{a}, \vec{b}, \vec{c}$ are non zero vectors and \vec{b} is not parallel to $(\vec{a} \times \vec{c})$ show that $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$ if and only if \vec{a} and \vec{c} are collinear.

- Watch Video Solution

163. Prove that: $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]=[\vec{a} \vec{b} \vec{c}]^{2}$

- Watch Video Solution

164. If $\vec{a}, \vec{b}, \vec{c}$ are coplanar then show that $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ are also coplanar.

- Watch Video Solution

165. Show that the vectors $\vec{a} \times(\vec{b} \times \vec{c}), \vec{b} \times(\vec{c} \times \vec{a})$ and $\vec{c} \times(\vec{a} \times \vec{b})$ are coplanar.
166. If $\hat{u}, \hat{v}, \hat{w}$ be three non-coplanar unit vectors with angles between $\hat{u} \& \hat{v}$ is α between $\hat{v} \& \hat{w}$ is β and between $\hat{w} \& \hat{u}$ is γ. If $\vec{a}, \vec{b}, \vec{c}$ are the unit vectors along angle bisectors of α, β, γ respectively, then prove that $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=\frac{1}{16}[\hat{u} \hat{v} \hat{w}]^{2} \sec ^{2}\left(\frac{\alpha}{2}\right) \sec ^{2}\left(\frac{\beta}{2}\right) \sec ^{2}\left(\frac{\gamma}{2}\right)$

- Watch Video Solution

167. Let \hat{a} be a unit vector and \hat{b} a non zero vector non parallel to \vec{a}. Find the angles of the triangle tow sides of which are represented by the vectors. $\sqrt{3}(\hat{a} \times \vec{b})$ and $\vec{b}-(\hat{a} . \vec{b}) \hat{a}$

- Watch Video Solution

168. If $\vec{x} \times \vec{y}=\vec{a}, \vec{y} \times \vec{z}=\vec{b}, \vec{x} \cdot \vec{b}=\gamma, \vec{x} \cdot \vec{y}=1$ and $\vec{y} . \vec{z}=1$ then find x, y, z in terms of \vec{a}, \vec{b} and γ.
169. Vectors $\vec{x}, \vec{y}, \vec{z}$ each of magnitude $\sqrt{2}$ make angles of 60° with each other. If $\vec{x} \times(\vec{y} \times \vec{z})=\vec{a}, \vec{y} \times(\vec{z} \times \vec{x})=\vec{b}$ and $\vec{x} \times \vec{y}=\vec{c}$, find $\vec{x}, \vec{y}, \vec{z}$ in terms of \vec{a}, \vec{b} and \vec{c}.

(Watch Video Solution

170. Let \vec{x}, \vec{y} and \vec{z} be unit vectors such that $\vec{x}+\vec{y}+\vec{z}=\vec{a}, \vec{x} \times(\vec{y} \times \vec{z})=\vec{b},(\vec{x} \times \vec{y}) \times \vec{z}=\vec{c}, \vec{a} \cdot \vec{x}=\frac{3}{2}, \vec{a} \cdot \vec{y}=\frac{7}{4}$ and $|\vec{a}|=$
. Find $\vec{x}, \vec{y}, \vec{z}$ in terms of $\vec{a}, \vec{b}, \vec{c}$.

- Watch Video Solution

171. Solve the following siultaneous equation for vectors \vec{x} and \vec{y}, if $\vec{x}+\vec{y}=\vec{a}, \vec{x} \times \vec{y}=\vec{b}, \vec{x} \cdot \vec{a}=1$

D Watch Video Solution

$\vec{a} \times(\vec{b} \times \vec{c})+(\vec{a} \cdot \vec{b}) \vec{b}=(\overrightarrow{4}-2 \beta-\sin \alpha) \vec{b}+\left(\beta^{2}-1\right) \vec{c}$ and $(\vec{c} \cdot \vec{c}) \vec{a}=\vec{c}$ where \vec{b} and \vec{c} are non collinear and α, β are scalars

- Watch Video Solution

173. Find the set of vectors reciprocal to the set of vectors $2 \vec{i}+3 \vec{j}-\vec{k}, \vec{i}-\vec{j}-\vec{k},-\vec{i}+2 \vec{j}+2 \vec{k}$

- Watch Video Solution

174.

Prove
that:
$(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})+(\vec{a} \times \vec{c}) \times(\vec{d} \times \vec{b})+(\vec{a} \times \vec{d}) \times(\vec{b} \times \vec{c})=2[\vec{b} \vec{c} \vec{d}] \vec{a}$

- Watch Video Solution
$(\vec{b} \times \vec{c}) \cdot(\vec{a} \times \vec{d})+(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{d})+(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=0$

- Watch Video Solution

176. Find vector \vec{r} if $\vec{r} . \vec{a}=m$ and $\vec{r} \times \vec{b}=\vec{c}$, where $\vec{a} . \vec{b} \neq 0$

- Watch Video Solution

177. Find \vec{r} such that $t \vec{r}+\vec{r}+\vec{a}=\vec{b}$.

- Watch Video Solution

178. Solve: $\vec{r} \times \vec{b}=\vec{a}$, where \vec{a} and \vec{b} are given vectors such that \vec{a}. $\vec{b}=0$.

- Watch Video Solution

179. Solve $\vec{a} . \vec{r}=x, \vec{b} . \vec{r}=y, \vec{c} . \vec{r}=z$, where $\vec{a}, \vec{b}, \vec{c}$ are given non coplanar vectors.

D Watch Video Solution

180. Solve the following simultaneous equation for \vec{x} and \vec{y} : $\vec{x}+\vec{y}=\vec{a}, \vec{x} \times \vec{y}=\vec{b}$ and $\vec{x} \cdot \vec{a}=1$

- Watch Video Solution

181. Sholve the simultasneous vector equations for \vec{x} and $\vec{y}:, \vec{x}+\vec{c} \times \vec{y}=\vec{a}$ and $\vec{y}+\vec{c} \times \vec{x}=\vec{b}, \overrightarrow{\neq 0}$

- Watch Video Solution

182. Solved $\lambda \vec{r}+(\vec{a} \cdot \vec{r}) \vec{b}=\vec{c}, \lambda \neq 0$
183. \vec{u} and \vec{n} are unit vectors and t is a scalar. If $\vec{n} . \vec{a} \neq 0$ solve the equation $\vec{r} \times \vec{a}=\vec{u}, \vec{r} . \vec{n}=t$

- Watch Video Solution

184. If $\vec{a}, \vec{b}, \vec{c}$ asre three vectors such that $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}$ then (A)
$|\vec{b}|=1,|\vec{c}|=|\vec{a}|$
(B) $|\vec{c}|=1,|\vec{a}|=|\vec{b}|$
(C) $|\vec{b}|=2,|\vec{c}|=2|\vec{a}|$
$|\vec{a}|=1,|\vec{c} b|=|\vec{c}|$

- Watch Video Solution

185. If \hat{a}. $\hat{b}=0$ where \hat{a} and \hat{b} are unit vectors and the unit vectors \vec{c} is inclined at angle θ to both \hat{a} and \hat{b}. If $\hat{c}=m \hat{a}+n \hat{b}+p(\hat{a} \times \hat{b}),(m, n, p \varepsilon R)$ then (A) $-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$ (B) $\frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{4}$ (C) $0 \leq \theta \leq \frac{\pi}{4}$ (D) $0 \leq \theta \leq \frac{3 \pi}{4}$
186. The edges of a parallelopiped are of unit length and are parallel to non coplanar unit vectors $\hat{a}, \hat{b}, \hat{c}$ such that $\hat{a} . \hat{b}=\hat{b} . \hat{c}=\hat{c} . \hat{a}=\frac{1}{2}$ Then the volume of the parallelopiped is (A) $\frac{1}{\sqrt{2}}$ (B) $\frac{1}{2 \sqrt{2}}$ (C) $\frac{\sqrt{3}}{2}$ (D) $\frac{1}{\sqrt{3}}$

- Watch Video Solution

187. The number of distinct real values of λ for which the vectors $-\lambda^{2} \hat{i}+\hat{j}+\hat{k}, \hat{i}-\lambda^{2} \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}-\lambda^{2} \hat{k}$ are coplanar is (A) zero (B) one (C) two (D) three

- Watch Video Solution

188. Lelt two non collinear unit vectors \hat{a} and \hat{b} form and acute angle. A point P moves so that at any time t the position vector $O P$ (where O is the origin) is given by âcost $+\hat{b} s i n t$. When P is farthest from origin O , let M be the length of $O P$ and \hat{u} be the unit vector along $O P$ Then (A)
$\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|}$ and $M=(1+\hat{a} \cdot \hat{b})^{\frac{1}{2}}$ (B) $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ and $M=(1+\hat{a} \cdot \hat{b})^{\frac{1}{2}}$
$\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|}$ and $M=(1+2 \hat{a} . \hat{b})^{\frac{1}{2}}$ (D) $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ and $M=(1+2 \hat{a} \cdot \hat{b})^{\frac{1}{2}}$

(Watch Video Solution

189. Let $\vec{a}, \vec{b}, \vec{c}$ be unit such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$. Which one of the following is correct? (A) $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}=\overrightarrow{0}$
$\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a} \neq \overrightarrow{0} \quad$ (C) $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\overrightarrow{\times} \vec{c} \neq \overrightarrow{0}$
$\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}$ are mutually perpendicular

- Watch Video Solution

190. Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \overrightarrow{=} \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-\hat{k}$. A vector in the plane of \vec{a} and \vec{b} whose projection on $\vec{c} i s \frac{1}{\sqrt{3}}$ is (A) $4 \hat{i}-\hat{j}+4 \hat{k}$ (B) $\hat{i}+\hat{j}-3 \hat{k}$
$2 \hat{i}+\hat{j}-2 \hat{k}$ (D) $4 \hat{i}+\hat{j}-4 \hat{k}$
191. If $\alpha+\beta+\gamma=2$ and $\vec{a}=\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}, \hat{k} \times(\hat{k} \times \vec{a})=\overrightarrow{0}$,then $\gamma=\mathrm{A}) 1$ (B) -1 (C) 2 (D) none of these

- Watch Video Solution

192. The non zero vectors \vec{a}, \vec{b} and \vec{c} are related by $\vec{a}=(8) \vec{b}$ and $\vec{c}=-7 \vec{b}$. Then angle between \vec{a} and \vec{c} is (A) $\frac{\pi}{2}$ (B) pi (C) $0(D) \frac{\pi}{4}$

- Watch Video Solution

193. The vector $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$ lies in the plane of vectors $\vec{b}=\hat{i}+\hat{j}$ and $\vec{c}=\hat{j}+\hat{k}$ and bisects the angle between \vec{b} and \vec{c}. Then which one of the following gives possible values $\circ \alpha$ and β ? $\alpha=2, \beta=1$ (B) $\alpha=1, \beta=1$ (C) $\alpha=2, \beta=1$ (D) $\alpha=1, \beta=2$
194. If $\vec{a}, \vec{b}, \vec{c}$ be three that unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{2} \vec{b}, \vec{b}$ and \vec{c} veing non parallel. If θ_{1} is the angle between \vec{a} and \vec{b} and θ_{2} is the angle between \vec{a} and \vec{b} then (A) $\theta_{1}=\frac{\pi}{6}, \theta_{2}=\frac{\pi}{3}$ (B) $\theta_{1}=\frac{\pi}{3}, \theta_{2}=\frac{\pi}{6}$ (C) $\theta_{1}=\frac{\pi}{2}, \theta_{2}=\frac{\pi}{3}$ (D) $\theta_{1}=\frac{\pi}{3}, \theta_{2}=\frac{\pi}{2}$

- Watch Video Solution

195. The equation $\vec{r}-2 \vec{r} . \vec{c}+h=0,|\vec{c}|>\sqrt{h}$ represents (A) circle (B) ellipse (C) cone (D) sphere

- Watch Video Solution

196. $\vec{a}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+4 \hat{i}+3 \hat{k}$ are one of the sides and medians respectively of a triangle through the same vertex, then area of the triangle is (A) $\frac{1}{2} \sqrt{83}$ (B) $\sqrt{83}$ (C) $\frac{1}{2} \sqrt{85}$ (D) $\sqrt{86}$
197. The values of a for which the points A, B, C with position vectors $2 \hat{i}-\hat{j}-\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $a \hat{i}-3 \hat{j}+\hat{k}$ respectively are the vertices of a righat angled triangle at C are (A) 2 and 1 (B) - 2 and - 1
(C) -2 and 1 2 and -1

- Watch Video Solution

198. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors, then $|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}$ does not exceed $(A) 4(B) 9(C) 8(D) 6$

- Watch Video Solution

199. If $\vec{u}, \vec{v}, \vec{w}$ are noncoplanar vectors and p, q are real numbers, then the equality $[3 \vec{u}, p \vec{v}, p \vec{w}]-[p \vec{v}, \vec{w}, q \vec{u}]-[2 \vec{w}, q \vec{v}, q \vec{u}]=0$ holds for (1) exactly one value of $(p, q)(2)$ exactly two values of $(p, q)(3)$ more than two but not all values of $(p, q)(4)$ all values of (p, q)
200. The projections of a vector on the three coordinate axis are $6,3,2$ respectively. The direction cosines of the vector are (1) $6,-3,2$
$\frac{6}{5}, \frac{-3}{5}, \frac{2}{5}$ (3) $\frac{6}{7}, \frac{-3}{7}, \frac{2}{7}$ (4) $\frac{-6}{7}, \frac{-3}{7}, \frac{2}{7}$

- Watch Video Solution

201. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are unit vectors such that $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=1$ and $\vec{a} \cdot \vec{c}=\frac{1}{2}$ then (A) $\vec{a}, \vec{b}, \vec{c}$ are non coplanar (B)
$\vec{b}, \vec{c}, \vec{d}$ are non coplanar (C) \vec{b}, \vec{d} are non paralel (D) \vec{a}, \vec{d} are paralel and \vec{b}, \vec{c} are parallel

- Watch Video Solution

202. Let $P(3,2,6)$ be a point in space and Q be a point on line $\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$ Then the value of μ for which the vector $\vec{P} Q$ is parallel to the plane $x-4 y+3 z=1$ is a. $1 / 4$ b. $-1 / 4$ c. $1 / 8 \mathrm{~d} .-1 / 8$
203. If θ is the angle between unit vectors \vec{a} and \vec{b} then $\sin \left(\frac{\theta}{2}\right)$ is (A) $\frac{1}{2}|\vec{a}-\vec{b}|$ (B) $\frac{1}{2}|\vec{a}+\vec{b}|$ (C) $\frac{1}{2}|\vec{a} \times \vec{b}|$ (D) $\frac{1}{\sqrt{2}} \sqrt{1-\vec{a} \cdot \vec{b}}$

- Watch Video Solution

204. Let $\vec{u}, \vec{v}, \vec{w}$ be three unit vectors such that $\vec{u}+\vec{v}+\vec{w}=\vec{a}, \vec{a} \cdot \vec{u}=\frac{3}{2}, \vec{a} \cdot \vec{v}=\frac{7}{4}|\vec{a}|=2$, then (A) $\vec{u} \cdot \vec{v}=\frac{3}{2}$ (B) $\vec{u} \cdot \vec{w}=0$
(C) $\vec{u} \cdot \vec{w}=-\frac{1}{4}$ (D) none of these

- Watch Video Solution

205. Let \vec{A} be a vector parallel to the of intersection of planes P_{1} and P_{2} through origin. P_{1} is parallel to the vectors $2 \hat{j}+3 \hat{k}$ and $3 \hat{j}-3 \hat{k}$ and P_{2} is parallel to $\hat{j}-\hat{k}$ and $3 \hat{i}+3 \hat{j}$ then the angle between the vectors \vec{A} and $2 \hat{i}+\hat{j}-2 \hat{k}$ is (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{6}$ (D) $\frac{3 \pi}{4}$
206.

$$
\overrightarrow{P Q} \times(\overrightarrow{R S}+\overrightarrow{S T}) \neq 0,
$$

Reason
$P Q \times R S=\overrightarrow{0}$ and $P Q \times S T \neq \overrightarrow{0}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

207. Consider $\triangle A B C$. Let I bet he incentre and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be the sides of the triangle opposite to angles A, B, C respectively. Let O be any point in the plane of $\triangle A B C$ within the triangle. $A O, B O$ and $C O$ meet the sides $B C, C A$ and AB in D, E and F respectively. $a I A=b I B+c I C=(\mathrm{A})-1(B) 0(C) 1(D) 3$

- Watch Video Solution

208.

$\triangle A B C$. LetIbethe \in centre and a, b, cbethesidesofthe \triangle opposite $\rightarrow \angle \mathrm{sA}, B, \mathrm{Cr}$
/_\ABC
with \in the $\triangle . A O, B O$ and COmeetthesides $B C, C A$ and $A B \in D, E$ and Frespe
$(\mathrm{OD}) /(\mathrm{AD})+(\mathrm{OE}) /(\mathrm{BE})+(\mathrm{O}) /(\mathrm{CF})=(A) 3 / 8(B) 1(C) 3 / 2^{`}(\mathrm{D})$ none of these

- Watch Video Solution

209. Consider $\triangle A B C$. Let I bet he incentre and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be the sides of the triangle opposite to angles A, B, C respectively. Let O be any point in the plane of $\triangle A B C$ within the triangle. $A O, B O$ and $C O$ meet the sides $B C, C A$ and $A B$ in D, E and F respectively. If $3 B D=2 D C$ and $4 C E=E A$ then the ratio in which divides $A B$ is $(A) 3: 4(B) 3: 2(C) 4: 1(D) 6: 1^{`}$

- Watch Video Solution

1. Classify the following measures as scalars and vector:5seconds.

- Watch Video Solution

2. Classify the following measures as scalars and vector: $3 \mathrm{~km} / \mathrm{hr}$

- Watch Video Solution

3. Classify the following measures as scalars and vector: $10 g \frac{m}{c} m^{3}$

- Watch Video Solution

4. Classify the following measures as scalars and vector: 10 Newton

- Watch Video Solution

5. Classify the following measures as scalars and vector: $20 \xrightarrow[\text { sec } \rightarrow]{m}$ wardsn or $t h$

- Watch Video Solution

6. Classify the following measures as scalars and vector: $1000 \mathrm{~cm}^{3}$

- Watch Video Solution

7. Clasify the following quantities as scalars and vector: 10 kg

- Watch Video Solution

8. Clasify the following quantities as scalars and vector: $20 c \frac{m}{\sec ^{3}}$

- Watch Video Solution

9. Clasify the following quantities as scalars and vector: $50 \frac{m}{\operatorname{seco}} n d$

- Watch Video Solution

10. Clasify the following quantities as scalars and vector: $20 \frac{\mathrm{~m}}{\mathrm{sec}}$ towards west

D Watch Video Solution

11. Clasify the following quantities as scalars and vector: `50 kg weighat

(Watch Video Solution

12. Clasify the following quantities as scalars and vector: $100^{\circ} \mathrm{C}$

- Watch Video Solution

13. Clasify the following quantities as scalars and vector: 100 kg weighat

- Watch Video Solution

14. Clasify the following quantities as scalars and vector: 30^{0}

- Watch Video Solution

15. Clasify the following quantities as scalars and vector: charge

- Watch Video Solution

16. Clasify the following quantities as scalars and vector: energy

- Watch Video Solution

17. Clasify the following quantities as scalars and vector: potential
18. Clasify the following quantities as scalars and vector: displacement

- Watch Video Solution

19. Represent graphically a displacement of $40 \mathrm{~km}, 30$ owest of south.

- Watch Video Solution

20. Represent graphically: A displacement of 20 m , north east.

- Watch Video Solution

21. Represent graphically: A displacement of $50 \mathrm{~m}, 60^{0}$ south of east
22. Represent the following graphically: A displacement of $40 \mathrm{~km}, 30^{0}$ east of north A displacement of 50 km south east A displacement of 70 km , 40^{0} north of west

- Watch Video Solution

23. Represent graphically a displacement of : $40 \mathrm{~km}, 20^{0}$ east of south

- Watch Video Solution

24. Represent graphically a displacement of : 20 km south west

- Watch Video Solution

25. Represent graphically a displacement of : ' $60 \mathrm{~km} \mathrm{40} \mathrm{\wedge}$ ^ norhat of west
26. In the adjoining figure which of the vector are: collinear

- Watch Video Solution

27. In the adjoining figure which of the vector are: cointial

- Watch Video Solution

28. In the adjoining figure which of the vector are: equal

- Watch Video Solution

29. In the adjoining figure $A B C D$ is a rectangle. Examine which of the vector are: equal
30. In the adjoining figure $A B C D$ is a rectangle. Examine which of the vector are: collinear

- Watch Video Solution

31. In the adjoining figure $A B C D$ is a rectangle. Examine which of the vector are: coinitial

- Watch Video Solution

32. In the adjoining figure $A B C D$ is a rectangle. Examine which of the vector are: collinear but not equal

- Watch Video Solution

33. In the given figure $A B C D E F$ is a regular hexagon. Examine which vector are, equal
34. In the given figure $A B C D E F$ is a regular hexagon. Examine which vector are, collinear

- Watch Video Solution

35. In the given figure $A B C D E F$ is a regular hexagon. Examine which vector are, Cointial

- Watch Video Solution

36. In the given figure ABCDEF is a regular hexagon. Examine which vector are, Collinear but not equal

- Watch Video Solution

37. The position vector of foru points A, B, C, D are $\vec{a}, \vec{b}, 2 \vec{a}+3 \vec{b}$ and $\vec{a}-2 \vec{b}$ respectively. Expessthe $\vec{\rightarrow} r \operatorname{svec}(\mathrm{AC}), \quad \operatorname{vec}(\mathrm{DB})$, $\operatorname{vec}(B C)$ and $\operatorname{vec}(C A) \in$ termsofveca and vecb.

