©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

VECTOR ALGEBRA: COMPETITION

Solved Examples

1. Let $\vec{r}_{1}, \vec{r}_{2}, \ldots \ldots \vec{r}_{n}$ be the position of points $P_{1}, P_{2}, \ldots \ldots \ldots, P_{n}$ respectively relative to an origin O . Show that if the vector equation $a_{1} \vec{r}_{1}+a_{2} \vec{r}_{2}+\ldots+a_{n} \vec{r}_{n}=\overrightarrow{0}$ holds, then a similar equation will also hold good wilth respect to any other origin if $a_{1}+a_{2}+\ldots \ldots+a_{n}=0$

- Watch Video Solution

2. Prove that the vector relation $p \vec{a}+q \vec{b}+r \vec{c}+\ldots=0$ will be inependent of the orign if and only if $p+q+r+.=0$, wherep, $q, r \ldots \ldots .$. are scalars.

- Watch Video Solution

3. A vector a has components a_{1}, a_{2}, a_{3} in a right handed rectangular cartesian coordinate system OXYZ the coordinate axis is rotated about z axis through an angle $\frac{\pi}{2}$. The components of a in the new system

- Watch Video Solution

4. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ be the position vectors of points A, B, C, D respectively and $\vec{b}-\vec{a}=2(\vec{d}-\vec{c})$ show that the pointf intersection of the straighat lines $A D$ and $B C$ divides these line segments in the ratio 2:1.

- Watch Video Solution

5. If G_{1} is the mean centre of A_{1}, B_{1}, C_{1} and G_{2} that of A_{2}, B_{2}, C_{2} then show thast $A_{1} A_{2}+B_{1} B_{2}+C_{1} C_{2}=3 G_{1} G_{2}$

- Watch Video Solution

6. The position vectors of the points A, B, C, D are
$\overrightarrow{3 i}-2 \vec{j}-\vec{k}, 2 i+3 \overrightarrow{j j}-\overrightarrow{4 k}-\vec{i}+\vec{j}+2 \vec{k}$ and $\overrightarrow{4 j}+\overrightarrow{5 j}+\overrightarrow{\lambda k}$ respectively Find λ if $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are coplanar.

- Watch Video Solution

7. If the vectors $a \vec{i}+\vec{j}+\vec{k}, \vec{i}+b \vec{j}+\vec{k}, \vec{i}+\vec{j}+c \vec{k}$ are coplanar find the value of $\frac{1}{1-a}+\frac{1}{a-b}+\frac{1}{1-c}$

- Watch Video Solution

8. If \vec{a}, \vec{b} be two non zero non parallel vectors then show that the points whose position vectors are $p_{1} \vec{a}+q_{1} \vec{b}, p_{2} \vec{a}+q_{2} \vec{b}, p_{3} \vec{a}+q_{3} \vec{b}$ are collinear if $\left|\begin{array}{lll}1 & p_{1} & q_{1} \\ 1 & p_{2} & q_{2} \\ 1 & p_{3} & q_{3}\end{array}\right|=0$

- Watch Video Solution

9. Show that the vectors $\vec{i}-3 \vec{j}+2 \vec{k}, 2 \vec{i}-4 \vec{j}-\vec{k}$ and $3 \vec{i}+2 \vec{j}-\vec{k}$ are linearly independent.

(Watch Video Solution

10. if $\vec{a}, \vec{b}, \vec{c}$ are non coplanar and non zero vectors such that $\vec{b} \times \vec{c}=\vec{a}, \vec{a} \times \vec{b}=\vec{c}$ and $\vec{c} \times \vec{a}=\vec{b}$ then
(a) $|a|=1(b)|a|=2(c)|a|=3(d)|a|=4$
11. if $\vec{a}, \vec{b}, \vec{c}$ are non coplanar and non zero vectors such that $\vec{b} \times \vec{c}=\vec{a}, \vec{a} \times \vec{b}=\vec{c}$ and $\vec{c} \times \vec{a}=\vec{b}$ then 2.
(a) $|a|-|b|+|c|=4(b)|a|-|b|+|c|=\frac{2}{3}(c)|a|-|b|+|c|=1(d)$ none of these`

- Watch Video Solution

12. if $\vec{a}, \vec{b}, \vec{c}$ are non coplanar and non zero vectors such that $\vec{b} \times \vec{c}=\vec{a}, \vec{a} \times \vec{b}=\vec{c}$ and $\vec{c} \times \vec{a}=\vec{b} \quad$ then 3.
(a) $|a|+|b|+|c|=0(b)|a|+|b|+|c|=2(c)|a|+|b|+|c|=3(\mathrm{~d})$ none of these`

Watch Video Solution

13. Prove that the internal bisectors of the angles of a triangle are concurrent

- Watch Video Solution

14. If f is the centre of a circle inscribed in a triangle $A B C$, then $|\overrightarrow{B C}| \overrightarrow{I A}+|\overrightarrow{C A}| \overrightarrow{I B}+|\overrightarrow{A B}| \overrightarrow{I C}$ is

- Watch Video Solution

15. Let $O A C B$ be a parallelogram with O at the origin and $O C$ a diagonal.

Let D be the midpoint of $O A$ using vector methods prove that $B D a n d C O$ intersect in the same ratio. Determine this ratio.

- Watch Video Solution

16. In a $\triangle O A B, \mathrm{E}$ is the mid point of OB and D is the point on AB such that $A D: D B=2: 1$ If $O D$ and $A E$ intersect at P then determine the ratio of $O P: P D$ using vector methods

- Watch Video Solution

17. Find the vector equation of the through the points $2 \vec{i}+\vec{j}-3 \vec{k}$ and parallel to vector $\vec{i}+2 \vec{j}+\vec{k}$

- Watch Video Solution

18. Find the vector equation of the line through the points (1, -2, 1) and ($0,-2,3$).

- Watch Video Solution

19. Find the equation of the plane passing through three given points
$A(-2 \vec{i}+6 \vec{j}-6 \vec{k}), B(-3 \vec{i}+10 \vec{j}-9 \vec{k})$ and $C(-5 \vec{i}+6 \vec{k})$

- Watch Video Solution

20. Find the equation of the plane through the origin and the points
$4 \vec{j}$ and $2 \vec{i}+\vec{k}$. Find also the point in which this plane is cut by the line joining points $\vec{i}-2 \vec{j}+\vec{k}$ and $3 \vec{k}-2 \vec{j}$.

- Watch Video Solution

21. O is any point in the plane of the triangle $A B C, A O, B O$ and $C O$ meet the sides $B C, C A$ nd $A B$ in D, E, F respectively show that $\frac{O D}{A D}+\frac{O E}{B E}+\frac{O F}{C F}=1$.

- Watch Video Solution

22. Find the perpendicular distance of the points $A(1,0,1)$ to the ine thorugh the points $B(2,3,4)$ and $C(-1,1,-2)$.

- Watch Video Solution

23. If vector $\vec{a}, \vec{b}, \vec{c}$ are coplanar show that $\left|\begin{array}{ccc}\vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c}\end{array}\right|$

- Watch Video Solution

24. If vector $\vec{a}, \vec{b}, \vec{c}$ are coplanar then find the value of \vec{c} in terms of \vec{a} and \vec{b}

- Watch Video Solution

25. If n be integer $\mathrm{gt1}$, then prove that $\sum_{r=1}^{n-1} \frac{\cos (2 r \pi)}{n}=-1$

- Watch Video Solution

26. let $A B C$ be a triangle with $A B=A C$. If D is the mid-point of $B C, E$ the foot of the perpendicular drawn from D to $A C, F$ is the mid-point of $D E$. Prove
that $A F$ is perpendicular to $B E$.

- Watch Video Solution

27. Let $A B C$ and $P Q R$ be any two triangles in the same plane. Assume that the perpendiculars from the points A, B, C to the sides $Q R, R P, P Q$ respectively are concurrent. Using vector methods or otherwise,prove that the perpendiculars from $P, Q, R \rightarrow B C, C A, A B$ respectively are also concurrent.

- Watch Video Solution

28. P and Q re tow interior points on te side $B C$ of $\triangle A B C$ such that, $B P|\mid B Q$ and $B C . P Q=B P . C Q$ and $A Q$ bisects $\angle P A C$ using vector method prove that $A Q$ and $A B$ are mutually perpendicular

- Watch Video Solution

29. Find the equation of the plane through the point $2 \vec{i}-\vec{j}+\vec{k}$ and perpendiulr to the vector $4 \vec{i}+2 \vec{j}-3 \vec{k}$. Determine the perpendicular distance of this plane from the origin.

- Watch Video Solution

30. Find the equation of a plane passing throug the piont $A(3,-2,1)$ and perpendicular to the vector $4 \vec{i}+7 \vec{j}-4 \vec{k}$. If PM be perpendicular from the point $P(1,2,-1)$ to this plane find its length.

- Watch Video Solution

31. Find the projection of the line $\vec{r}=\vec{a}+t \vec{b}$ on the plane given by $\vec{r} . \vec{n}=q$.

- Watch Video Solution

32. A particle acted on by constant forces $4 \vec{i}+\vec{j}-3 \vec{k}$ and $3 \vec{i}+\vec{j}-\vec{k}$ is displaced from the point $\vec{i}+2 \vec{j}+3 \vec{k}$ to the point $5 \vec{i}+4 \vec{j}+\vec{k}$. Find the total work done by the forces

- Watch Video Solution

33. $A_{1}, A_{2}, \ldots, A_{n}$ are the vertices of a regular plane polygon with n sides and O as its centre. Show that $\sum_{i=1}^{n} \overrightarrow{O A}_{i} \times \overrightarrow{O A}_{i+1}=(1-n)\left(\overrightarrow{O A_{2}} \times \overrightarrow{O A_{1}}\right)$

- Watch Video Solution

34. Let $\vec{O} A-\vec{a}, \hat{O} B=10 \vec{a}+2 \vec{b}$ and $\vec{O} C=\vec{b}$, where O, Aand C are noncollinear points. Let p denotes the areaof quadrilateral $O A C B$, and let q denote the area of parallelogram with OAandOC as adjacent sides. If $p=k q$, then find k

- Watch Video Solution

35. If A, B, C, D are any four points in space prove that $\rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow$
$A B \times C D+B C x A D+C A \times B D=2 A B \times C A$

- Watch Video Solution

36. $A, B, C a n d D$ are any four points in the space, then prove that
$|\vec{A} B \times \vec{C} D+\vec{B} C \times \vec{A} D+\vec{C} A \times \vec{B} D|=4$ (area of $A B C$.)

- Watch Video Solution

37. Show that the equation of as line perpendicular to the two vectors \vec{b} and \vec{c} and passing through point \vec{a} is $\vec{r}=\vec{a}+t(\vec{b} \times \vec{c})$ where t is a scalar.

- Watch Video Solution

38.

$A(t)=f_{1}(t) \vec{i}+f_{2}(t) \vec{j}$ and $\vec{B}(t)=g_{1}(t) \vec{i}+g_{2}(t) \vec{j}, t \varepsilon[0,1]$ wheref $_{1}, f_{2}, g_{1}, g_{2}$ are continuous functions. If $\vec{A}(t)$ and $\vec{B}(t)$ are non zero for all $t \varepsilon[0,1]$ and $\vec{A}(0)=2 \vec{i}+3 \vec{j}, \vec{A}(1)=6 \vec{i}=2 \vec{j}, \vec{B}(0)=3 \vec{i}+2 \vec{j}$ and $\vec{B}(1)=2 \vec{i}+6$. prove that $\vec{A}(t)$ and $\vec{B}(t)$ are parallel for some $t(0,1)$

- Watch Video Solution

39. Given that $\vec{A}, \vec{B}, \vec{C}$ form triangle such that $\vec{A}=\vec{B}+\vec{C}$. Find a,b,c,d such that area of the triangle is $5 \sqrt{6}$ where
$\vec{A}=a \vec{i}+b \vec{i}+c \vec{k} \cdot \vec{B}=d \vec{i}+3 \vec{j}+4 \vec{k}$ and $\vec{C}=3 \vec{i}+\vec{j}-2 \vec{k}$.

- Watch Video Solution

40. Position vectors of two points A and C re $9 \vec{i}-\vec{j}+7 \vec{i}-2 \vec{j}+7 \vec{k}$ respectively THE point intersection of vectors
$\overrightarrow{A B}=4 \vec{i}-\vec{j}+3 \vec{k}$ and $\overrightarrow{C D}=2 \vec{i}-\vec{j}+2 \vec{k}$ is P. If vector $\overrightarrow{P Q}$ is perpendicular to $A B$ and $C D$ and $P Q=15$ units find the position vector of Q.

- Watch Video Solution

41. A,B,C,D are four pints such that
$\overrightarrow{A B}=m(2 \vec{i} 6 \vec{j}+2 \vec{k}), \overrightarrow{B C}=\vec{i}+2 \vec{j}$ and $\overrightarrow{C D}=n(-6 \vec{i}+15 \vec{j}-3 \vec{k})$. Find the conditions on the scalar m and n so that $C D$ interesects $a B$ at some point H.Also find the area of $\triangle B C H$

- Watch Video Solution

42. In a $\triangle A B C$ points D, E, F are taken on the sides $B C, C A$ and $A B$ respectively such that $\frac{B D}{D C}=\frac{C E}{E A}=\frac{A F}{F B}=n$ prove that $\triangle D E F=\frac{n^{2}-n+1}{(n+1)^{2}} \triangle A B C$
43. The position vectors of the vertices A, B and C of a tetrahedron $A B C D$ are $\hat{i}+\hat{j}+\hat{k}, \hat{k}, \hat{i}$ and $\hat{3} i$,respectively. The altitude from vertex D to the opposite face $A B C$ meets the median line through Aof triangle $A B C$ at a point E. If the length of the side $A D$ is 4 and the volume of the tetrahedron is $2 / 2 / 3$, find the position vectors of the point E for all its possible positfons

(D) Watch Video Solution

44. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are four distinct vectors satisfying the conditions $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times e c d \quad$ then prove that $\vec{a} \cdot \vec{b}+\vec{c} \cdot \vec{d} \neq \vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{d}$

- Watch Video Solution

45. If $\vec{A}=(1,1,1)$ and $\vec{C}=(0,1,-1)$ are given vectors then find a vector \vec{B} satisfying equations $\vec{A} \times \vec{B}=\vec{C}$ and $\vec{A} \cdot \vec{B}=3$
46. $\vec{A}=(2 \vec{i}+\vec{k}), \vec{B}=(\vec{i}+\vec{j}+\vec{k})$ and $\vec{C}=4 \vec{i}-\overrightarrow{3} j+7 \vec{k}$ determine a vector verR satisfying $\vec{R} \times \vec{B}=\vec{C} \times \vec{B}$ and $\vec{R} \cdot \vec{A}=0$

- Watch Video Solution

47. For any two vectors \vec{u} and \vec{v} prove that
$\left(1+|\vec{u}|^{2}\left(1+|\vec{v}|^{20}=(1-\vec{u} \cdot \vec{c})^{2}+\mid \vec{u}+\vec{v}+\vec{u} \times \vec{l}^{2}\right.\right.$

Watch Video Solution

48. Let points P, Q, and R hasve positon vectors $\vec{r}_{1}=3 \vec{i}-2 \vec{j}-\vec{k}, \vec{r}_{2}=\vec{i}+3 \vec{j}+4$ verck and $\vec{r}_{3}=2 \vec{i}+\vec{j}-2 \vec{k}$ relative to an origin O . Find the distance of P from the plane OQR .

- Watch Video Solution

49. A non zero vector \vec{a} is parallel to the line of intersection of the plane determined by the vectors $\vec{i}, \vec{i}+\vec{j}$ and the plane determined by the vectors $\vec{i}-\vec{j}, \vec{i}+\vec{k}$ find the angle between \vec{a} and the vector $\vec{i}-2 \vec{j}+2 \vec{k}$.

- Watch Video Solution

50. The position ector sof points P, Q, R are $3 \vec{i}+4 \vec{j}+5 \vec{k}, 7 \vec{i}-\vec{k}$ and $5 \vec{i}+5 \vec{j}$ respectivley. If A is a point sequidsictnat form the lines $O P, O Q$ and $O R$ find a unit vector along $O A w h e r e O$ is the origin.

- Watch Video Solution

51. A force of 15 units act iln the direction of the vector $\vec{i}-\vec{j}+2 \vec{k}$ and passes through a point $2 \vec{i}-2 \vec{j}+2 \vec{k}$. Find the moment of the force about the point $\vec{i}+\vec{j}+\vec{k}$.
52. A rigid body is spinning about a fixed point ($3,-2,-1$) with an angular velocity of $4 \mathrm{rad} / \mathrm{s}$, the axis of rotation being in the direction of $(1,2,-2)$. Find the velocity of the particle at point $(4,1,1)$.

- Watch Video Solution

53. Find the volume of the parallelopiped whose edges are represented by $\vec{a}=\overrightarrow{2 i}-\overrightarrow{3 j}+\overrightarrow{4} k, \vec{b}=\vec{i}+2 \vec{j}-\vec{k}$ and $\vec{c}=\overrightarrow{3 i}-\vec{j}+\overrightarrow{2 k}$

- Watch Video Solution

54. Prove
that
the four
points
$4 \vec{i}+5 \vec{i}+\vec{k},-(\vec{j}+\vec{k}), 3 \vec{i}+9 \vec{j}+4 \vec{k}$ and $4(-\vec{i}+\vec{j}+\vec{k})$ are coplanar

- Watch Video Solution

55. Prove that $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

56. If $\vec{a}, \vec{b}, \vec{c}$ are coplanar, show that $\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}$ are also coplanar.

- Watch Video Solution

57. If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of A, B, C respectively prove that $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is a vector perpendicular to the plane ABC .

- Watch Video Solution

58. or a righat handed system.
59. If $\vec{l}, \vec{m}, \vec{n}$ are three non coplanar vectors prove that $[\vec{l} \vec{m} \vec{n}](\vec{a} \times \vec{b})=\left|\begin{array}{lll}\overrightarrow{1} \cdot \vec{a} & \overrightarrow{1} \cdot \vec{b} & \overrightarrow{1} \\ \vec{m} \cdot \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \\ \vec{n} \cdot \vec{a} & \vec{n} \cdot \vec{b} & \vec{n}\end{array}\right|$

- Watch Video Solution

60. Show that $[\vec{a} \vec{b} \vec{c}]^{2}=\left|\begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b}, \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c}\end{array}\right|$

- Watch Video Solution

61. Vector $\vec{O} A=\hat{i}+2 \hat{j}+2 \hat{k}$ turns through a right angle passing through the positive x-axis on the way. Show that the vector in its new position is $\frac{4 \hat{i}-\hat{j}-\hat{k}}{\sqrt{2}}$.
62. If is given that $\vec{x}=\frac{\vec{b} \times \vec{c}}{\vec{a} \vec{b} \quad \vec{c}}, \vec{y}=\frac{\vec{c} \times \vec{a}}{\vec{a} \vec{b} \vec{c}}, \vec{z}=\frac{\vec{a} \times \vec{b}}{\vec{a} \vec{b} \quad}$ where $\vec{c}, \vec{b}, \vec{c}$ are non coplanar vectors. Find the value of $\vec{x} \cdot(\vec{a}+\vec{b})+\vec{y} \cdot(\vec{c}+\vec{b})+\vec{z}(\vec{c}+\vec{a})$

Watch Video Solution

63. If $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{b} \times \vec{c}=\vec{a}$, show that $\vec{a}, \vec{b}, \vec{c}$ are orthogonal in pairs.

Also show that $|\vec{c}|=|\vec{a}|$ and $|\vec{b}|=1$

- Watch Video Solution

64. If is given that $\vec{r} \times \vec{b}=\vec{c} \times \vec{b}, \vec{r} \cdot \vec{a}=0$ and $\vec{a} \cdot \vec{b} \neq 0$. What is the geometrical meaning of these equation separately? If the abvoe three statements hold good simultaneously, determine the vector \vec{r} in terms of \vec{a}, \vec{b} and \vec{c}.

- Watch Video Solution

65. If \vec{x}. $\vec{a}=0 \vec{x} . \vec{b}=0$ and \vec{x}. $\vec{c}=0$ for some non zector \vec{x} then show that $[\vec{a} \vec{b} \vec{c}]=0$

- Watch Video Solution

66. Express $\vec{a}, \vec{b}, \vec{c}$ in terms of $\vec{b} \times \vec{c}, \vec{c} \times \vec{a}$ and $\vec{a} \times \vec{b}$.

- Watch Video Solution

67. find x, y, and z if $x \vec{a}+y \vec{b}+z \vec{c}=\vec{d}$ and $\vec{a}, \vec{b}, \vec{c}$ are non coplanar.