- Watch Video Solution

38. If $A D, B E$ and $C F$ be the median of a $\triangle A B C$, prove that
$\overrightarrow{A D}+\overrightarrow{B E}+\overrightarrow{C F}=0$

- Watch Video Solution

39. If G is the centroid of $\triangle A B C$, prove that $G A+G B+G C=0$. Further if G_{1} bet eh centroid of another $\triangle P Q R$, show that $A P+B Q+C R=3 G G_{1}$
40. Five forces $\vec{A} B, \vec{A} C, \vec{A} D, \vec{A} E$ and $\vec{A} F$ act at the vertex of a regular hexagon $A B C D E F$ Prove that the resultant is $6 \vec{A} O$, where O is the centre of heaagon.

- Watch Video Solution

41. If $A B C D E F$ is a regular hexagon, prove that $A C+A D+E A+F A=3 A B$

- Watch Video Solution

42. $A B C D E$ is a parale,ogram E and F are the middle points $f A D$ and $C D$
respectively. Express $B E$ and $B F$ in terms of
\vec{a} and \vec{b}, where $\overrightarrow{B A}=\vec{a}$ and $\overrightarrow{B C}=\vec{b}$.

- Watch Video Solution

43. If DandE are the mid-points of sides $A B a n d A C$ of a triangle $A B C$ respectively, show that $\vec{B} E+\vec{D} C=\frac{3}{2} \vec{B} C$

- Watch Video Solution

44. In trapezium $P Q R S$, given that $Q R|\mid P S$ and $2 Q R=P S$. If $P Q=\vec{a}, Q R=\vec{b}$ and $R S=\vec{c}$, express \vec{q} in terms \vec{b} and \vec{c}

- Watch Video Solution

45. $O X, O Y$ and $O Z$ are three edges of a cube andn P, Q, R are the vertices of rectangle OXPY, OXQZ and OYSZ respectively. If `vec(OX)=vecalpha, $\operatorname{vec}(\mathrm{OY})=\mathrm{vecbeta}$ and $\operatorname{vec}(\mathrm{OZ})=$ vecgamma express vec(OP), vec(OQ), vec(OR) and vec(OS) in erms of vecalpha, vecbeta and vecgamma.

- Watch Video Solution

46. If $\vec{a}+2 \vec{b}+3 \vec{c}, 2 \vec{a}+\vec{b}+3 \vec{c}, 2 \overrightarrow{+} 5$ veb $-\vec{c}$ and $\vec{a}-\vec{b}-\vec{c}$ be the positions vectors $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D respectively, prove that $A B$ and $C D$ are parallel. Is ABCD a parallelogram?

- Watch Video Solution

47. If $A B C D$ is quadrilateral and EandF are the mid-points of $A C a n d B D$ respectively, prove that $\vec{A} B+\vec{A} D+\vec{C} B+\vec{C} D=4 \vec{E} F$

- Watch Video Solution

48. $A B C D$ is parallelogram and P is the point of intersection of its diagonals. If O is the origin of reference, show that $\vec{O} A+\vec{O} B+\vec{O} C+\vec{O} D=4 \vec{O} P$

- Watch Video Solution

49. $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively of a paralleloram, $A B C D$, ifnd the position vector of D.

- Watch Video Solution

50. Find the sum of the vectors
$\overrightarrow{=} \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\vec{c}=\hat{i}-6 \hat{j}-7 \hat{k}$

- Watch Video Solution

51. Find the scalar and vector components of the vector with initial pont
$(2,1)$ and terminal point $(-5,7)$.

- Watch Video Solution

52. If the positin vector of P and Q be respectively hati+3hatj-7hatk and 5hati-2hastj+4hatk find vec(PQ)'
53. Find the vector joining the points $P(2,3,0)$ and $Q(1,2,4)$ directed from P to Q .

- Watch Video Solution

54. Find the values of x for which $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector

- Watch Video Solution

55. Find a unit vector in the direction of vector: $\vec{a}=2 \hat{i}+3 \hat{+} \hat{k}$

- Watch Video Solution

56. Find a unit vector in the direction of vector: $\overrightarrow{=} 3 \hat{i}-2 \hat{j}+6 \hat{k}$
57. Find the direction cosines of the vector: $\hat{i}+2 \hat{j}+6 \hat{k}$

- Watch Video Solution

58. Findthe vector in the directionof the vector $-\hat{i}+2 \hat{j}+2 \hat{k}$ that has magnitude 7.

- Watch Video Solution

59. Find a vector in the directionof vector $\overrightarrow{=} \hat{i}-2 \hat{j}$ that has magnitude 7 units.

- Watch Video Solution

60. If $O P=2 \hat{i}+3 \hat{j}-\hat{k}$ and $O Q=5 \hat{i}+4 \hat{j}-3 \hat{k}$ and $P Q$ and the direction cosines of $P Q$.

- Watch Video Solution

61. The position vectors of two pints A and B are $\hat{i}+\hat{j}+\hat{k}$ and $5 \hat{i}-3 \hat{j}+\hat{k} . F \in$ daunit $\vec{\rightarrow} r \in \operatorname{directionofvec(AB)~}$
, and alsof \in dthedirectioncos $\in \operatorname{esofvec(AB).~} W \hat{L}$ sdoesvec(AB)' make with the three axes?

- Watch Video Solution

62. Write the direction ratios of the vector $\rightarrow a=\hat{i}+\hat{j}-2 \hat{k}$ and hence calculate its direction cosines.

- Watch Video Solution

63. Find the unit vector in the direction of vector $\rightarrow P Q$, where P and Q are the points $(1,2,3)$ and $(4,5,6)$, respectively.

- Watch Video Solution

64. If $P \equiv(1,5,4)$ and $Q \equiv(4,1,-2)$ find the direction ratios of $P Q$

- Watch Video Solution

65. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$ find a unit vector parallel to then vector $2 \vec{a}-\vec{b}+3$ cevc.

- Watch Video Solution

66. If $\vec{a}=\hat{i}+2 \hat{j}-\hat{k}$ and $\vec{b}=3 \hat{i}+\hat{j}-\hat{k}$ find a unit vector int direction of $\vec{a}-\vec{b}$

- Watch Video Solution

67. IF the position vectors of P, Q, R, S be respectively $2 \hat{i}{ }_{4} \hat{k}, 5 \hat{i}+3 \sqrt{3} \hat{j}+4 \hat{k},-2 \sqrt{3} \hat{j}+4 \hat{k},-2 \sqrt{3} \hat{j}+\hat{k}, 2 \hat{i}+\hat{k}$ prove that RS is
parallek to PQ a is two third of PQ .

- Watch Video Solution

68. Find the lengths of the sides of the triangle whose vertices are $A(2,4,-1),(4,5,1),(C 3,6,-3)$ and show that the triangle is rilghat ngled.

- Watch Video Solution

69. Prove that the vectgors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$ form a righat angled triangle.

- Watch Video Solution

70. If position vectors of P, Q, R, S be respectively $2 \hat{i}+4 \hat{k}, 5 \hat{i}+4 \hat{j}+4 \hat{k},-4 \hat{i}-8 \hat{j}+\hat{k}, 2 \hat{i}+\hat{k}$, prove that RS is parallel to PQ and is twice of PQ .
71. The position vectors of the points $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ are $\hat{i}++\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{i}+2 \hat{j}$ and $\hat{i}-6 \hat{j}-\hat{k}$. Prove that the lines PQ and RS are pralel and find the ratio tof their lengths.

- Watch Video Solution

72. Prove that the three points whose positions vectors are $3 \hat{i}-\hat{j}+2 \hat{k}, \hat{i}-\hat{j}-3 \hat{k}$ and $4 h a i-3 \hat{j}+\hat{k}$ form an isosceles tirangle.

- Watch Video Solution

73. Prove that vecotos $3 \hat{i}+5 \hat{j}+2 \hat{k}, 2 \hat{i}-3 \hat{j}-5 \hat{k}$ and $5 \hat{i}+2 \hat{j}-3 \hat{k}$ form the sides of an equlateral triangle.

- Watch Video Solution

74. Prove that the points $\hat{i}-\hat{j}, 4 \hat{i}-3 \hat{j}+\hat{k}$ and $2 \hat{i}-4 \hat{j}+5 \hat{k}$ are the vertices of a righat angled triangle.

Watch Video Solution

75. Showt hat the points $A(2 \hat{i}-\hat{j}+\hat{k}), B(\hat{i}-3 \hat{j}-5 \hat{k})$ and $C(3 \hat{i}-3 \hat{j}-3 \hat{k})$ are the vertices of a righat ngled triangled

- Watch Video Solution

76. Find as unit vector paralel to the sum of the vectors $2 \hat{i}+3 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$

- Watch Video Solution

77. The two adjacent sides of a paralelgogram are $2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\hat{i}-2 \hat{j}-3 \hat{k}$. Find the unit vector parallel to its diagonal.
78. Find the unit vector in the direction of the sum of the vectors $\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}+3 \hat{k}$.

- Watch Video Solution

79. Find a vector of magnitude 5 units and parallel to the resultant of the vectors $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

80. Let $\vec{a}=\hat{i}+2 \hat{j}$ and $\vec{b}=2 \hat{i}+\hat{j}$. Is $|\vec{a}|=\mid \vec{b}$ Are the vectors \vec{a} and \vec{b} equal?.

- Watch Video Solution

81. Find the values of x, y and z so that the vectors $\vec{a}=x \hat{i}+2 h * j+z \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}+\hat{k}$ are equal.

- Watch Video Solution

82. IF \vec{a} and \vec{b} are no collinear vectors and
$\vec{A}=(x+4 y) \vec{a}+(2 x+y+1) \vec{b}$ and $\vec{B}=(y-2 x+2) \overrightarrow{+}(2 x-3 y-1) \vec{b}, \quad$ find $\quad \mathrm{x}$ and y such that $3 \vec{A}=2 \vec{B}$.

- Watch Video Solution

83. Find the all the values of λ such that $(x, y, z) \neq(0,0,0)$ and $x(\hat{i}+\hat{j}+3 \hat{k})+y(3 \hat{i}-3 \hat{j}+\hat{k})+z(-4 \hat{i}+5 \hat{j})=\lambda(x \hat{i}+y \hat{j}+z \hat{k})$

- Watch Video Solution

84. Prove th the following sets of three points are collinear:
$-2 \vec{a}+3 \vec{b}+5 \vec{c}, \vec{a}+2 \vec{b}+3 \vec{c}, 6 \vec{a}-\vec{c}$

- Watch Video Solution

85. Prove th the following sets of three points are collinear: $2 \hat{i}+\hat{j}-\hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$ and $\hat{i}+4 \hat{j}-3 \hat{k}$

- Watch Video Solution

86. IF the points with positon vectors $60 \hat{i}+3 \hat{j}, 40 \hat{i}-\hat{a} 8 j, a \hat{i}-52 \hat{j}$ are colinear, then prove that $a=-40$

- Watch Video Solution

87. Prove that the ponts $A(1,2,3), B(3,4,7), C(-3-2,-5)$ are collinear and find the ratio in which B divides $A C$.
88. The vectors \vec{a} and \vec{b} are non collinear. Find for what value of x the vectors $\vec{c}=(x-2) \vec{a}+\vec{b}$ and $\vec{d}=(2 x+1) \vec{a}-\vec{b}$ are collinear.?

- Watch Video Solution

89. If $\vec{a}, \vec{b}, \vec{c}$ are non zero and non coplanar vectors show that the following vector are coplanar: $2 \vec{a}-3 \vec{b}+4 \overrightarrow{,}-\overrightarrow{+} 3 \vec{b}-5 \overrightarrow{,}-\vec{a}+2 \vec{b}-3$

- Watch Video Solution

90. If $\vec{a}, \vec{b}, \vec{c}$ are non zero and non coplanar vectors show that the following vector are coplanar: $5 \vec{a}+6 \vec{b}+7 \vec{c}, 7 \vec{a}-8 \vec{b}+9 \vec{c}, 3 \vec{a}+20 \vec{b}+5 \vec{c}$

- Watch Video Solution

91. If $\vec{a}, \vec{b}, \vec{c}$ are non zero and non coplanar vectors show that the following vector are coplanar: $4 \vec{a}+5 \vec{b}+\vec{c},-\vec{b}-\vec{c}, 5 \vec{a}+9 \vec{b}+4 \vec{c}$

- Watch Video Solution

92. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors, prove that the following points are coplanar: $6 \vec{a}+2 \vec{b}-\vec{c}, 2 \vec{a} \vec{b}+3 \vec{c},-\vec{a}+2$ becb $-4 \vec{c},-12 \vec{a}-\vec{b}-3 \vec{c}$

(Watch Video Solution

93. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors, prove that the following points are coplanar: $6 \vec{a}-4 \vec{b}+10 \vec{c},-5 \vec{a} s+3 \vec{b}-10 \vec{c}, 4 \vec{a}-6 \vec{b}-10 \vec{c}, 2 \vec{b}+10 \vec{c}$

(Watch Video Solution

94. If $2 \hat{i}-\hat{j}+\hat{k} \hat{k}+2 \hat{j}-3 \hat{k}$ and $3 \hat{i}+x \hat{j}+5 \hat{k}$ be coplanar find x.

- Watch Video Solution

95. If $\vec{a}, \vec{b}, \vec{c}$, be three on zero non coplanar vectors estabish a linear relation between the vectors:
$\vec{a}+3 \vec{b}=3 \vec{c}, \vec{a}-2 \vec{b}+3 \vec{c}, \overrightarrow{+}+2 \vec{b}-2 \vec{c}, 6 \vec{a}=14 \vec{b}+4 \vec{c}$

- Watch Video Solution

96. If $\vec{a}, \vec{b}, \vec{c}$, be three on zero non coplanar vectors estabish a linear relation between the vectors: $7 \overrightarrow{+} 6 \vec{c}, \vec{a}+\vec{b}+\overrightarrow{,} 2 \vec{a}-\vec{b}+\vec{c}, \vec{b}-\vec{c}$

- Watch Video Solution

97. Examine whather followig vectors are coplanar or nto: $\vec{a}+\vec{b}-\vec{c}, \vec{a}-3 \vec{b}+\vec{c} n d 2 \vec{a}-\vec{b}-\vec{c}$

- Watch Video Solution

98. Examine whether the following vectors from a linearly dependent or independent set of vector: $\hat{i}+3 \hat{j}+5 \hat{k}, 2 \hat{i}+6 \hat{j}+10 \hat{k}$

Watch Video Solution

99. Examine whether the following vectors from a linearly dependent or independent set of vector: $\vec{a}\left(1,-2,30, \vec{b}=(-2,3,-4), \vec{c}=(1,-1,5)^{\prime}\right.$

- Watch Video Solution

100. Examine whether the following vectors from a linearly dependent or independent set of vector: $\vec{a}-3 \vec{b}+2 \vec{c}, \overrightarrow{-}-9 \vec{b}-\vec{c}, 3 a+2 \vec{b}-\vec{c}$ whre $\vec{a}, \vec{b}, \vec{c}$ are non zero non coplanar vectors

- Watch Video Solution

101. Find the mid point of the ine segment joining the points $P(2 \hat{i}+3 \hat{j}+3 \hat{k})$ and $Q(4 \hat{i}+\hat{j}-2 \hat{k})$

- Watch Video Solution

102. Consider tow points P and Q with positn vecfors $O P=3 \vec{a}-2 \vec{b}$ and $O Q=\vec{a}+\vec{b}$. Find the position vector of point R which dicides the joining P and Q in the ratio 2:1: internally

- Watch Video Solution

103. Consider tow points P and Q with position vecfors $\operatorname{vec}(O P) 3 v e c a-$ $2 b v e c b$ and $v e c(O Q)=v e c a+v e c b$. Find the position vector of point R which dicides the joining P and Q in the ratio 2:1:externally

- Watch Video Solution

104. Find the position vector of a point R which divides the line joining two points $P(\hat{i}+2 \hat{j}-\hat{k})$ and $Q(-\hat{i}-\hat{j}+\hat{k})$ in the ratio 2:1: internally

- Watch Video Solution

105. Find the position vector of a point R which divides the line joining two points $P(\hat{i}-2 \hat{j}-\hat{k})$ and $Q(-\hat{i}-\hat{j}+\hat{k})$ in the ratio 2:1: externally

- Watch Video Solution

106. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $(2 \vec{a}+\vec{b})$ and $(\vec{a}-3 \vec{b})$ respectively, externally in the ratio 1:2.Also, show that P is the mid-point of the line segment $R Q$
107. $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of the three points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectiveluy. The point P divides the ilne segment $A B$ internally in the ratio $2: 1$ and the point Q divides the lines segment $B C$ externally in the ratio $3: 2$ show that 3) $\overrightarrow{P Q})=-\vec{a}-8 \vec{b}+9 \vec{c}$.

- Watch Video Solution

108. Prove that the internal bisectors of the angles of a triangle are concurrent

- Watch Video Solution

109. The line segment joining the mid-points of any two sides of a triangle in parallel to the third side and equal to half of it.

- Watch Video Solution

110. Examples: Prove that the segment joining the middle points of two non parallel sides od a trapezim is parallel to the parallel sides and half of their sum.

- Watch Video Solution

111. The line joining the mid points of the diagonals of a trapezium is parallel to each of the parallel sides and equal to half of their difference

- Watch Video Solution

112. If P and Q are the mid points of the sides $A B$ and $C D$ of a parallelogram $A B C D$, prove that $D P$ and $B Q$ respectively.

- Watch Video Solution

113. Write down a unit vector in XY-plane, making an angle of 30 with the positive direction of x-axis.

- Watch Video Solution

114. [Find by vector method the horizontal force and the force inclined at an angle of 60° to the vertical whose resultant is a vertical force P.]

- Watch Video Solution

115. . The velocity of a boat relative to water is represented by $3 \bar{i}+4 \bar{j}$ and that of water relative to the earth by $\bar{i}-3 \bar{j}$. What is the velocity of the boat relative to the earth, if \bar{i} and \bar{j} represent velocities of $1 \mathrm{~km} / \mathrm{hour}$ east and north respectively.

- Watch Video Solution

116. If $\lambda \vec{a}+\mu \vec{b}+\gamma \vec{c}=0$, where $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular and λ, μ, γ are scalars prove that $\lambda=\mu=\gamma=0$

- Watch Video Solution

117. A, B, C, D are any four points, prove that $\vec{A} B \vec{C} D+\vec{B} C \vec{A} D+\vec{C} A \vec{B} D=0$.

- Watch Video Solution

118. Find the equation of the plane through the point $2 \vec{i}+3 \vec{j}-\vec{k}$ and perpendicular to the vector $3 \vec{i}-4 \vec{j}+7 \vec{k}$.

- Watch Video Solution

119. Find the equation of the plane through the $2 \vec{i}+3 \vec{j}-\vec{k}$ and perpendicular to the vector $3 \vec{i}+2 \vec{j}-2 \vec{j}$. Determine the perpendicular
distance of this plane from the origin.

- Watch Video Solution

120. The position vector of two points A and B are $3 \vec{i}+\vec{j}+2 \vec{k}$ and $\vec{i}-2 \vec{j}-4 \vec{k}$ respectively. Find the equation of the plane through B and perpendicular to AB.

- Watch Video Solution

121. Find the cosine of the angel between the planes $\vec{r} .(2 \vec{i}-3 \vec{j}-6 \vec{k})=7$ and $\vec{r} \cdot(6 \vec{i}+2 \vec{j}-9 \vec{k})=5$

- Watch Video Solution

122. Let $A B C b e$ a triangle. Points D, E, F are taken on the sides $A B, B C$ and $C A$ respectively such that $\frac{A D}{A B}=\frac{B E}{B C} /=\frac{C F}{C A}=\alpha$ Prove that the vectors $A E, B$
and CD form a triangle also find alpha for which the area of the triangle formed by these is least.

- Watch Video Solution

123. If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors oif three non collinear points $A S, B, C$ respectively, show that eperpendicular distance of C ferom the line through A and B is $\underline{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}$

$$
|\vec{b}-\vec{a}|
$$

(D) Watch Video Solution

124. Show that the perpendicular distance of any point \vec{a} from the line
$\vec{r}=\vec{b}+t \vec{c} i s(\mid(\vec{b}-\vec{a}) \times \vec{c}) \frac{\mid}{|\vec{c}|}$

- Watch Video Solution

125. Prove that the shortest distance between two lines $A B$ and $C D$ is
$\underline{|(\vec{c}-\vec{a}) \cdot(\vec{b}-\vec{a}) \times(\vec{d}-\vec{c})|}$
where $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are the position vectors of $|(\vec{b}-\vec{a}) \times d-\vec{c}|$
points A, B, C, D respectively.

- Watch Video Solution

126. If $P Q R S$ is a quadrilteral such that $P Q=\vec{a}, P S=\vec{b}$ and $P R=x \vec{a}+y \vec{b}$ show that the area of the quadrilateral PQRS is $\left.\frac{1}{2} \right\rvert\,(x y| | \vec{a} \times \vec{b} \mid$

- Watch Video Solution

127. A rigid body is rotating at 5 radians per second about an axis $A B$ where A and B are the pont $2 \vec{i}+\vec{j}+\vec{k}$ and $8 \vec{i}-2 \vec{j}+3 \vec{k}$ respectively. Find the veclocity of the practicle P of the body at the points $5 \vec{i}-\vec{j}+\vec{k}$.

D Watch Video Solution

128. If $\vec{a}=\vec{i}-2 \vec{j}+\vec{k}, \vec{b}=\vec{i}+\vec{j}+\vec{k}$ and $\vec{c}=\vec{i}+2 \vec{j}+\vec{k}$ then show that $\vec{a} .(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) . \vec{c}$.

- Watch Video Solution

129. If $\vec{a}=-\overrightarrow{2 i}-\overrightarrow{2 j}+\overrightarrow{4 k}, \vec{b}=-\overrightarrow{2 i}+\overrightarrow{4 j}-\overrightarrow{2 k}$ and $\vec{c}=\overrightarrow{4 i}-\overrightarrow{2 j}-\overrightarrow{2 k}$ Calculate the value of $[\vec{a} \vec{b} \vec{c}]$ and interpret the result.

- Watch Video Solution

130. Find the volume of the parallelopiped whose thre coterminus edges asre represented by $2 i+3 j+\vec{k}, \vec{i}-\vec{j}+\vec{k}, 2 i+\vec{j}-\vec{k}$.

- Watch Video Solution

131. Find the volume of the parallelopiped whose thre coterminus edges asre represented by $\vec{i}+\vec{j}+\vec{k}, \vec{i}-\vec{j}+\vec{k}, \vec{i}+2 j-\vec{k}$.

- Watch Video Solution

132. Find the value of the constant λ so that vectors $\vec{a}=\overrightarrow{2 i}-\vec{j}+\vec{k}, \vec{b}=\vec{i}+2 \vec{j}-\overrightarrow{3 j}$, and $\vec{c}=\overrightarrow{3 i}+\overrightarrow{\lambda j}+\overrightarrow{5 k}$ are coplanar.

- Watch Video Solution

133. Show that: $(\vec{a}+\vec{b}) .\{(\vec{b}+\vec{c}) \times(\vec{c}+\vec{a}) \mid=2\{\vec{a} .(\vec{b} \times \vec{c})\}$

- Watch Video Solution

134. Show that the plane through the points $\vec{a}, \vec{b}, \vec{c}$ has the equation $[\vec{r} \vec{b} \vec{c}]+[\vec{r} \vec{c} \vec{a}]+[\vec{r} \vec{a} \vec{b}]=[\vec{a} \vec{b} \vec{c}]$
135. Prove that $\vec{a}, \vec{b}, \vec{c}$ are coplanar iff $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}$ are coplanar

- Watch Video Solution

136. If $\vec{a}, \vec{b}, \vec{c}$ be three non coplanar vectors show that $\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}$ are non coplanar.

- Watch Video Solution

137. If $\vec{A}=\frac{\vec{b} \times \vec{c}}{[\vec{b} \vec{c} \vec{c}]}, \vec{B}=\frac{\vec{c} \times \vec{a}}{[\vec{c} \vec{a} \vec{b})}, \vec{C}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c})}$ find $[\vec{A} \vec{B} \vec{C}]$

- Watch Video Solution

138. If the three vectors $\vec{a}, \vec{b}, \vec{c}$ are non coplanar express each of $\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}$ in terms of $\vec{a}, \vec{b}, \vec{c}$.

(D) Watch Video Solution

139. If the three vectors $\overrightarrow{,} \vec{b}, \vec{c}$ are non coplanar express $\overrightarrow{,} \vec{b}, \vec{c}$ each in terms of the vectors $\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}$

- Watch Video Solution

140. Show that : $[\vec{l} \vec{m} \vec{n}][\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}\vec{l} \cdot \vec{a} & \vec{l} \cdot \vec{b} & \vec{l} \cdot \vec{c} \\ \vec{m} \cdot \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \cdot \vec{c} \\ \vec{n} \cdot \vec{a} & \vec{n} \cdot \vec{b} & \vec{n} \cdot \vec{c}\end{array}\right|$

Watch Video Solution

141.

$\vec{a}=a_{1} \vec{l}+a_{2} \vec{m}+a_{3} \vec{n}, \vec{b}=b_{1} \vec{l}+b_{2} \vec{m}+b_{3} \vec{n}$ and $\vec{c}=c_{1} \vec{l}+v_{2} \vec{m}+c_{3} \vec{n}$ where \vec{l}, \vec{m}
are three non coplnar vectors then show that $[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|[\vec{l} \vec{m} \vec{n}]$

- Watch Video Solution

142. Let k be the length of any edge of a regular tetrahedron (a tetrahedron whose edges are equal in length is called a regular tetrahedron). Show that the angel between any edge and a face not containing the edge is $\cos ^{-1}(1 / \sqrt{3})$.

- Watch Video Solution

143. If a,b,c be the pth, qth and rth term respectively of H.P. show that the vectors $b c \vec{i}+p \vec{j}+\vec{k}, c a \vec{i}+q \vec{j}+\vec{k}$ and $a b \vec{i}+r \vec{j}+\vec{k}$ are coplanar.

- Watch Video Solution

144. Prove that
$\left|\begin{array}{lll}\cos (A-P) & \cos (A-Q) & \cos (A-R) \\ \cos (B-P) & \cos (B-Q) & \cos (B-R) \\ \cos (C-P) & \cos (C-Q) & \cos (C-R)\end{array}\right|=0$.

- Watch Video Solution

145. Prove that for any nonzero scalar a the vectors
$a \vec{i}+2 c \vec{j}-3 a \vec{k},(2 a+1) \vec{i}+(2 a+3) \vec{j}+(a+1) \vec{k}$ and $(3 a+5) \vec{i}+(a+5) \vec{j}+(a+$ are non coplanar

- Watch Video Solution

146. If the vectors \vec{a}, \vec{b}, and \vec{c} are coplanar show that
$\left|\begin{array}{ccc}\vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c}\end{array}\right|=0$
147. Show that the points whose position vectors are $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ will be coplanar if $[\vec{a} \vec{b} \vec{c}]-[\vec{a} \vec{b} \vec{d}]+[\vec{a} \vec{c} \vec{d}]-[\vec{b} \vec{c} \vec{d}]=0$

Watch Video Solution

148. Prove that $\vec{i} \times(\vec{j} \times \vec{k})=\overrightarrow{0}$

Watch Video Solution

149. Find the value of $(\vec{i}-2 j+\vec{k}) \times[(2 \vec{i}+\vec{j}+\vec{k}) \times(\vec{i}+2 \vec{j}-\vec{k})]$

- Watch Video Solution

150. If $\vec{A}=2 \vec{i}+\vec{j}-3 \vec{k} \vec{B}=\vec{i}-2 \vec{j}+\vec{k}$ and $\vec{C}=-\vec{i}+\vec{j}-\overrightarrow{4} k \quad$ find $\vec{A} \times(\vec{B} \times \vec{C})$
151. Prove that $(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})=[\vec{a} \vec{b} \vec{c}] \vec{c}$

- Watch Video Solution

152. Prove that $(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})=[\vec{a} \vec{b} \vec{c}] \vec{c}$

- Watch Video Solution

153. Prove that: $[(\vec{a} \times \vec{b}) \times(\vec{a} \times \vec{c})] \cdot \vec{d}=[\vec{a} \vec{b} \vec{c}](\vec{a} \cdot \vec{d})$

- Watch Video Solution

154. If $\vec{a}=\vec{i}+2 j-\vec{k}, \vec{b}=2 i+\vec{j}+3 k, \vec{c}=\vec{i}-\vec{j}+\vec{k}$ and $\vec{d}=3 i \vec{j}+2 k$ then evaluate $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})$

- Watch Video Solution

155. If $\vec{a}=\vec{i}+\overrightarrow{2 j}-\vec{k}, \vec{b}=2 \vec{i}+\vec{j}+3 k, \vec{c}=\vec{i}-\vec{j}+\vec{k}$ and $\vec{d}=3 \vec{i} \vec{j}+\overrightarrow{2 k}$ then evaluate $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$

- Watch Video Solution

156. Prove that $\vec{a} \times\{\vec{b} \times(\vec{c} \times \vec{d})\}=(\vec{b} \cdot \vec{d})(\vec{a} \times \vec{c})-(\vec{b} \cdot \vec{c})(\vec{a} \times \vec{d})$

- Watch Video Solution

157. Prove that: $\vec{a} \times[\vec{b} \times(\vec{c} \times \vec{a})]=(\vec{a} \cdot \vec{b})(\vec{a} \times \vec{c})$

- Watch Video Solution

158. If the vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are coplanar show that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$

- Watch Video Solution

159. Show that the components of \vec{b} parallel to \vec{a} and perpendicular to it are $\frac{(\vec{a} \cdot \vec{b}) \vec{a}}{\vec{a}^{2}}$ and $((\vec{a} \times \vec{b}) \vec{a}) \frac{)}{a^{2}}$ respectively.

- Watch Video Solution

160. If \vec{a} and \vec{b} be two non collinear vectors such that $\vec{a}=\vec{c}+\vec{d}$, where \vec{c} is parallel to \vec{b} and \vec{d} is perpendicular to \vec{b} obtain expression for \vec{c} and \vec{d} in terms of \vec{a} and \vec{b} as: $\vec{d}=\vec{a}-\frac{(\vec{a} \cdot \vec{b}) \vec{b}}{b^{2}}, \vec{c}=\frac{(\vec{a} \cdot \vec{b}) \vec{b}}{b^{2}}$

- Watch Video Solution

161. If $\vec{a}, \vec{b}, \vec{c}$ and $\vec{a} s^{\prime}, \vec{b}^{\prime}, \vec{c}^{\prime}$ are reciprocal system of vectors prove that $\vec{a} \times \vec{b}+\vec{b} \times \vec{b}+\vec{c} \times \vec{c}^{\prime}=\overrightarrow{0}$

- Watch Video Solution

162. Prove that $\vec{a}^{\prime} \times \vec{b}^{\prime}+\vec{b}^{\prime} \times \vec{c}^{\prime}+\vec{c}^{\prime} \times \vec{a}^{\prime}=\frac{\vec{a}+\vec{b}+\vec{c}}{}$

$$
[\vec{a} \vec{b} \vec{c}]
$$

- Watch Video Solution

163. Prove that $\vec{a}^{\prime} \cdot(\vec{b}+\vec{c})+\vec{b}^{\prime} \cdot(\vec{c}+\vec{a})+\vec{c}^{\prime} \cdot(\vec{a}+\vec{b})=0$

- Watch Video Solution

164. Solve $\vec{r} \times \vec{a}=\vec{b}$ and $\vec{r} \times \vec{c}=\vec{d}$.

- Watch Video Solution

165. Solve $\vec{a} . \vec{r}=x, \vec{b} . \vec{r}=y, \vec{c} \cdot \vec{r}=z w h e r e \vec{a}, \vec{b}, \vec{c}$ are given non coplasnar vectors.

- Watch Video Solution

166. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors each of magnitude 3 then $\mid \vec{a}+\vec{b}+\overrightarrow{\|}$ is equal (A) 3 (B) 9 (C) $3 \sqrt{3}$ (D) none of these

- Watch Video Solution

167. Let the vectors $\vec{a}, \vec{b}, \vec{c}$ be the position vectors of the vertices P, Q, R respectively of a triangle. Which of the following represents the area of
the triangle?
(A) $\frac{1}{2}|\vec{a} \times \vec{b}|$
(B) $\frac{1}{2}|\vec{b} \times \vec{c}|$
(C) $\frac{1}{2}|\vec{c} \times \vec{a}|$
$\frac{1}{2}|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|$

D Watch Video Solution

168. If the vectors $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-3 k$ and $\vec{c}=3 \hat{i}+\lambda \hat{j}+5 \hat{k}$ are coplanar the value of λ is (A) -1 (B) 3 (C) -4 (D) $-\frac{1}{4}$

- Watch Video Solution

169. Let $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors such that $3 \vec{a}+4 \vec{b}+5 \vec{c}=\overrightarrow{0}$. Then which of the following statements is true? (A) \vec{a} is parrallel to vecb(B)veca isperpendicar $\rightarrow \vec{b}$ (C) \vec{a} is neither parralel nor perpendicular to \vec{b} (D) $\vec{a}, \vec{b}, \vec{c}$ are copalanar

- Watch Video Solution

170. If $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$, thena $\vec{b} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is equal to (A) -1 (B) 3 (C) 0 (D) $-\frac{3}{2}$

- Watch Video Solution

171. If vector \vec{a} lies in the plane of vectors \vec{b} and \vec{c} which of the following is correct? (A) $\vec{a} \cdot \vec{b} \times \overrightarrow{=}-1$ (B) $\vec{a} \cdot \vec{b} \times \vec{c}=0$ (C) $\vec{a} \cdot \vec{b} \times \overrightarrow{=} 1$ (D) $\vec{a} \cdot \vec{b} \times \vec{c}=2$

- Watch Video Solution

172. The value of λ so that unit vectors $\frac{2 \hat{i}+\lambda \hat{j}+\hat{k}}{\sqrt{5+\lambda^{2}}}$ and $\frac{\hat{i}-2 \hat{j}+3 \hat{k}}{\sqrt{14}}$ are orthogonl (A) $\frac{3}{7}$ (B) $\frac{5}{2}$ (C) $\frac{2}{5}$ (D) $\frac{2}{7}$

- Watch Video Solution

173. The vector $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})$ is equal to (A) $\frac{1}{2}(\vec{a} \times \vec{b})$ (B) $\vec{a} \times \vec{b}$ (C) $2(\vec{a}+\vec{b})(\mathrm{D}) 2(\vec{a} \times \vec{b})$

- Watch Video Solution

174. For two vectors \vec{a} and $\vec{b}, \vec{a}, \vec{b}=|\vec{a}||\vec{b}|$ then (A) $\vec{a}|\mid \vec{b}$ (B) $\vec{a} \perp \vec{b}$ (C) $\vec{a}=\vec{b}(\mathrm{D})$ none of these

- Watch Video Solution

175. Unit vector in the xyplane that makes and angle of 45° with the vector $\hat{i}+\hat{j}$ and an angle of 60° with the vector $3 \hat{i}-4 \hat{j}$ is (A) \hat{i} (B) $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$
$\hat{i}-\hat{j}$
$\frac{\bar{j}}{\sqrt{2}}$ (D) none of these

- Watch Video Solution

176. If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is (A) $\vec{a}+\vec{b}+\vec{c}$
$\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}+\vec{\jmath}|\vec{c}|$ (C) $\frac{\vec{a}}{|\vec{a}|^{2}}+\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{c}}{|\vec{c}|^{2}}$ (D) $|\vec{a}| \vec{a}-|\vec{b}| \vec{b}+|\vec{c}| \vec{c}$

- Watch Video Solution

177. If $\vec{a}+\vec{b}+\vec{c}=0,|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$, then angle between \vec{a} and \vec{b} is (A) $\frac{\pi}{6}$ (B) $\frac{2 \pi}{3}$ (C) $\frac{5 \pi}{3}$ (D) $\frac{\pi}{3}$
178. If the sides of an angle ar given vectors $\vec{a}=\hat{i}-2 \hat{j}+2 \hat{k}$ and vecb $2 \hat{i}+\hat{j}+2 \hat{k}$, then the internasl bisector for the angle (A) $3 \hat{i}-\hat{j}+3 \hat{k}$ (B) $\frac{1}{3}(3 \hat{i}-\hat{j}+4 \hat{k})$ (C) $\frac{1}{3}(-\hat{i}-3 \hat{j})$ (D) $3 \hat{i}-\hat{j}-4 \hat{k}$

- Watch Video Solution

179. Let $A B C$ be a triangle the position vectors of whose vertices are respectively $\hat{i}+2 \hat{j}+4 \hat{k},-2 \hat{i}+2 \hat{j}+\hat{k}$ and $2 \hat{i}+4 \hat{j}-3 \hat{k}$. Then the $\triangle A B C$ is
(A) isosceles (B) equilateral (C) righat angled (D) none of these

- Watch Video Solution

180. $P(1,0,-1), Q(2,0,-3), R(-1,2,0)$ and $S(3,-2,-1)$ are four points and d is the projection of PQonRS then which of the following is (are)
true? (A) $d=\frac{6}{\sqrt{165}}$ (B) $d=\frac{6}{\sqrt{33}}$ (C) $\frac{8}{\sqrt{33}}$ (D) $d=\frac{6}{\sqrt{5}}$

- Watch Video Solution

181. If the angle betweenteh unit vectors \vec{a} and \vec{b} is vec 60^{\wedge} Othen|vecavecb|' is (A) 0 (B) 1 (C) 2 (D) 4

- Watch Video Solution

182. The vector (s) equally inclined to vectors $\hat{i}-\hat{j}+\hat{k}$ and $\hat{i}+\hat{j}-\hat{k}$ in the plane containing them is (are_(A) $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$ (B) \hat{i} (C) $\hat{i}+\hat{k}$ (D) $\hat{i}-\hat{k}$

Watch Video Solution

183. If \vec{a}. $\vec{b}=\beta$ and $\vec{a} \times \vec{b}=\vec{c}$, then \vec{b} is (A) $\frac{\beta \vec{a}-\vec{a} \times \vec{c}}{|\vec{a}|^{2}}$ (B) $\frac{\beta \vec{a}+\vec{a} \times \vec{c}}{|\vec{a}|^{2}}$
$\frac{\beta \vec{c}-\vec{a} \times \vec{c}}{|\vec{a}|^{2}}$ (D) $\frac{\beta \vec{c}+\vec{a} \times \vec{c}}{|\vec{a}|^{2}}$

- Watch Video Solution

184. If $\vec{a}, \vec{b}, \vec{c}$ are unity vectors such that $\vec{d}=\lambda \vec{a}+\mu \vec{b}+\gamma \vec{c}$ then gamma is equal to (A) $\frac{[\vec{a} \vec{b} \vec{c}]}{[\vec{b} \vec{a} \vec{c}]}$ (B) $\frac{[\vec{b} \vec{c} \vec{d}]}{[\vec{b} \vec{c} \vec{a}]}$ (C) $\frac{[\vec{b} \vec{d} \vec{c}]}{[\vec{a} \vec{b} \vec{c}]}$ (D) $\frac{[\vec{c} \vec{b} \vec{d}]}{[\vec{a} \vec{b} \vec{c}]}$

- Watch Video Solution

185. If $|\vec{a}+\vec{b}|<|\vec{a} \vec{b}|$ then the angle between \vec{a} and \vec{b} lies in the interval
(A) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (B) $(0, \pi 0)$ (C) $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ (D) (0,2pi).