- Watch Video Solution

68. $O A B C$ is a tetrahedron where O is the origin and A, B, C have position vectors $\vec{a}, \vec{b}, \vec{c}$ respectively prove that circumcentre of tetrahedron OABC

$$
\frac{a^{2}(\vec{b} \times \vec{c})+b^{2}(\vec{c} \times \vec{a})+c^{2}(\vec{a} \times \vec{b})}{2[\vec{a} \vec{b} \vec{c}]}
$$

- Watch Video Solution

69. Let \vec{u} and \vec{v} be unit vectors. If \vec{w} is a vector such that $\vec{w}+\vec{w} \times \vec{u}=\vec{v}$, then prove that $|(\vec{u} \times \vec{v}) \cdot \vec{w}| \leq \frac{1}{2}$ and that the equality holds if and only if \vec{u} is perpendicular to \vec{v}.

- Watch Video Solution

70. Given that vectors \vec{a} and \vec{b} asre perpendicular to each other, find vector \vec{v} in erms of \vec{a} and \vec{b} satisfying the equations $\vec{v} \cdot \vec{a}=0, \vec{c} \cdot \vec{b}=1$ and $[\vec{v} \vec{a} \vec{b}]=1$

- Watch Video Solution

71. $\vec{a}, \vec{b}, \vec{c}$ are three non coplanat unit vectors wuch that angle between any two is alpha. If $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}=l a+m \vec{b}+n \vec{c}$ then determine I, m,n in terms of α.

- Watch Video Solution

72. Prove that the formula for the volume V of a tetrahedron, in terms of the lengths of three coterminous edges and their mutul inclinations is
$V^{2}=\frac{a^{2} b^{2} c^{2}}{36}\left|\begin{array}{ccc}1 & \cos \phi & \cos \psi \\ \cos \phi & 1 & \cos \theta \\ \cos \psi & \cos \theta & 1\end{array}\right|$

- Watch Video Solution

73.

Findthe
value of
$\vec{\alpha} \times(\vec{\beta} \times \vec{\gamma})$,
where,
$\vec{\alpha}=2 \vec{i}-10 \vec{j}+2 \vec{k}, \vec{\beta}=3 \vec{i}+\vec{j}+2 \vec{k}, \vec{\gamma}=2 \vec{i}+\vec{j}+3 \vec{k}$
74. Prove that $\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})=\overrightarrow{0}$

- Watch Video Solution

75. Prove that : $\vec{i} \times(\vec{a} \times \vec{i})+\vec{j} \times(\vec{a} \times \vec{j})+\vec{k} \times(\vec{a} \times \vec{k})=2 a$

- Watch Video Solution

76. If $\vec{a}, \vec{b}, \vec{c}$ are non zero vectors and \vec{b} is not parallel to $(\vec{a} \times \vec{c})$ show that $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$ if and only if \vec{a} and \vec{c} are collinear.

- Watch Video Solution

77. Prove that: $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]=[\vec{a} \vec{b} \vec{c}]^{2}$

- Watch Video Solution

78. If $\vec{a}, \vec{b}, \vec{c}$ are coplanar then show that $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ are also coplanar.

D Watch Video Solution

79. Show that the vectors $\vec{a} \times(\vec{b} \times \vec{c}), \vec{b} \times(\vec{c} \times \vec{a})$ and $\vec{c} \times(\vec{a} \times \vec{b})$ are coplanar.

(Watch Video Solution

80. If $\hat{u}, \hat{v}, \hat{w}$ be three non-coplanar unit vectors with angles between $\hat{u} \& \hat{v}$ is α between $\hat{v} \& \hat{w}$ is β and between $\hat{w} \& \hat{u}$ is γ. If $\vec{a}, \vec{b}, \vec{c}$ are the unit vectors along angle bisectors of α, β, γ respectively, then prove that $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=\frac{1}{16}[\hat{u} \hat{v} \hat{w}]^{2} \sec ^{2}\left(\frac{\alpha}{2}\right) \sec ^{2}\left(\frac{\beta}{2}\right) \sec ^{2}\left(\frac{\gamma}{2}\right)$
81. Let \hat{a} be a unit vector and \hat{b} a non zero vector non parallel to \vec{a}. Find the angles of the triangle tow sides of which are represented by the vectors. $\sqrt{3}(\hat{a} \times \vec{b})$ and $\vec{b}-(\hat{a} . \vec{b}) \hat{a}$

(D) Watch Video Solution

82. If $\vec{x} \times \vec{y}=\vec{a}, \vec{y} \times \vec{z}=\vec{b}, \vec{x} \cdot \vec{b}=\gamma, \vec{x} \cdot \vec{y}=1$ and $\vec{y} . \vec{z}=1$ then find x, y, z in terms of \vec{a}, \vec{b} and γ.

- Watch Video Solution

83. Vectors $\vec{x}, \vec{y}, \vec{z}$ each of magnitude $\sqrt{2}$ make angles of 60° with each other. If $\vec{x} \times(\vec{y} \times \vec{z})=\vec{a}, \vec{y} \times(\vec{z} \times \vec{x})=\vec{b}$ and $\vec{x} \times \vec{y}=\vec{c}$, find $\vec{x}, \vec{y}, \vec{z}$ in terms of \vec{a}, \vec{b} and \vec{c}.

- Watch Video Solution

84. Let \vec{x}, \vec{y} and \vec{z} be unit vectors such that $\vec{x}+\vec{y}+\vec{z}=\vec{a}, \vec{x} \times(\vec{y} \times \vec{z})=\vec{b},(\vec{x} \times \vec{y}) \times \vec{z}=\vec{c}, \vec{a} \cdot \vec{x}=\frac{3}{2}, \vec{a} \cdot \vec{y}=\frac{7}{4}$ and $|\vec{a}|=$
. Find $\vec{x}, \vec{y}, \vec{z}$ in terms of $\vec{a}, \vec{b}, \vec{c}$.

D Watch Video Solution

85. Solve the following siultaneous equation for vectors \vec{x} and \vec{y}, if $\vec{x}+\vec{y}=\vec{a}, \vec{x} \times \vec{y}=\vec{b}, \vec{x} . \vec{a}=1$

(Watch Video Solution

86.

Find
the
scaslars $\quad \alpha$ and β
if
$\vec{a} \times(\vec{b} \times \vec{c})+(\vec{a} \cdot \vec{b}) \vec{b}=(\overrightarrow{4}-2 \beta-\sin \alpha) \vec{b}+\left(\beta^{2}-1\right) \vec{c}$ and $(\vec{c} \cdot \vec{c}) \vec{a}=\vec{c}$
where \vec{b} and \vec{c} are non collinear and α, β are scalars

- Watch Video Solution

87. Find the set of vectors reciprocal to the set of vectors
$2 \vec{i}+3 \vec{j}-\vec{k}, \vec{i}-\vec{j}-\vec{k},-\vec{i}+2 \vec{j}+2 \vec{k}$

- Watch Video Solution

88.

Prove
that:
$(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})+(\vec{a} \times \vec{c}) \times(\vec{d} \times \vec{b})+(\vec{a} \times \vec{d}) \times(\vec{b} \times \vec{c})=2[\vec{b} \vec{c} \vec{d}] \vec{a}$

- Watch Video Solution

89.

Prove
that:
$(\vec{b} \times \vec{c}) \cdot(\vec{a} \times \vec{d})+(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{d})+(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=0$

- Watch Video Solution

90. Find vector \vec{r} if $\vec{r} . \vec{a}=m$ and $\vec{r} \times \vec{b}=\vec{c}$, where $\vec{a} . \vec{b} \neq 0$
91. Find \vec{r} such that $t \vec{r}+\vec{r}+\vec{a}=\vec{b}$.

(Watch Video Solution

92. Solve: $\vec{r} \times \vec{b}=\vec{a}$, where \vec{a} and \vec{b} are given vectors such that $\vec{a} . \vec{b}=0$.

- Watch Video Solution

93. Solve $\vec{a} . \vec{r}=x, \vec{b} \cdot \vec{r}=y, \vec{c} . \vec{r}=z$, where $\vec{a}, \vec{b}, \vec{c}$ are given non coplanar vectors.

- Watch Video Solution

94. Solve the following simultaneous equation for \vec{x} and \vec{y} :
$\vec{x}+\vec{y}=\vec{a}, \vec{x} \times \vec{y}=\vec{b}$ and $\vec{x} \cdot \vec{a}=1$
95. Sholve the simultasneous vector equations for \vec{x} and $\vec{y}:, \vec{x}+\vec{c} \times \vec{y}=\vec{a}$ and $\vec{y}+\vec{c} \times \vec{x}=\vec{b}, \overrightarrow{\neq 0} 0$

- Watch Video Solution

96. Solved $\lambda \vec{r}+(\vec{a} \cdot \vec{r}) \vec{b}=\vec{c}, \lambda \neq 0$

- Watch Video Solution

97. \vec{u} and \vec{n} are unit vectors and t is a scalar. If $\vec{n} . \vec{a} \neq 0$ solve the equation $\vec{r} \times \vec{a}=\vec{u}, \vec{r} . \vec{n}=t$

- Watch Video Solution

98. If $\vec{a}, \vec{b}, \vec{c}$ asre three vectors such that $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}$ then (A)
$|\vec{b}|=1,|\vec{c}|=|\vec{a}|$
(B) $\quad|\vec{c}|=1,|\vec{a}|=|\vec{b}|$
(C) $\quad|\vec{b}|=2,|\vec{c}|=2|\vec{a}|$
$|\vec{a}|=1,|\vec{c} b|=|\vec{c}|$

- Watch Video Solution

99. If \hat{a}. $\hat{b}=0$ where \hat{a} and \hat{b} are unit vectors and the unit vectors \vec{c} is inclined at angle θ to both \hat{a} and \hat{b}. If $\hat{c}=m \hat{a}+n \hat{b}+p(\hat{a} \times \hat{b}),(m, n, p \varepsilon R)$ then (A) $-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$ (B) $\frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{4}$ (C) $0 \leq \theta \leq \frac{\pi}{4}$ (D) $0 \leq \theta \leq \frac{3 \pi}{4}$

- Watch Video Solution

100. The edges of a parallelopiped are of unit length and are parallel to non coplanar unit vectors $\hat{a}, \hat{b}, \hat{c}$ such that $\hat{a} . \hat{b}=\hat{b} . \hat{c}=\hat{c} . \hat{a}=\frac{1}{2}$ Then the volume of the parallelopiped is (A) $\frac{1}{\sqrt{2}}$ (B) $\frac{1}{2 \sqrt{2}}$ (C) $\frac{\sqrt{3}}{2}$ (D) $\frac{1}{\sqrt{3}}$

- Watch Video Solution

101. The number of distinct real values of λ for which the vectors $-\lambda^{2} \hat{i}+\hat{j}+\hat{k}, \hat{i}-\lambda^{2} \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}-\lambda^{2} \hat{k}$ are coplanar is (A) zero (B) one (C) two (D) three

- Watch Video Solution

102. Lelt two non collinear unit vectors \hat{a} and \hat{b} form and acute angle. A point P moves so that at any time t the position vector $O P$ (where O is the origin) is given by âcost $+\hat{b} s i n t$. When P is farthest from origin O , let M be the length of $\overrightarrow{O P}$ and \hat{u} be the unit vector along $\overrightarrow{O P}$ Then (A)
$\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|}$ and $M=(1+\hat{a} \cdot \hat{b})^{\frac{1}{2}}$ (B) $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ and $M=(1+\hat{a} \cdot \hat{b})^{\frac{1}{2}}$
$\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|}$ and $M=(1+2 \hat{a} . \hat{b})^{\frac{1}{2}}(\mathrm{D}) \hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ and $M=(1+2 \hat{a} \cdot \hat{b})^{\frac{1}{2}}$

- Watch Video Solution

103. Let $\vec{a}, \vec{b}, \vec{c}$ be unit such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$. Which one of the following is correct? (A) $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}=\overrightarrow{0}$
$\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a} \neq \overrightarrow{0}$
(C) $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\overrightarrow{\times} \vec{c} \neq \overrightarrow{0}$
$\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}$ are mutually perpendicular

- Watch Video Solution

104. Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \overrightarrow{=} \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-\hat{k}$. A vector in the plane of \vec{a} and \vec{b} whose projection on $\vec{c} i s \frac{1}{\sqrt{3}}$ is (A) $4 \hat{i}-\hat{j}+4 \hat{k}$ (B) $\hat{i}+\hat{j}-3 \hat{k}$
$2 \hat{i}+\hat{j}-2 \hat{k}$ (D) $4 \hat{i}+\hat{j}-4 \hat{k}$

- Watch Video Solution

105. If $\alpha+\beta+\gamma=2$ and $\vec{a}=\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}, \hat{k} \times(\hat{k} \times \vec{a})=\overrightarrow{0}$, then $\gamma=\mathrm{A}) 1$ (B) -1
(C) 2 (D) none of these

- Watch Video Solution

106. The non zero vectors \vec{a}, \vec{b} and \vec{c} are related by $\vec{a}=(8) \vec{b}$ and $\vec{c}=-7 \vec{b}$. Then angle between \vec{a} and \vec{c} is (A) $\frac{\pi}{2}$ (B) pi (C) $0(D) \frac{\pi}{4}$

- Watch Video Solution

107. The vector $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$ lies in the plane of vectors $\vec{b}=\hat{i}+\hat{j}$ and $\vec{c}=\hat{j}+\hat{k}$ and bisects the angle between \vec{b} and \vec{c}. Then which one of the following gives possible values $\circ \alpha$ and β ?
$\alpha=2, \beta=1$ (B) $\alpha=1, \beta=1$ (C) $\alpha=2, \beta=1$ (D) $\alpha=1, \beta=2$

- Watch Video Solution

108. If $\vec{a}, \vec{b}, \vec{c}$ be three that unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{2} \vec{b}, \vec{b}$ and \vec{c} veing non parallel. If θ_{1} is the angle between \vec{a} and \vec{b} and θ_{2} is the angle between \vec{a} and \vec{b} then (A) $\theta_{1}=\frac{\pi}{6}, \theta_{2}=\frac{\pi}{3}$
$\theta_{1}=\frac{\pi}{3}, \theta_{2}=\frac{\pi}{6}$ (C) $\theta_{1}=\frac{\pi}{2}, \theta_{2}=\frac{\pi}{3}$ (D) $\theta_{1}=\frac{\pi}{3}, \theta_{2}=\frac{\pi}{2}$

(D) Watch Video Solution

109. The equation $\vec{r}-2 \vec{r} . \vec{c}+h=0,|\vec{c}|>\sqrt{h}$ represents (A) circle (B) ellipse (C) cone (D) sphere

Watch Video Solution

110. $\vec{a}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+4 \hat{i}+3 \hat{k}$ are one of the sides and medians respectively of a triangle through the same vertex, then area of the triangle is (A) $\frac{1}{2} \sqrt{83}$ (B) $\sqrt{83}$ (C) $\frac{1}{2} \sqrt{85}$ (D) $\sqrt{86}$

- Watch Video Solution

111. The values of a for which the points A, B, C with position vectors $2 \hat{i}-\hat{j}-\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $a \hat{i}-3 \hat{j}+\hat{k}$ respectively are the vertices of a righat angled triangle at C are (A) 2 and 1 (B) -2 and -1 (C) -2 and 1 (D) 2 and - 1
112. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors, then $|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}$ does not exceed $(A) 4(B) 9(C) 8(D) 6$

- Watch Video Solution

113. If $\vec{u}, \vec{v}, \vec{w}$ are noncoplanar vectors and p, q are real numbers, then the equality $[3 \vec{u}, p \vec{v}, p \vec{w}]-[p \vec{v}, \vec{w}, q \vec{u}]-[2 \vec{w}, q \vec{v}, q \vec{u}]=0$ holds for (1) exactly one value of $(p, q)(2)$ exactly two values of $(p, q)(3)$ more than two but not all values of $(p, q)(4)$ all values of (p, q)

- Watch Video Solution

114. The projections of a vector on the three coordinate axis are $6,3,2$ respectively. The direction cosines of the vector are (1) 6, -3,2 $\frac{6}{5}, \frac{-3}{5}, \frac{2}{5}$ (3) $\frac{6}{7}, \frac{-3}{7}, \frac{2}{7}$ (4) $\frac{-6}{7}, \frac{-3}{7}, \frac{2}{7}$
115. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are unit vectors such that $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=1$ and $\vec{a} \cdot \vec{c}=\frac{1}{2}$ then (A) $\vec{a}, \vec{b}, \vec{c}$ are non coplanar (B) $\vec{b}, \vec{c}, \vec{d}$ are non coplanar (C) \vec{b}, \vec{d} are non paralel (D) \vec{a}, \vec{d} are paralel and \vec{b}, \vec{c} are parallel

Watch Video Solution

116. Let $P(3,2,6)$ be a point in space and Q be a point on line $\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$ Then the value of μ for which the vector $\vec{P} Q$ is parallel to the plane $x-4 y+3 z=1$ is a. $1 / 4$ b. $-1 / 4$ c. $1 / 8 \mathrm{~d} .-1 / 8$

- Watch Video Solution

117. If θ is the angle between unit vectors \vec{a} and \vec{b} then $\sin \left(\frac{\theta}{2}\right)$ is (A) $\frac{1}{2}|\vec{a}-\vec{b}|$ (B) $\frac{1}{2}|\vec{a}+\vec{b}|$ (C) $\frac{1}{2}|\vec{a} \times \vec{b}|$ (D) $\frac{1}{\sqrt{2}} \sqrt{1-\vec{a} \cdot \vec{b}}$
118. Let $\vec{u}, \vec{v}, \vec{w}$ be three unit vectors such that $\vec{u}+\vec{v}+\vec{w}=\vec{a}, \vec{a} \cdot \vec{u}=\frac{3}{2}, \vec{a} \cdot \vec{v}=\frac{7}{4}|\vec{a}|=2$, then (A) $\vec{u} \cdot \vec{v}=\frac{3}{2}$ (B) $\vec{u} \cdot \vec{w}=0$
(C) $\vec{u} \cdot \vec{w}=-\frac{1}{4}$ (D) none of these

- Watch Video Solution

119. Let \vec{A} be a vector parallel to the of intersection of planes P_{1} and P_{2} through origin. P_{1} is parallel to the vectors $2 \hat{j}+3 \hat{k}$ and $3 \hat{j}-3 \hat{k}$ and P_{2} is parallel to $\hat{j}-\hat{k}$ and $3 \hat{i}+3 \hat{j}$ then the angle between the vectors \vec{A} and $2 \hat{i}+\hat{j}-2 \hat{k}$ is (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{6}$ (D) $\frac{3 \pi}{4}$

- Watch Video Solution

120. \quad Assertion: $\quad \overrightarrow{P Q} \times(\overrightarrow{R S}+\overrightarrow{S T}) \neq 0$,

Reason
$P Q \times R S=\overrightarrow{0}$ and $P Q \times S T \neq \overrightarrow{0}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

Watch Video Solution

121. Consider $\triangle A B C$. Let I bet he incentre and a, b, c be the sides of the triangle opposite to angles A, B, C respectively. Let O be any point in the plane of $\triangle A B C$ within the triangle. AO, BO and CO meet the sides BC, CA and $A B$ in D, E and F respectively. $a I A=b I B+c I C=(A)-1(B) 0(C) 1(D) 3$

- Watch Video Solution

122.

Consider
$\triangle A B C$. LetIbethe \in centre and a, b, cbethesidesofthe \triangle opposite $\rightarrow \angle s A, B, C r$
/_\ABC with \in the $\triangle . A O, B O$ and COmeetthesidesBC, $C A$ and $A B \in D, E$ and Frespe $(\mathrm{OD}) /(\mathrm{AD})+(\mathrm{OE}) /(\mathrm{BE})+(\mathrm{O}) /(\mathrm{CF})=(A) 3 / 8(B) 1(C) 3 / 2^{`}(\mathrm{D})$ none of these

- Watch Video Solution

123. Consider $\triangle A B C$. Let I bet he incentre and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be the sides of the triangle opposite to angles A, B, C respectively. Let O be any point in the plane of $\triangle A B C$ within the triangle. $A O, B O$ and $C O$ meet the sides $B C, C A$ and $A B$ in D, E and F respectively. If $3 B D=2 D C$ and $4 C E=E A$ then the ratio in which divides $A B$ is $(A) 3: 4(B) 3: 2(C) 4: 1(D) 6: 1^{`}$

- Watch Video Solution

Exercise

1. If $\lambda \vec{a}+\mu \vec{b}+\gamma \vec{c}=0$, where $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular and λ, μ, γ are scalars prove that $\lambda=\mu=\gamma=0$
2. A, B, C, D are any four points, prove that $\vec{A} B \vec{C} D+\vec{B} C \vec{A} D+\vec{C} A \vec{B} D=0$.