- Watch Video Solution

186. If $a(\vec{\alpha} \times \vec{\beta})=b(\vec{\beta} \times \vec{\gamma})+c(\vec{\gamma} \times \vec{\alpha})=\overrightarrow{0}$ and at least one of a, b and c is non zero then vectors $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are (A) parallel (B) coplanar (C) mutually perpendicular (D) none of these

- Watch Video Solution

187. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vector and $\vec{a}=\alpha(\vec{a} \times \vec{b})+\beta(\vec{b} \times \vec{c})+\gamma(\vec{c} \times \vec{a})$ and $[\vec{a} \vec{b} \vec{c}]=1$ then $\vec{\alpha}+\vec{\beta}+\vec{\gamma}=$ $|\vec{a}|^{2}$ (B) - $|\vec{a}|^{2}$ (C) 0 (D) none of these

- Watch Video Solution

188. If the vectors $a \hat{i}+b \hat{j}+c \hat{k}, b \hat{i}+c \hat{j}+a \hat{k}$ and $c \hat{i}+a \hat{j}+b \hat{k}$ are coplanar and a, b, c are distinct then (A) $a^{3}+b^{3}+c^{3}=1$ (B) $a+b+c=1$
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$ (D) $a+b+c=0$

- Watch Video Solution

189. Given three vectors $\vec{a}=\hat{i}-3 \hat{j}, \vec{b}=2 \hat{i}-t \hat{j}$ and $\vec{c}=-2 \hat{i}+21 \hat{j}$ such that $\vec{\alpha}=\vec{a}+\vec{b}+\vec{c}$. Then the resolution of te vector $\vec{\alpha}$ into components with respect to \vec{a} and \vec{b} is given by (A) $3 \vec{a}-2 \vec{b}$ (B) $2 \vec{a}-3 \vec{b}$ (C) $3 \vec{b}-2 \vec{a}$ (D) none of these
190. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that veca is perpendicular to \vec{b} and \vec{c} and $|\vec{a}+\vec{b}+\vec{c}|=1$ then the angle between \vec{b} and \vec{c} is (A) $\frac{\pi}{2}$ (B) $\mathrm{pi}(C) \mathrm{O}(D)(2 \mathrm{pi}) / 3^{\prime}$

- Watch Video Solution

191. If $\vec{a}=(3,1)$ and $\vec{b}=(1,2)$ represent the sides of a parallelogram then the angle θ between the diagonals of the paralelogram is given by (A)
$\theta=\cos ^{-1}\left(\frac{1}{\sqrt{5}}\right)$ (B) $\theta=\cos ^{-1}\left(\frac{2}{\sqrt{5}}\right)$ (C) $\theta=\cos ^{-1}\left(\frac{1}{2 \sqrt{5}}\right)$ (D) $\theta=\frac{\pi}{2}$

- Watch Video Solution

192. If vectors \vec{a} and \vec{b} are two adjacent sides of parallelograsm then the vector representing the altitude of the parallelogram which is
perpendicular to \vec{a} is (A) $\vec{b}+\frac{\vec{b} \times \vec{a}}{|\vec{a}|^{2}}$ (B) $\frac{\vec{a} \cdot \vec{b}}{\left.\vec{b}\right|^{2}}$ (C) $\left.\vec{b}-\frac{\vec{b} \cdot \vec{a}}{(|\vec{a}|)^{2}}\right)$
$\vec{a} \times(\vec{b} \times \vec{a})$
$\left.\vec{b}\right|^{20}$

- Watch Video Solution

193. If A, B, C, D are four points in space, then
$|\overrightarrow{A B x C D}+\overrightarrow{B C} \times \overrightarrow{A D}+\overrightarrow{C A} \times \overrightarrow{B D}|=k($ areof $\triangle A B C)$ wherek $=(\mathrm{A}) 5$ (B) 4 (C)
2 (D) none of these

- Watch Video Solution

194. If \vec{a}, \vec{b} and \vec{c} are non coplnar and non zectors and \vec{r} is any vector in space then $[\vec{c} \vec{r} \vec{b}] \vec{a}+p \vec{a} \vec{r} \vec{c}] \vec{b}+[\vec{b} \vec{r} \vec{a}] c=$ (A) $[\vec{a} \vec{b} \vec{c}]$
$[\vec{a} \vec{b} \vec{c}] \vec{r}$ (C) $\frac{\vec{r}}{[\vec{a} \vec{b} \vec{c}]}$ (D) $\vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$
195. If \vec{u}, \vec{v} and \vec{w} are vectors such that $\vec{u}+\vec{v}+\vec{w}=\overrightarrow{0}$ then $[\vec{u}+\vec{v} \vec{v}+\vec{w} \vec{w}+\vec{u}])=(\mathrm{A}) 1$ (B) $[\vec{u} \vec{v} \vec{w}]$ (C) 0 (D) -1

- Watch Video Solution

196. If \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular unit vectors then
$(\vec{r} \cdot \vec{a}) \vec{a}+(\vec{r} \cdot \vec{b}) \vec{b}+(\vec{r} \cdot \vec{c}) \vec{c}=$ (A) $\frac{[\vec{a} \vec{b} \vec{c}] \vec{r}}{2}$ (B) \vec{r} (C) $2[\vec{a} \vec{b} \vec{c}]$ (D) none of these

- Watch Video Solution

197. If $\vec{a} \vec{b}$ be any two mutually perpendiculr vectors and $\vec{\alpha}$ be any vector then

$$
\begin{equation*}
|\vec{a} \times \vec{b}|^{2} \frac{(\vec{a} \cdot \vec{\alpha}) \vec{a}}{\left.\vec{a}\right|^{2}}+|\vec{a} \times \vec{b}|^{2} \frac{(\vec{b} \cdot \vec{\alpha}) \vec{b}}{|\vec{b}|^{2}}-|\vec{a} \times \vec{b}|^{2} \vec{\alpha}= \tag{A}
\end{equation*}
$$

$|(\vec{a} . \vec{b}) \vec{\alpha}|(\vec{a} \times \vec{b})$ (B) $[\vec{a} \vec{b} \vec{\alpha}](\vec{b} \times \vec{a})$ (C) $[\vec{a} \vec{b} \vec{\alpha}](\vec{a} \times \vec{b})$ (D) none of these

$$
[\vec{a}+2 \vec{b} \vec{b}+2 c \vec{c} \vec{c}+2 \vec{a}]
$$

198. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors then $=(\mathrm{A})$

$$
[\vec{a} \vec{b} \vec{c}]
$$

3 (B) 9 (C) 8 (D) 6

- Watch Video Solution

199. The vector $\vec{a}=\frac{1}{4}(2 \hat{i}-2 \hat{j}+\hat{k})(A)$ is a unit vector (B) makes an angle of $\frac{\pi}{3}$ with the vector $\left(\hat{i}+\frac{1}{2} \hat{j}-\hat{k}\right)$ (C) is parallel to the vector $\frac{7}{4} \hat{i}-\frac{7}{4} \hat{j}+\frac{7}{8} \hat{k}$
(D) none of these

- Watch Video Solution

200. The vector $\vec{a} \times(\vec{b} \times \vec{c})$ can be represented in the form (A) $\alpha \vec{a}$ (B) $\alpha \vec{b}$
(C) $\operatorname{alha} \vec{c}$ (D) $\alpha \vec{b}+\beta \vec{c}$

D Watch Video Solution

201. The points $A \equiv(3,10), B \equiv(12,-5)$ and $C \equiv(\lambda, 10)$ are collinear then $\lambda=(A) 3$ (B) 4 (C) 5 (D) none of these

- Watch Video Solution

202. Two vectors $\vec{\alpha}=3 \hat{i}+4 \hat{j}$ and $\vec{\beta} 5 \hat{i}+2 \hat{j}-14 \hat{k}$ have the same initial point then their angulr bisector having magnitude $\frac{7}{3}$ be (A) $\frac{7}{3 \sqrt{6}}(2 \hat{i}+\hat{j}-\hat{k})$
$\frac{7}{3 \sqrt{3}}(\hat{i}+\hat{j}-\hat{k})$ (C) $\frac{7}{3 \sqrt{3}}(\hat{i}-\hat{j}+\hat{k})$ (D) $\frac{7}{3 \sqrt{3}}(\hat{i}-\hat{j}-\hat{k})$

D Watch Video Solution

203. If $\vec{d}=\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is a on zero vector and
$|(\vec{d} \cdot \vec{c})(\vec{a} \times \vec{b})+(\vec{d} \cdot \vec{a})(\vec{b} \times \vec{c})+(\vec{d} \cdot \vec{b})(\vec{c} \times \vec{a})|=0 \quad$ then
$|\vec{a}|+|\vec{b}|+|\vec{c}|=|\vec{d}|$
(B) $|\vec{a}|=|\vec{b}|=|\vec{c}|$
(C) $\vec{a}, \vec{b}, \vec{c}$ are coplanar
$\vec{a}+\vec{c}=\overrightarrow{2 b}$
204. If $\vec{a}, \vec{b}, \vec{c}$ are three coplanar unit vector such that $\vec{a} \times(\vec{b} \times \vec{c})=-\frac{\vec{b}}{2}$ then the angle betweeen \vec{b} and \vec{c} can be (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{6}$ (C) π (D) $\frac{2 \pi}{3}$

- Watch Video Solution

205. The two lines $\vec{r}=\vec{a}+\vec{\lambda}(\vec{b} \times \vec{c})$ and $\vec{r}=\vec{b}+\mu(\vec{c} \times \vec{a})$ intersect at a point where $\vec{\lambda}$ and μ are scalars then (A) $\vec{a}, \vec{b}, \vec{c}$ are non coplanar (B) $|\vec{a}|=|\vec{b}|=|\vec{c}|$ (C) $\vec{a} \cdot \vec{c}=\vec{b} \cdot \vec{c}$ (D) $\lambda(\vec{b} \times \vec{c})+\mu(\vec{c} \times \vec{a})=\vec{c}$

- Watch Video Solution

206. If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $|\vec{b}|=|\vec{c}|$ then $\{(\vec{a}+\vec{b}) \times(\vec{a}+\vec{c})\} \times(\vec{b} \times \vec{c}) \cdot(\vec{b}+\vec{c})=$

- Watch Video Solution

$3 \vec{a}+\vec{b}$ and $\vec{a}-4 \vec{b}$, where $|\vec{a}|=6$ and $|\vec{b}|=8$ and \vec{a} and \vec{b} are anti parallel then the length of the longer diagonal is (A) 40 (B) 64 (C) 32 (D) 48

- Watch Video Solution

208. If \vec{a} is any vector and \hat{i}, \hat{j} and \hat{k} are unit vectors along the x, y and z directions then $\hat{i} \times(\vec{a} \times \hat{i})+\hat{j} \times(\vec{a} \times \hat{j})+\hat{k} \times(\vec{a} \times \vec{k})=(\mathrm{A}) \vec{a}(B)$-veca (C) 2veca(D)0

- Watch Video Solution

209. If $(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})=\vec{b}$, where \vec{a}, \vec{b} and \vec{c} are non zero vectors then
(A) \vec{a}, \vec{b} and \vec{c} canbecoplanar (B) \vec{a}, \vec{b} and \vec{c} must be coplanar \vec{a}, \vec{b} and \vec{c} cannot be coplanar (D) none of these
210. If \vec{a} is any then $|\vec{a} . \hat{i}|^{2}+|\vec{a} . \hat{i}|^{2}+|\vec{a} \cdot \hat{k}|^{2}=$ (A) $|\vec{a}|^{2}$ (B) $|\vec{a}|$ (C) $2|\vec{\alpha}|$ (D) none of these

- Watch Video Solution

211. If \vec{a}, \vec{b} and \vec{c} are vectors such that
$|\vec{a}|=3,|\vec{b}|=4$ and $\mid \vec{\imath}=5$ and $(\vec{a}+\vec{b}) \quad$ is perpendicular to
$\vec{c},(\vec{b}+\vec{c})$ is perpendicular to \vec{a} and $(\vec{c}+\vec{a})$ is perpendicular to \vec{b} then $|\vec{a}+\vec{b}+\vec{c}|=$ (A) $4 \sqrt{3}$ (B) $5 \sqrt{2}$ (C) 2 (D) 12

Watch Video Solution

212. If $|\vec{a}|=$ and $|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=0$, then $(\vec{a}(\vec{x}(\vec{a} \times(\vec{a} \times))))=(\mathrm{A})$ $48 \hat{b}$ (B) $-48 \hat{b}$ (C) $48 \hat{a}$ (D) $-48 \hat{a}$

- Watch Video Solution

213. If $|\vec{a} . \vec{b}|=\sqrt{3}|\vec{a} \times \vec{b}|$ then the angle between \vec{a} and \vec{b} is (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

- Watch Video Solution

214. If \hat{a} and \hat{b} are two unit vectors and θ is the angle between them then vector $2 \hat{b}+\hat{a}$ is a unit vector if (A) $\theta=\frac{\pi}{3}$ (B) $\theta=\frac{\pi}{6}$ (C) $\theta=\frac{\pi}{2}$ (D) $\theta=\pi$

- Watch Video Solution

215. If $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=\frac{1}{2}$ for some non zero vector \vec{r} and $\vec{a}, \vec{b}, \vec{c}$ are non coplanar, then the area of the triangle whose vertices are $A(\vec{a}), B(\vec{b})$ and $C(\vec{c} 0$ is (A) $|[\vec{a} \vec{b} \vec{c}]|$ (B) $|\vec{r}|$ (C) $|[\vec{a} \vec{b} \vec{r}] \vec{r}|$ (D) none of these

- Watch Video Solution

216. If $\alpha+\beta+\gamma=a \vec{\delta}$ and $\vec{\beta}+\vec{\gamma}+\vec{\delta}=b \vec{\alpha}$ and $\alpha, \vec{\beta}, \vec{\gamma}$ are non coplanar and $\vec{\alpha}$ is not parallel to $\vec{\delta}$ then $\vec{\alpha}+\vec{\beta}+\vec{\gamma}+\vec{\delta}$ equals (A) $a \vec{\alpha}$ (B) $b \vec{\delta}$ (C) 0 (D) $(a+b) \vec{\gamma}$

- Watch Video Solution

217. Let $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=2 \hat{i}-\hat{k}$. Then the point of intersection of the lines $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ is (A) (3, - 1,10
(B) $(3,1,-1)$
$(-3,1,1)(\mathrm{D})(-3,-1,-10$

- Watch Video Solution

218. If the non zero vectors \vec{a} and \vec{b} are perpendicular to each other then the solution the equation $\vec{r} \times \vec{a}=\vec{b}$ is (A) $\vec{r} \alpha \vec{b}-\frac{1}{|\vec{b}|^{2}}(\vec{a} \times \vec{b})$
$\vec{r} \alpha \vec{b}+\frac{1}{|\vec{a}|^{2}}(\vec{a} \times \vec{b})$ (C) $\vec{r} \alpha \vec{b}+\frac{1}{|\vec{b}|^{2}}(\vec{a} \times \vec{b})$ (D) none of these
219. If $\left.\quad \vec{\alpha}|\mid(\vec{b} \times \vec{\gamma})$, then $(\vec{\alpha} \times \vec{\beta}) \cdot(\vec{\alpha} \times \vec{\gamma})=$ (A) $| \vec{\alpha}\right|^{2}(\vec{\beta} \cdot \vec{\gamma})$
$|\vec{\beta}|^{2}(\vec{\gamma} \cdot \vec{\alpha})$
(C) $|\vec{\gamma}|^{2}(\vec{\alpha} \cdot \vec{\beta})$
(D) $|\vec{\alpha}||\vec{\beta} \| \vec{\gamma}|$

- Watch Video Solution

220. If \vec{a}, \vec{b} and \vec{c} are three non coplanar vectors and \vec{r} is any vector in space, then
$(\vec{a} \times \vec{b}) \times(\vec{r} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{r} \times \vec{a})+(\vec{c} \times \vec{a}) \times(\vec{r} \times \vec{b})=$
$[\vec{a} \vec{b} \vec{c}]$ (B) $2[\vec{a} \vec{b} \vec{c}] \vec{r}$ (C) $3[\vec{a} \vec{b} \vec{c}] \vec{r}$ (D) $4[\vec{a} \vec{b} \vec{c}] \vec{r}$

- Watch Video Solution

221. Let $\overrightarrow{O A}=\vec{a} s, \overrightarrow{O B}=10 \vec{a}+2 \vec{b}$ and $\overrightarrow{O C}=\vec{b}$ whereO A and C are non collinear points. Let p denote the area of the quadrilaterial OABCand q denote the area of the parallelogram with $O A$ and $O C$ as adjacent sides.

Then $\frac{p}{q}=(\mathrm{A}) 2$ (B) 6 (C) 1 (D) $\left.\left.\frac{1}{2} \right\rvert\, \vec{a}+\vec{b}+\vec{c}\right]$

(D) Watch Video Solution

222.

$\vec{A}=\lambda(\vec{u} \times \vec{v})+\mu(\vec{v} \times \vec{w})+v(\vec{w} \times \vec{u})$ and $[\vec{u} \vec{v} \vec{w}]=\frac{1}{5}$ then $\lambda+\mu+v=(\mathrm{A}) 5$
(B) 10 (C) 15 (D) none of these

- Watch Video Solution

223. If $|\vec{c}|=2,|\vec{a}|=|\vec{b}|=1$ and $\vec{a} \times(\vec{a} \times \vec{c})+\vec{b}=\overrightarrow{0}$ then the acute angle between \vec{a} and \vec{c} is (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{2 \pi}{3}$

- Watch Video Solution

224. If \vec{a}, \vec{b} and \vec{c} are non coplanar and unit vectors such that
$\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}$ then the angle between vea and \vec{b} is (A) $\frac{3 \pi}{4}$ (B) $\frac{\pi}{4}$
$\frac{\pi}{2}$ (D) π
225. If \vec{b} and \vec{c} are any two mutually perpendicular unit vectors and \vec{a} is any vector, then $(\vec{a} \cdot \vec{b}) \vec{b}+(\vec{a} \cdot \vec{c}) \vec{c}+\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{|\vec{b} \times \vec{c}|^{2}}(\vec{b} \times \vec{c})=$ (A) 0 (B) $\vec{a}(C)$ veca/2(D)2veca`

- Watch Video Solution

226. The equation of the line of intersetion of the planes $\vec{r} . \vec{n}=q, \vec{r} . \vec{n}^{\prime}=q^{\prime}$ and pasing through the point \vec{a} is (A) $\vec{r}=\vec{a}+\lambda\left(\vec{n}-\vec{n}^{\prime}\right)$ (B) $\vec{r}=\vec{a}+\lambda\left(\vec{n} \times \vec{n}^{\prime}\right)$ (C) $\vec{r}=\vec{a}+\lambda\left(\vec{n}+\vec{n}^{\prime}\right)$ (D) none of these

- Watch Video Solution

227. $\vec{P}=\hat{i}+\hat{j} \hat{k}$ and $\vec{R}=\hat{j}-\hat{k}$ are given vectors then a vector \vec{Q} satisfying the equation $\vec{P} \times \vec{Q}=\vec{R}$ and $\vec{P} \cdot \vec{Q}=3$ is (A) $\left(\frac{5}{3}, \frac{2}{3}, \frac{1}{3}\right)$ (B) $\left(\frac{2}{3}, \frac{5}{3}, \frac{2}{3}\right)$ $\left(\frac{5}{3}, \frac{2}{3}, \frac{2}{3}\right)$ (D) $\left(\frac{2}{3}, \frac{2}{3}, \frac{5}{3}\right)$

- Watch Video Solution

228. The reflection of the point \vec{a} in the plane $\vec{r} . \vec{n}=q$ is (A) $\vec{a}+\frac{\vec{q}-\vec{a} . \vec{n}}{|\vec{n}|}$
(B) $\vec{a}+2\left(\frac{\vec{q}-\vec{a} \cdot \vec{n}}{|\vec{n}|^{2}}\right) \vec{n}$ (C) $\vec{a}+\frac{2(\vec{q}+\vec{a} \cdot \vec{n})}{|\vec{n}|}$ (D) none of these

(Watch Video Solution

229. The plane contaning the two straight lines $\vec{r}=\vec{a}+\lambda \vec{b}$ and $\vec{r}=\vec{b}+\mu \vec{a}$ is (A) $[\vec{r} \vec{a} s \vec{b}]=0$ (B) $[\vec{r} \vec{a} \vec{a} \times \vec{b}]=0$
$[\vec{r} \vec{b} \vec{a} \times \vec{b}]=0$ (D) $[\vec{r} \vec{a}+\vec{b} \vec{a} \times \vec{b}]=0$
230. Let $\vec{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}$. If \vec{c} is a vector such that $\vec{a} . \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2}$ and the angle between $(\vec{a} \times \vec{b})$ and \vec{c} is $\frac{\pi}{6}$ then $\mid(\vec{a} \times \vec{b}) \times \overrightarrow{\mid}=(A) 2 / 3(B) 1 / 2(C) 3 / 2^{\prime}(D) 1$

- Watch Video Solution

231. If $\vec{A}, \vec{B}, \vec{C}$ are three vectors respectively given by $2 \hat{i}+\hat{k}, \hat{i}+\hat{j}+\hat{k}$ and $4 \hat{i}-3 \hat{j}+7 \hat{k}$, then vector \vec{R} which satisfies the relations $\vec{R} \times \vec{B}=\vec{C} \times \vec{B}$ and $\vec{R} \cdot \vec{A}=0$ is (A) $2 \hat{i}-8 \hat{j}+2 \hat{k}$ (B) $\hat{i}-4 \hat{j}+2 \hat{k}$
$-\hat{i}-8 \hat{j}+2 \hat{k}(\mathrm{D})$ none of these

- Watch Video Solution

232. A rigid body is spiing about a fixed piont $(3,-2,-1)$ with angular veclocity of $4 \mathrm{radd} / \mathrm{sec}$, the axis of rotation being the direction of $(1,2,-2)$
then the velocity of the particle at the point $(4,1,1)$ is $(A) \frac{4}{3}(1,-4,10)$
$\frac{4}{3}(4,-10,1)$ (C) $\frac{4}{3}(10,-4,1)$ (D) $\frac{4}{3}(10,4,1)$

- Watch Video Solution

233. A particle has an angular speed of $3 \mathrm{rad} / \mathrm{s}$ and the axis of rotation passes through the points $(1,1,2)$ and $(1,2,-2)$ Find the velocity of the particle at point $P(3,6,4)$

- Watch Video Solution

234. If the area of triangle $A B C$ having vertices $A(\vec{a}), B(\vec{b}), C(\vec{c})$ is $t|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c}+\vec{c} \times \vec{a}|$ thent $\left[=(\mathrm{A}) 2\right.$ (B) $\frac{1}{2}$ (C) 1 (D) none of these