- Watch Video Solution

3. Find the equation of the plane through the point $2 \vec{i}+3 \vec{j}-\vec{k}$ and perpendicular to the vector $3 \vec{i}-4 \vec{j}+7 \vec{k}$.

- Watch Video Solution

4. Find the equation of the plane through the $2 \vec{i}+3 \vec{j}-\vec{k}$ and perpendicular to the vector $3 \vec{i}+2 \vec{j}-2 \vec{j}$. Determine the perpendicular distance of this plane from the origin.

- Watch Video Solution

5. The position vector of two points A and B are $3 \vec{i}+\vec{j}+2 \vec{k}$ and $\vec{i}-2 \vec{j}-4 \vec{k}$ respectively. Find the equation of the plane through B and perpendicular to $A B$.

- Watch Video Solution

6. Find the cosine of the angel between the planes \vec{r}. $(2 \vec{i}-3 \vec{j}-6 \vec{k})=7$ and $\vec{r} \cdot(6 \vec{i}+2 \vec{j}-9 \vec{k})=5$

- Watch Video Solution

7. Let $A B C$ be a triangle. Points D, E, F are taken on the sides $A B, B C$ and $C A$ respectively such that $\frac{A D}{A B}=\frac{B E}{B C} /=\frac{C F}{C A}=\alpha$ Prove that the vectors $A E, B$ and $C D$ form a triangle also find alpha for which the area of the triangle formed by these is least.

- Watch Video Solution

8. If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors oif three non collinear points $A S, B, C$ respectively, show that eperpendicular distance of C ferom the line through A and B is $\frac{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}{|\vec{b}-\vec{a}|}$

Watch Video Solution

9. Show that the perpendicular distance of any point \vec{a} from the line $\vec{r}=\vec{b}+t \vec{c} i s(\mid(\vec{b}-\vec{a}) \times \vec{c}) \frac{\mid}{|\vec{c}|}$

(Watch Video Solution

10. Prove that the shortest distance between two lines $A B$ and $C D$ is
$\underline{|(\vec{c}-\vec{a}) \cdot(\vec{b}-\vec{a}) \times(\vec{d}-\vec{c})|}$
where $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are the position vectors of

$$
|(\vec{b}-\vec{a}) \times d-\vec{c}|
$$

points A, B, C, D respectively.
11. If PQRS is a quadrilteral such that $P Q=\vec{a}, P S=\vec{b}$ and $P R=x \vec{a}+y \vec{b}$ show that the area of the quadrilateral PQRS is $\left.\frac{1}{2} \right\rvert\,(x y| | \vec{a} \times \vec{b} \mid$

- Watch Video Solution

12. A rigid body is rotating at 5 radians per second about an axis $A B$ where A and B are the pont $2 \vec{i}+\vec{j}+\vec{k}$ and $8 \vec{i}-2 \vec{j}+3 \vec{k}$ respectively. Find the veclocity of the practicle P of the body at the points $5 \vec{i}-\vec{j}+\vec{k}$.

- Watch Video Solution

13. If $\vec{a}=\vec{i}-2 \vec{j}+\vec{k}, \vec{b}=\vec{i}+\vec{j}+\vec{k}$ and $\vec{c}=\vec{i}+2 \vec{j}+\vec{k}$ then show that $\vec{a} .(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) . \vec{c}$.

- Watch Video Solution

14. If $\vec{a}=-2 i-2 j+4 k, \vec{b}=-2 i+4 j-2 k$ and $\vec{c}=4 i-2 j-2 k$ Calculate the value of $[\vec{a} \vec{b} \vec{c}]$ and interpret the result.

- Watch Video Solution

15. Find the volume of the parallelopiped whose thre coterminus edges
asre represented by $\overrightarrow{2 i}+\overrightarrow{3 j}+\vec{k}, \vec{i}-\vec{j}+\vec{k}, 2 \vec{i}+\vec{j}-\vec{k}$.

- Watch Video Solution

16. Find the volume of the parallelopiped whose thre coterminus edges asre represented by $\vec{i}+\vec{j}+\vec{k}, \vec{i}-\vec{j}+\vec{k}, \vec{i}+2 j-\vec{k}$.

- Watch Video Solution

17. Find the value of the constant λ so that vectors $\vec{a}=2 \vec{i}-\vec{j}+\vec{k}, \vec{b}=\vec{i}+2 j-3 j$, and $\vec{c}=3 i+\overrightarrow{\lambda j}+\overrightarrow{5 k}$ are coplanar.
18. Show that: $(\vec{a}+\vec{b}) .\{(\vec{b}+\vec{c}) \times(\vec{c}+\vec{a}) \mid=2\{\vec{a} \cdot(\vec{b} \times \vec{c})\}$

- Watch Video Solution

19. Show that the plane through the points $\vec{a}, \vec{b}, \vec{c}$ has the equation $[\vec{r} \vec{b} \vec{c}]+[\vec{r} \vec{c} \vec{a}]+[\vec{r} \vec{a} \vec{b}]=[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

20. Prove that $\vec{a}, \vec{b}, \vec{c}$ are coplanar iff $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}$ are coplanar

- Watch Video Solution

21. If $\vec{a}, \vec{b}, \vec{c}$ be three non coplanar vectors show that $\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}$ are non coplanar.

(D) Watch Video Solution

22. If $\vec{A}=\frac{\vec{b} \times \vec{c}}{[\vec{b} \vec{c}]}=\frac{\vec{c} \times \vec{a}}{[\vec{c} \vec{b})}, \vec{C}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b})}$ find $[\vec{A} \vec{B} \vec{C}]$

$$
\left[\begin{array}{ll}
\vec{b} \vec{c} \vec{c}]
\end{array} \quad[\vec{c} \vec{a} \vec{b}) \quad[\vec{a} \vec{b} \vec{c})\right.
$$

- Watch Video Solution

23. If the three vectors $\vec{a}, \vec{b}, \vec{c}$ are non coplanar express each of $\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}$ in terms of $\vec{a}, \vec{b}, \vec{c}$.

- Watch Video Solution

24. If the three vectors $\overrightarrow{,} \vec{b}, \vec{c}$ are non coplanar express $\overrightarrow{,} \vec{b}, \vec{c}$ each in terms of the vectors $\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}$

- Watch Video Solution

25. Show that : $[\vec{l} \vec{m} \vec{n}][\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}\vec{l} \cdot \vec{a} & \vec{l} \cdot \vec{b} & \vec{l} \cdot \vec{c} \\ \vec{m} . \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \cdot \vec{c} \\ \vec{n} \cdot \vec{a} & \vec{n} \cdot \vec{b} & \vec{n} \cdot \vec{c}\end{array}\right|$

- Watch Video Solution

26.

$\vec{a}=a_{1} \vec{l}+a_{2} \vec{m}+a_{3} \vec{n}, \vec{b}=b_{1} \vec{l}+b_{2} \vec{m}+b_{3} \vec{n}$ and $\vec{c}=c_{1} \vec{l}+v_{2} \vec{m}+c_{3} \vec{n}$ where \vec{l}, \vec{m}
are three non coplanar vectors then show that
$[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|[\vec{l} \vec{m} \vec{n}]$

- Watch Video Solution

27. Let k be the length of any edge of a regular tetrahedron (a tetrahedron whose edges are equal in length is called a regular
tetrahedron). Show that the angel between any edge and a face not containing the edge is $\cos ^{-1}(1 / \sqrt{3})$.

- Watch Video Solution

28. If a,b,c be the eth, qth and eth term respectively of H.P. show that the vectors $b c \vec{i}+p \vec{j}+\vec{k}, c a \vec{i}+q \vec{j}+\vec{k}$ and $a b \vec{i}+r \vec{j}+\vec{k}$ are coplanar.

- Watch Video Solution

29. Prove that

$$
\left|\begin{array}{lll}
\cos (A-P) & \cos (A-Q) & \cos (A-R) \\
\cos (B-P) & \cos (B-Q) & \cos (B-R) \\
\cos (C-P) & \cos (C-Q) & \cos (C-R)
\end{array}\right|=0 .
$$

- Watch Video Solution

30. Prove that for any nonzero scalar a the vectors $a \vec{i}+2 c \vec{j}-3 a \vec{k},(2 a+1) \vec{i}+(2 a+3) \vec{j}+(a+1) \vec{k}$ and $(3 a+5) \vec{i}+(a+5) \vec{j}+(a+$

- Watch Video Solution

31. If the vectors \vec{a}, \vec{b}, and \vec{c} are coplanar show that
$\left|\begin{array}{ccc}\vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c}\end{array}\right|=0$

- Watch Video Solution

32. Show that the points whose position vectors are $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ will be coplanar if $[\vec{a} \vec{b} \vec{c}]-[\vec{a} \vec{b} \vec{d}]+[\vec{a} \vec{c} \vec{d}]-[\vec{b} \vec{c} \vec{d}]=0$

- Watch Video Solution

33. Prove that $\vec{i} \times(\vec{j} \times \vec{k})=\overrightarrow{0}$
34. Find the value of $(\vec{i}-2 j+\vec{k}) \times[(2 \vec{i}+\vec{j}+\vec{k}) \times(\vec{i}+2 \vec{j}-\vec{k})]$

- Watch Video Solution

35. If $\vec{A}=2 \vec{i}+\vec{j}-3 \vec{k} \vec{B}=\vec{i}-2 \vec{j}+\vec{k}$ and $\vec{C}=-\vec{i}+\vec{j}-\overrightarrow{4} k$ find $\vec{A} \times(\vec{B} \times \vec{C})$

- Watch Video Solution

36. Prove that $(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})=[\vec{a} \vec{b} \vec{c}] \vec{c}$

- Watch Video Solution

37. Prove that $(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})=[\vec{a} \vec{b} \vec{c}] \vec{c}$

- Watch Video Solution

38. Prove that: $[(\vec{a} \times \vec{b}) \times(\vec{a} \times \vec{c})] \cdot \vec{d}=[\vec{a} \vec{b} \vec{c}](\vec{a} \cdot \vec{d})$

- Watch Video Solution

39. If $\vec{a}=\vec{i}+2 j-\vec{k}, \vec{b}=2 i+\vec{j}+3 k, \vec{c}=\vec{i}-\vec{j}+\vec{k}$ and $\vec{d}=3 i \vec{j}+2 k$ then evaluate $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})$

- Watch Video Solution

40. If $\vec{a}=\vec{i}+2 \vec{j}-\vec{k}, \vec{b}=2 \vec{i}+\vec{j}+\overrightarrow{3 k}, \vec{c}=\vec{i}-\vec{j}+\vec{k}$ and $\vec{d}=\vec{i} \vec{j}+2 k$ then evaluate $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$

- Watch Video Solution

41. Prove that $\vec{a} \times\{\vec{b} \times(\vec{c} \times \vec{d})\}=(\vec{b} \cdot \vec{d})(\vec{a} \times \vec{c})-(\vec{b} \cdot \vec{c})(\vec{a} \times \vec{d})$

- Watch Video Solution

42. Prove that: $\vec{a} \times[\vec{b} \times(\vec{c} \times \vec{a})]=(\vec{a} \cdot \vec{b})(\vec{a} \times \vec{c})$

- Watch Video Solution

43. If the vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are coplanar show that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$

- Watch Video Solution

44. Show that the components of \vec{b} parallel to \vec{a} and perpendicular to it
are $\frac{(\vec{a} \cdot \vec{b}) \vec{a}}{\vec{a}^{2}}$ and $((\vec{a} \times \vec{b}) \vec{a}) \frac{)}{a^{2}}$ respectively.

- Watch Video Solution

45. If \vec{a} and \vec{b} be two non collinear vectors such that $\vec{a}=\vec{c}+\vec{d}$, where \vec{c} is parallel to \vec{b} and \vec{d} is perpendicular to \vec{b} obtain expression for \vec{c} and \vec{d} in terms of \vec{a} and \vec{b} as: $\vec{d}=\vec{a}-\frac{(\vec{a} \cdot \vec{b}) \vec{b}}{b^{2}}, \vec{c}=\frac{(\vec{a} \cdot \vec{b}) \vec{b}}{b^{2}}$

Watch Video Solution

46. If $\vec{a}, \vec{b}, \vec{c}$ and $\vec{a} s^{\prime}, \vec{b}^{\prime}, \vec{c}^{\prime}$ are reciprocal system of vectors prove that $\vec{a} \times \vec{b}+\vec{b} \times \vec{b}+\vec{c} \times \vec{c}^{\prime}=\overrightarrow{0}$

Watch Video Solution

47. Prove that $\vec{a}^{\prime} \times \vec{b}^{\prime}+\vec{b}^{\prime} \times \vec{c}^{\prime}+\vec{c}^{\prime} \times \vec{a}^{\prime}=\frac{\vec{a}+\vec{b}+\vec{c}}{}$

$$
[\vec{a} \vec{b} \vec{c}]
$$

- Watch Video Solution

48. Prove that $\vec{a}^{\prime} \cdot(\vec{b}+\vec{c})+\vec{b}^{\prime} \cdot(\vec{c}+\vec{a})+\vec{c}^{\prime} \cdot(\vec{a}+\vec{b})=0$

- Watch Video Solution

49. Solve $\vec{r} \times \vec{a}=\vec{b}$ and $\vec{r} \times \vec{c}=\vec{d}$.

(D) Watch Video Solution

50. Solve $\vec{a} . \vec{r}=x, \vec{b} . \vec{r}=y, \vec{c} . \vec{r}=z w h e r e \vec{a}, \vec{b}, \vec{c}$ are given non coplasnar vectors.

- Watch Video Solution

51. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors each of magnitude 3 then $\mid \vec{a}+\vec{b}+\vec{\jmath}$ is equal (A) 3 (B) 9 (C) $3 \sqrt{3}$ (D) none of these

- Watch Video Solution

52. Let the vectors $\vec{a}, \vec{b}, \vec{c}$ be the position vectors of the vertices P, Q, R respectively of a triangle. Which of the following represents the area of the triangle?
(A) $\frac{1}{2}|\vec{a} \times \vec{b}|$
(B) $\frac{1}{2}|\vec{b} \times \vec{c}|$
(C) $\frac{1}{2}|\vec{c} \times \vec{a}|$ $\frac{1}{2}|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|$
53. If the vectors $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-3 k$ and $\vec{c}=3 \hat{i}+\lambda \hat{j}+5 \hat{k}$ are coplanar the value of λ is (A) -1 (B) 3 (C) -4 (D) $-\frac{1}{4}$

- Watch Video Solution

54. Let $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors such that $3 \vec{a}+4 \vec{b}+5 \vec{c}=\overrightarrow{0}$. Then which of the following statements is true? (A) \vec{a} is parrallel to vecb (B) veca isperpendicar $\rightarrow \vec{b}$ (C) \vec{a} is neither parralel nor perpendicular to \vec{b} (D) $\vec{a}, \vec{b}, \vec{c}$ are copalanar

- Watch Video Solution

55. If $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$, then $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is equal to (A) -1 (B) 3 (C) 0 (D) $-\frac{3}{2}$

D Watch Video Solution

56. If vector \vec{a} lies in the plane of vectors \vec{b} and \vec{c} which of the following is correct? (A) $\vec{a} \cdot \vec{b} \times \overrightarrow{=}-1$ (B) $\vec{a} \cdot \vec{b} \times \vec{c}=0$ (C) $\vec{a} \cdot \vec{b} \times \overrightarrow{=} 1$ (D) $\vec{a} \cdot \vec{b} \times \vec{c}=2$

- Watch Video Solution

57. The value of λ so that unit vectors $\frac{2 \hat{i}+\lambda \hat{j}+\hat{k}}{\sqrt{5+\lambda^{2}}}$ and $\frac{\hat{i}-2 \hat{j}+3 \hat{k}}{\sqrt{14}}$ are orthogonl (A) $\frac{3}{7}$ (B) $\frac{5}{2}$ (C) $\frac{2}{5}$ (D) $\frac{2}{7}$

- Watch Video Solution

58. The vector $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})$ is equal to (A) $\frac{1}{2}(\vec{a} \times \vec{b})$ (B) $\vec{a} \times \vec{b}$
$2(\vec{a}+\vec{b})(\mathrm{D}) 2(\vec{a} \times \vec{b})$

- Watch Video Solution

59. For two vectors \vec{a} and $\vec{b}, \vec{a}, \vec{b}=|\vec{a}||\vec{b}|$ then (A) $\vec{a}|\mid \vec{b}$ (B) $\vec{a} \perp \vec{b}$ (C) $\vec{a}=\vec{b}(\mathrm{D})$ none of these

Watch Video Solution

60. Unit vector in the xyplane that makes and angle of 45^{0} with the vector $\hat{i}+\hat{j}$ and an angle of 60^{0} with the vector $3 \hat{i}-4 \hat{j}$ is (A) \hat{i} (B) $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$ (C) $\frac{\hat{i}-\hat{j}}{\sqrt{2}}$ (D) none of these

D Watch Video Solution

61. If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is (A) $\vec{a}+\vec{b}+\vec{c}$
$\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}+\vec{\jmath}|\vec{c}|$ (C) $\frac{\vec{a}}{|\vec{a}|^{2}}+\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{c}}{|\vec{c}|^{2}}$ (D) $|\vec{a}| \vec{a}-|\vec{b}| \vec{b}+|\vec{c}| \vec{c}$
62. If $\vec{a}+\vec{b}+\vec{c}=0,|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$, then angle between \vec{a} and \vec{b} is (A) $\frac{\pi}{6}$ (B) $\frac{2 \pi}{3}$ (C) $\frac{5 \pi}{3}$ (D) $\frac{\pi}{3}$

- Watch Video Solution

63. If the sides of an angle ar given vectors $\vec{a}=\hat{i}-2 \hat{j}+2 \hat{k}$ and vecb $2 \hat{i}+\hat{j}+2 \hat{k}$, then the internasl bisector for the angle (A) $3 \hat{i}-\hat{j}+3 \hat{k}$ (B) $\frac{1}{3}(3 \hat{i}-\hat{j}+4 \hat{k})$ (C) $\frac{1}{3}(-\hat{i}-3 \hat{j})$ (D) $3 \hat{i}-\hat{j}-4 \hat{k}$

- Watch Video Solution

64. Let $A B C$ be a triangle the position vectors of whose vertices are respectively $\hat{i}+2 \hat{j}+4 \hat{k},-2 \hat{i}+2 \hat{j}+\hat{k}$ and $2 \hat{i}+4 \hat{j}-3 \hat{k}$. Then the $\triangle A B C$ is
(A) isosceles (B) equilateral (C) righat angled (D) none of these

- Watch Video Solution

65. $P(1,0,-1), Q(2,0,-3), R(-1,2,0)$ and $S(3,-2,-1)$ are four points and d is the projection of PQonRS then which of the following is (are) true? (A) $d=\frac{6}{\sqrt{165}}$ (B) $d=\frac{6}{\sqrt{33}}$ (C) $\frac{8}{\sqrt{33}}$ (D) $d=\frac{6}{\sqrt{5}}$

- Watch Video Solution

66. If the angle betweenteh unit vectors \vec{a} and \vec{b} is vec60^Othen|vecavecb|' is (A) 0 (B) 1 (C) 2 (D) 4

- Watch Video Solution

67. The vector (s) equally inclined to vectors $\hat{i}-\hat{j}+\hat{k}$ and $\hat{i}+\hat{j}-\hat{k}$ in the plane containing them is (are_(A) $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$ (B) \hat{i} (C) $\hat{i}+\hat{k}$ (D) $\hat{i}-\hat{k}$

- Watch Video Solution

68. If \vec{a}. $\vec{b}=\beta$ and $\vec{a} \times \vec{b}=\vec{c}$, then \vec{b} is (A) $\frac{\beta \vec{a}-\vec{a} \times \vec{c}}{|\vec{a}|^{2}}$ (B) $\frac{\beta \vec{a}+\vec{a} \times \vec{c}}{|\vec{a}|^{2}}$
$\underline{\beta \vec{c}-\vec{a} \times \vec{c}}$ (D) $\frac{\beta \vec{c}+\vec{a} \times \vec{c}}{|\vec{a}|^{2}}$
$|\vec{a}|^{2} \quad|\vec{a}|^{2}$

(Watch Video Solution

69. If $\vec{a}, \vec{b}, \vec{c}$ are unity vectors such that $\vec{d}=\lambda \vec{a}+\mu \vec{b}+\gamma \vec{c}$ then gamma is
equal to (A) $\frac{[\vec{a} \vec{b} \vec{c}]}{[\vec{b} \vec{a} \vec{c}]}$ (B) $\frac{[\vec{b} \vec{c} \vec{d}]}{[\vec{b} \vec{c} \vec{a}]}$ (C) $\frac{[\vec{b} \vec{d} \vec{c}]}{[\vec{a} \vec{b} \vec{c}]}$ (D) $\frac{[\vec{c} \vec{b} \vec{d}]}{[\vec{a} \vec{b} \vec{c}]}$

- Watch Video Solution

70. If $|\vec{a}+\vec{b}|<|\vec{a} \vec{b}|$ then the angle between \vec{a} and \vec{b} lies in the interval
(A) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (B) $(0, \pi 0)$ (C) $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ (D) (0,2pi).

- Watch Video Solution

71. If $a(\vec{\alpha} \times \vec{\beta})=b(\vec{\beta} \times \vec{\gamma})+c(\vec{\gamma} \times \vec{\alpha})=\overrightarrow{0}$ and at least one of a, b and c is non zero then vectors $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are (A) parallel (B) coplanar (C) mutually perpendicular (D) none of these

- Watch Video Solution

72. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vector and $\vec{a}=\alpha(\vec{a} \times \vec{b})+\beta(\vec{b} \times \vec{c})+\gamma(\vec{c} \times \vec{a})$ and $[\vec{a} \vec{b} \vec{c}]=1$ then $\vec{\alpha}+\vec{\beta}+\vec{\gamma}=\quad$ (A) $|\vec{a}|^{2}$ (B) $-|\vec{a}|^{2}$ (C) 0 (D) none of these

- Watch Video Solution

73. If the vectors $a \hat{i}+b \hat{j}+c \hat{k}, b \hat{i}+c \hat{j}+a \hat{k}$ and $c \hat{i}+a \hat{j}+b \hat{k}$ are coplanar and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are distinct then (A) $a^{3}+b^{3}+c^{3}=1$ (B) $a+b+c=1$
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1(\mathrm{D}) \mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{O}^{`}$

- Watch Video Solution

74. Given three vectors $\vec{a}=\hat{i}-3 \hat{j}, \vec{b}=2 \hat{i}-t \hat{j}$ and $\vec{c}=-2 \hat{i}+21 \hat{j}$ such that $\vec{\alpha}=\vec{a}+\vec{b}+\vec{c}$. Then the resolution of te vector $\vec{\alpha}$ into components with respect to \vec{a} and \vec{b} is given by (A) $3 \vec{a}-2 \vec{b}$ (B) $2 \vec{a}-3 \vec{b}$ (C) $3 \vec{b}-2 \vec{a}$ (D) none of these

- Watch Video Solution

75. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that veca is perpendicular to \vec{b} and \vec{c} and $|\vec{a}+\vec{b}+\vec{c}|=1$ then the angle between \vec{b} and \vec{c} is (A) $\frac{\pi}{2}(B)$ $\mathrm{pi}(C) \mathrm{O}(D)(2 \mathrm{pi}) / 3^{\prime}$

- Watch Video Solution

76. If $\vec{a}=(3,1)$ and $\vec{b}=(1,2)$ represent the sides of a parallelogram then the angle θ between the diagonals of the paralelogram is given by (A)
$\theta=\cos ^{-1}\left(\frac{1}{\sqrt{5}}\right)$ (B) $\theta=\cos ^{-1}\left(\frac{2}{\sqrt{5}}\right)$ (C) $\theta=\cos ^{-1}\left(\frac{1}{2 \sqrt{5}}\right)$ (D) $\theta=\frac{\pi}{2}$
77. If vectors \vec{a} and \vec{b} are two adjacent sides of parallelograsm then the vector representing the altitude of the parallelogram which is
perpendicular to \vec{a} is (A) $\vec{b}+\frac{\vec{b} \times \vec{a}}{|\vec{a}|^{2}}$
(B) $\frac{\vec{a} \cdot \vec{b}}{\left.\vec{b}\right|^{2}}$
(C) $\left.\vec{b}-\frac{\vec{b} \cdot \vec{a}}{(|\vec{a}|)^{2}}\right)$
$\vec{a} \times(\vec{b} \times \vec{a})$
$\left.\vec{b}\right|^{20}$

- Watch Video Solution

78. If A, B, C, D are four points in space, then
$|\overrightarrow{A B x C D}+\overrightarrow{B C} \times \overrightarrow{A D}+\overrightarrow{C A} \times \overrightarrow{B D}|=k($ areof $\triangle A B C)$ wherek $=(\mathrm{A}) 5$ (B) 4 (C)
2 (D) none of these

- Watch Video Solution

79. If \vec{a}, \vec{b} and \vec{c} are non coplnar and non zero vectors and \vec{r} is any vector in space then $[\vec{c} \vec{r} \vec{b}] \vec{a}+p \vec{a} \vec{r} \vec{c}] \vec{b}+[\vec{b} \vec{r} \vec{a}]_{c}=$ (A) $[\vec{a} \vec{b} \vec{c}]$ (B) $[\vec{a} \vec{b} \vec{c}] \vec{r}$
\vec{r}
$[\vec{a} \vec{b} \vec{c}]$
(D) $\vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$

- Watch Video Solution

80. If \vec{u}, \vec{v} and \vec{w} are vectors such that $\vec{u}+\vec{v}+\vec{w}=\overrightarrow{0}$ then $[\vec{u}+\vec{v} \vec{v}+\vec{w} \vec{w}+\vec{u}])=(\mathrm{A}) 1$ (B) $[\vec{u} \vec{v} \vec{w}]$ (C) 0 (D) -1

- Watch Video Solution

81. If \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular unit vectors then
$(\vec{r} \cdot \vec{a}) \vec{a}+(\vec{r} \cdot \vec{b}) \vec{b}+(\vec{r} \cdot \vec{c}) \vec{c}=(\mathrm{A}) \frac{[\vec{a} \vec{b} \vec{c}] \vec{r}}{2}$ (B) \vec{r} (C) $2[\vec{a} \vec{b} \vec{c}]$ (D) none of these
82. If $\vec{a} \vec{b}$ be any two mutually perpendiculr vectors and $\vec{\alpha}$ be any vector then

$$
\begin{equation*}
|\vec{a} \times \vec{b}|^{2} \frac{(\vec{a} \cdot \vec{\alpha}) \vec{a}}{\left.\vec{a}\right|^{2}}+|\vec{a} \times \vec{b}|^{2} \frac{(\vec{b} \cdot \vec{\alpha}) \vec{b}}{|\vec{b}|^{2}}-|\vec{a} \times \vec{b}|^{2} \vec{\alpha}= \tag{A}
\end{equation*}
$$

$|(\vec{a} . \vec{b}) \vec{\alpha}|(\vec{a} \times \vec{b})$ (B) $[\vec{a} \vec{b} \vec{\alpha}](\vec{b} \times \vec{a})$ (C) $[\vec{a} \vec{b} \vec{\alpha}](\vec{a} \times \vec{b})$ (D) none of these

- Watch Video Solution

$$
[\vec{a}+2 \vec{b} \vec{b}+2 c \vec{c} \vec{c}+2 \vec{a}]
$$

83. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors then $\frac{[\vec{a}+2 \vec{b} \vec{b}+2 c \vec{c} \vec{c}+2 \vec{a}]}{[\overrightarrow{a b}]}=$ (A) 3
$[\vec{a} \vec{b} \vec{c}]$
(B) 9 (C) 8 (D) 6

- Watch Video Solution

84. The vector $\vec{a}=\frac{1}{4}(2 \hat{i}-2 \hat{j}+\hat{k})$ (A) is a unit vector (B) makes an angle of $\frac{\pi}{3}$ with the vector $\left(\hat{i}+\frac{1}{2} \hat{j}-\hat{k}\right)$ (C) is parallel to the vector $\frac{7}{4} \hat{i}-\frac{7}{4} \hat{j}+\frac{7}{8} \hat{k}$ (D) none of these
85. The vector $\vec{a} \times(\vec{b} \times \vec{c})$ can be represented in the form (A) $\alpha \vec{a}$ (B) $\alpha \vec{b}$ (C) $a \operatorname{lha} \vec{c}$ (D) $\alpha \vec{b}+\beta \vec{c}$

- Watch Video Solution

86. The points $A \equiv(3,10), B \equiv(12,-5)$ and $C \equiv(\lambda, 10)$ are collinear then $\lambda=(A) 3$ (B) 4 (C) 5 (D) none of these

- Watch Video Solution

87. Two vectors $\vec{\alpha}=3 \hat{i}+4 \hat{j}$ and $\vec{\beta} 5 \hat{i}+2 \hat{j}-14 \hat{k}$ have the same initial point then their angulr bisector having magnitude $\frac{7}{3}$ be (A) $\frac{7}{3 \sqrt{6}}(2 \hat{i}+\hat{j}-\hat{k})$
$\frac{7}{3 \sqrt{3}}(\hat{i}+\hat{j}-\hat{k})$ (C) $\frac{7}{3 \sqrt{3}}(\hat{i}-\hat{j}+\hat{k})$ (D) $\frac{7}{3 \sqrt{3}}(\hat{i}-\hat{j}-\hat{k})$
88. If $\vec{d}=\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a} \quad$ is a on zero vector and $|(\vec{d} \cdot \vec{c})(\vec{a} \times \vec{b})+(\vec{d} \cdot \vec{a})(\vec{b} \times \vec{c})+(\vec{d} \cdot \vec{b})(\vec{c} \times \vec{a})|=0 \quad$ then
$|\vec{a}|+|\vec{b}|+|\vec{c}|=|\vec{d}|$
(B) $|\vec{a}|=|\vec{b}|=|\vec{c}|$
(C) $\vec{a}, \vec{b}, \vec{c}$ are coplanar
$\vec{a}+\vec{c}=2 b$

- Watch Video Solution

89. If $\vec{a}, \vec{b}, \vec{c}$ are three coplanar unit vector such that $\vec{a} \times(\vec{b} \times \vec{c})=-\frac{\vec{b}}{2}$ then the angle betweeen \vec{b} and \vec{c} can be (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{6}$ (C) π (D) $\frac{2 \pi}{3}$

- Watch Video Solution

90. The two lines $\vec{r}=\vec{a}+\vec{\lambda}(\vec{b} \times \vec{c})$ and $\vec{r}=\vec{b}+\mu(\vec{c} \times \vec{a})$ intersect at a point where $\vec{\lambda}$ and μ are scalars then (A) $\vec{a}, \vec{b}, \vec{c}$ are non coplanar

$$
\begin{equation*}
|\vec{a}|=|\vec{b}|=|\vec{c}| \text { (C) } \vec{a} \cdot \vec{c}=\vec{b} \cdot \vec{c} \text { (D) } \lambda(\vec{b} \times \vec{c})+\mu(\vec{c} \times \vec{a})=\vec{c} \tag{B}
\end{equation*}
$$

91. If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $|\vec{b}|=|\vec{c}|$ then $\{(\vec{a}+\vec{b}) \times(\vec{a}+\vec{c})\} \times(\vec{b} \times \vec{c}) \cdot(\vec{b}+\vec{c})=$

- Watch Video Solution

92. A parallelogram is constructed
on
$3 \vec{a}+\vec{b}$ and $\vec{a}-4 \vec{b}$, where $|\vec{a}|=6$ and $|\vec{b}|=8$ and \vec{a} and \vec{b} are anti parallel then the length of the longer diagonal is (A) 40 (B) 64 (C) 32 (D) 48

- Watch Video Solution

93. If \vec{a} is any vector and \hat{i}, \hat{j} and \hat{k} are unit vectors along the x, y and z directions then $\hat{i} \times(\vec{a} \times \hat{i})+\hat{j} \times(\vec{a} \times \hat{j})+\hat{k} \times(\vec{a} \times \vec{k})=(\mathrm{A}) \vec{a}(B)-\operatorname{veca}(C)$ 2veca(D)0
94. If $(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})=\vec{b}$, where \vec{a}, \vec{b} and \vec{c} are non zero vectors then
(A) \vec{a}, \vec{b} and \vec{c} canbecoplanar
(B) \vec{a}, \vec{b} and \vec{c} must be coplanar \vec{a}, \vec{b} and \vec{c} cannot be coplanar (D) none of these

- Watch Video Solution

95. If \vec{a} is any then $|\vec{a} \cdot \hat{i}|^{2}+|\vec{a} \cdot \hat{i}|^{2}+|\vec{a} \cdot \hat{k}|^{2}=$ (A) $|\vec{a}|^{2}$ (B) $|\vec{a}|$ (C) $2|\vec{\alpha}|$ (D) none of these

- Watch Video Solution

96. If \vec{a}, \vec{b} and \vec{c} are vectors such that
$|\vec{a}|=3,|\vec{b}|=4$ and $\mid \vec{\imath}=5$ and $(\vec{a}+\vec{b}) \quad$ is perpendicular to $\vec{c},(\vec{b}+\vec{c})$ is perpendicular to \vec{a} and $(\vec{c}+\vec{a})$ is perpendicular to \vec{b} then $|\vec{a}+\vec{b}+\vec{c}|=$ (A) $4 \sqrt{3}$ (B) $5 \sqrt{2}$ (C) 2 (D) 12
97. If $|\vec{a}|=$ and $|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=0$, then $(\vec{a}(\vec{x}(\vec{a} \times(\vec{a} \times))))=(\mathrm{A}) 48 \hat{b}$ (B) $-48 \hat{b}$ (C) $48 \hat{a}$ (D) $-48 \hat{a}$

- Watch Video Solution

98. If $|\vec{a} . \vec{b}|=\sqrt{3}|\vec{a} \times \vec{b}|$ then the angle between \vec{a} and \vec{b} is (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

- Watch Video Solution

99. If \hat{a} and \hat{b} are two unit vectors and θ is the angle between them then vector $2 \hat{b}+\hat{a}$ is a unit vector if (A) $\theta=\frac{\pi}{3}$ (B) $\theta=\frac{\pi}{6}$ (C) $\theta=\frac{\pi}{2}$ (D) $\theta=\pi$

- Watch Video Solution

100. If $\vec{r} \cdot \vec{a}=\vec{r} . \vec{b}=\vec{r} \cdot \vec{c}=\frac{1}{2}$ for some non zero vector \vec{r} and $\vec{a}, \vec{b}, \vec{c}$ are non coplanar, then the area of the triangle whose vertices are
$A(\vec{a}), B(\vec{b})$ and $C(\vec{c} 0$ is (A) $|[\vec{a} \vec{b} \vec{c}]|$
(B) $|\vec{r}|$ (C) $|[\vec{a} \vec{b} \vec{r}] \vec{r}|$ (D) none of these

- Watch Video Solution

101. If $\alpha+\beta+\gamma=a \vec{\delta}$ and $\vec{\beta}+\vec{\gamma}+\vec{\delta}=b \vec{\alpha}$ and $\alpha, \vec{\beta}, \vec{\gamma}$ are non coplanar and $\vec{\alpha}$ is not parallel to $\vec{\delta}$ then $\vec{\alpha}+\vec{\beta}+\vec{\gamma}+\vec{\delta}$ equals (A) $a \vec{\alpha}$ (B) $b \vec{\delta}$ (C) 0 (D) $(a+b) \vec{\gamma}$

Watch Video Solution

102. Let $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=2 \hat{i}-\hat{k}$. Then the point of intersection of the lines $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ is (A) (3, -1, 10 (B) (3,1,-1) (C) $(-3,1,1)(\mathrm{D})(-3,-1,-10$

- Watch Video Solution

103. If the non zero vectors \vec{a} and \vec{b} are perpendicular to each other then the solution the equation $\vec{r} \times \vec{a}=\vec{b}$ is (A) $\vec{r} \alpha \vec{b}-\frac{1}{|\vec{b}|^{2}}(\vec{a} \times \vec{b})$
$\vec{r} \alpha \vec{b}+\frac{1}{|\vec{a}|^{2}}(\vec{a} \times \vec{b})$ (C) $\vec{r} \alpha \vec{b}+\frac{1}{|\vec{b}|^{2}}(\vec{a} \times \vec{b})$ (D) none of these

(Watch Video Solution

104. If $\left.\vec{\alpha}|\mid(\vec{b} \times \vec{\gamma})$, then $(\vec{\alpha} \times \vec{\beta}) \cdot(\vec{\alpha} \times \vec{\gamma})=$ (A) $| \vec{\alpha}\right|^{2}(\vec{\beta} \cdot \vec{\gamma})$
$|\vec{\beta}|^{2}(\vec{\gamma} \cdot \vec{\alpha})$ (C) $|\vec{\gamma}|^{2}(\vec{\alpha} \cdot \vec{\beta})$ (D) $|\vec{\alpha}||\vec{\beta}||\vec{\gamma}|$

- Watch Video Solution

105. If \vec{a}, \vec{b} and \vec{c} are three non coplanar vectors and \vec{r} is any vector in space, then
$(\vec{a} \times \vec{b}) \times(\vec{r} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{r} \times \vec{a})+(\vec{c} \times \vec{a}) \times(\vec{r} \times \vec{b})=$
$[\vec{a} \vec{b} \vec{c}]$ (B) $2[\vec{a} \vec{b} \vec{c}] \vec{r}$ (C) $3[\vec{a} \vec{b} \vec{c}] \vec{r}$ (D) $4[\vec{a} \vec{b} \vec{c}] \vec{r}$
106. Let $\overrightarrow{O A}=\vec{a} s, \overrightarrow{O B}=10 \vec{a}+2 \vec{b}$ and $\overrightarrow{O C}=\vec{b}$ whereO A and C are non collinear points. Let p denote the area of the quadrilaterial OABCand q denote the area of the parallelogram with OA and OC as adjacent sides.

Then $\frac{p}{q}=(\mathrm{A}) 2$ (B) 6 (C) 1 (D) $\left.\left.\frac{1}{2} \right\rvert\, \vec{a}+\vec{b}+\vec{c}\right]$

- Watch Video Solution

107.