- Watch Video Solution

235. The vector $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is (A) parallel to plane of $\triangle A B C$ (B) perpendicular to plane of $\triangle A B C$ (C) is neighater parallel nor perpendicular to the plane of $\triangle A B C$ (D) the vector area of $\triangle A B C$

- Watch Video Solution

236. If vertices of $\triangle \operatorname{ABCare} A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ then length of
perpendicular from C to AB is (A) $\underline{|\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{a} \times \vec{b}|}$

$$
|\vec{a}-\vec{b}|
$$

$\frac{|\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{a} \times \vec{b}|}{|\vec{a}+\vec{b}|}$ (C) $\frac{|\vec{b} \times \vec{c}|+|\vec{c} \times \vec{a}|+|\vec{a} \times \vec{b}|}{|\vec{a}-\vec{b}|}$ (D) none of these

(Watch Video Solution

237. If \hat{u} and \hat{v} are unit vectors and θ is the acute angle between them, then $2 \hat{u} \times 3 \hat{v}$ is a unit vector for (1) exactly two values of θ (2) more than two values of θ (3) no value of θ (4) exactly one value of θ
$O(0,0,0), A(1,2,1), B(2,1,3)$, andC(-1, 1, 2), then angle between face OABandABC will be a. $\cos ^{-1}\left(\frac{17}{31}\right)$ b. 30^{0} c. 90^{0} d. $\cos ^{-1}\left(\frac{19}{35}\right)$

- Watch Video Solution

239. The value of the a so that the volume of the paralellopied formed by vectors $\hat{i} a \hat{j}+\hat{k}, \hat{j}+a \hat{k}, a \hat{i}+\hat{k}$ becomes minimum is (A) $\sqrt{3}$ (B) 2 (C) $\frac{1}{\sqrt{3}}$ (D) 3

- Watch Video Solution

240. If $a=(\hat{i} \times \hat{j} \hat{k}), \hat{a} . \hat{b}=1$ and $\hat{a} . \hat{b}=1$ and $\hat{a} \times \hat{b}-(\hat{i}-\hat{k})$ then b is (A) $\hat{i}-\hat{j}+\hat{k}$ (B) $2 \hat{j}-\hat{k}$ (C) \hat{j} (D) $2 \hat{i}$

- Watch Video Solution

241. The unit vector which is orthogonal to the vector $3 \hat{i}+2 \hat{j}+6 \hat{k}$ and is coplanar with the vectors $2 \hat{i}+\hat{j}+\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$ is (A) $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$ (B) $\frac{2 \hat{i}-3 \hat{j}}{\sqrt{3}}$
(C) $3 \hat{j}-\hat{k} \frac{)}{\sqrt{10}}$ (D) $\frac{4 \hat{i}+3 \hat{j}-3 \hat{k}}{\sqrt{34}}$

- Watch Video Solution

242. The points with position vectors $60 \hat{i}+3 \hat{j}, 40 \hat{i}-8 \hat{j}, 40 \hat{i}-8 \hat{j}, a \hat{i}-52 \hat{j}$ are collinear iff (A) $a=-40$ (B) $a=40$ (C) $a=20$ (D) none of these

- Watch Video Solution

243. A vector \vec{v} or magnitude 4 units is equally inclined to the vectors $\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{k}+\hat{i}$, which of the following is correct? (A) $\vec{v}=\frac{4}{\sqrt{3}}(\hat{i}-\hat{j}-\hat{k})$
(B) $\vec{v}=\frac{4}{\sqrt{3}}\left(\hat{i}+\hat{j}-\hat{k} 0\right.$ (C) $\vec{v}=\frac{4}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k} 0$ (D) vecv=4(hati+hatj+hatk)'
244. The position verctors of the points A and B with respect of O are $2 \hat{i}+2 \hat{j}+\hat{k}$ and $2 \hat{i}+4 \hat{j}+4 \hat{k}$, the length of the internal bisector of $\angle B O A$ of $\triangle A O B$ is

- Watch Video Solution

245. A particle is acted upon by the following forces $2 \hat{i}+3 \hat{j}+t \hat{k},-5 \hat{i}+4 \hat{j} 3 \hat{k}$ and $3 \hat{i}-7 \hat{k}$. In which plane does it move? (A) $x y-$ pla \neq (B) $y z-$ pla \neq (C) $z x-$ pla \neq (D) any arbitrary plane

- Watch Video Solution

246. If n forces $P A_{1} \ldots \ldots P A_{n}$ divege from point P and other forces
$A_{1} Q, A_{2} Q, ., A_{n} Q$ vonverge to point Q, then the resultant of the $2 n$ forces is represent in magnitude and directed by (A) $n P Q$ (B) $n Q P$ (C) $2 n P Q$ (D) $n^{2} P Q$
247. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \hat{b} 4 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{c}=\hat{i}+\alpha \hat{j}+\beta \hat{k}$ are linearly dependent vectors and $|\vec{c}|=\sqrt{3}$ then (A) $\alpha=1, \beta=-1$ (B) $\alpha=1, \beta= \pm 1$ (C) $\alpha-1, \beta= \pm 1$ (D) $\alpha= \pm 1, \beta=1$

- Watch Video Solution

248. A vector $\vec{a}=t \hat{+} t^{2} \hat{j}$ is rotated through a righat angle passing through the x -axis. What is the vector in its new position ($t>0$)? (A)
$t^{2} \hat{i}-t \hat{j}$ (B) $\sqrt{t \hat{i}}-\frac{1}{\sqrt{t}} \hat{j}$ (C) $-t^{2} \hat{i}+t \hat{j}$ (D) $\frac{t^{2} \hat{i}-t \hat{j}}{t \sqrt{t^{2}+1}}$

- Watch Video Solution

249. If $A O+O B=B O+O C$ then A, B, C, D form $a / a n(A)$ equilaterla triangle
(B) righat angled triangle (C) isosceles triangle (D) straighat line
250. The sides of a parallelogram are $2 \hat{i}+4 \hat{-} 5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$. The unit vector parallel to one of the diagonal is (A) $\frac{1}{\sqrt{69}}(\hat{i}+2 \hat{j}-8 \hat{k})$
$\frac{1}{\sqrt{69}}(-\hat{i}+2 \hat{j}+8 \hat{k})$
(C) $\frac{1}{\sqrt{69}}(-\hat{i}-2 \hat{j}-8 \hat{k})$
(D) $\frac{1}{\sqrt{69}}(\hat{i}+2 \hat{j}+8 \hat{k})$

- Watch Video Solution

251. \vec{a} and \vec{b} are two non collinear vectors then $x \vec{a}+y \vec{b}$ (where x and y are scalars) represents a vector which is (A) parallel to vecb(B) parallel to \vec{a} (C) coplanar with \vec{a} and \vec{b} (D) none of these

- Watch Video Solution

252. If D, E and F and are respectively the mid points of $A B, A C$ and $B C$ in $\triangle A B C$, thenvec $(B E)+\operatorname{vec}(A F)=(A) \operatorname{vec}(D C)(B) 1 / 2 \operatorname{vec}(B F)(C) 2 v e c(B F)(D)$ $3 / 2 \operatorname{vec}(B F){ }^{\text {' }}$
253. If C is the mid point of $A B$ and P is any point outside $A B$ then (A)
$P A+P B+P C=0$
(B) $P A+P B+2 P C=\overrightarrow{0}$
(C) $P A+P B=P C$
$P A+P B=2 P C$

- Watch Video Solution

254. Consider points A, B, C and D with position vectors $7 \hat{i}-4 \hat{j}+7 \hat{k}, \hat{i}-6 \hat{j}+10 \hat{k}, \hat{i}-3 \hat{j}+4 \hat{k}$ and $5 \hat{i}-\hat{j}+5 \hat{k}$ respectively. Then ABCD is a (A) square (B) rhombus (C) rectangle (D) parallelogram but not a rhombus

- Watch Video Solution

255. The vectors $A B=3 \hat{i}+4 \hat{k}$ and $A C=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a triangle $A B C$. The length of the median through A is $(A) \sqrt{72}(B) \sqrt{33}(C)$ $\sqrt{2880}$ (D) $\sqrt{18}$
256. If $\vec{a}, \vec{b}, \vec{c}$ are noncoplanar vectors and λ is a real number, then the vectors $\vec{a}+2 \vec{b}+3 \vec{c}, \lambda \vec{b}+4 \vec{c}$ and $(2 \lambda-1) \vec{c}$ are non coplanar of (A) all values of lamda (B) all except one values of lamda (C) all except two values of lamda (D) no value of lamda

- Watch Video Solution

257. Let \vec{a}, \vec{b}, and \vec{c} be three non zero vector such that no two of these are collinear. If the vector $\vec{a}+2 \vec{b}$ is collinear with \vec{c} and $\vec{b}+3 \vec{c}$ is colinear with $\vec{a}(\lambda$ being some non zero scalar) then $\vec{a}+2 \vec{b}+6 \vec{c}$ equals (A) $\lambda \vec{a}$
$\lambda \vec{b}$ (C) $\lambda \vec{c}$ (D) 0

- Watch Video Solution

258. If \vec{a}, \vec{b} and \vec{c} are three vectors of which every pair is non colinear. If the vector $\vec{a}+\vec{b}$ and $\vec{b}+\vec{c}$ are collinear with the vector \vec{c} and \vec{a}
respectively then which one of the following is correct? (A) $\vec{a}+\vec{b}+\vec{c}$ is a nul vector (B) $\vec{a}+\vec{b}+\vec{c}$ is a unit vector (C) $\vec{a}+\vec{b}+\vec{c}$ is a vector of magnitude 2 units (D) $\vec{a}+\vec{b}+\vec{c}$ is a vector of magnitude 3 units

- Watch Video Solution

259. If $|a|=3,|\vec{b}|=4$, and $|\vec{a}=\vec{b}|=5$, then $|\vec{a}-\vec{b}|$ is equal to (A) 6 (B) 5
(C) 4 (D) 3

- Watch Video Solution

260. Let $\vec{u}, \vec{v}, \vec{w}$ be such that $|\vec{u}|=1,|\vec{v}|=2,|\vec{w}| 3$. If the projection of \vec{v} along \vec{u} is equal to that of $\vec{w} a l o n g \vec{v}, \vec{w}$ are perpendicular to each other then $|\vec{u}-\vec{v}+\vec{w}|$ equals (A) 2 (B) $\sqrt{7}$ (C) $\sqrt{14}$ (D) 14

- Watch Video Solution

261. If $\vec{a}, \vec{b}, \vec{c}$ are perpendicular to $\vec{b}+\vec{c}, \vec{c}+\vec{a}$ and $\vec{a}+\vec{b}$ respectively and if $|\vec{a}+\vec{b}|=6,|\vec{b}+\vec{c}|=8$ and $|\vec{c}+\vec{a}|=10$, then $|\vec{a}+\vec{b}+\vec{c}|$ (A) $5 \sqrt{2}$ (B) 50 (C) $10 \sqrt{2}$ (D) 10

- Watch Video Solution

262. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b}$ are perpendicular to each othre, then the angle beween \vec{a} and \vec{b} is (A) 45° (B) 60^{0} (C) $\cos ^{-1}\left(\frac{1}{30}\right.$ (D) $\cos ^{-1}\left(\frac{2}{7}\right)$

- Watch Video Solution

263. A unit vector in xy-plane that makes an angle of 45^{0} with the vector $\hat{i}+\hat{j}$ and angle of 60° with the vector $3 \hat{i}-4 \hat{j}$ is (A) \hat{i} (B) $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$ (C) $\frac{\hat{i}-\hat{j}}{\sqrt{2}}$ (D) none of these
264. The position vector of the pont where the line $\vec{r}=\hat{i}-h * j+\hat{k}+t(\hat{i}+\hat{j}-\hat{k})$ meets plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=5$ is (A) $5 \hat{i}+\hat{j}-\hat{k}$ (B) $5 \hat{i}+3 \hat{j}-3 \hat{k}$ (C) $5 \hat{i}+\hat{j}+\hat{k}$ (D) $4 \hat{i}+2 \hat{j}-2 \hat{k}$

- Watch Video Solution

265. The distance between the line $\vec{r}=2 \hat{i}-2 \hat{j}+3 \hat{+} \lambda(\vec{i}-\vec{j}+4 \vec{k})$ and the plane $\vec{r} \cdot(\vec{i}+5 \vec{j}+\vec{k})=5$ is (A) $\frac{10}{3} \sqrt{3}$ (B) $\frac{10}{9}$ (C) $\frac{10}{3}$ (D) $\frac{3}{10}$

- Watch Video Solution

266. A unit vector int eh plane of the vectors $2 \hat{i}+\hat{j}+\hat{k}, \hat{i}-\hat{j}+\hat{k}$ and orthogonal to $5 \hat{i}+2 \hat{j}-6 \hat{k}$ is (A) $\frac{6 \hat{i}-5 \hat{k}}{\sqrt{6}}$ (B) $\frac{3 \hat{j}-\hat{k}}{\sqrt{10}}$ (C) $\frac{\hat{i}-5 \hat{j}}{\sqrt{29}}$ (D) $\frac{2 \hat{i}+\hat{j}-2 \hat{k}}{3}$

- Watch Video Solution

267. The work done by the forces $\vec{F}=2 \hat{i}-3 \hat{j}+2 \hat{k}$ in moving a particle from $(3,4,5)$ to $(1,2,3)$ is (A) 0 (B) $\frac{3}{2}$ (C) -4 (D) -2

- Watch Video Solution

268. If the work done by force $\vec{F}=\hat{i}+\hat{j}-8 \hat{k}$ along a givne vector in the xy-plane is 8 units and the magnitude of the given vector is $4 \sqrt{3}$ then the given vector is represented as (A) $(4+2 \sqrt{2}) \hat{i}+(4-2 \sqrt{2}) \hat{j}$ (B) $(4 \hat{i}+3 \sqrt{2 \hat{j}})$ (C) $(4 \sqrt{2} \hat{i}+4 \hat{j})$ (D) $(4+2 \sqrt{2})(\hat{i}+\hat{j})$

- Watch Video Solution

269. If $\vec{a}, \vec{b}, \vec{c}$ are unit coplanar vectors then the scalar triple product $[2 \vec{a}-\vec{b} 2 \vec{b}-c \overrightarrow{2} c-\vec{a}]$ is equal to (A) 0 (B) 1 (C) $-\sqrt{3}$ (D) $\sqrt{3}$

- Watch Video Solution

270. Let the vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} be such that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$. Let P_{1} and P_{2} be planes determined by pairs of vectors \vec{a}, \vec{b} and vecc,vecd respectively. Then the angle between P_{1} and P_{2} is (A) O (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

- Watch Video Solution

271. Let $\vec{a}=\hat{i}-\hat{k}, \vec{b}=x \hat{i}+\hat{j}+(1-x) \hat{k}$ and $\vec{c}=y \hat{i}+x \hat{j}+(1+x-y) \hat{k}$. Then $[\vec{a} \vec{b} \vec{c}]$ depends on (A) only $\mathrm{x}(\mathrm{B})$ only $\mathrm{y}(\mathrm{C})$ neither x nor $\mathrm{y}(\mathrm{D})$ both x and y

- Watch Video Solution

272. The number of vectors of unit length perpendicular to vectors $\vec{a}=(1,1,0)$ and $\vec{b}=(0,1,1)$ is a. one b. two c. three d. infinite

- Watch Video Solution

273. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b}$ are perpendicular to each other then the angle between \vec{a} and \vec{b} is (A) 45^{0}
(B) 60° (C) $\cos ^{-1}\left(\frac{1}{3}\right)$ (D) $\cos ^{-1}\left(\frac{2}{7}\right)$

- Watch Video Solution

274. The point of intersection of $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ where $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=2 \hat{i}-\hat{k}$ is (A) $3 \hat{i}+\hat{j}-\hat{k}$ (B) $3 \hat{i}-\hat{k}$ (C) $3 \hat{i}+2 \hat{j}+\hat{k}$ (D) none of these

- Watch Video Solution

275. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that
$\vec{a} \neq 0,|\vec{a}|=|\vec{c}|=1,|\vec{b}|=4$ and $|\vec{b} \times \vec{c}|=\sqrt{15}$. If $\vec{b}-2 \vec{c}=\lambda \vec{a}$ then find the value of λ.
276. $|\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}=$ (A) $|\vec{a}|^{2}$ (B) $2|\vec{a}|^{2}$ (C) $3|\vec{a}|^{2}$ (D) $4|\vec{a}|^{2}$

- Watch Video Solution

277. Let $\vec{V}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{W}=\hat{i}+3 \hat{k}$. If \vec{U} is a unit vector then the maximum value of the scalar triple product $[\vec{U} \vec{V} \vec{W}]$ is (A) -1 (B) $\sqrt{10}+\sqrt{6}$ (C) $\sqrt{59}$ (D) $\sqrt{60}$

- Watch Video Solution

278. If $\vec{a} s \times \vec{b}=0$ and $\vec{a} \cdot \vec{b}=0$ then (A) $\vec{a} \perp \vec{b}$ (B) $\vec{a}|\mid \vec{b}$
$\vec{a}=0$ and $\vec{b}=0$ (D) $\vec{a}=0$ or $\vec{b}=0$

Watch Video Solution

279. If $\vec{a}, \vec{b}, \vec{c}$ are unit coplanar vectors than $[2 \vec{a}-\vec{b}, 2 \vec{b}-\vec{c}, 2 \vec{c}-\vec{a}]=(\mathrm{A})$

1 (B) $0(C)-\sqrt{3}$ (D) $\sqrt{3}$

- Watch Video Solution

280. Which of the followind expression are meanigful ? (A) $\vec{u} .(\vec{v} \times \vec{w})$
$(\vec{u} \cdot \vec{v}) \times \vec{w}$
(C) $(\vec{u} \cdot \vec{v}) \cdot \vec{w}$
(D) $\vec{u} \times(\vec{v} \cdot \vec{w})$

- Watch Video Solution

281. Let veda, \vec{b}, \vec{c} be three noncolanar vectors and $\vec{p}, \vec{q}, \vec{r}$ are vectors defined by the relations $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{c} a}{[\vec{a} \vec{b} \vec{c}]}, \vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$ then the value of the expression $(\vec{a}+\vec{b}) \cdot \vec{p}+(\vec{b}+\vec{c}) \cdot \vec{q}+(\vec{c}+\vec{a}) \cdot \vec{r}$. is equal to (A) 0 (B) 1 (C) 2 (D) 3

- Watch Video Solution

282. Let $\vec{a}, \vec{b}, \vec{c}$ be non coplanar vectors and $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{q}}{[\vec{a} \vec{b} \vec{c}]}, \vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$. What is the vaue of $(\vec{a}-\vec{b}-\vec{c}) \cdot \vec{p}(\vec{b}-\vec{c}-\vec{a}) \cdot \vec{q}+(\vec{c}-\vec{a}-\vec{b}) \cdot \vec{r}$? (A) 0 (B) -3 (C) 3 (D) -9

- Watch Video Solution

283. Let $\vec{a}=\hat{i}-\hat{k}, \vec{b}=x \hat{i}+\hat{j}+(1-x) \hat{k}$ and $\vec{c}=y \hat{i}+x \hat{j}+(1+x-y) \hat{k}$. Then $[\vec{a} \vec{b} \vec{c}]$ depends on (A) 'only $\mathrm{x}(\mathrm{B})$ only $\mathrm{y}(\mathrm{C})$ neither x nor $\mathrm{y}(\mathrm{D})$ both x and y

- Watch Video Solution

284. Let a, b, c be distinct non-negative numbers. If the vectors $a i+a j+c k, i+k$ and $c i+c j+b k$ lie in a plane, then c is the

- Watch Video Solution

285. If the vectors $a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}, \hat{i}+\hat{j}+c \hat{k}(a \neq 1, b \neq 1, c \neq 1)$ are coplanat then the value of $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$ is (A) 0 (B) 1 (C) -1 (D) 2

- Watch Video Solution

286. If $\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{2}\end{array}\right|=0$ and vectors $\left(1, a, a^{2}\right),\left(1, b, b^{2}\right)$ and $\left(1, c, c^{2}\right)$ are hon coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

- Watch Video Solution

287. If \vec{u}, \vec{v} and \vec{w} are three non coplanar vectors then
$(\vec{u}+\vec{v}-\vec{w}) \cdot(\vec{u}-\vec{c}) \times(\vec{v}-\vec{w})$ equals
(A) $\vec{u} \cdot \vec{v} \times \vec{w}$
(B) $\vec{u} \cdot \vec{w} \times \vec{v}$
$3 \vec{u} . \vec{u} \times \vec{w}$ (D) 0

- Watch Video Solution

288. Let $\vec{u}=h a i+\hat{j}, \vec{v}=\hat{i}-\hat{j}$ and $\vec{w}=\hat{i}+2 \hat{j}+3 \hat{k}$. If \hat{n} isa unit vector such that $\vec{u} . \hat{n}=0$ and $\vec{v} \cdot \hat{n}=0,|\vec{w} \cdot \hat{n}|$ is equal to (A) 0 (B) 1 (C) 2 (D) 3

Watch Video Solution

289. If \vec{a} is perpendicuar to \vec{b} and $\vec{c}|\vec{a}|=2,|\vec{b}|=3,|\vec{c}|=4$ and the angle between \vec{b} and $\vec{c} i s \frac{2 \pi}{3}$, then $[\vec{a} \vec{b} \vec{c}]$ is equal to (A) $4 \sqrt{3}$ (B) $6 \sqrt{3}$ (C) $12 \sqrt{3}$ (D) $18 \sqrt{3}$

- Watch Video Solution

290. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors and λ is a real number, then
$\left[\begin{array}{lll}\lambda(\vec{a}+\vec{b}) & \lambda^{2} \vec{b} & \lambda \vec{c}\end{array}\right]=\left[\begin{array}{lll}\vec{a} & \vec{b}+\vec{c} & \vec{b}\end{array}\right]$ for

- Watch Video Solution

291.