$\vec{A}=\lambda(\vec{u} \times \vec{v})+\mu(\vec{v} \times \vec{w})+v(\vec{w} \times \vec{u})$ and $[\vec{u} \vec{v} \vec{w}]=\frac{1}{5}$ then $\lambda+\mu+v=(\mathrm{A}) 5$
(B) 10 (C) 15 (D) none of these

- Watch Video Solution

108. If $|\vec{c}|=2,|\vec{a}|=|\vec{b}|=1$ and $\vec{a} \times(\vec{a} \times \vec{c})+\vec{b}=\overrightarrow{0}$ then the acute angle between \vec{a} and \vec{c} is (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{2 \pi}{3}$
109. If \vec{a}, \vec{b} and \vec{c} are non coplanar and unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}$ then the angle between vea and \vec{b} is (A) $\frac{3 \pi}{4}$ (B) $\frac{\pi}{4}$
$\frac{\pi}{2}$ (D) π

- Watch Video Solution

110. If \vec{b} and \vec{c} are any two mutually perpendicular unit vectors and \vec{a} is
any vector, then $(\vec{a} \cdot \vec{b}) \vec{b}+(\vec{a} \cdot \vec{c}) \vec{c}+\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{|\vec{b} \times \vec{c}|^{2}}(\vec{b} \times \vec{c})=$ (A) 0 (B) $\vec{a}(C)$ veca/2(D)2veca`

- Watch Video Solution

111. The equation of the line of intersection of the planes $\vec{r} . \vec{n}=q, \vec{r} . \vec{n}^{\prime}=q^{\prime}$ and basing through the point \vec{a} is (A)
$\vec{r}=\vec{a}+\lambda\left(\vec{n}-\vec{n}^{\prime}\right)$ (B) $\vec{r}=\vec{a}+\lambda\left(\vec{n} \times \vec{n}^{\prime}\right)$ (C) $\vec{r}=\vec{a}+\lambda\left(\vec{n}+\vec{n}^{\prime}\right)$ (D) none of these

(-) Watch Video Solution

112. $\vec{P}=\hat{i}+\hat{j} \hat{k}$ and $\vec{R}=\hat{j}-\hat{k}$ are given vectors then a vector \vec{Q} satisfying the equation $\vec{P} \times \vec{Q}=\vec{R}$ and $\vec{P} \cdot \vec{Q}=3$ is (A) $\left(\frac{5}{3}, \frac{2}{3}, \frac{1}{3}\right)$ (B) $\left(\frac{2}{3}, \frac{5}{3}, \frac{2}{3}\right)$
$\left(\frac{5}{3}, \frac{2}{3}, \frac{2}{3}\right)$ (D) $\left(\frac{2}{3}, \frac{2}{3}, \frac{5}{3}\right)$

- Watch Video Solution

113. The reflection of the point \vec{a} in the plane $\vec{r} . \vec{n}=q$ is (A) $\vec{a}+\frac{\vec{q}-\vec{a} \cdot \vec{n}}{|\vec{n}|}$
(B) $\vec{a}+2\left(\frac{\vec{q}-\vec{a} \cdot \vec{n}}{|\vec{n}|^{2}}\right) \vec{n}$ (C) $\vec{a}+\frac{2(\vec{q}+\vec{a} \cdot \vec{n})}{|\vec{n}|}$ (D) none of these
114. The plane contaning the two straight lines $\vec{r}=\vec{a}+\lambda \vec{b}$ and $\vec{r}=\vec{b}+\mu \vec{a}$ is (A) $[\vec{r} \vec{a} s \vec{b}]=0 \quad$ (B) $[\vec{r} \vec{a} \vec{a} \times \vec{b}]=0$
$[\vec{r} \vec{b} \vec{a} \times \vec{b}]=0$ (D) $[\vec{r} \vec{a}+\vec{b} \vec{a} \times \vec{b}]=0$

- Watch Video Solution

115. Let $\vec{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}$. If \vec{C} is a vector such that $\vec{a} . \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2}$ and the angle between $(\vec{a} \times \vec{b})$ and \vec{c} is $\frac{\pi}{6}$ then $\mid(\vec{a} \times \vec{b}) x \overrightarrow{\mid}=(\mathrm{A}) 2 / 3(B) 1 / 2(C) 3 / 2^{`}(\mathrm{D}) 1$

- Watch Video Solution

116. If $\vec{A}, \vec{B}, \vec{C}$ are three vectors respectively given by $2 \hat{i}+\hat{k}, \hat{i}+\hat{j}+\hat{k}$ and $4 \hat{i}-3 \hat{j}+7 \hat{k}$, then the vector \vec{R} which satisfies the relations $\vec{R} \times \vec{B}=\vec{C} \times \vec{B}$ and $\vec{R} \cdot \vec{A}=0$ is (A) $2 \hat{i}-8 \hat{j}+2 \hat{k}$ (B) $\hat{i}-4 \hat{j}+2 \hat{k}$
$-\hat{i}-8 \hat{j}+2 \hat{k}(\mathrm{D})$ none of these
117. A rigid body is spiing about a fixed piont ($3,-2,-1$) with angular veclocity of $4 \mathrm{radd} / \mathrm{sec}$, the axis of rotation being the direction of $(1,2,-2)$ then the velocity of the particle at the point $(4,1,1)$ is (A) $\frac{4}{3}(1,-4,10)$
$\frac{4}{3}(4,-10,1)(\mathrm{C}) \frac{4}{3}(10,-4,1)(\mathrm{D}) \frac{4}{3}(10,4,1)$

- Watch Video Solution

118. A particle has an angular speed of $3 \mathrm{rad} / \mathrm{s}$ and the axis of rotation passes through the points $(1,1,2)$ and $(1,2,-2)$ Find the velocity of the particle at point $P(3,6,4)$

- Watch Video Solution

119. If the area of triangle $A B C$ having vertices $A(\vec{a}), B(\vec{b}), C(\vec{c})$ is $t|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c}+\vec{c} \times \vec{a}|$ thent $\left[=(\mathrm{A}) 2\right.$ (B) $\frac{1}{2}$ (C) 1 (D) none of these
120. The vector $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is (A) parallel to plane of $\triangle A B C$ (B) perpendicular to plane of $\triangle A B C$ (C) is neighater parallel nor perpendicular to the plane of $\triangle A B C$ (D) the vector area of $\triangle A B C$

- Watch Video Solution

121. If vertices of $\triangle A B C \operatorname{Care} A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ then length of
perpendicular from C to $A B$ is (A) $\frac{|\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{a} \times \vec{b}|}{|\vec{a}-\vec{b}|}$

$$
\frac{|\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{a} \times \vec{b}|}{|\vec{a}+\vec{b}|} \text { (C) } \frac{|\vec{b} \times \vec{c}|+|\vec{c} \times \vec{a}|+|\vec{a} \times \vec{b}|}{|\vec{a}-\vec{b}|} \text { (D) none of these }
$$

- Watch Video Solution

122. If \hat{u} and \hat{v} are unit vectors and θ is the acute angle between them, then $2 \hat{u} \times 3 \hat{v}$ is a unit vector for (1) exactly two values of θ (2) more than
two values of θ (3) no value of $\theta(4)$ exactly one value of θ

(Watch Video Solution

123.

$O(0,0,0), A(1,2,1), B(2,1,3)$, and $C(-1,1,2)$, then angle between face
OABandABC will be a. $\cos ^{-1}\left(\frac{17}{31}\right)$ b. 30^{0} c. 90^{0} d. $\cos ^{-1}\left(\frac{19}{35}\right)$

- Watch Video Solution

124. The value of the a so that the volume of the paralellopied formed by vectors $\hat{i} a \hat{j}+\hat{k}, \hat{j}+a \hat{k}, a \hat{i}+\hat{k}$ becomes minimum is (A) $\sqrt{3}$ (B) 2 (C) $\frac{1}{\sqrt{3}}$ (D) 3

- Watch Video Solution

125. If $a=(\hat{i} \times \hat{j} \hat{k}), \hat{a} . \hat{b}=1$ and $\hat{a} \cdot \hat{b}=1$ and $\hat{a} \times \hat{b}-(\hat{i}-\hat{k})$ then b is (A) $\hat{i}-\hat{j}+\hat{k}$ (B) $2 \hat{j}-\hat{k}$ (C) \hat{j} (D) $2 \hat{i}$
126. The unit vector which is orthogonal to the vector $3 \hat{i}+2 \hat{j}+6 \hat{k}$ and is coplanar with the vectors $2 \hat{i}+\hat{j}+\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$ is (A) $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$ (B) $\frac{2 \hat{i}-3 \hat{j}}{\sqrt{3}}$
(C) $3 \hat{j}-\hat{k} \frac{)}{\sqrt{10}}$ (D) $\frac{4 \hat{i}+3 \hat{j}-3 \hat{k}}{\sqrt{34}}$

Watch Video Solution

127. The points with position vectors $60 \hat{i}+3 \hat{j}, 40 \hat{i}-8 \hat{j}, 40 \hat{i}-8 \hat{j}, a \hat{i}-52 \hat{j}$ are collinear iff (A) $a=-40$ (B) $a=40$ (C) $a=20$ (D) none of these

- Watch Video Solution

128. A vector \vec{v} or magnitude 4 units is equally inclined to the vectors $\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{k}+\hat{i}$, which of the following is correct? (A) $\vec{v}=\frac{4}{\sqrt{3}}(\hat{i}-\hat{j}-\hat{k})$
(B) $\vec{v}=\frac{4}{\sqrt{3}}\left(\hat{i}+\hat{j}-\hat{k} 0\right.$ (C) $\vec{v}=\frac{4}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k} 0$ (D) vecv=4(hati+hatj+hatk)'
129. The position verctors of the points A and B with respect of O are $2 \hat{i}+2 \hat{j}+\hat{k}$ and $2 \hat{i}+4 \hat{j}+4 \hat{k}$, the length of the internal bisector of $\angle B O A$ of $\triangle A O B$ is

- Watch Video Solution

130. A particle is acted upon by the following forces $2 \hat{i}+3 \hat{j}+t \hat{k},-5 \hat{i}+4 \hat{j} 3 \hat{k}$ and $3 \hat{i}-7 \hat{k}$. In which plane does it move? (A) $x y-$ pla \neq (B) $y z-$ pla \neq (C) $z x-$ pla \neq (D) any arbitrary plane

- Watch Video Solution

131. If n forces $P A_{1} \ldots \ldots P A_{n}$ divege from point P and other forces
$A_{1} Q, A_{2} Q, ., A_{n} Q$ vonverge to point Q, then the resultant of the $2 n$ forces
is represent in magnitude and directed by (A) $n P Q$ (B) $n Q P$ (C) $2 n P Q$ (D)
$n^{2} \overrightarrow{P Q}$

- Watch Video Solution

132. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \hat{b} 4 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{c}=\hat{i}+\alpha \hat{j}+\beta \hat{k}$ are linearly dependent vectors and $|\vec{c}|=\sqrt{3}$ then (A) $\alpha=1, \beta=-1$ (B) $\alpha=1, \beta= \pm 1$
(C) $\alpha-1, \beta= \pm 1$ (D) $\alpha= \pm 1, \beta=1$

- Watch Video Solution

133. A vector $\vec{a}=t \hat{+} t^{2} \hat{j}$ is rotated through a righat angle passing through the x-axis. What is the vector in its new position $(t>0)$? (A) $t^{2} \hat{i}-t \hat{j}$ (B)
$\sqrt{t \hat{i}}-\frac{1}{\sqrt{t}} \hat{j}$ (C) $-t^{2} \hat{i}+t \hat{j}$ (D) $\frac{t^{2} \hat{i}-t \hat{j}}{t \sqrt{t^{2}+1}}$

- Watch Video Solution

134. If $A O+O B=B O+O C$ then A, B, C, D form a/an (A) equilaterla triangle
(B) righat angled triangle (C) isosceles triangle (D) straighat line

- Watch Video Solution

135. The sides of a parallelogram are $2 \hat{i}+4 \hat{-} 5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$. The unit vector parallel to one of the diagonal is (A) $\frac{1}{\sqrt{69}}(\hat{i}+2 \hat{j}-8 \hat{k})$
$\frac{1}{\sqrt{69}}(-\hat{i}+2 \hat{j}+8 \hat{k})$ (C) $\frac{1}{\sqrt{69}}(-\hat{i}-2 \hat{j}-8 \hat{k})$ (D) $\frac{1}{\sqrt{69}}(\hat{i}+2 \hat{j}+8 \hat{k})$

- Watch Video Solution

136. \vec{a} and \vec{b} are two non collinear vectors then $x \vec{a}+y \vec{b}$ (where x and y are scalars) represents a vector which is (A) parallel to vecb(B)parallel to \vec{a} (C) coplanar with \vec{a} and \vec{b} (D) none of these

- Watch Video Solution

137. If D, E and F and are respectively the mid points of $A B, A C$ and $B C$ in $\triangle A B C$, thenvec $(B E)+\operatorname{vec}(A F)=(A) \operatorname{vec}(D C)(B) 1 / 2 \operatorname{vec}(B F)(C) 2 v e c(B F)(D)$ $3 / 2 \operatorname{vec}(B F){ }^{\prime}$

- Watch Video Solution

138. If C is the mid point of $A B$ and P is any point outside $A B$ then (A)
$P A+P B+P C=0$
(B) $P A+P B+2 P C=\overrightarrow{0}$
(C) $P A+P B=P C$
$\overrightarrow{P A}+\overrightarrow{P B}=2 \overrightarrow{P C}$

- Watch Video Solution

139. Consider points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D with position vectors $7 \hat{i}-4 \hat{j}+7 \hat{k}, \hat{i}-6 \hat{j}+10 \hat{k}, \hat{i}-3 \hat{j}+4 \hat{k}$ and $5 \hat{i}-\hat{j}+5 \hat{k}$ respectively. Then ABCD is a (A) square (B) rhombus (C) rectangle (D) parallelogram but not a rhombus
140. The vectors $A B=3 \hat{i}+4 \hat{k}$ and $A C=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a triangle $A B C$. The length of the median through A is $(A) \sqrt{72}(B) \sqrt{33}$ (C) $\sqrt{2880}$ (D) $\sqrt{18}$

- Watch Video Solution

141. If $\vec{a}, \vec{b}, \vec{c}$ are noncoplanar vectors and λ is a real number, then the vectors $\vec{a}+2 \vec{b}+3 \vec{c}, \lambda \vec{b}+4 \vec{c}$ and $(2 \lambda-1) \vec{c}$ are non coplanar of (A) all values of lamda (B) all except one values of lamda (C) all except two values of lamda (D) no value of lamda

- Watch Video Solution

142. Let \vec{a}, \vec{b}, and \vec{c} be three non zero vector such that no two of these are collinear. If the vector $\vec{a}+2 \vec{b}$ is collinear with \vec{c} and $\vec{b}+3 \vec{c}$ is colinear with $\vec{a}(\lambda$ being some non zero scalar) then $\vec{a}+2 \vec{b}+6 \vec{c}$ equals (A) $\lambda \vec{a}$ (B) $\lambda \vec{b}$ (C) $\lambda \vec{c}$ (D) 0

- Watch Video Solution

143. If \vec{a}, \vec{b} and \vec{c} are three vectors of which every pair is non colinear. If the vector $\vec{a}+\vec{b}$ and $\vec{b}+\vec{c}$ are collinear with the vector \vec{c} and \vec{a} respectively then which one of the following is correct? (A) $\vec{a}+\vec{b}+\vec{c}$ is a nul vector (B) $\vec{a}+\vec{b}+\vec{c}$ is a unit vector (C) $\vec{a}+\vec{b}+\vec{c}$ is a vector of magnitude 2 units (D) $\vec{a}+\vec{b}+\vec{c}$ is a vector of magnitude 3 units

- Watch Video Solution

144. If $|a|=3,|\vec{b}|=4$, and $|\vec{a}=\vec{b}|=5$, then $|\vec{a}-\vec{b}|$ is equal to (A) 6 (B) 5 (C) 4 (D) 3

- Watch Video Solution

145. Let $\vec{u}, \vec{v}, \vec{w}$ be such that $|\vec{u}|=1,|\vec{v}|=2,|\vec{w}| 3$. If the projection of \vec{v} along \vec{u} is equal to that of $\vec{w} a l o n g \vec{v}, \vec{w}$ are perpendicular to each other
then $|\vec{u}-\vec{v}+\vec{w}|$ equals (A) 2 (B) $\sqrt{7}$ (C) $\sqrt{14}$ (D) 14

- Watch Video Solution

146. If $\vec{a}, \vec{b}, \vec{c}$ are perpendicular to $\vec{b}+\vec{c}, \vec{c}+\vec{a}$ and $\vec{a}+\vec{b}$ respectively and if $|\vec{a}+\vec{b}|=6,|\vec{b}+\vec{c}|=8$ and $|\vec{c}+\vec{a}|=10$, then $|\vec{a}+\vec{b}+\vec{c}|$ (A) $5 \sqrt{2}$ (B) 50 (C) $10 \sqrt{2}$ (D) 10

- Watch Video Solution

147. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b}$ are perpendicular to each othre, then the angle beween \vec{a} and \vec{b} is (A) 45° (B) 60^{0} (C) $\cos ^{-1}\left(\frac{1}{30}\right.$ (D) $\cos ^{-1}\left(\frac{2}{7}\right)$
148. A unit vector in xy-plane that makes an angle of 45^{0} with the vector $\hat{i}+\hat{j}$ and angle of 60^{0} with the vector $3 \hat{i}-4 \hat{j}$ is (A) \hat{i} (B) $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$ (C) $\frac{\hat{i}-\hat{j}}{\sqrt{2}}$ (D) none of these

- Watch Video Solution

149. The position vector of the pont where the line $\vec{r}=\hat{i}-h * j+\hat{k}+t(\hat{i}+\hat{j}-\hat{k})$ meets plane $\vec{r} .(\hat{i}+\hat{j}+\hat{k})=5$ is (A) $5 \hat{i}+\hat{j}-\hat{k}$ (B) $5 \hat{i}+3 \hat{j}-3 \hat{k}$ (C) $5 \hat{i}+\hat{j}+\hat{k}$ (D) $4 \hat{i}+2 \hat{j}-2 \hat{k}$

- Watch Video Solution

150. The distance between the line $\vec{r}=2 \hat{i}-2 \hat{j}+3 \hat{+} \lambda(\vec{i}-\vec{j}+4 \vec{k})$ and the plane $\vec{r} .(\vec{i}+5 \vec{j}+\vec{k})=5$ is (A) $\frac{10}{3} \sqrt{3}$ (B) $\frac{10}{9}$ (C) $\frac{10}{3}$ (D) $\frac{3}{10}$

- Watch Video Solution

151. A unit vector int eh plane of the vectors $2 \hat{i}+\hat{j}+\hat{k}, \hat{i}-\hat{j}+\hat{k}$ and orthogonal to $5 \hat{i}+2 \hat{j}-6 \hat{k}$ is (A) $\frac{6 \hat{i}-5 \hat{k}}{\sqrt{6}}$ (B) $\frac{3 \hat{j}-\hat{k}}{\sqrt{10}}$ (C) $\frac{\hat{i}-5 \hat{j}}{\sqrt{29}}$ (D) $\frac{2 \hat{i}+\hat{j}-2 \hat{k}}{3}$

- Watch Video Solution

152. The work done by the forces $\vec{F}=2 \hat{i}-3 \hat{j}+2 \hat{k}$ in moving a particle from $(3,4,5)$ to $(1,2,3)$ is (A) 0 (B) $\frac{3}{2}$ (C) -4 (D) -2

- Watch Video Solution

153. If the work done by a force $\vec{F}=\hat{i}+\hat{j}-8 \hat{k}$ along a givne vector in the xy-plane is 8 units and the magnitude of the given vector is $4 \sqrt{3}$ then the given vector is represented as (A) $(4+2 \sqrt{2}) \hat{i}+(4-2 \sqrt{2}) \hat{j}$
(B) $(4 \hat{i}+3 \sqrt{2} \hat{j})$ (C) $(4 \sqrt{2} \hat{i}+4 \hat{j})$ (D) $(4+2 \sqrt{2})(\hat{i}+\hat{j})$

- Watch Video Solution

154. If $\vec{a}, \vec{b}, \vec{c}$ are unit coplanar vectors then the scalar triple product $[2 \vec{a}-\vec{b} 2 \vec{b}-c \overrightarrow{2} c-\vec{a}]$ is equal to (A) 0 (B) 1 (C) $-\sqrt{3}$ (D) $\sqrt{3}$

- Watch Video Solution

155. Let the vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} be such that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$. Let P_{1} and P_{2} be planes determined by pairs of vectors \vec{a}, \vec{b} and vecc,vecd respectively. Then the angle between P_{1} and P_{2} is (A) O (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

- Watch Video Solution

156. Let $\vec{a}=\hat{i}-\hat{k}, \vec{b}=x \hat{i}+\hat{j}+(1-x) \hat{k}$ and $\vec{c}=y \hat{i}+x \hat{j}+(1+x-y) \hat{k}$. Then $[\vec{a} \vec{b} \vec{c}]$ depends on (A) only $\mathrm{x}(\mathrm{B})$ only $\mathrm{y}(\mathrm{C})$ neither x nor $\mathrm{y}(\mathrm{D})$ both x and y

- Watch Video Solution

157. The number of vectors of unit length perpendicular to vectors $\vec{a}=(1,1,0) a n d \vec{b}=(0,1,1)$ is a. one b. two c. three d. infinite

- Watch Video Solution

158. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b}$ are perpendicular to each other then the angle between \vec{a} and \vec{b} is (A) 45^{0}
(B) 60^{0} (C) $\cos ^{-1}\left(\frac{1}{3}\right)$ (D) $\cos ^{-1}\left(\frac{2}{7}\right)$

- Watch Video Solution

159. The point of intersection of $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ where $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=2 \hat{i}-\hat{k}$ is (A) $3 \hat{i}+\hat{j}-\hat{k}$ (B) $3 \hat{i}-\hat{k}$ (C) $3 \hat{i}+2 \hat{j}+\hat{k}$ (D) none of these

- Watch Video Solution

160. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $\vec{a} \neq 0,|\vec{a}|=|\vec{c}|=1,|\vec{b}|=4$ and $|\vec{b} \times \vec{c}|=\sqrt{15}$. If $\vec{b}-2 \vec{c}=\lambda \vec{a}$ then find the value of λ.

- Watch Video Solution

161. $|\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}=$ (A) $|\vec{a}|^{2}$ (B) $2|\vec{a}|^{2}$ (C) $3|\vec{a}|^{2}$ (D) $4|\vec{a}|^{2}$

- Watch Video Solution

162. Let $\vec{V}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{W}=\hat{i}+3 \hat{k}$. If \vec{U} is a unit vector then the maximum value of the scalar triple product $[\vec{U} \vec{V} \vec{W}]$ is (A) -1 (B) $\sqrt{10}+\sqrt{6}$ (C) $\sqrt{59}$ (D) $\sqrt{60}$

(Watch Video Solution

163. If $\vec{a} s \times \vec{b}=0$ and $\vec{a} \cdot \vec{b}=0$ then (A) $\vec{a} \perp \vec{b}$ (B) $\vec{a}|\mid \vec{b}$
$\vec{a}=0$ and $\vec{b}=0$ (D) $\vec{a}=0$ or $\vec{b}=0$

(D) Watch Video Solution

164. If $\vec{a}, \vec{b}, \vec{c}$ are unit coplanar vectors than $[2 \vec{a}-\vec{b}, 2 \vec{b}-\vec{c}, 2 \vec{c}-\vec{a}]=$ (A) 1 (B) 0 (C) $-\sqrt{3}$ (D) $\sqrt{3}$

- Watch Video Solution

165. Which of the followind expression are meanigful ? (A) $\vec{u} .(\vec{v} \times \vec{w})$
$(\vec{u} \cdot \vec{v}) \times \vec{w}(\mathrm{C})(\vec{u} \cdot \vec{v}) \cdot \vec{w}(\mathrm{D}) \vec{u} \times(\vec{v} \cdot \vec{w})$

- Watch Video Solution

166. Let veda, \vec{b}, \vec{c} be three noncolanar vectors and $\vec{p}, \vec{q}, \vec{r}$ are vectors
defined by the relations $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{c} a}{[\vec{a} \vec{b} \vec{c}]}, \vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$ then the value of the expression $(\vec{a}+\vec{b}) \cdot \vec{p}+(\vec{b}+\vec{c}) \cdot \vec{q}+(\vec{c}+\vec{a}) \cdot \vec{r}$. is equal to (A) 0 (B) 1 (C) 2 (D) 3
167. Let $\vec{a}, \vec{b}, \vec{c}$ be non coplanar vectors and $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{q}}{[\vec{a} \vec{b} \vec{c}]}, \vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$. What is the vaue of $(\vec{a}-\vec{b}-\vec{c}) \cdot \vec{p}(\vec{b}-\vec{c}-\vec{a}) \cdot \vec{q}+(\vec{c}-\vec{a}-\vec{b}) \cdot \vec{r}$? (A) 0 (B) -3 (C) 3 (D) -9

- Watch Video Solution

168. Let $\vec{a}=\hat{i}-\hat{k}, \vec{b}=x \hat{i}+\hat{j}+(1-x) \hat{k}$ and $\vec{c}=y \hat{i}+x \hat{j}+(1+x-y) \hat{k}$. Then $[\vec{a} \vec{b} \vec{c}]$ depends on (A) ’only $x(B)$ only $y(C)$ neither x nor $y(D)$ both x and y

- Watch Video Solution

169. Let a, b, c be distinct non-negative numbers. If the vectors $a i+a j+c k, i+k$ and $c i+c j+b k$ lie in a plane, then c is the

- Watch Video Solution

170. If the vectors $a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}, \hat{i}+\hat{j}+c \hat{k}(a \neq 1, b \neq 1, c \neq 1)$ are coplanat then the value of $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$ is (A) 0 (B) 1 (C) -1 (D) 2

- Watch Video Solution

171. If $\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{2}\end{array}\right|=0$ and vectors $\left(1, a, a^{2}\right),\left(1, b, b^{2}\right)$ and $\left(1, c, c^{2}\right)$ are hon coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

- Watch Video Solution

172. If \vec{u}, \vec{v} and \vec{w} are three non coplanar vectors then
$(\vec{u}+\vec{v}-\vec{w}) \cdot(\vec{u}-\vec{c}) \times(\vec{v}-\vec{w})$ equals
(A) $\vec{u} \cdot \vec{v} \times \vec{w}$
(B) $\vec{u} \cdot \vec{w} \times \vec{v}$
$3 \vec{u} . \vec{u} \times \vec{w}$ (D) 0
173. Let $\vec{u}=h a i+\hat{j}, \vec{v}=\hat{i}-\hat{j}$ and $\vec{w}=\hat{i}+2 \hat{j}+3 \hat{k}$. If \hat{n} isa unit vector such that $\vec{u} \cdot \hat{n}=0$ and $\vec{v} \cdot \hat{n}=0,|\vec{w} \cdot \hat{n}|$ is equal to (A) 0 (B) 1 (C) 2 (D) 3

- Watch Video Solution

174. If \vec{a} is perpendicuar to \vec{b} and $\vec{c}|\vec{a}|=2,|\vec{b}|=3,|\vec{c}|=4$ and the angle between \vec{b} and $\vec{c} i s \frac{2 \pi}{3}$, then $[\vec{a} \vec{b} \vec{c}]$ is equal to (A) $4 \sqrt{3}$ (B) $6 \sqrt{3}$ (C) $12 \sqrt{3}$ (D) $18 \sqrt{3}$

- Watch Video Solution

175. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors and λ is a real number, then $\left[\begin{array}{lll}\lambda(\vec{a}+\vec{b}) & \lambda^{2} \vec{b} & \lambda \vec{c}\end{array}\right]=\left[\begin{array}{lll}\vec{a} & \vec{b}+\vec{c} & \vec{b}\end{array}\right]$ for

- Watch Video Solution

$\vec{V}=x(\vec{a} \times \vec{b})+y(\vec{b} \times \vec{c})+z(\vec{c} \times \vec{a})$ and $\vec{V} \cdot(\vec{a}+\vec{b}+\vec{c})=x+y+z$. The valueof $[\vec{a}, \vec{b}, \vec{c}]$ if $x+y+z \neq 0$ ils (A) 0 (B) 1 (C) -1 (D) 2

- Watch Video Solution

177. The scalar $\vec{A} .(\vec{B}+\vec{C}) \times(\vec{A}+\vec{B}+\vec{C})$ equals (A) 0 (B) $[\vec{A} \vec{B} \vec{C}]+[\vec{B} \vec{C} \vec{A}]$
(C) $[\vec{A} \vec{B} \vec{C}]$ (D) none of these

- Watch Video Solution

178. If \vec{A}, \vec{B} and \vec{C} are three non coplanar then
$(\vec{A}+\vec{B}+\vec{C}) \cdot\{(\vec{A}+\vec{B}) \times(\vec{A}+\vec{C})\}$ equals: (A) 0 (B) $[\vec{A}, \vec{B}, \vec{C}]$
$2[\vec{A}, \vec{B}, \vec{C}](\mathrm{D})-[\vec{A}, \vec{B}, \vec{C}]$

Watch Video Solution

179. The value of a so thast the volume of parallelpiped formed by vectors $\hat{i}+a \hat{j}+\hat{k}, \hat{j}+a \hat{k}, a \hat{i}+\hat{k}$ becomes minimum is (A) $\sqrt{93}$) (B) 2 (C) $\frac{1}{\sqrt{3}}$ (D) 3

- Watch Video Solution

180. For non zero vectors $\vec{a}, \vec{b}, \vec{c}|(\vec{a} \times \vec{b}) \cdot \vec{c}|=|\vec{a}||\vec{b}| \mid \vec{l}$ holds if and only if (A) $\vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c}=0$ (B) $\vec{b} \cdot \vec{c}=0, \vec{c} \cdot \vec{a}=0$ (C) $\vec{c} \cdot \vec{a}=0, \vec{a} \cdot \vec{b}=0$ (D) $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$

- Watch Video Solution

181. If \vec{a}, \vec{b} and \vec{c} are non coplanar and unit vectors such that $\left.\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{92}}\right)$ then the angle between vea and \vec{b} is (A) $\frac{3 \pi}{4}$ (B) $\frac{\pi}{4}$
(C) $\frac{\pi}{2}$ (D) π
182. Let \vec{a}, \vec{b} and \vec{c} be the non zero vectors such that $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$. if theta is the acute angle between the vectors \vec{b} and \vec{a} then theta equals (A) $\frac{1}{3}$ (B) $\frac{\sqrt{2}}{3}$ (C) $\frac{2}{3}$ (D) $2 \frac{\sqrt{2}}{3}$

- Watch Video Solution

183. If $\vec{A} \times(\vec{B} \times \vec{C})=\vec{B} \times(\vec{C} \times \vec{A})$ and $[\vec{A} \vec{B} \vec{C}] \neq 0$ then $\vec{A} \times(\vec{B} \times \vec{C})$ is equal to (A) 0 (B) $\vec{A} \times \vec{B}$ (C) $\vec{B} \times \vec{C}$ (D) $\vec{C} \times \vec{A}$

- Watch Video Solution

184. If $\hat{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \hat{b}=\hat{i} \times(\vec{a} \times \hat{i})+\hat{j} \times(\vec{a} \times \hat{j})+\hat{k} \times($ veda $\times \hat{k})$ then length of \vec{b} is equal to (A) $\sqrt{12}$ (B) $2 \sqrt{12}$ (C) $2 \sqrt{14}$ (D) $3 \sqrt{12}$

- Watch Video Solution

185. Let $\vec{a}=\hat{i}-\hat{j}, \vec{b}=\hat{j}-\hat{k}, \vec{c}=\hat{k}-\hat{i}$. If is a unit vector such that $\vec{a} . \hat{d}=0=[\vec{b}, \vec{c}, \vec{d}]$ then equals (A) $\pm \frac{\hat{i}+\hat{j}-2 \hat{k}}{\sqrt{6}}$ (B) $\pm \frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}$ (C) $\pm \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$ (D) $\pm \hat{k}$

- Watch Video Solution

186.

$\vec{a} s=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}, \vec{c}=\hat{i}$ and $(\vec{a} \times \vec{b}) \times \vec{c}=\lambda \vec{a}=\mu \vec{b}$, then $\lambda+\mu=$?
(A) 0 (B) 1 (C) 2 (D) 3

- Watch Video Solution

187. Given $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=5 \vec{c}+6 \vec{d}$ then the value of $\vec{a} . \vec{b} \times(\vec{a}+\vec{c}+2 \vec{d})$ is (A) 7 (B) 16 (C) -1 (D) 4

- Watch Video Solution

188. If $\vec{a} \times[\vec{a} \times\{\vec{a} \times(\vec{a} \times \vec{b})\}]=|\vec{a}|^{4} \vec{b}$ how are \vec{a} and \vec{b} related? (A) \vec{a} and \vec{b} are coplanar (B) \vec{a} and \vec{b} are collinear (C) \vec{a} is perpendicular to \vec{b} (D) \vec{a} is parallel to vecb but veca and vecb` are non collinear

- Watch Video Solution

189. If $(v c a \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$, where $\vec{a}, \vec{b}, \vec{c}$ are any three vectors such that $\vec{a} . \vec{b} \neq 0, \vec{b} . \vec{c} \neq 0$ thenera and \vec{c} are (A) inclined at an angle $\frac{\pi}{3}$ to each other (B) inclined at an angle of $\frac{\pi}{6}$ to each other (C) perpendicular (D) parallel

- Watch Video Solution

190. If the vectors $\hat{i}-\hat{j}, \hat{j}+\hat{k}$ and \vec{a} form a triangle then \vec{a} may be (A) $-\hat{i}-\hat{k}$
(B) $\hat{i}-2 \hat{j}-\hat{k}$ (C) $2 \hat{i}+\hat{j}+\hat{j} k$ (D) hati+hatk

- Watch Video Solution

191. If vectors \vec{a} and \vec{b} are non collinear then $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}$ is (A) a unit vector in the plane of \vec{a} and \vec{b} (B) in the plane of \vec{a} and \vec{b} (C) equally inclined ot vecas and vecb (D) perpendiculat to $\vec{a} \times \vec{b}$

- Watch Video Solution

192. Vectors perpendicular to $\hat{i}-\hat{j}-\hat{k}$ and in the plane of $\hat{i}+\hat{j}+\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ are (A) $\hat{i}+\hat{k}$ (B) $2 \hat{i}+\hat{j}+\hat{k} \quad$ (C) $3 \hat{i}+2 \hat{j}+\hat{k}$
$-4 \hat{i}-2 \hat{j}-2 \hat{k}$

- Watch Video Solution

193. The vector $\hat{i}+x \hat{j}+3 \hat{k}$ is rotated through an angle θ and doubled in magnitude, then it becomes $4 \hat{i}+(4 x-2) \hat{j}+2 \hat{k}$. Then values of x are (A) $-\frac{2}{3}$ (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) 2
194. If the sides $A B$ of an equilateral triangle $A B C$ lying in the xy-plane is $3 \hat{i}$ then the side $\overrightarrow{C B}$ can be (A) $-\frac{3}{2}(\hat{i}-\sqrt{3})$ (B) $\frac{3}{2}(\hat{i}-\sqrt{3})$ (C) $-\frac{3}{2}(\hat{i}+\sqrt{3})$ $\frac{3}{2}(\hat{i}+\sqrt{3})$

Watch Video Solution

195. If vectors $\vec{A}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{B}=\hat{i}+\hat{j}+5 \hat{k}$ and \vec{C} form a left handed system then \vec{C} is (A) $11 \hat{i}-6 \hat{j}-\hat{k}$
(B) $-11 \hat{i}+6 \hat{j}+\hat{k}$ (C) $-11 \hat{i}+6 \hat{j}-\hat{k}$
$-11 \hat{i}+6 \hat{j}-\hat{k}$

- Watch Video Solution

196. If $\vec{a}+2 \vec{b}=3 \vec{b}=0$, then $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=\quad$ (A) $2(\vec{a} \times \vec{b})$
$6(\vec{b} \times \vec{c})(\mathrm{C}) 3(\vec{c} \times \vec{a})(\mathrm{D}) 0$

- Watch Video Solution

197. Unit vectors $\vec{a} a n d \vec{b}$ are perpendicular, and unit vector \vec{c} is inclined at angle θ to both \vec{a} and \vec{b} if $\vec{c}=\alpha \vec{a}+\beta \vec{b}+\gamma(\vec{a} \times \vec{b})$, then $a=\beta$ b. $\gamma^{1}=1-2 \alpha^{2}$ c. $\gamma^{2}=-\cos 2 \theta$ d. $\beta^{2}=\frac{1+\cos 2 \theta}{2}$

- Watch Video Solution

198. The equation of the line throgh the point \vec{a} parallel to the plane $\vec{r} . \vec{n}=q$ and perpendicular to the line $\vec{r}=\vec{b}+t \vec{c}$ is (A) $\vec{r}=\vec{a}+\lambda(\vec{n} \times \vec{c})$
(B) $(\vec{r}-\vec{a}) \times(\vec{n} \times \vec{c})=0$ (C) $\vec{r}=\vec{b}+\lambda(\vec{n} \times \vec{c})$ (D) none of these

- Watch Video Solution

199. If \vec{a} and \vec{b} are two non collinear vectors and $\vec{u}=\vec{a}-(\vec{a} \cdot \vec{b}) \vec{b}$ and $\vec{v}=\vec{a} \times \vec{b}$ then $|\vec{v}|$ is (A) $|\vec{u}|$ (B) $|\vec{u}|+|\vec{u} \cdot \vec{b}|$
$|\vec{u}|+|\vec{u} \cdot \vec{a}|(\mathrm{D})$ none of these

- Watch Video Solution

200. A linepasses through the points whose positions vectors $\hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+\hat{k}$. The position vector of a point on it at a unit distance from the first point is (A) $\hat{i}-\hat{j}+3 \hat{j} k$ (B) $\frac{1}{5}\left(4 \hat{i}+9 \hat{j}-13 \hat{k} 0\right.$ (C) $\frac{1}{5}(6 \hat{i}+\hat{j}-7 \hat{k})$ none of these

- Watch Video Solution

201. A vector of magnitude 2 along a bisector of the angle between the two vectors $\quad 2 \hat{i}-2 \hat{j}+\hat{k} a$ and $\hat{i}+2 \hat{j}-2 \hat{k} \quad$ is (A) $\frac{2}{\sqrt{10}}(3 \hat{i}-\hat{k})$
$\frac{2}{\sqrt{23}}(\hat{i}-3 \hat{j}+3 \hat{k})$ (C) $\frac{1}{\sqrt{26}}(\hat{i}-4 \hat{j}+3 \hat{k})$ (D) none of these

- Watch Video Solution

202. A unit vector which is equally inclined to the vector
$\hat{i}, \frac{-2 \hat{i}+\hat{j}+2 \hat{k}}{3}$
and $\frac{-4 \hat{j}-3 \hat{k}}{5}$
(A) $\frac{1}{\sqrt{51}}(-\hat{i}+5 \hat{j}-5 \hat{k})$
(B) $\frac{1}{\sqrt{51}}(\hat{i}+5 \hat{j}+5 \hat{k})$
(C) $\frac{1}{\sqrt{51}}(\hat{i}+5 \hat{j}-5 \hat{k})$ (D) $\frac{1}{\sqrt{51}}(\hat{i}+5 \hat{j}+5 \hat{k})$
203. Three points whose position vectors are $\vec{a}, \vec{b}, \vec{c}$ will be collinear if (A) $\lambda \vec{a}+\mu \vec{b}=(\lambda+\mu) \vec{c}$ (B) $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=0$ (C) $[\vec{a} \vec{b} \vec{c}]=0$ (D) none of these

- Watch Video Solution

204. Let $\vec{b}=4 \hat{i}+3 \hat{j}$. Let \vec{c} be a vector perpendicular to \vec{b} and it lies in the xy-plane. A vector in the xy-plane having projection 1 and 2 along \vec{b} and \vec{c} is (A) $\hat{i}-2 \hat{j}$ (B) $2 \hat{i}-\hat{j}$ (C) $\frac{1}{5}(-2 \hat{i}+11 \hat{j} 0$ (D) none of these

- Watch Video Solution

205. If \vec{a}, \vec{b} and \vec{c} are non coplnar and notoro vectors and \vec{r} is any vector in space then $[\vec{c} \vec{r} \vec{b}] \vec{a}+p \vec{a} \vec{r} \vec{c}] \vec{b}+[\vec{b} \vec{r} \vec{a}] c=$ (A) $[\vec{a} \vec{b} \vec{c}]$

$$
[\vec{a} \vec{b} \vec{c}] \vec{r}(\mathrm{C}) \frac{\vec{r}}{[\vec{a} \vec{b} \vec{c}]} \text { (D) } \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})
$$

- Watch Video Solution

206. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors such that $\vec{b} \times \vec{c}=\vec{a}, \vec{a} \times \vec{b}=\vec{c} a \neq d \vec{c} \times \vec{a}=\vec{b}$ then (A) $|\vec{a}|+|\vec{b}|+|\vec{c}|=3$ (B) $|\vec{b}|=1$ (C) $|\vec{a}|=1$ (D) none of these

- Watch Video Solution

207. If $\vec{a}, \vec{b}, \vec{c}$ be non coplanar vectors and $\vec{p}=\frac{\vec{b} \times \vec{c}}{\vec{a} \vec{b} \vec{c}}$, vecq= (veccxxveca)/[veca vecb vecc], $\vec{r}=\frac{\vec{a} \times \vec{b}}{\vec{a} \vec{b} \vec{c}}$ then (A) $\vec{p} \cdot \vec{a}=1$
$\vec{p} \cdot \vec{a}+\vec{q}+\vec{b}+\vec{r} \cdot \vec{c}=3$ (C) $\vec{p} \cdot \vec{a}+\vec{q} \cdot \vec{b}+\vec{r} \cdot \vec{c}=0$ (D) none of these

- Watch Video Solution

208. If $\vec{a}, \vec{b}, \vec{c}$ are any thre vectors then $(\vec{a} \times \vec{b}) \times \vec{c}$ is a vector (A) perpendicular to $\vec{a} \times \vec{b}$ (B) coplanar with \vec{a} and \vec{b} (C) parallel to \vec{c} (D)
parallel to either \vec{a} or \vec{b}

- Watch Video Solution

209. If $\vec{c}=\vec{a} \times \vec{b}$ and $\vec{b}=\vec{c} \times \vec{a}$ then (A) $\vec{a} . \vec{b}=\vec{c}^{2}$ (B) \vec{c}. $\vec{a} .=\vec{b}^{2}$ (C) $\vec{a} \perp \vec{b}$
(D) $\vec{a}|\mid \vec{b} \times \vec{c}$

- Watch Video Solution

210. If $\overrightarrow{\times}$
$\vec{b} . \vec{a}$
$\left(\vec{b} \times \frac{\vec{a} \times \vec{c}}{\vec{b} \cdot \vec{c}}\right.$ (C) $\left(\vec{a} \times \frac{\vec{c} \times \vec{b}}{\vec{a} \cdot \vec{b}}\right.$ (D) none of these

- Watch Video Solution

211. The resolved part of the vector \vec{a} along the vector $\vec{b} i s \vec{\lambda}$ and that perpendicular to $\vec{b} i s \vec{\mu}$. Then (A) $\vec{\lambda}=\frac{(\vec{a} \cdot \vec{b}) \cdot \vec{a}}{\vec{a}^{2}}$ (B) $\vec{\lambda}=\frac{(\vec{a} \cdot \vec{b}) \cdot \vec{b}}{\vec{b}^{2}}$
$\vec{\mu}=\left(\frac{\vec{b} \cdot \vec{b} 0 \vec{a}-(\vec{a} \cdot \vec{b}) \vec{b}}{\vec{b}^{2}}\right.$ (D) $\vec{\mu}=\frac{\vec{b} \times(\vec{a} \times \vec{b})}{\vec{b}^{2}}$