$\vec{V}=x(\vec{a} \times \vec{b})+y(\vec{b} \times \vec{c})+z(\vec{c} \times \vec{a})$ and $\vec{V} \cdot(\vec{a}+\vec{b}+\vec{c})=x+y+z$. The valueof $[\vec{a}, \vec{b}, \vec{c}]$ if $x+y+z \neq 0$ ils (A) 0 (B) 1 (C) -1 (D) 2

- Watch Video Solution

292. The scalar $\vec{A} \cdot(\vec{B}+\vec{C}) \times(\vec{A}+\vec{B}+\vec{C})$ equals (A) 0 (B) $[\vec{A} \vec{B} \vec{C}]+[\vec{B} \vec{C} \vec{A}]$
(C) $[\vec{A} \vec{B} \vec{C}]$ (D) none of these

- Watch Video Solution

293. If \vec{A}, \vec{B} and \vec{C} are three non coplanar then $(\vec{A}+\vec{B}+\vec{C}) \cdot\{(\vec{A}+\vec{B}) \times(\vec{A}+\vec{C})\}$ equals: (A) 0 (B) $[\vec{A}, \vec{B}, \vec{C}]$
$2[\vec{A}, \vec{B}, \vec{C}](\mathrm{D})-[\vec{A}, \vec{B}, \vec{C}]$

Watch Video Solution

294. The value of a so thast the volume of parallelpiped formed by vectors $\hat{i}+a \hat{j}+\hat{k}, \hat{j}+a \hat{k}, a \hat{i}+\hat{k}$ becomes minimum is (A) $\sqrt{93}$) (B) 2 (C) $\frac{1}{\sqrt{3}}$ (D) 3

- Watch Video Solution

295. For non zero vectors $\vec{a}, \vec{b}, \vec{c}|(\vec{a} \times \vec{b}) \cdot \vec{c}|=|\vec{a}||\vec{b}| \mid \vec{l}$ holds if and only if (A) $\vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c}=0$ (B) $\vec{b} \cdot \vec{c}=0, \vec{c} \cdot \vec{a}=0$ (C) $\vec{c} \cdot \vec{a}=0, \vec{a} \cdot \vec{b}=0$ (D) $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$

- Watch Video Solution

296. If \vec{a}, \vec{b} and \vec{c} are non coplanar and unit vectors such that $\left.\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{92}}\right)$ then the angle between vea and \vec{b} is (A) $\frac{3 \pi}{4}$ (B) $\frac{\pi}{4}$
(C) $\frac{\pi}{2}$ (D) π
297. Let \vec{a}, \vec{b} and \vec{c} be the non zero vectors such that $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$. if theta is the acute angle between the vectors
\vec{b} and \vec{a} then theta equals (A) $\frac{1}{3}$ (B) $\frac{\sqrt{2}}{3}$ (C) $\frac{2}{3}$ (D) $2 \frac{\sqrt{2}}{3}$

- Watch Video Solution

298. If $\vec{A} \times(\vec{B} \times \vec{C})=\vec{B} \times(\vec{C} \times \vec{A})$ and $[\vec{A} \vec{B} \vec{C}] \neq 0$ then $\vec{A} \times(\vec{B} \times \vec{C})$ is equal to (A) 0 (B) $\vec{A} \times \vec{B}$ (C) $\vec{B} \times \vec{C}$ (D) $\vec{C} \times \vec{A}$

- Watch Video Solution

299. If $\hat{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \hat{b}=\hat{i} \times(\vec{a} \times \hat{i})+\hat{j} \times(\vec{a} \times \hat{j})+\hat{k} \times($ veda $\times \hat{k})$ then length of \vec{b} is equal to (A) $\sqrt{12}$ (B) $2 \sqrt{12}$ (C) $2 \sqrt{14}$ (D) $3 \sqrt{12}$

- Watch Video Solution

300. Let $\vec{a}=\hat{i}-\hat{j}, \vec{b}=\hat{j}-\hat{k}, \vec{c}=\hat{k}-\hat{i}$. If \hat{d} is a unit vector such that $\vec{a} . \hat{d}=0=[\vec{b}, \vec{c}, \vec{d}]$ then equals (A) $\pm \frac{\hat{i}+\hat{j}-2 \hat{k}}{\sqrt{6}}$ (B) $\pm \frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}$ (C) $\pm \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$ (D) $\pm \hat{k}$

- Watch Video Solution

301.

$\vec{a} s=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}, \vec{c}=\hat{i}$ and $(\vec{a} \times \vec{b}) \times \vec{c}=\lambda \vec{a}=\mu \vec{b}$, then $\lambda+\mu=$?
(A) 0 (B) 1 (C) 2 (D) 3

- Watch Video Solution

302. Given $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=5 \vec{c}+6 \vec{d}$ then the value of $\vec{a} \cdot \vec{b} \times(\vec{a}+\vec{c}+2 \vec{d})$ is (A) 7 (B) 16 (C) -1 (D) 4

- Watch Video Solution

303. If $\vec{a} \times[\vec{a} \times\{\vec{a} \times(\vec{a} \times \vec{b})\}]=|\vec{a}|^{4} \vec{b}$ how are \vec{a} and \vec{b} related? (A) \vec{a} and \vec{b} are coplanar (B) \vec{a} and \vec{b} are collinear (C) \vec{a} is perpendicular to \vec{b} (D) \vec{a} is parallel to vecb but veca and vecb` are non collinear

- Watch Video Solution

304. If $(v c a \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$, where $\vec{a}, \vec{b}, \vec{c}$ are any three vectors such that $\vec{a} . \vec{b} \neq 0, \vec{b} . \vec{c} \neq 0$ then \vec{a} and \vec{c} are (A) inclined at an angle $\frac{\pi}{3}$ to each other (B) inclined at an angle of $\frac{\pi}{6}$ to each other (C) perpendicular (D) parallel

- Watch Video Solution

305. If the vectors $\hat{i}-\hat{j}, \hat{j}+\hat{k}$ and \vec{a} form a triangle then \vec{a} may be (A) $-\hat{i}-\hat{k}$
(B) $\hat{i}-2 \hat{j}-\hat{k}$ (C) $2 \hat{i}+\hat{j}+\hat{j} k$ (D) hati+hatk

- Watch Video Solution

306. If vectors \vec{a} and \vec{b} are non collinear then $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}$ is (A) a unit vector in the plane of \vec{a} and \vec{b} (B) in the plane of \vec{a} and \vec{b} (C) equally inclined ot vecas and vecb (D) perpendiculat to $\vec{a} \times \vec{b}$

- Watch Video Solution

307. Vectors perpendicular to $\hat{i}-\hat{j}-\hat{k}$ and in the plane of $\hat{i}+\hat{j}+\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ are (A) $\hat{i}+\hat{k}$ (B) $2 \hat{i}+\hat{j}+\hat{k}$ (C) $3 \hat{i}+2 \hat{j}+\hat{k}$
$-4 \hat{i}-2 \hat{j}-2 \hat{k}$

- Watch Video Solution

308. The vector $\hat{i}+x \hat{j}+3 \hat{k}$ is rotated through an angle θ and doubled in magnitude, then it becomes $4 \hat{i}+(4 x-2) \hat{j}+2 \hat{k}$. Then values of x are (A) $-\frac{2}{3}$
(B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) 2
309. If the sides $A B$ of an equilateral triangle $A B C$ lying in the $x y$-plane is $3 \hat{i}$ then the side $\overrightarrow{C B}$ can be (A) $-\frac{3}{2}(\hat{i}-\sqrt{3})$ (B) $\frac{3}{2}(\hat{i}-\sqrt{3})$ (C) $-\frac{3}{2}(\hat{i}+\sqrt{3})$ (D) $\frac{3}{2}(\hat{i}+\sqrt{3})$

Watch Video Solution

310. If vectors $\vec{A}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{B}=\hat{i}+\hat{j}+5 \hat{k}$ and \vec{C} form a left handed system then \vec{C} is (A) $11 \hat{i}-6 \hat{j}-\hat{k}$
(B) $-11 \hat{i}+6 \hat{j}+\hat{k}$ (C) $-11 \hat{i}+6 \hat{j}-\hat{k}$
$-11 \hat{i}+6 \hat{j}-\hat{k}$

- Watch Video Solution

311. If $\vec{a}+2 \vec{b}=3 \vec{b}=0$, then $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=$ (A) $2(\vec{a} \times \vec{b})$
$6(\vec{b} \times \vec{c})(\mathrm{C}) 3(\vec{c} \times \vec{a})(\mathrm{D}) 0$

- Watch Video Solution

312. Unit vectors $\vec{a} a n d \vec{b}$ are perpendicular, and unit vector \vec{c} is inclined at angle θ to both \vec{a} and \vec{b} if $\vec{c}=\alpha \vec{a}+\beta \vec{b}+\gamma(\vec{a} \times \vec{b})$, then $a=\beta$ b. $\gamma^{1}=1-2 \alpha^{2}$ c. $\gamma^{2}=-\cos 2 \theta$ d. $\beta^{2}=\frac{1+\cos 2 \theta}{2}$

- Watch Video Solution

313. The equation of the line throgh the point \vec{a} parallel to the plane $\vec{r} . \vec{n}=q$ and perpendicular to the line $\vec{r}=\vec{b}+t \vec{c}$ is (A) $\vec{r}=\vec{a}+\lambda(\vec{n} \times \vec{c})$
(B) $(\vec{r}-\vec{a}) \times(\vec{n} \times \vec{c})=0$ (C) $\vec{r}=\vec{b}+\lambda(\vec{n} \times \vec{c})$ (D) none of these

- Watch Video Solution

314. If \vec{a} and \vec{b} are two non collinear vectors and $\vec{u}=\vec{a}-(\vec{a} \cdot \vec{b}) \vec{b}$ and $\vec{v}=\vec{a} \times \vec{b}$ then $|\vec{v}|$ is (A) $|\vec{u}|$ (B) $|\vec{u}|+|\vec{u} . \vec{b}|$
$|\vec{u}|+|\vec{u} \cdot \vec{a}|(\mathrm{D})$ none of these

- Watch Video Solution

315. A linepasses through the points whose positions vectors $\hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+\hat{k}$. The position vector of a point on it at a distance from the first point is (A) $\hat{i}-\hat{j}+3 \hat{j} k$ (B) $\frac{1}{5}\left(4 \hat{i}+9 \hat{j}-13 \hat{k} 0\right.$ (C) $\frac{1}{5}(6 \hat{i}+\hat{j}-7 \hat{k})$ none of these

- Watch Video Solution

316. A vector of magnitude 2 along a bisector of the angle between the two vectors $2 \hat{i}-2 \hat{j}+\hat{k} a$ and $\hat{i}+2 \hat{j}-2 \hat{k} \quad$ is (A) $\frac{2}{\sqrt{10}}(3 \hat{i}-\hat{k})$
$\frac{2}{\sqrt{23}}(\hat{i}-3 \hat{j}+3 \hat{k})$ (C) $\frac{1}{\sqrt{26}}(\hat{i}-4 \hat{j}+3 \hat{k})$ (D) none of these

- Watch Video Solution

317. A unit vector which is equally inclined to the vector
$\hat{i}, \frac{-2 \hat{i}+\hat{j}+2 \hat{k}}{3}$ and $\frac{-4 \hat{j}-3 \hat{k}}{5}$
(A) $\frac{1}{\sqrt{51}}(-\hat{i}+5 \hat{j}-5 \hat{k})$
(B) $\frac{1}{\sqrt{51}}(\hat{i}+5 \hat{j}+5 \hat{k})$
(C) $\frac{1}{\sqrt{51}}(\hat{i}+5 \hat{j}-5 \hat{k})$ (D) $\frac{1}{\sqrt{51}}(\hat{i}+5 \hat{j}+5 \hat{k})$
318. Three points whose position vectors are $\vec{a}, \vec{b}, \vec{c}$ will be collinear if (A) $\lambda \vec{a}+\mu \vec{b}=(\lambda+\mu) \vec{c}$ (B) $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=0$ (C) $[\vec{a} \vec{b} \vec{c}]=0$ (D) none of these

- Watch Video Solution

319. Let $\vec{b}=4 \hat{i}+3 \hat{j}$. Let \vec{c} be a vector perpendicular to \vec{b} and it lies in the xy-plane. A vector in the xy-plane having projection 1 and 2 along \vec{b} and \vec{c} is (A) $\hat{i}-2 \hat{j}$ (B) $2 \hat{i}-\hat{j}$ (C) $\frac{1}{5}(-2 \hat{i}+11 \hat{j} 0$ (D) none of these

- Watch Video Solution

320. If \vec{a}, \vec{b} and \vec{c} are non coplnar and non zero vers and \vec{r} is any vector in space then $[\vec{c} \vec{r} \vec{b}] \vec{a}+p \vec{a} \vec{r} \vec{c}] \vec{b}+[\vec{b} \vec{r} \vec{a}] c=$ (A) $[\vec{a} \vec{b} \vec{c}]$

$$
[\vec{a} \vec{b} \vec{c}] \vec{r}(\mathrm{C}) \frac{\vec{r}}{[\vec{a} \vec{b} \vec{c}]} \text { (D) } \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})
$$

(D) Watch Video Solution

321. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors such that $\vec{b} \times \vec{c}=\vec{a}, \vec{a} \times \vec{b}=\vec{c} a \neq d \vec{c} \times \vec{a}=\vec{b}$ then (A) $|\vec{a}|+|\vec{b}|+|\vec{c}|=3$ (B) $|\vec{b}|=1$ (C) $|\vec{a}|=1$ (D) none of these

- Watch Video Solution

322. If $\vec{a}, \vec{b}, \vec{c}$ be non coplanar vectors and $\vec{p}=\frac{\vec{b} \times \vec{c}}{\vec{a} \vec{b} \vec{c}}$, vecq= (veccxxveca)/[veca vecb vecc], $\vec{r}=\frac{\vec{a} \times \vec{b}}{\vec{a} \vec{b} \vec{c}}$ then (A) $\vec{p} \cdot \vec{a}=1$
$\vec{p} \cdot \vec{a}+\vec{q}+\vec{b}+\vec{r} \cdot \vec{c}=3$ (C) $\vec{p} \cdot \vec{a}+\vec{q} \cdot \vec{b}+\vec{r} \cdot \vec{c}=0$ (D) none of these

- Watch Video Solution

323. If $\vec{a}, \vec{b}, \vec{c}$ are any thre vectors then $(\vec{a} \times \vec{b}) \times \vec{c}$ is a vector (A) perpendicular to $\vec{a} \times \vec{b}$ (B) coplanar with \vec{a} and \vec{b} (C) parallel to \vec{c} (D)
parallel to either \vec{a} or \vec{b}

- Watch Video Solution

324. If $\vec{c}=\vec{a} \times \vec{b}$ and $\vec{b}=\vec{c} \times \vec{a}$ then (A) $\vec{a} . \vec{b}=\vec{c}^{2}$ (B) \vec{c}. $\vec{a} .=\vec{b}^{2}$ (C) $\vec{a} \perp \vec{b}$
(D) $\vec{a}|\mid \vec{b} \times \vec{c}$

- Watch Video Solution

325. If $\overrightarrow{\times} \times \vec{c} \times \vec{b} \quad(\vec{b} \times \vec{c}) \overrightarrow{\times} \vec{a}$
$\vec{b} . \vec{a}$
$\left(\vec{b} \times \frac{\vec{a} \times \vec{c}}{\vec{b} \cdot \vec{c}}\right.$ (C) $\left(\vec{a} \times \frac{\vec{c} \times \vec{b}}{\vec{a} \cdot \vec{b}}\right.$ (D) none of these

- Watch Video Solution

326. The resolved part of the vector \vec{a} along the vector $\vec{b} i s \vec{\lambda}$ and that
perpendicular to $\vec{b} i s \vec{\mu}$. Then (A) $\vec{\lambda}=\frac{(\vec{a} \cdot \vec{b}) \cdot \vec{a}}{\vec{a}^{2}}$ (B) $\vec{\lambda}=\frac{(\vec{a} \cdot \vec{b}) \cdot \vec{b}}{\vec{b}^{2}}$
$\vec{\mu}=\left(\frac{\vec{b} \cdot \vec{b} 0 \vec{a}-(\vec{a} \cdot \vec{b}) \vec{b}}{\vec{b}^{2}}\right.$ (D) $\vec{\mu}=\frac{\vec{b} \times(\vec{a} \times \vec{b})}{\vec{b}^{2}}$

- Watch Video Solution

327. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are any for vectors then $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$ is a vector (A) perpendicular to $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ (B) along the the line intersection of two planes, one containing \vec{a}, \vec{b} and the other containing \vec{c}, \vec{d}. (C) equally inclined both $\vec{a} \times \vec{b}$ and $\vec{c} \times \vec{d}(\mathrm{D})$ none of these

- Watch Video Solution

328. If $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} x(\vec{b} \times \vec{c} 0$ then (A) $(\vec{c} \times \vec{a}) \times \vec{b}=0$
$\vec{b} \times(\vec{c} \times \vec{a})=0$ (C) $\vec{c} \times(\vec{a} \times \vec{b})=0$ (D) none of these
329. If vector $\vec{b}=(\tan \alpha,-12 \sqrt{\sin \alpha / 2})$ and $\vec{c}=\left(\tan \alpha, \tan \alpha-\frac{3}{\sqrt{\sin \alpha / 2}}\right)$ are orthogonal and vector $\vec{a}=(13, \sin 2 \alpha)$ makes an obtuse angle with the $z-$ axis, then the value of α is $\alpha=(4 n+1) \pi+\tan ^{-1} 2$ b. $\alpha=(4 n+1) \pi-\tan ^{-1} 2$ c. $\alpha=(4 n+2) \pi+\tan ^{-1} 2$ d. $\alpha=(4 n+2) \pi-\tan ^{-1} 2$

- Watch Video Solution

330. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-\hat{j}$ then the vector $(\vec{a} . \hat{i}) \hat{i}+(\vec{a} . \hat{j}) \hat{j}+(\vec{a} . \hat{k}) \hat{k},(\vec{b} . \hat{i}) \hat{i}+(\vec{b} . \hat{j}) \hat{j}+(\vec{b} \cdot \hat{k}) \hat{k}$ and $\hat{i}+\hat{j}-2 \hat{k}(\mathrm{~A})$ are mutually perpendicular (B) are coplanasr (C) form a parallelopiped of volume 6 units (D) form as parallelopiped of volume 3 units

- Watch Video Solution

331. If unit vectors \hat{i} and \hat{j} are at righat angle to each other and $\vec{p}=3 \hat{i}+3 \hat{j}, \vec{q}=5 \hat{i}, 4 \vec{r}=\vec{p}+\vec{q}$, then $2 \vec{s}=\vec{p}-\vec{q}$ (A) $\mid \vec{r}+$ kves $|=|\vec{r}-k \vec{s}|$ for all real k (B) \vec{r} is perpendicular to \vec{s} (C) $\vec{r}+\vec{s}$ is perpendicular to $\vec{r}-\vec{s}$ (D) $|\vec{r}|=|\vec{s}|=|\vec{p}|=\vec{q} \mid$

- Watch Video Solution

332. If vectors \vec{a} and \vec{b} are non collinear then $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}$ is (A) a unit vector \in thepla $\neq o$ fveca and $\operatorname{vecb}(B) \in$ thepla \neq ofveca and vecb (C)equally $\in \mathrm{cl} \in$ edotäs and \vec{b} (D) perpendicat \rightarrow veca xx vecb`

- Watch Video Solution

333. The position vectors of the points P and Q are $5 \hat{i}+7 \hat{j}-2 \hat{k}$ and $-3 \hat{i}+3 \hat{j}+6 \hat{k}$, respectively. Vector $\vec{A}=3 \hat{i}-\hat{j}+\hat{k}$ passes through point P and vector $\vec{B}=-3 \hat{i}+2 \hat{j}+4 \hat{k}$ passes through point Q. A
third vector $2 \hat{i}+7 \hat{j}-5 \hat{k}$ intersects vectors A and B. Find the position vectors of points of intersection.

- Watch Video Solution

334. The vectors $A B=3 \hat{i}+2 \hat{+} 2 \hat{k}$ and $B C=-\hat{i}-2 \hat{k}$ are the adjacent sides of parallelogram. The angle between its diagonal is (A) $\frac{\pi}{3}$ (B) $\frac{\pi}{4}$ (C) $\frac{3 \pi}{4}$ (D) (2pi)/3`

- Watch Video Solution

335. The vectors $a \hat{i}+2 a \hat{j}-3 a \hat{k},(2 a+1) \hat{i}=(2 a+3) \hat{j}+(a+1) \hat{k} \quad$ and $(3 a+5) \hat{i}+(a+5) \hat{j}+(a+2) \hat{k}$ are non coplanasr for a belonging to the set (A) $\{0\}(\mathrm{B})(0, \infty)(\mathrm{C})(-\infty, 1)(D)(1, \circ \circ)^{`}$

- Watch Video Solution

336. The volume of the tetrahedronwhose vertices are the points with position vectors $\hat{i}-5 \hat{j}+10 \hat{k},-\hat{i}-3 \hat{j}+7 \hat{k}, 5 \hat{i}-\hat{j}+\lambda \hat{k}$ and $7 \hat{i}-4 \hat{j}+7 \hat{k}$ is 11 cubic units then the value of λ is (A) 7 (B) 1 (C) -7 (D) -1

- Watch Video Solution

337. If a vector \vec{r} e satisfies the equation $\vec{r} \times(\hat{i}+2 \hat{j}+\hat{k})=\hat{i}-\hat{k}$ then \vec{r} e is equal to (A) $\hat{i}+3 \hat{j}+\hat{k}$ (B) $3 \hat{i}+7 \hat{j}+3 \hat{k}$ (C) $\hat{i}+(t+3) \hat{i}+\hat{k}$), where t is any scalar (D) $\hat{j}+t(\hat{i}+2 \hat{j}+\hat{k})$ where t is any scalar.

- Watch Video Solution

338. If $D A=\vec{a}, A B=\vec{b}$ and $C B=k \vec{a} w h e r e k>0$ and X, Y are the midpoint of $D B$ and $A C$ respectively such that $|\vec{a}|=17$ and $|\overrightarrow{X Y}|=4$, then k is equal to (A) $\frac{9}{17}$ (B) $\frac{8}{17}$ (C) $\frac{25}{17}$ (D) $\frac{4}{17}$
339. \vec{a} and \vec{c} are unit vectors $|\vec{b}|=4$ with $\vec{a} \times \vec{b}=2(\vec{a} \times \vec{c})$. The angle between \vec{a} and \vec{c} is $\cos ^{-1}\left(\frac{1}{4}\right)$. Then $\vec{b}-2 \vec{c}=\lambda \vec{a}$, if λ is (A) 3
$-4(C) 4(D)-1 / 4$

- Watch Video Solution

340. If the resultant of three forces
$\vec{F}_{1}=p \hat{i}+3 \hat{j}-\hat{k}, \vec{F}_{2}=6 \hat{i}-\hat{k}$ and $\vec{F}_{3}=-5 \hat{i}+\hat{j}+2 \hat{k}$ acting on a parricle has magnitude equal to 5 units, then the value of p is a. $-6 \mathrm{~b} .-4 \mathrm{c} .2 \mathrm{~d} .4$

- Watch Video Solution

341. If \vec{a} and \vec{b} are two unit vectors perpendicular to each other and $\vec{c}=\lambda_{1} \vec{a}+\lambda_{2} \vec{b}+\lambda_{3}(\vec{a} \times \vec{b})$ then the following is (are) true (A) $\lambda_{1}=\vec{a} . \vec{c}$ (B)
$\lambda_{2}=|\vec{b} \times \vec{c}|$
(C) $\lambda_{3}=|(\vec{a} \times \vec{b}) \times \vec{c}|$
(D) $\lambda_{1}+\lambda_{2}+\lambda_{3}=(\vec{a}+\vec{b}+\vec{a} \times \vec{b}) . \vec{c}$
342. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ then (A) $(\vec{a}-\vec{d})=\lambda(\vec{b}-\vec{c})$ $\vec{a}+\vec{d}=\lambda(\vec{b}+\vec{c})$ (C) $(\vec{a}-\vec{b})=\lambda(\vec{c}+\vec{d})$ (D) none of these

(Watch Video Solution

343. If A, B, C are three points with position vectors
$\vec{i}+\vec{j}, \vec{i}-\hat{j}$ and $p \vec{i}+q \vec{j}+r \vec{k}$ respectiey then the points are collinear if (A) $p=q=r=0$ (B) $p=q r=1$ (C) $p=q, r=0$ (D) $p=1, q=2, r=0$

- Watch Video Solution

344. If $|\vec{a}|=4,|\vec{b}|=2$ and angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$ then $(\vec{a} \times \vec{b})^{2}$ is (A) 48 (B) $(\vec{a})^{2}$ (C) 16 (D) 32

D Watch Video Solution

345. If the unit vectors \vec{a} and \vec{b} are inclined at angle 2θ such that $|\vec{a}-\vec{b}|<1$ and $0 \leq \theta \leq \pi$ then theta lies in the intervasl. (A) [$0, \mathrm{pi} / 6$] (B) $\left(5 \frac{\pi}{6}, \pi\right]$ (C) $[\mathrm{pi} / 2,5 \mathrm{pi} / 6](D)[\mathrm{pi} / 6, \mathrm{pi} / 2]^{`}$

- Watch Video Solution

346. The vectors $2 \hat{i}-\lambda \hat{j}+3 \lambda \hat{k}$ and $(1+\lambda) \hat{i}-2 \lambda \hat{j}+\hat{k}$ include an acute angle for (A) all values of m (B) $\lambda \leftarrow 2$ (C) lamdagt-12(D)lamdaepsilon [-2,-1/2]

- Watch Video Solution

347. The vectors $\vec{a}=x \hat{i}-2 \hat{j}+5 \hat{j}$ and $\vec{b}=\hat{i}+y \hat{j}-z \hat{k}$ are collinear if (A)
$x=1, y=-2, z=-5$ (B) $x=\frac{1}{2}, y=-4, z=-10$ (C) $x=-\frac{1}{2}, y=4, z=10$
(D) none of these

- Watch Video Solution

348. Let $\vec{a}=2 \hat{i}=\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-2 \hat{k}$ be three vectors. A vector in the pland of \vec{b} and \vec{c} whose projection on \vec{a} is of magnitude
$\left.\sqrt{(} \frac{2}{3}\right)$ is (A) $2 \hat{i}+3 \hat{j}+3 \hat{k}$ (B) $2 \hat{i}+3 \hat{j}-3 \hat{k}$ (C) $-2 \hat{i}-\hat{j}+5 \hat{k}$ (D) $2 \hat{i}+\hat{j}+5 \hat{k}$

- Watch Video Solution

349. The vectors $(x, x+1, x+2),(x+3, x+3, x+5)$ and $(x+6, x+7, x+8)$ are coplanar for (A) all values of x (B) $x<0$ (C) $x>0$ (D) none of these

- Watch Video Solution

350. If $\vec{a}, \vec{b}, \vec{c}$ are three non coplanar vectors such that $\vec{r}_{1}=\vec{a}-\vec{b}+\vec{c}, \vec{r}_{2}=\vec{b}+\vec{c}-\vec{a}, \vec{r}_{3}=\vec{c}+\vec{a}+\vec{b}, \vec{r}=2 \vec{a}-3 \vec{b}+3 \vec{c}$ if $\vec{r}=\lambda_{1} \vec{r}_{1}$ then (A) $\lambda_{1}=\frac{7}{2}$ (B) $\lambda_{1}+\lambda_{2}=3$ (C) $\lambda_{2}+\lambda_{3}=2$ (D) $\lambda_{1}+\lambda_{2}+\lambda_{3}=4$

- Watch Video Solution

351. A parallelogram is constructed on the vectors $\vec{a}=3 \vec{\alpha}-\vec{\beta}, \vec{b}=\vec{\alpha}+3 \vec{\beta}$. If $|\vec{\alpha}|=|\vec{\beta}|=2$ and angle between $\vec{\alpha}$ and $\vec{\beta}$ is $\frac{\pi}{3}$ then the length of a diagonal of the parallelogram is (A) $4 \sqrt{5}$ (B) $4 \sqrt{3}$ (C) 4 sqrt(7) ${ }^{\prime}$ (D) none of these

- Watch Video Solution

352. The vector $\vec{a}+\vec{b}$ bisects the angle between the vectors \hat{a} and \hat{b} if (A) $|\vec{a}|+|\vec{b}|=0$ (B) angle between \vec{a} and \vec{b} is zero (C) $|\vec{a}|=|\vec{b}|=0$ (D) none of these

- Watch Video Solution

353. Assertion:Points A, B, C are collinear, Reason: $A B \times A C=0(A)$ Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.
354. Assetion: $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=[\vec{a} \vec{c} \vec{d}] \vec{b}-[\vec{b} \vec{c} \vec{d}] \vec{a} \quad$ Reason: $(\vec{a} \times \vec{b}) \times \vec{c}=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

355. Assertion: Angle between \vec{a} and $\vec{b} i s \frac{2 \pi}{3}$, Reason: $|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+2|\vec{a} \cdot \vec{b}|$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

356. Assertion: If the magnitude of the sum of two unit vectors is a unit vector, then magnitude of their differnce is $\sqrt{3}$ Reason: $|\vec{a}|+|\vec{b}|=|\vec{a}+\vec{b}|$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

357. Assertion: Suppose $\hat{a}, \hat{b}, \hat{c}$ are unit vectors such that $\hat{a}, \hat{b}=\hat{a} . \hat{c}=0$ and the angle between hatb and hatc is pi/6thanhe $\vec{\rightarrow}$ rhata canberepresentedashata=+-2(hatbxxhatc),Reason: hata=+(hatbxxhatc)/(hatbxxhatc|) (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

358. Assertion: Thevalue of expression $\hat{i}(\hat{j} \times \hat{k})+\hat{j} .(\hat{k} \times \hat{i})+\hat{k} .(\hat{i} \times \hat{j})$ is equal to 3, Reason: If $\hat{a}, \hat{b}, \hat{c}$ are mutually perpendicular unit vectors, then $[\hat{a} \hat{b} \hat{c}]=1$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

359. Assertion ABCDEF is a regular hexagon and $\overrightarrow{A B}=\vec{a}, \overrightarrow{B C}=\vec{b}$ and $\overrightarrow{C D}=\vec{c}$, thenEA is equal to $-(\vec{b}+\vec{c})$, Reason: $\overrightarrow{A E}=\overrightarrow{B D}=\overrightarrow{B C}+\overrightarrow{C D}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

360. Assertion : IfvecA, vecB,vecCareanythreenoncoplanar $\xrightarrow[\rightarrow]{ }$ rsthen (vecA.vecBxxvecC)/(vecCxxvecA.vecB)+
(vecB.vecAxxvecc)/(vecC.vecAxxvecB)=0, Reason: [veca vecb vecc]!=[vecb vecc veca] (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

D Watch Video Solution

361. Assertion: \vec{p}, \vec{q} and \vec{r} are coplanar. Reason: Vectros $\vec{p}, \vec{q}, \vec{r}$ are linearly independent. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

362. Assertion: $\vec{r} . \vec{a}$ and \vec{b} are thre vectors such that \vec{r} is perpendicular to
(A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

363. Assertion: Let $\vec{r}=l(\vec{a} \times \vec{b})=m(\vec{b} \times \vec{c})+n(\vec{c} \times \vec{a})$, wherel, m, n are scalars and $[\vec{a} \vec{b} \vec{c}]=\frac{1}{2} \cdot l+m+n=2 \vec{r} \cdot(\vec{a}+\vec{b}+\rightarrow)$. Reason: $\vec{a}, \vec{b}, \vec{c}$ are coplanar (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

364. Assertion: If $\vec{x} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{x} d \perp \vec{a}$ then $\vec{x}=\frac{(\vec{b} \times \vec{c}) \times \vec{a}}{\vec{b}}$, Reason:

$$
\vec{a} . \vec{b}
$$

$\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$ (A) Both A and R are true and R is the
correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

365. Assertion: If $A B=3 \hat{i}-3 \hat{k}$ and $A C=\hat{i}-2 \hat{j}+\hat{k}$, then|vec(AM)|=sqrt(6) Reason, $\operatorname{vec}(A B)+\operatorname{vec}(A C)=2 \operatorname{vec}(A M)^{\prime}(A) B o t h ~ A$ and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

366. Assertion: $|\vec{a}+\vec{b}|<|\overrightarrow{-} \vec{b}|$, Reason: $|\vec{a}+\vec{b}|^{2}=a^{2}+b^{2}+2 \vec{a} . \vec{b}$.

Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false.
(D) A is false but R is true.

- Watch Video Solution

367. Assertion: In $\triangle A B C, A B+B C+C A=0$ Reason: If
$O A=\vec{a}, O B=\vec{b}$ the $A B=\vec{a}+\vec{b}$ (triangle law of addition) (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

368. Assertion: If I is the incentre of $\triangle A B C$, then $|\operatorname{vec}(B C)| \operatorname{vec}(I A)+|\operatorname{vec}(C A)| \operatorname{vec}(I B)+|\operatorname{vec}(A B)| \operatorname{vec}(I C)=0$

Reason:IfOisthe or ig \in, thentheposition $\vec{\rightarrow}$ rofcentroidof/_\ABC
is $(\overrightarrow{O A})+\overrightarrow{O B}+\overrightarrow{O C} \frac{)}{3}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

369. Assertion: $\vec{a}=\hat{i}+p \hat{j}+2 \hat{k}$ and $\hat{b}=2 \hat{i}+3 \hat{j}+q \hat{k}$ are parallel vectors if $p=\frac{3}{2}, q=4$, Reason: If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ are parallel then $a_{-} 1 / b_{-} 1=a_{-} 2 / b_{-} 2=a_{-} 3 / b_{-} 3^{\prime}$. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

370. Assertion: Let $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=\hat{j}-\hat{k}$ be two vectors. Angle between
$\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}=90^{\circ}$ Reason: Projection of $\vec{a}+\vec{b}$ on $\vec{a}-\vec{b}$ is zero (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

371. Assertion: $\vec{c} 4 \vec{a}-\vec{b}$ and \vec{a}, veb, \vec{c} are coplanar. Reason Vector $\vec{a}, \vec{b}, \vec{c}$ are linearly dependent. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

372. Assertion: $|\vec{a}|=|\vec{b}|$ does not imply that $\vec{a}=\vec{b}$, Reason: If $\vec{a}=\vec{b}$, then $|\vec{a}|=|\vec{b}|$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

373. Assertion: If $\vec{a}, \vec{b}, \vec{c}$ are unit such that $\vec{a}+\vec{b}+\vec{c}=0$ then $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=-\frac{3}{2}, \quad$ Reason $\quad(\vec{x}+\vec{y})^{2}=|\vec{x}|^{2}+|\vec{y}|^{2}+2(\vec{x} \cdot \vec{y})$

Both A and R are true and R is the correct explanation of $A(B)$ Both A and
R are true R is not te correct explanation of $A(C) A$ is true but R is false.
(D) A is false but R is true.

- Watch Video Solution

374. Assertion: Three points with position vectors $\vec{a} s, \vec{b}, \vec{c}$ are collinear if $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=0$ Reason: Three points A,B,C are collinear Iff $\overrightarrow{A B} \times A C=\overrightarrow{0}(\mathrm{~A})$ Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

375. Assertion: If as force \vec{F} passes through $Q(\vec{b})$ then monent of force \vec{F} about $\mathrm{P}($ veca $)$ is vecFxxvecr, where vecr=vec(PQ$)^{\prime}$, Reason Moment is a vector. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.
376. Assertion: The nine point centre wil be $\frac{\vec{a}+\vec{b}+\vec{c}}{2}$, Reason: Centroid of $\triangle A B C i s(v e c a+v e c b+v e c c) / 3)^{\prime}$ and nine point centre is the middle point of the line segment joining circumcentre and orthocentre. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

377. Assertion: The scalar product of a force \vec{F} and displacement \vec{r} is equal to the work done. Reason: Work done is not a scalar (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.
378. Assertion: In a $\triangle A B C, A B+B C+C A=0$, Reason: If
$\overrightarrow{A B}=\vec{a}, \vec{\jmath} B C$) $=\vec{b}$ then $\vec{C}=\vec{a}+\vec{b}$ (triangle law of addition) (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

379. Assertion: For $a=-\frac{1}{\sqrt{3}}$ the volume of the parallelopiped formed by vectors $\hat{i}+a \hat{j}, a \hat{i}+\hat{j}+\hat{k}$ and hatj+ahatk is max $i \mu m$. Reason. Thevolumeotheparal \leq lompedhav \in gthethreecoter min ouse veca.vecb and vecc=|[veca vecb vecc]|` (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.
380. Assertion: If \vec{a} is a perpendicular to \vec{b} and \vec{b}, then $\vec{a} \times(\vec{b} \times \vec{c})=0$ Reason: If \vec{b} is perpendicular to veccthenvecbxxvecc=0^ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

381. Assertion: If $|\vec{a}|=2,|\vec{b}|=3|2 \vec{a}-\vec{b}|=5$, then $\mid 2 \vec{a}+\overrightarrow{\mid}=5$, Reason: |vecp-vecq|=|vecp+vecq|` (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

382. Assertion : If $\in a \triangle A B C, \overrightarrow{B C}=\frac{\vec{p}}{|\vec{p}|}-\frac{\vec{q}}{|\vec{q}|} \quad$ and $\quad \operatorname{vec}(A C)=$
(2vecp)/|vecp|,|vecp|! $=\mid$ veq|thenthevalueof $\cos 2 \mathrm{~A}+\cos 2 \mathrm{~B}+\cos 2 \mathrm{C}$
is - 1 ., Reason: If $\in / \backslash \mathrm{ABC}, \quad / \mathrm{C}=90^{\wedge} 0$ then $\cos 2 \mathrm{~A}+\cos 2 \mathrm{~B}+\cos 2 \mathrm{C}=-1^{\prime} \quad(\mathrm{A})$ Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false.
(D) A is false but R is true.

- Watch Video Solution

383. Assertion: If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d} t h e(\vec{a}-\vec{d})$ is perpendicular to $(\vec{b}-\vec{c})$., Reason : If \vec{p} is perpendicular to vecq then vecp.vecq $=0^{`}(A)$ Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

384. Assertion: If $\vec{r} . \vec{a}=0, \vec{r}, \vec{b}=0, \vec{r} . \vec{c}=0$ for some non zero vector $\vec{r} \mathrm{e}$ then $\vec{a}, \vec{b}, \vec{c}$ are coplanar vectors. Reason: Ifveca,vecb,veccarecoplanarthen veca+vecb+vecc=0` (A) Both A and R are true and R is the correct
explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

385. Assertion: If \vec{a} and \vec{b} re reciprocal vectors, then $\vec{a} . \vec{b}=1$, Reason: If $\vec{a}=\lambda \vec{b}, \lambda \varepsilon R^{+}$and $|\vec{a}||\vec{b}|=1$, then \vec{a} and \vec{b} are reciprocal. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

386. Assertion: Let \vec{a} and \vec{b} be any two vectors $(\vec{a} \times \hat{i}) \cdot(\vec{b} \times \hat{i})+(\vec{a} \times \hat{j}) \cdot(\overrightarrow{\times} \hat{j})+(\vec{a} \times \hat{k}) \cdot(\vec{b} \times \hat{k})=2 \vec{a} \cdot \vec{b} .$, Reason: $(\vec{a} \cdot \hat{i})($
(A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.
387. Assertion: The vector product of a force \vec{F} and displacement \vec{r} is equal to the work done. Reason: Work is not a vector. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

388. Consider three vectors \vec{a}, \vec{b} and \vec{c}. Vectors \vec{a} and \vec{b} are unit vectors having an angle θ between them For vector veca, $|\vec{a}|^{2}=\vec{a}$. \vec{a} if $\vec{a} \perp \vec{b}$ and $\vec{a} \perp \vec{c}$ then $\vec{a}|\mid \vec{b} \times \vec{c}$ If $\vec{a}| \mid \vec{b}$, thena $=t \vec{b}$ Now answer the following question: The value of $\sin \left(\frac{\theta}{2}\right)$ is (A) $\frac{1}{2}|\vec{a}-\vec{b}|$ (B) $\frac{1}{2}|\vec{a}+\vec{b}|$ $|\vec{a}-\vec{b}|$ (D) $|\vec{a}+\vec{b}|$
389. Consider three vectors \vec{a}, \vec{b} and \vec{c}. Vectors \vec{a} and \vec{b} are unit vectors having an angle θ between them For vector veca, $|\vec{a}|^{2}=\vec{a}$. \vec{a} if $\vec{a} \perp \vec{b}$ and $\vec{a} \perp \vec{c}$ then $\vec{a}|\mid \vec{b} \times \vec{c}$ If $\vec{a}| \mid \vec{b}$, then $\vec{a}=t \vec{b}$ Now answer the following question: If \vec{c} is a unit vector and equal to the sum of \vec{a} and \vec{b} the magnitude of difference between \vec{a} and \vec{b} is (A) 1 (B) $\sqrt{2}$ (C) $\sqrt{3}$ (D) $\frac{1}{\sqrt{2}}$

- Watch Video Solution

390. Consider three vectors \vec{a}, \vec{b} and \vec{c}. Vectors \vec{a} and \vec{b} are unit vectors having an angle θ between them for vector $\vec{a},|\vec{a}|^{2}=\vec{a} \cdot \vec{a}$ If $\vec{a} \perp \vec{b}$ and $\vec{a} \perp \vec{c}$ then $\vec{a}|\mid \vec{b} \times \vec{c}$ If $\vec{a}| \mid \vec{b}$, thena $\vec{a}=t \vec{b}$ Now answer the \wedge following question: If veccisasunit \rightarrow rsucht veca.vecb=veca.vecc=0 and theta $=(\mathrm{pi} / 6)$ then veca=(A) $+-1 / 2($ vecbxxvecc $)(B)+-($ vecbxxvecc $)(C)$ $+-2(v e c b x x v e c c)$ ' (D) none of these
391. Consider three vectors \vec{a}, \vec{b} and \vec{c}. Vectors \vec{a} and \vec{b} are unit vectors having an angle θ between them For vector veca,|veca|^ $2=$ veca.vecaIf veca_l_vecb and veca_|_vecc then veca||vecbxxveccifveca||vecb, then veca=tvecbNowanswerthefollow \in gquestion: If|vecc|=4, theta $\cos ^{\wedge}-1(1 / 4)$ and vecc-2vecb=tvecas, then $\mathrm{t}=(\mathrm{A}) 3,-4(B)-3,4(C) 3,4(D)-3,-4^{`}$

- Watch Video Solution

392.