- Watch Video Solution

212. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are any for vectors then $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$ is a vector (A) perpendicular to $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ (B) along the the line intersection of two planes, one containing \vec{a}, \vec{b} and the other containing \vec{c}, \vec{d}. (C) equally inclined both $\vec{a} \times \vec{b}$ and $\vec{c} \times \vec{d}(\mathrm{D})$ none of these

- Watch Video Solution

213. If $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} x(\vec{b} \times \vec{c} 0$ then (A) $\quad(\vec{c} \times \vec{a}) \times \vec{b}=0$
$\vec{b} \times(\vec{c} \times \vec{a})=0$ (C) $\vec{c} \times(\vec{a} \times \vec{b})=0$ (D) none of these
214. If vector $\vec{b}=(\tan \alpha,-12 \sqrt{\sin \alpha / 2})$ and $\vec{c}=\left(\tan \alpha, \tan \alpha-\frac{3}{\sqrt{\sin \alpha / 2}}\right)$ are orthogonal and vector $\vec{a}=(13, \sin 2 \alpha)$ makes an obtuse angle with the $z-$ axis, then the value of α is $\alpha=(4 n+1) \pi+\tan ^{-1} 2$ b. $\alpha=(4 n+1) \pi-\tan ^{-1} 2$ c. $\alpha=(4 n+2) \pi+\tan ^{-1} 2$ d. $\alpha=(4 n+2) \pi-\tan ^{-1} 2$

- Watch Video Solution

215. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-\hat{j}$ then the vector $(\vec{a} . \hat{i}) \hat{i}+(\vec{a} . \hat{j}) \hat{j}+(\vec{a} . \hat{k}) \hat{k},(\vec{b} \cdot \hat{i}) \hat{i}+(\vec{b} \cdot \hat{j}) \hat{j}+(\vec{b} \cdot \hat{k}) \hat{k}$ and $\hat{i}+\hat{j}-2 \hat{k}(\mathrm{~A})$ are mutually perpendicular (B) are coplanasr (C) form a parallelopiped of volume 6 units (D) form as parallelopiped of volume 3 units

- Watch Video Solution

216. If unit vectors \hat{i} and \hat{j} are at righat angle to each other and $\vec{p}=3 \hat{i}+3 \hat{j}, \vec{q}=5 \hat{i}, 4 \vec{r}=\vec{p}+\vec{q}$, then $2 \vec{s}=\vec{p}-\vec{q}$ (A) $\mid \vec{r}+$ kves $|=|\vec{r}-k \vec{s}|$ for all real k (B) \vec{r} is perpendicular to \vec{s} (C) $\vec{r}+\vec{s}$ is perpendicular to $\vec{r}-\vec{s}$ (D) $|\vec{r}|=|\vec{s}|=|\vec{p}|=\vec{q} \mid$

- Watch Video Solution

217. If vectors \vec{a} and \vec{b} are non collinear then $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}$ is (A) a unit vector \in thepla $\neq o$ fveca and $\operatorname{vecb}(B) \in$ thepla \neq ofveca and vecb (C)equally $\in \mathrm{cl} \in$ edotäs and \vec{b} (D) perpendicat \rightarrow veca xx vecb`

- Watch Video Solution

218. The position vectors of the points P and Q are $5 \hat{i}+7 \hat{j}-2 \hat{k}$ and $-3 \hat{i}+3 \hat{j}+6 \hat{k}$, respectively. Vector $\vec{A}=3 \hat{i}-\hat{j}+\hat{k}$ passes through point P and vector $\vec{B}=-3 \hat{i}+2 \hat{j}+4 \hat{k}$ passes through point Q. A
third vector $2 \hat{i}+7 \hat{j}-5 \hat{k}$ intersects vectors A and B. Find the position vectors of points of intersection.

- Watch Video Solution

219. The vectors $A B=3 \hat{i}+2 \hat{+} 2 \hat{k}$ and $B C=-\hat{i}-2 \hat{k}$ are the adjacent sides of parallelogram. The angle between its diagonal is (A) $\frac{\pi}{3}$ (B) $\frac{\pi}{4}$ (C) $\frac{3 \pi}{4}$ (D) (2pi)/3`

- Watch Video Solution

220. The vectors $a \hat{i}+2 a \hat{j}-3 a \hat{k},(2 a+1) \hat{i}=(2 a+3) \hat{j}+(a+1) \hat{k} \quad$ and $(3 a+5) \hat{i}+(a+5) \hat{j}+(a+2) \hat{k}$ are non coplanasr for a belonging to the set
(A) $\{0\}(\mathrm{B})(0, \infty)(\mathrm{C})(-\infty, 1)(D)(1, \circ \circ)^{`}$

- Watch Video Solution

221. The volume of the tetrahedronwhose vertices are the points with position vectors $\hat{i}-5 \hat{j}+10 \hat{k},-\hat{i}-3 \hat{j}+7 \hat{k}, 5 \hat{i}-\hat{j}+\lambda \hat{k}$ and $7 \hat{i}-4 \hat{j}+7 \hat{k}$ is 11 cubic units then the value of λ is (A) 7 (B) 1 (C) -7 (D) -1

- Watch Video Solution

222. If a vector \vec{r} e satisfies the equation $\vec{r} \times(\hat{i}+2 \hat{j}+\hat{k})=\hat{i}-\hat{k}$ then \vec{r} e is equal to (A) $\hat{i}+3 \hat{j}+\hat{k}$ (B) $3 \hat{i}+7 \hat{j}+3 \hat{k}$ (C) $\hat{i}+(t+3) \hat{i}+\hat{k})$, where t is any scalar (D) $\hat{j}+t(\hat{i}+2 \hat{j}+\hat{k})$ where t is any scalar.

- Watch Video Solution

223. If $D A=\vec{a}, A B=\vec{b}$ and $C B=k \vec{a} w h e r e k>0$ and X, Y are the midpoint of $D B$ and $A C$ respectively such that $|\vec{a}|=17$ and $|\overrightarrow{X Y}|=4$, then k is equal to (A) $\frac{9}{17}$ (B) $\frac{8}{17}$ (C) $\frac{25}{17}$ (D) $\frac{4}{17}$
224. \vec{a} and \vec{c} are unit vectors $|\vec{b}|=4$ with $\vec{a} \times \vec{b}=2(\vec{a} \times \vec{c})$. The angle between \vec{a} and \vec{c} is $\cos ^{-1}\left(\frac{1}{4}\right)$. Then $\vec{b}-2 \vec{c}=\lambda \vec{a}$, if λ is (A) 3
$-4(C) 4(D)-1 / 4$

- Watch Video Solution

225. If the resultant of three forces
$\vec{F}_{1}=p \hat{i}+3 \hat{j}-\hat{k}, \vec{F}_{2}=6 \hat{i}-\hat{k}$ and $\vec{F}_{3}=-5 \hat{i}+\hat{j}+2 \hat{k}$ acting on a parricle has magnitude equal to 5 units, then the value of p is a. $-6 \mathrm{~b} .-4 \mathrm{c} .2 \mathrm{~d} .4$

- Watch Video Solution

226. If \vec{a} and \vec{b} are two unit vectors perpendicular to each other and $\vec{c}=\lambda_{1} \vec{a}+\lambda_{2} \vec{b}+\lambda_{3}(\vec{a} \times \vec{b})$ then the following is (are) true (A) $\lambda_{1}=\vec{a} . \vec{c}$ (B)
$\lambda_{2}=|\vec{b} \times \vec{c}|$
(C) $\lambda_{3}=|(\vec{a} \times \vec{b}) \times \vec{c}|$
(D) $\lambda_{1}+\lambda_{2}+\lambda_{3}=(\vec{a}+\vec{b}+\vec{a} \times \vec{b}) . \vec{c}$
227. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ then (A) $(\vec{a}-\vec{d})=\lambda(\vec{b}-\vec{c})$ $\vec{a}+\vec{d}=\lambda(\vec{b}+\vec{c})$ (C) $(\vec{a}-\vec{b})=\lambda(\vec{c}+\vec{d})$ (D) none of these

(Watch Video Solution

228. If A, B, C are three points with position vectors
$\vec{i}+\vec{j}, \vec{i}-\hat{j}$ and $p \vec{i}+q \vec{j}+r \vec{k}$ respectiey then the points are collinear if (A) $p=q=r=0$ (B) $p=q r=1$ (C) $p=q, r=0$ (D) $p=1, q=2, r=0$

- Watch Video Solution

229. If $|\vec{a}|=4,|\vec{b}|=2$ and angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$ then $(\vec{a} \times \vec{b})^{2}$ is (A) 48 (B) $(\vec{a})^{2}$ (C) 16 (D) 32

(Watch Video Solution

230. If the unit vectors \vec{a} and \vec{b} are inclined at an angle 2θ such that $|\vec{a}-\vec{b}|<1$ and $0 \leq \theta \leq \pi$ then theta lies in the intervasl. (A) [0,pi/6] (B) $\left(5 \frac{\pi}{6}, \pi\right]$ (C) $[\mathrm{pi} / 2,5 \mathrm{pi} / 6](D)[\mathrm{pi} / 6, \mathrm{pi} / 2]^{`}$

- Watch Video Solution

231. The vectors $2 \hat{i}-\lambda \hat{j}+3 \lambda \hat{k}$ and $(1+\lambda) \hat{i}-2 \lambda \hat{j}+\hat{k}$ include an acute angle for (A) all values of m (B) $\lambda \leftarrow 2$ (C) lamdagt-12(D)lamdaepsilon [-2,-1/2]

- Watch Video Solution

232. The vectors $\vec{a}=x \hat{i}-2 \hat{j}+5 \hat{j}$ and $\vec{b}=\hat{i}+y \hat{j}-z \hat{k}$ are collinear if (A)
$x=1, y=-2, z=-5$ (B) $x=\frac{1}{2}, y=-4, z=-10$ (C) $x=-\frac{1}{2}, y=4, z=10$
(D) none of these

- Watch Video Solution

233. Let $\vec{a}=2 \hat{i}=\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-2 \hat{k}$ be three vectors. A vector in the pland of \vec{b} and \vec{c} whose projection on \vec{a} is of magnitude
$\left.\sqrt{(} \frac{2}{3}\right)$ is (A) $2 \hat{i}+3 \hat{j}+3 \hat{k}$ (B) $2 \hat{i}+3 \hat{j}-3 \hat{k}$ (C) $-2 \hat{i}-\hat{j}+5 \hat{k}$ (D) $2 \hat{i}+\hat{j}+5 \hat{k}$

- Watch Video Solution

234. The vectors $(x, x+1, x+2),(x+3, x+3, x+5)$ and $(x+6, x+7, x+8)$ are coplanar for (A) all values of x (B) $x<0$ (C) $x>0$ (D) none of these

- Watch Video Solution

235. If $\vec{a}, \vec{b}, \vec{c}$ are three non coplanar vectors such that $\vec{r}_{1}=\vec{a}-\vec{b}+\vec{c}, \vec{r}_{2}=\vec{b}+\vec{c}-\vec{a}, \vec{r}_{3}=\vec{c}+\vec{a}+\vec{b}, \vec{r}=2 \vec{a}-3 \vec{b}+3 \vec{c}$ if $\vec{r}=\lambda_{1} \vec{r}_{1}$ then (A) $\lambda_{1}=\frac{7}{2}$ (B) $\lambda_{1}+\lambda_{2}=3$ (C) $\lambda_{2}+\lambda_{3}=2$ (D) $\lambda_{1}+\lambda_{2}+\lambda_{3}=4$

- Watch Video Solution

236. A parallelogram is constructed on the vectors $\vec{a}=3 \vec{\alpha}-\vec{\beta}, \vec{b}=\vec{\alpha}+3 \vec{\beta}$. If $|\vec{\alpha}|=|\vec{\beta}|=2$ and angle between $\vec{\alpha}$ and $\vec{\beta}$ is $\frac{\pi}{3}$ then the length of a diagonal of the parallelogram is (A) $4 \sqrt{5}$ (B) $4 \sqrt{3}$ (C) 4 sqrt(7) ${ }^{\prime}$ (D) none of these

- Watch Video Solution

237. The vector $\vec{a}+\vec{b}$ bisects the angle between the vectors \hat{a} and \hat{b} if (A) $|\vec{a}|+|\vec{b}|=0$ (B) angle between \vec{a} and \vec{b} is zero (C) $|\vec{a}|=|\vec{b}|=0$ (D) none of these

- Watch Video Solution

238. Assertion:Points A, B, C are collinear, Reason: $A B \times A C=0(A)$ Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.
239. Assetion: $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=[\vec{a} \vec{c} \vec{d}] \vec{b}-[\vec{b} \vec{c} \vec{d}] \vec{a} \quad$ Reason: $(\vec{a} \times \vec{b}) \times \vec{c}=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

240. Assertion: Angle between \vec{a} and $\vec{b} i s \frac{2 \pi}{3}$, Reason: $|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+2|\vec{a} \cdot \vec{b}|$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

241. Assertion: If the magnitude of the sum of two unit vectors is a unit vector, then magnitude of their differnce is $\sqrt{3}$ Reason: $|\vec{a}|+|\vec{b}|=|\vec{a}+\vec{b}|$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

242. Assertion: Suppose $\hat{a}, \hat{b}, \hat{c}$ are unit vectors such that $\hat{a}, \hat{b}=\hat{a} . \hat{c}=0$ and the angle between hatb and hatc is pi/6thanhe $\vec{\rightarrow}$ rhata canberepresentedashata=+-2(hatbxxhatc),Reason: hata=+(hatbxxhatc)/(hatbxxhatc|) (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

243. Assertion: Thevalue of expression $\hat{i}(\hat{j} \times \hat{k})+\hat{j} .(\hat{k} \times \hat{i})+\hat{k} .(\hat{i} \times \hat{j})$ is equal to 3, Reason: If $\hat{a}, \hat{b}, \hat{c}$ are mutually perpendicular unit vectors, then $[\hat{a} \hat{b} \hat{c}]=1$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

244. Assertion ABCDEF is a regular hexagon and $\overrightarrow{A B}=\vec{a}, \overrightarrow{B C}=\vec{b}$ and $\overrightarrow{C D}=\vec{c}$, thenEA is equal to $-(\vec{b}+\vec{c})$, Reason: $\overrightarrow{A E}=\overrightarrow{B D}=\overrightarrow{B C}+\overrightarrow{C D}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

245. Assertion : IfvecA, vecB,vecCareanythreenoncoplanar $\vec{\rightarrow}$ rsthen (vecA.vecBxxvecC)/(vecCxxvecA.vecB)+
(vecB.vecAxxvecc)/(vecC.vecAxxvecB)=0, Reason:[veca vecb vecc]!=[vecb vecc veca] (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

246. Assertion: \vec{p}, \vec{q} and \vec{r} are coplanar. Reason: Vectros $\vec{p}, \vec{q}, \vec{r}$ are linearly independent. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

247. Assertion: $\vec{r} . \vec{a}$ and \vec{b} are thre vectors such that \vec{r} is perpendicular to
(A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

248. Assertion: Let $\vec{r}=l(\vec{a} \times \vec{b})=m(\vec{b} \times \vec{c})+n(\vec{c} \times \vec{a})$, wherel, m, n are scalars and $[\vec{a} \vec{b} \vec{c}]=\frac{1}{2} \cdot l+m+n=2 \vec{r} \cdot(\vec{a}+\vec{b}+\rightarrow)$. Reason: $\vec{a}, \vec{b}, \vec{c}$ are coplanar (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

249. Assertion: If $\vec{x} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{x} d \perp \vec{a}$ then $\vec{x}=\frac{(\vec{b} \times \vec{c}) \times \vec{a}}{\vec{a} . \vec{b}}$, Reason: $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$ (A) Both A and R are true and R is the
correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

250. Assertion: If $A B=3 \hat{i}-3 \hat{k}$ and $A C=\hat{i}-2 \hat{j}+\hat{k}$, then \mid vec(AM) $\mid=\operatorname{sqrt}(6)$ Reason, $\operatorname{vec}(A B)+\operatorname{vec}(A C)=2 \operatorname{vec}(A M)^{\prime}(A) B o t h ~ A$ and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

Watch Video Solution

251. Assertion: $|\vec{a}+\vec{b}|<|\overrightarrow{-} \vec{b}|$, Reason: $|\vec{a}+\vec{b}|^{2}=a^{2}+b^{2}+2 \vec{a} . \vec{b}$.

Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false.
(D) A is false but R is true.

- Watch Video Solution

252. Assertion: In $\triangle A B C, A B+B C+C A=0$ Reason: If
$O A=\vec{a}, O B=\vec{b}$ the $A B=\vec{a}+\vec{b}$ (triangle law of addition) (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

253. Assertion: If I is the incentre of $\triangle A B C$, then $|\operatorname{vec}(B C)| \operatorname{vec}(I A)+|\operatorname{vec}(C A)| \operatorname{vec}(I B)+|\operatorname{vec}(A B)| \operatorname{vec}(I C)=0$

Reason:IfOisthe or ig \in, thentheposition $\vec{\rightarrow}$ rofcentroidof/_\ABC
is $(\overrightarrow{O A})+\overrightarrow{O B}+\overrightarrow{O C} \frac{)}{3}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

254. Assertion: $\vec{a}=\hat{i}+p \hat{j}+2 \hat{k}$ and $\hat{b}=2 \hat{i}+3 \hat{j}+q \hat{k}$ are parallel vectors if $p=\frac{3}{2}, q=4$, Reason: If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ are parallel then $a_{-} 1 / b_{-} 1=a_{-} 2 / b_{-} 2=a_{-} 3 / b_{-} 3^{\prime}$. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

255. Assertion: Let $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=\hat{j}-\hat{k}$ be two vectors. Angle between
$\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}=90^{0}$ Reason: Projection of $\vec{a}+\vec{b}$ ona $-\vec{b}$ is zero (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

256. Assertion: $\vec{c} 4 \vec{a}-\vec{b}$ and \vec{a}, veb, \vec{c} are coplanar. Reason Vector $\vec{a}, \vec{b}, \vec{c}$ are linearly dependent. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

257. Assertion: $|\vec{a}|=|\vec{b}|$ does not imply that $\vec{a}=\vec{b}$, Reason: If $\vec{a}=\vec{b}$, then $|\vec{a}|=|\vec{b}|$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

258. Assertion: If $\vec{a}, \vec{b}, \vec{c}$ are unit such that $\vec{a}+\vec{b}+\vec{c}=0$ then $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=-\frac{3}{2}, \quad$ Reason $\quad(\vec{x}+\vec{y})^{2}=|\vec{x}|^{2}+|\vec{y}|^{2}+2(\vec{x} \cdot \vec{y})$

Both A and R are true and R is the correct explanation of $A(B)$ Both A and
R are true R is not te correct explanation of $A(C) A$ is true but R is false.
(D) A is false but R is true.

- Watch Video Solution

259. Assertion: Three points with position vectors $\vec{a} s, \vec{b}, \vec{c}$ are collinear if $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=0$ Reason: Three points A, B, C are collinear Iff $\overrightarrow{A B} \times A C=\overrightarrow{0}(\mathrm{~A})$ Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

260. Assertion: If as force \vec{F} passes through $Q(\vec{b})$ then monent of force \vec{F} about $\mathrm{P}($ veca $)$ is vecFxxvecr, where vecr=vec(PQ$)^{\prime}$, Reason Moment is a vector. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.
261. Assertion: The nine point centre wil be $\frac{\vec{a}+\vec{b}+\vec{c}}{2}$, Reason: Centroid of $\triangle A B C i s(v e c a+v e c b+v e c c) / 3)^{\prime}$ and nine point centre is the middle point of the line segment joining circumcentre and orthocentre. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

262. Assertion: The scalar product of a force \vec{F} and displacement \vec{r} is equal to the work done. Reason: Work done is not a scalar (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.
263. Assertion: In a $\triangle A B C, A B+B C+C A=0$, Reason: If
$\overrightarrow{A B}=\vec{a}, \overrightarrow{)} B C$) $=\vec{b}$ then $\vec{C}=\vec{a}+\vec{b}$ (triangle law of addition) (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

264. Assertion: For $a=-\frac{1}{\sqrt{3}}$ the volume of the parallelopiped formed by vectors $\hat{i}+a \hat{j}, a \hat{i}+\hat{j}+\hat{k}$ and hatj+ahatk
is max $i \mu m$. Reason. Thevolumeotheparal \leq lompedhav \in gthethreecoter min ouse
veca.vecb and vecc=|[veca vecb vecc]|| (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.
265. Assertion: If \vec{a} is a perpendicular to \vec{b} and \vec{b}, then $\vec{a} \times(\vec{b} \times \vec{c})=0$ Reason: If \vec{b} is perpendicular to veccthenvecbxxvecc $=0^{`}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

266. Assertion: If $|\vec{a}|=2,|\vec{b}|=3|2 \vec{a}-\vec{b}|=5$, then $\mid 2 \vec{a}+\overrightarrow{\mid}=5$, Reason: |vecp-vecq|=|vecp+vecq|` (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

267. Assertion : If $\in a \triangle A B C, \overrightarrow{B C}=\frac{\vec{p}}{|\vec{p}|}-\frac{\vec{q}}{|\vec{q}|} \quad$ and $\quad \operatorname{vec}(A C)=$
(2vecp)/|vecp|,|vecp|! $=\mid$ veq|thenthevalueof $\cos 2 \mathrm{~A}+\cos 2 \mathrm{~B}+\cos 2 \mathrm{C}$
is - 1 ., Reason: If $\in / \backslash \mathrm{ABC}, \quad / \mathrm{C}=90^{\wedge} 0$ then $\cos 2 \mathrm{~A}+\cos 2 \mathrm{~B}+\cos 2 \mathrm{C}=-1^{\prime}$ (A$)$ Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false.
(D) A is false but R is true.