$\vec{a}, \vec{b}, \vec{c}, \vec{d}, \vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$ and $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=(\vec{a} \cdot \vec{c})(\vec{b}$.
Now answer the following question: $(\vec{a} \times \vec{b}) \cdot(\overrightarrow{\times} \vec{d})$ is equal to (A)
$\vec{a} .(\vec{b} \times(\vec{x} \vec{d}))$
(B) $|\vec{a}|(\vec{b} \cdot(\vec{c} \times \vec{d}))$
(C) $|\vec{a} \times \vec{b}| \cdot|\vec{c} \times \vec{d} D|$
(D) none of these

- Watch Video Solution

393.

Now answer the following question: $(\vec{a} \times \vec{b}) \cdot(\overrightarrow{\times} \vec{d})$ is equal to (A)
$(\vec{a} \times \vec{d}) \cdot(\vec{b} \times \vec{c})$ (B) $(\vec{b} \times \vec{a}) \cdot(\vec{c} \times \vec{d})$ (C) $(\overrightarrow{d x x \vec{c}}) \cdot(\vec{b} \times \vec{a} 0$ (D) none of these

- Watch Video Solution

394.

For
vectors
$\vec{a}, \vec{b}, \vec{c}, \vec{d}, \vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$ and $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=(\vec{a} \cdot \vec{c})(\vec{b}$.
Now answer the following question: $\{(\vec{a} \times \vec{b}) \times \vec{c}\} . \vec{d}$ would be equal to (A) $\vec{a} \cdot(\overrightarrow{\times}(\vec{c} \times \vec{d}))$ (B) $((\vec{a} \times \vec{c}) \times \vec{b}) \cdot \vec{d}$ (C) $(\vec{a} \times \vec{b}) \cdot(\overrightarrow{d x x} \vec{c})$ (D) none of these

- Watch Video Solution

395. Unit vector along \vec{a} is denoted by \hat{a} (if $|\vec{a}|=1, \vec{a}$ is called a unit vector). Also $\frac{\vec{a}}{|\vec{a}|}=\hat{a}$ and $\vec{a}=|\vec{a}| \hat{a}$. Suppose $\vec{a}, \vec{b}, \vec{c}$ are three non parallel
unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{2} \vec{b}[\vec{p} \times(\overrightarrow{\times} \vec{r})$ is a vector triple product and $\vec{p} \times(\vec{q} \times \vec{r})=(\vec{p} \cdot \vec{r} \cdot \vec{q})-(\vec{p} \cdot \vec{q}) \vec{r}]$. Angle between \vec{a} and \vec{b} is (A) 90° (B) 30° (C) 60° (D) none of these

- Watch Video Solution

396. Unit vector along \vec{a} is denoted by \hat{a} (if $|\vec{a}|=1, \vec{a}$ is called a unit vector). Also $\frac{\vec{a}}{|\vec{a}|}=\hat{a}$ and $\vec{a}=|\vec{a}| \hat{a}$. Suppose $\vec{a}, \vec{b}, \vec{c}$ are three non parallel unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{2} \vec{b}[\vec{p} \times(\overrightarrow{\times} \vec{r})$ is a vector triple product and $\vec{p} \times(\vec{q} \times \vec{r})=(\vec{p} \cdot \vec{r} \cdot \vec{q})-(\vec{p} \cdot \vec{q}) \vec{r}]$. Angle between \vec{a} and \vec{c} is (A) 120° (B) 60° (C) $30^{\circ}(\mathrm{D})$ none of these

- Watch Video Solution

397. Unit vector along \vec{a} is denoted by \hat{a} (if $|\vec{a}|=1, \vec{a}$ is called a unit unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{2} \vec{b}[\vec{p} \times(\overrightarrow{\times} \vec{r})$ is a vector triple
product and $\vec{p} \times(\vec{q} \times \vec{r})=(\vec{p} \cdot \vec{r} \cdot \vec{q})-(\vec{p} \cdot \vec{q}) \vec{r}] .|\vec{a} \times \vec{c}|$ is equal to (A) $\frac{1}{2}$
(B) $\frac{\sqrt{3}}{2}$ (C) $\frac{3}{4}$ (D) none of these

- Watch Video Solution

398. For any three vectors $\vec{a}, \vec{b}, \vec{c}$ their product would be a vector if one cross product is folowed by other cross product i.e $(\vec{a} \times \vec{b}) \times \vec{c}$ or $(\vec{b} \times \vec{c}) \times \vec{a}$ etc. For any four vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ the product would be a vector with the help of sequential cross product or by cross product of two vectors obtained by corss product of two pair i.e. $(\vec{a} \times(\vec{b} \times \vec{c})) \times \vec{d}$ or $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$. Now answer the following question: $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$ would be a vector (A) perpendicular to $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ (B) paral $\leq l \rightarrow$ veca and $\operatorname{vecc}(C)$ paralel to \vec{b} and $\vec{d}(\mathrm{D})$ none of these

- Watch Video Solution

399. For any three vectors $\vec{a}, \vec{b}, \vec{c}$ their product would be a vector if one cross product is folowed by other cross product i.e $(\vec{a} \times \vec{b}) \times \vec{c}$ or $(\vec{b} \times \vec{c}) \times \vec{a}$ etc. For any four vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ the product would be a vector with the help of sequential cross product or by cross product of two vectors obtained by corss product of two pair i.e. $(\vec{a} \times(\vec{b} \times \vec{c})) \times \vec{d}$ or $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$. (vecaxxvecb) $\times x($ veccxxvecd 0 isa $\stackrel{\vec{\rightarrow}}{ } r($ A $)$ alongthel \in eoff \int ersectionoftwopla \neq sconta $\in \in$ gveca,vecb
and \quad vecc,vecd (B) perpendicar \rightarrow pla \neq conta $\in \in$ gveca,vecb and vecc,vecd(C)paral $\leq l \rightarrow$ thepla \neq conta $\in \in$ gveca,vecb and vecc,vecd' (D) none of these

- Watch Video Solution

400. For any three vectors $\vec{a}, \vec{b}, \vec{c}$ their product would be a vector if one cross product is folowed by other cross product i.e $(\vec{a} \times \vec{b}) \times \vec{c}$ or $(\vec{b} \times \vec{c}) \times \vec{a}$ etc. For any four vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ the product would be a vector with the help of sequential cross product or by cross product of two vectors obtained by corss product of two pair i.e.
$(\vec{a} \times(\vec{b} \times \vec{c})) \times \vec{d}$ or $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$. Now answer the following question: $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$ would be a (A) equally inclined with $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ (B) perpendicular with $(\vec{a} \times \vec{b}) \times \vec{c}$ and \vec{c} (C) equally inclined with $\vec{a} \times \vec{b}$ and $\vec{c} \times \vec{d}$ (D) none of these

- Watch Video Solution

401. If O be the origin the vector $O P$ is called the position vector of point
P. Also $A B=O B-O A$. Three points are said to be collinear if they lie on the same stasighat line.Points A, B, C are collinear if one of them divides the line segment joining the others two in some ratio. Also points A, B, C are collinear if and only if $\overrightarrow{A B} \times \overrightarrow{A C}=\overrightarrow{0}$ Let the points A, B, and C having position vectors \vec{a}, \vec{b} and \vec{c} be collinear Now answer the following queston: $t \vec{a}+s \vec{b}=(t+s) \vec{c}$ where t and s are scalar (A) $t \vec{a}+s \vec{b}=(t+s) \vec{c}$ where t and s are scalar (B) $\vec{a}=\vec{b}$ (C) $\vec{b}=\vec{c}$ (D) none of these

- Watch Video Solution

402. If O be the origin the vector $O P$ is called the position vector of point
P. Also $A B=O B-O A$. Three points are said to be collinear if they lie on the same stasighat line.Points A, B, C are collinear if one of them divides the line segment joining the others two in some ratio. Also points A, B, C are collinear if and only if $A B \times A C=\overrightarrow{0}$ Let the points A, B, and C having position vectors \vec{a}, \vec{b} and \vec{c} be collinear Now answer the following queston: The exists scalars x, y, z such that
$x \vec{a}+y \vec{b}+z c \vec{c}=0$ and $x+y+z \neq 0$ (B) $x \vec{a}+y \vec{b}+z c \vec{c} \neq 0$ and $x+y+z \neq 0$ (C) $x \vec{a}+y \vec{b}+z c \vec{c}=0$ and $x+y+z=0$ (D) none of these

- Watch Video Solution

403. If O be the origin the vector $O P$ is called the position vector of point

$$
\rightarrow \quad \rightarrow \quad \rightarrow
$$

P. Also $A B=O B-O A$. Three points are said to be collinear if they lie on the same stasighat line.Points A, B, C are collinear if one of them divides the line segment joining the others two in some ratio. Also points A, B, C are collinear if and only if $A B \times A C=\overrightarrow{0}$ Let the points A, B, and C having
position vectors \vec{a}, \vec{b} and \vec{c} be collinear Now answer the following queston:
(A) veca.vecb=veca.vecc(B)vecaxxvecb=vecc(C) vecaxxvecb+vecbxxvecc+veccxxveca=vec0` (D) none of these

- Watch Video Solution

404. \vec{a}. $(\vec{b} \times \vec{c})$ is called the scalar triple product of $\vec{a}, \vec{b}, \vec{c}$ and is denoted by $[\vec{a} \vec{b} \vec{c}]$. If $\vec{a}, \vec{b}, \vec{c}$ are cyclically permuted the vaslue of the scalar triple product remasin the same. In a scalar triple product, interchange of two vectors changes the sign of scalar triple product but not the magnitude. in scalar triple product the the position of the dot and cross can be interchanged privided the cyclic order of vectors is preserved. Also the scaslar triple product is ZERO if any two vectors are equal or parallel. $[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]$ is equal to (A) $2[\vec{a} \vec{b} \vec{c}]$ (B) $3[\vec{a}, \vec{b}, \vec{c}]$
(C) $[\vec{a}, \vec{b}, \vec{c}]$ (D) 0

- Watch Video Solution

405. $\vec{a} .(\vec{b} \times \vec{c})$ is called the scalar triple product of $\vec{a}, \vec{b}, \vec{c}$ and is denoted by $[\vec{a} \vec{b} \vec{c}]$. If $\vec{a}, \vec{b}, \vec{c}$ are cyclically permuted the vaslue of the scalar triple product remasin the same. In a scalar triple product, interchange of two vectors changes the sign of scalar triple product but not the magnitude. in scalar triple product the the position of the dot and cross can be interchanged privided the cyclic order of vectors is preserved. Also the scaslar triple product is ZERO if any two vectors are equal or parallel. If $\vec{a}, \vec{b}, \vec{c}$ are coplanar then $[\vec{b}+\vec{c} \vec{c}+\vec{a} \vec{a}+\vec{b}=]$ (A) 1 (B) -1 (C) 0 (D) none of these

- Watch Video Solution

406. \vec{a}. $(\vec{b} \times \vec{c})$ is called the scalar triple product of $\vec{a}, \vec{b}, \vec{c}$ and is denoted by $[\vec{a} \vec{b} \vec{c}]$. If $\vec{a}, \vec{b}, \vec{c}$ are cyclically permuted the vaslue of the scalar triple product remasin the same. In a scalar triple product, interchange of two vectors changes the sign of scalar triple product but not the magnitude. in scalar triple product the the position of the dot and cross can be interchanged privided the cyclic order of vectors is preserved. Also the
scaslar triple product is ZERO if any two vectors are equal or parallel. (A) [vecb-vecc vecc-veca veca-vecb] $(B)\left[\right.$ veca vecb vecc] ${ }^{\text {(}}$ (C) 0 (D) none of these

- Watch Video Solution

407. Let A, B, C be vertices of a triangle $A B C$ in which B is taken as origin of reference and position vectors of A and C are \vec{a} and \vec{c} respectively. A line AR parallel to $B C$ is drawn from $A P R$ (P is the mid point of $A B$) meets $A C$ and Q and area of triangle $A C R$ is 2 times area of triangle $A B C$ Position vector of R in terms \vec{a} and \vec{c} is (A) $\vec{a}+2 \vec{c}$ (B) $\vec{a}+3 \vec{c}$ (C) $\vec{a}+\vec{c}$ (D) $\vec{a}+4 \vec{c}$

- Watch Video Solution

408. Let A, B, C be vertices of a triangle $A B C$ in which B is taken as origin of reference and position vectors of A and C are \vec{a} and \vec{c} respectively. A line AR parallel to $B C$ is drawn from $A P R(P$ is the mid point of $A B$) meets $A C$ and Q and area of triangle $A C R$ is 2 times area of triangle $A B C$ Positon
vector of Q for position vector of R in (1) is (A) $\frac{2 \vec{a}+3 \vec{c}}{5}$ (B) $\frac{3 \vec{a}+2 \vec{c}}{5}$ $\frac{\vec{a}+2 \vec{c}}{5}$ (D) none of these

- Watch Video Solution

409. Let A, B, C be vertices of a triangle $A B C$ in which B is taken as origin of reference and position vectors of A and C are \vec{a} and \vec{c} respectively. A line AR parallel to $B C$ is drawn from $A P R$ (P is the mid point of $A B$) meets $A C$ and Q and area of triangle $A C R$ is 2 times area of triangle $A B C$: (($\mathrm{PQ}) /(\mathrm{QR})) .\left((\mathrm{AQ}) /(\mathrm{QC})\right.$)isequal $\rightarrow(\mathrm{B}) \frac{1}{10}$ (C) $\frac{2}{5}$ (D) $\frac{3}{5}$

- Watch Video Solution

410. Let $A B C b e$ a triangle. Points D, E, F are taken on the sides $A B, B C$ and $C A$ respectively such that $\frac{A D}{A B}=\frac{B E}{B C} /=\frac{C F}{C A}=\alpha$ Prove that the vectors $A E, B$ and $C D$ form a triangle also find alpha for which the area of the triangle formed by these is least.
411. Let $A B C b e$ a triangle. Points D, E, F are taken on the sides $A B, B C$ and $C A$ respectively such that $\frac{A D}{A B}=\frac{B E}{B C} /=\frac{C F}{C A}=\alpha$ Prove that the vectors $A E, B$ and $C D$ form a triangle also find alpha for which the area of the triangle formed by these is least.

- Watch Video Solution

412. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $|\vec{a}|=|\vec{b}|=|\vec{c}|=4$ and angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$ angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ and angle between \vec{c} and \vec{a} is $\frac{\pi}{3}$. The volume of the pasrallelopiped whose adjacent edges are represented by the vectors \vec{a}, \vec{b} and \vec{c} is (A) $24 \sqrt{2}$ (B) $24 \sqrt{3}$ (C) $32 \sqrt{92}$)
(D) 32

- Watch Video Solution

413. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $|\vec{a}|=|\vec{b}|=|\vec{c}|=4$ and angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$ angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ and angle between \vec{c} and \vec{a} is $\frac{\pi}{3}$. The heighat of the parallelopiped whose adjacent edges are represented by the ectors \vec{a}, \vec{b} and \vec{c} is (A) $4 \sqrt{\frac{2}{3}}$ (B) $3 \sqrt{\frac{2}{3}}$ (C) $4 \sqrt{\frac{3}{2}}$ (D) $\sqrt[3]{\frac{3}{2}}$

- Watch Video Solution

414. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $|\vec{a}|=|\vec{b}|=|\vec{c}|=4$ and angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$ angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ and angle between \vec{c} and \vec{a} is $\frac{\pi}{3}$. The volume of the tetrhedron whose adjacent edges are represented by the vectors \vec{a}, \vec{b} and \vec{c} is (A) $\frac{4 \sqrt{3}}{2}$ (B) $\frac{8 \sqrt{2}}{3}$ (C) $\frac{16}{\sqrt{3}}$ (D) $\frac{16 \sqrt{2}}{3}$

- Watch Video Solution

415. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $|\vec{a}|=|\vec{b}|=|\vec{c}|=4$ and angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$ angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ and angle between \vec{c} and \vec{a} is $\frac{\pi}{3}$. The volume of the triangular prism whose adjacent edges are represented by the vectors \vec{a}, \vec{b} and \vec{c} is (A) $12 \sqrt{12}$ (B) $12 \sqrt{3}$ (C) $16 \sqrt{2}$ (D) $16 \sqrt{3}$

- Watch Video Solution

416. If \vec{a}, \vec{b} and \vec{c} be any three non coplanar vectors. Then the system of vectors vecal',vecbl' and \vec{c}^{\prime} which satisfies
$\vec{a} \cdot \vec{a}^{\prime}=\vec{b} \cdot \overrightarrow{b^{\prime}}=\vec{c} \cdot \vec{c}^{\prime}=1 \vec{a} \cdot \vec{b}^{\prime}=\vec{a} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{a} \vec{a}^{\prime}=\vec{b} \cdot \vec{c}^{\prime}=\vec{c} \cdot \vec{a} \vec{a}^{\prime}=\vec{c} \cdot \overrightarrow{b^{\prime}}=0$ is called the reciprocal system to the vectors \vec{a}, \vec{b}, and \vec{c}. The value of $\left[\vec{a}^{\prime} \vec{b}^{\prime} \vec{c}^{\prime}\right]^{-1}$ is (A) $2[\vec{a} \vec{b} \vec{c}]$ (B) $[\vec{a}, \vec{b}, \vec{c}]$ (C) $3[\vec{a} \vec{b} \vec{c}]$ (D) 0

- Watch Video Solution

417. If \vec{a}, \vec{b} and \vec{c} be any three non coplanar vectors. Then the system of
veca.veca \'=vecb.vecb\'=vecc.vecc ${ }^{\prime}=1$
$\vec{a} \cdot \vec{b}^{\prime}=\vec{a} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{c}^{\prime}=\vec{c} \cdot \vec{a}^{\prime}=\vec{c} \cdot \vec{b}^{\prime}=0$ is called the reciprocal system to the vectors \vec{a}, \vec{b}, and \vec{c}. The value of $\left(\vec{a} \times \vec{a}^{\prime}\right)+(\vec{b} \times \vec{b})+\left(\vec{x}^{\prime}\right)$ is (A) $\vec{a}+\vec{b}+$
(B) $\vec{a}^{\prime}+\vec{b}^{\prime}+\vec{\prime}$
(C) 0 (D)
none of these

- Watch Video Solution

418. If \vec{a}, \vec{b} and \vec{c} be any three non coplanar vectors. Then the system of vectors vecal',vecbl' and \vec{c}^{\prime} which satisfies $\vec{a} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{b}^{\prime}=\vec{c} \cdot \vec{c}^{\prime}=1 \vec{a} \cdot \vec{b}^{\prime}=\vec{a} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{c}^{\prime}=\vec{c} \cdot \vec{a}^{\prime}=\vec{c} \cdot \overrightarrow{b^{\prime}}=0$ is called the reciprocal system to the vectors \vec{a}, \vec{b}, and \vec{c}. $[\vec{a}, \vec{b}, \vec{c}]-\left(\vec{a}^{\prime} \times \vec{b}^{\prime}\right)+\left(\vec{b}^{\prime} \times \overrightarrow{{ }^{\prime}}\right)+\left(\vec{c}^{\prime} \times \vec{a}^{\prime}\right)=$ (A) $\vec{a}+\vec{b}+\vec{c}$ (B) $\vec{a}+\vec{b}-\vec{c}$ (C) $2(\vec{a}+\vec{b}+\vec{c})$ (D) $3\left(\vec{a}^{\prime}+\vec{b}^{\prime}+\vec{c}^{\prime}\right)$

- Watch Video Solution

419. The vector equation of the plane through the point $2 \hat{i}-\hat{j}-4 \hat{k}$ and parallel to the plane $\vec{r} \cdot(4 \hat{i}-12 \hat{j}-3 \hat{k})-7=0$, is

- Watch Video Solution