- Watch Video Solution

268. Assertion: If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ the $(\vec{a}-\vec{d})$ is perpendicular to $(\vec{b}-\vec{c})$., Reason : If \vec{p} is perpendicular to vecq then vecp.vecq $=0^{`}(A)$ Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

269. Assertion: If $\vec{r} \cdot \vec{a}=0, \vec{r} \cdot \vec{b}=0, \vec{r} . \vec{c}=0$ for some non zero vector $\vec{r} \mathrm{e}$ then $\vec{a}, \vec{b}, \vec{c}$ are coplanar vectors. Reason: Ifveca,vecb,veccarecoplanarthen veca+vecb+vecc=0` (A) Both A and R are true and R is the correct
explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

270. Assertion: If \vec{a} and \vec{b} re reciprocal vectors, then \vec{a}. $\vec{b}=1$, Reason: If $\vec{a}=\lambda \vec{b}, \lambda \varepsilon R^{+}$and $|\vec{a}||\vec{b}|=1$, then \vec{a} and \vec{b} are reciprocal. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

271. Assertion: Let \vec{a} and \vec{b} be any two vectors $(\vec{a} \times \hat{i}) \cdot(\vec{b} \times \hat{i})+(\vec{a} \times \hat{j}) \cdot(\overrightarrow{\times} \hat{j})+(\vec{a} \times \hat{k}) \cdot(\vec{b} \times \hat{k})=2 \vec{a} \cdot \vec{b} \cdot$, Reason: $(\vec{a} \cdot \hat{i})($
(A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.
272. Assertion: The vector product of a force \vec{F} and displacement \vec{r} is equal to the work done. Reason: Work is not a vector. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

273. Consider three vectors \vec{a}, \vec{b} and \vec{c}. Vectors \vec{a} and \vec{b} are unit vectors having an angle θ between them For vector veca, $|\vec{a}|^{2}=\vec{a}$. \vec{a} if $\vec{a} \perp \vec{b}$ and $\vec{a} \perp \vec{c}$ then $\vec{a}|\mid \vec{b} \times \vec{c}$ If $\vec{a}| \mid \vec{b}$, thena $\vec{a}=t \vec{b}$ Now answer the following question: The value of $\sin \left(\frac{\theta}{2}\right)$ is (A) $\frac{1}{2}|\vec{a}-\vec{b}|$ (B) $\frac{1}{2}|\vec{a}+\vec{b}|$ $|\vec{a}-\vec{b}|$ (D) $|\vec{a}+\vec{b}|$
274. Consider three vectors \vec{a}, \vec{b} and \vec{c}. Vectors \vec{a} and \vec{b} are unit vectors having an angle θ between them For vector veca, $|\vec{a}|^{2}=\vec{a}$. \vec{a} if $\vec{a} \perp \vec{b}$ and $\vec{a} \perp \vec{c}$ then $\vec{a}|\mid \vec{b} \times \vec{c}$ If $\vec{a}| \mid \vec{b}$, thena $\vec{a}=t \vec{b}$ Now answer the following question: If \vec{c} is a unit vector and equal to the sum of \vec{a} and \vec{b} the magnitude of difference between \vec{a} and \vec{b} is (A) 1 (B) $\sqrt{2}$ (C) $\sqrt{3}$ (D) $\frac{1}{\sqrt{2}}$

- Watch Video Solution

275. Consider three vectors \vec{a}, \vec{b} and \vec{c}. Vectors \vec{a} and \vec{b} are unit vectors having an angle θ between them for vector $\vec{a},|\vec{a}|^{2}=\vec{a} \cdot \vec{a}$ If $\vec{a} \perp \vec{b}$ and $\vec{a} \perp \vec{c}$ then $\vec{a}|\mid \vec{b} \times \vec{c}$ If $\vec{a}| \mid \vec{b}$, then $\vec{a}=t \vec{b}$ Now answer the \wedge following question: If veccisasunit \rightarrow rsucht veca.vecb=veca.vecc=0 and theta $=(\mathrm{pi} / 6)$ then veca=(A) $+-1 / 2($ vecbxxvecc $)(B)+-($ vecbxxvecc $)(C)$ $+-2(v e c b x x v e c c)$ ' (D) none of these
276. Consider three vectors \vec{a}, \vec{b} and \vec{c}. Vectors \vec{a} and \vec{b} are unit vectors having an angle θ between them For vector veca,|veca|^ $2=$ veca.vecaIf veca_l_vecb and veca_|_vecc then veca||vecbxxveccifveca||vecb, then veca=tvecbNowanswerthefollow \in gquestion: If|vecc|=4, theta $\cos ^{\wedge}-1(1 / 4)$ and vecc-2vecb=tvecas, then $\mathrm{t}=(\mathrm{A}) 3,-4(B)-3,4(C) 3,4(D)-3,-4^{`}$

- Watch Video Solution

277. For
vectors
$\vec{a}, \vec{b}, \vec{c}, \vec{d}, \vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$ and $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=(\vec{a} \cdot \vec{c})(\vec{b}$.
Now answer the following question: $(\vec{a} \times \vec{b}) \cdot(\overrightarrow{\times} \vec{d})$ is equal to (A)
$\vec{a} .(\vec{b} \times(\vec{x} \vec{d}))$
(B) $|\vec{a}|(\vec{b} \cdot(\vec{c} \times \vec{d}))$
(C) $|\vec{a} \times \vec{b}| \cdot|\vec{c} \times \vec{d} D|$
(D) none of these

- Watch Video Solution

278.

For
vectors
$\vec{a}, \vec{b}, \vec{c}, \vec{d}, \vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$ and $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=(\vec{a} \cdot \vec{c})(\vec{b}$.

Now answer the following question: $(\vec{a} \times \vec{b}) \cdot(\overrightarrow{\times} \vec{d})$ is equal to (A) $(\vec{a} \times \vec{d}) \cdot(\vec{b} \times \vec{c})$ (B) $(\vec{b} \times \vec{a}) \cdot(\vec{c} \times \vec{d})$ (C) $(\overrightarrow{d x x \vec{c}}) \cdot(\vec{b} \times \vec{a} 0$ (D) none of these

- Watch Video Solution

279.

For
vectors
$\vec{a}, \vec{b}, \vec{c}, \vec{d}, \vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$ and $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=(\vec{a} \cdot \vec{c})(\vec{b}$.
Now answer the following question: $\{(\vec{a} \times \vec{b}) \times \vec{c}\} . \vec{d}$ would be equal to (A) $\vec{a} \cdot(\overrightarrow{\times}(\vec{c} \times \vec{d}))$ (B) $((\vec{a} \times \vec{c}) \times \vec{b}) \cdot \vec{d}$ (C) $(\vec{a} \times \vec{b}) \cdot(\overrightarrow{d x x} \vec{c})$ (D) none of these

- Watch Video Solution

280. Unit vector along \vec{a} is denoted by \hat{a} (if $|\vec{a}|=1, \vec{a}$ is called a unit vector). Also $\frac{\vec{a}}{|\vec{a}|}=\hat{a}$ and $\vec{a}=|\vec{a}| \hat{a}$. Suppose $\vec{a}, \vec{b}, \vec{c}$ are three non parallel
unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{2} \vec{b}[\vec{p} \times(\overrightarrow{\times} \vec{r})$ is a vector triple product and $\vec{p} \times(\vec{q} \times \vec{r})=(\vec{p} \cdot \vec{r} \cdot \vec{q})-(\vec{p} \cdot \vec{q}) \vec{r}]$. Angle between \vec{a} and \vec{b} is (A) 90° (B) 30° (C) 60° (D) none of these

- Watch Video Solution

281. Unit vector along \vec{a} is denoted by \hat{a} (if $|\vec{a}|=1, \vec{a}$ is called a unit vector). Also $\frac{\vec{a}}{|\vec{a}|}=\hat{a}$ and $\vec{a}=|\vec{a}| \hat{a}$. Suppose $\vec{a}, \vec{b}, \vec{c}$ are three non parallel unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{2} \vec{b}[\vec{p} \times(\overrightarrow{\times} \vec{r})$ is a vector triple product and $\vec{p} \times(\vec{q} \times \vec{r})=(\vec{p} \cdot \vec{r} \cdot \vec{q})-(\vec{p} \cdot \vec{q}) \vec{r}]$. Angle between \vec{a} and \vec{c} is (A) 120° (B) 60° (C) 30° (D) none of these

- Watch Video Solution

282. Unit vector along \vec{a} is denoted by \hat{a} (if $|\vec{a}|=1, \vec{a}$ is called a unit vector). Also $\frac{\vec{a}}{|\vec{a}|}=\hat{a}$ and $\vec{a}=|\vec{a}| \hat{a}$. Suppose $\vec{a}, \vec{b}, \vec{c}$ are three non parallel unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{2} \vec{b}[\vec{p} \times(\overrightarrow{\times} \vec{r})$ is a vector triple
product and $\vec{p} \times(\vec{q} \times \vec{r})=(\vec{p} \cdot \vec{r} \cdot \vec{q})-(\vec{p} \cdot \vec{q}) \vec{r}] .|\vec{a} \times \vec{c}|$ is equal to (A) $\frac{1}{2}$
(B) $\frac{\sqrt{3}}{2}$ (C) $\frac{3}{4}$ (D) none of these

- Watch Video Solution

283. For any three vectors $\vec{a}, \vec{b}, \vec{c}$ their product would be a vector if one cross product is folowed by other cross product i.e $(\vec{a} \times \vec{b}) \times \vec{c}$ or $(\vec{b} \times \vec{c}) \times \vec{a}$ etc. For any four vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ the product would be a vector with the help of sequential cross product or by cross product of two vectors obtained by corss product of two pair i.e. $(\vec{a} \times(\vec{b} \times \vec{c})) \times \vec{d}$ or $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$. Now answer the following question: $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$ would be a vector (A) perpendicular to $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ (B) paral $\leq l \rightarrow$ veca and $\operatorname{vecc}(C)$ paralel to \vec{b} and $\vec{d}(\mathrm{D})$ none of these

- Watch Video Solution

284. For any three vectors $\vec{a}, \vec{b}, \vec{c}$ their product would be a vector if one cross product is folowed by other cross product i.e $(\vec{a} \times \vec{b}) \times \vec{c}$ or $(\vec{b} \times \vec{c}) \times \vec{a}$ etc. For any four vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ the product would be a vector with the help of sequential cross product or by cross product of two vectors obtained by corss product of two pair i.e. $(\vec{a} \times(\vec{b} \times \vec{c})) \times \vec{d}$ or $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$. (vecaxxvecb) $\times x($ veccxxvecd 0 isa $\stackrel{\vec{\rightarrow}}{ } r($ A $)$ alongthel \in eoff \int ersectionoftwopla \neq sconta $\in \in$ gveca,vecb
and \quad vecc,vecd (B) perpendicar \rightarrow pla \neq conta $\in \in$ gveca,vecb and vecc,vecd (C) paral $\leq l \rightarrow$ thepla \neq conta $\in \in$ gveca,vecb and vecc,vecd' (D) none of these

- Watch Video Solution

285. For any three vectors $\vec{a}, \vec{b}, \vec{c}$ their product would be a vector if one cross product is folowed by other cross product i.e $(\vec{a} \times \vec{b}) \times \vec{c}$ or $(\vec{b} \times \vec{c}) \times \vec{a}$ etc. For any four vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ the product would be a vector with the help of sequential cross product or by cross product of two vectors obtained by corss product of two pair i.e.
$(\vec{a} \times(\vec{b} \times \vec{c})) \times \vec{d}$ or $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$. Now answer the following question: $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$ would be a (A) equally inclined with $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ (B) perpendicular with $(\vec{a} \times \vec{b}) \times \vec{c}$ and \vec{c} (C) equally inclined with $\vec{a} \times \vec{b}$ and $\vec{c} \times \vec{d}$ (D) none of these

- Watch Video Solution

286. If O be the origin the vector $O P$ is called the position vector of point
P. Also $A B=O B-O A$. Three points are said to be collinear if they lie on the same stasighat line.Points A, B, C are collinear if one of them divides the line segment joining the others two in some ratio. Also points A, B, C are collinear if and only if $\overrightarrow{A B} \times \overrightarrow{A C}=\overrightarrow{0}$ Let the points A, B, and C having position vectors \vec{a}, \vec{b} and \vec{c} be collinear Now answer the following queston: $t \vec{a}+s \vec{b}=(t+s) \vec{c}$ where t and s are scalar (A) $t \vec{a}+s \vec{b}=(t+s) \vec{c}$ where t and s are scalar (B) $\vec{a}=\vec{b}$ (C) $\vec{b}=\vec{c}$ (D) none of these

- Watch Video Solution

287. If O be the origin the vector $O P$ is called the position vector of point
P. Also $A B=O B-O A$. Three points are said to be collinear if they lie on the same stasighat line.Points A, B, C are collinear if one of them divides the line segment joining the others two in some ratio. Also points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear if and only if $A B \times A C=\overrightarrow{0}$ Let the points A, B, and C having position vectors \vec{a}, \vec{b} and \vec{c} be collinear Now answer the following queston: The exists scalars x, y, z such that $x \vec{a}+y \vec{b}+z c \vec{c}=0$ and $x+y+z \neq 0$ (B) $x \vec{a}+y \vec{b}+z c \vec{c} \neq 0$ and $x+y+z \neq 0$ (C) $x \vec{a}+y \vec{b}+z c \vec{c}=0$ and $x+y+z=0$ (D) none of these

- Watch Video Solution

$$
\rightarrow
$$

288. If O be the origin the vector $O P$ is called the position vector of point $\rightarrow \quad \rightarrow$
P. Also $A B=O B-O A$. Three points are said to be collinear if they lie on the same stasighat line.Points A, B, C are collinear if one of them divides the line segment joining the others two in some ratio. Also points A, B, C are collinear if and only if $A B \times A C=\overrightarrow{0}$ Let the points A, B, and C having
position vectors \vec{a}, \vec{b} and \vec{c} be collinear Now answer the following queston:
(A) veca.vecb=veca.vecc (B) vecaxxvecb $=\operatorname{vecc}(C)$ vecaxxvecb+vecbxxvecc+veccxxveca=vec0` (D) none of these

- Watch Video Solution

289. \vec{a}. $(\vec{b} \times \vec{c})$ is called the scalar triple product of $\vec{a}, \vec{b}, \vec{c}$ and is denoted by $[\vec{a} \vec{b} \vec{c}]$. If $\vec{a}, \vec{b}, \vec{c}$ are cyclically permuted the vaslue of the scalar triple product remasin the same. In a scalar triple product, interchange of two vectors changes the sign of scalar triple product but not the magnitude. in scalar triple product the the position of the dot and cross can be interchanged privided the cyclic order of vectors is preserved. Also the scaslar triple product is ZERO if any two vectors are equal or parallel.
$[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]$ is equal to (A) $2[\vec{a} \vec{b} \vec{c}]$
(B) $3[\vec{a}, \vec{b}, \vec{c}]$
(C) $[\vec{a}, \vec{b}, \vec{c}]$

- Watch Video Solution

290. \vec{a}. $(\vec{b} \times \vec{c})$ is called the scalar triple product of $\vec{a}, \vec{b}, \vec{c}$ and is denoted by $[\vec{a} \vec{b} \vec{c}]$. If $\vec{a}, \vec{b}, \vec{c}$ are cyclically permuted the vaslue of the scalar triple product remasin the same. In a scalar triple product, interchange of two vectors changes the sign of scalar triple product but not the magnitude. in scalar triple product the the position of the dot and cross can be interchanged privided the cyclic order of vectors is preserved. Also the scaslar triple product is ZERO if any two vectors are equal or parallel. If $\vec{a}, \vec{b}, \vec{c}$ are coplanar then $[\vec{b}+\vec{c} \vec{c}+\vec{a} \vec{a}+\vec{b}=]$ (A) 1 (B) -1 (C) 0 (D) none of these

- Watch Video Solution

291. \vec{a}. $(\vec{b} \times \vec{c})$ is called the scalar triple product of $\vec{a}, \vec{b}, \vec{c}$ and is denoted by $[\vec{a} \vec{b} \vec{c}]$. If $\vec{a}, \vec{b}, \vec{c}$ are cyclically permuted the vaslue of the scalar triple product remasin the same. In a scalar triple product, interchange of two vectors changes the sign of scalar triple product but not the magnitude. in scalar triple product the the position of the dot and cross can be interchanged privided the cyclic order of vectors is preserved. Also the
scaslar triple product is ZERO if any two vectors are equal or parallel. (A) [vecb-vecc vecc-veca veca-vecb] $(B)\left[\right.$ veca vecb vecc] ${ }^{\text {(}}$ (C) 0 (D) none of these

- Watch Video Solution

292. Let A, B, C be vertices of a triangle $A B C$ in which B is taken as origin of reference and position vectors of A and C are \vec{a} and \vec{c} respectively. A line AR parallel to $B C$ is drawn from $A P R(P$ is the mid point of $A B$) meets $A C$ and Q and area of triangle $A C R$ is 2 times area of triangle $A B C$ Position vector of R in terms \vec{a} and \vec{c} is (A) $\vec{a}+2 \vec{c}$ (B) $\vec{a}+3 \vec{c}$ (C) $\vec{a}+\vec{c}$ (D) $\vec{a}+4 \vec{c}$

- Watch Video Solution

293. Let A, B, C be vertices of a triangle $A B C$ in which B is taken as origin of reference and position vectors of A and C are \vec{a} and \vec{c} respectively. A line AR parallel to $B C$ is drawn from $A P R$ (P is the mid point of $A B$) meets $A C$ and Q and area of triangle $A C R$ is 2 times area of triangle $A B C$ Positon
vector of Q for position vector of R in (1) is (A) $\frac{2 \vec{a}+3 \vec{c}}{5}$ (B) $\frac{3 \vec{a}+2 \vec{c}}{5}$ $\frac{\vec{a}+2 \vec{c}}{5}$ (D) none of these

- Watch Video Solution

294. Let A, B, C be vertices of a triangle $A B C$ in which B is taken as origin of reference and position vectors of A and C are \vec{a} and \vec{c} respectively. A line AR parallel to $B C$ is drawn from $A P R$ (P is the mid point of $A B$) meets $A C$ and Q and area of triangle $A C R$ is 2 times area of triangle $A B C$: (($\mathrm{PQ}) /(\mathrm{QR})) .\left((\mathrm{AQ}) /(\mathrm{QC})\right.$)isequal $\rightarrow(\mathrm{B}) \frac{1}{10}$ (C) $\frac{2}{5}$ (D) $\frac{3}{5}$

- Watch Video Solution

295. Let $A B C b e$ a triangle. Points D, E, F are taken on the sides $A B, B C$ and $C A$ respectively such that $\frac{A D}{A B}=\frac{B E}{B C} /=\frac{C F}{C A}=\alpha$ Prove that the vectors $A E, B$ and $C D$ form a triangle also find alpha for which the area of the triangle formed by these is least.
296. Let $A B C b e$ a triangle. Points D, E, F are taken on the sides $A B, B C$ and $C A$ respectively such that $\frac{A D}{A B}=\frac{B E}{B C} /=\frac{C F}{C A}=\alpha$ Prove that the vectors AE, B and $C D$ form a triangle also find alpha for which the area of the triangle formed by these is least.

- Watch Video Solution

297. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $|\vec{a}|=|\vec{b}|=|\vec{c}|=4$ and angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$ angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ and angle between \vec{c} and \vec{a} is $\frac{\pi}{3}$. The volume of the pasrallelopiped whose adjacent edges are represented by the vectors \vec{a}, \vec{b} and \vec{c} is (A) $24 \sqrt{2}$ (B) $24 \sqrt{3}$ (C) $32 \sqrt{92}$)
(D) 32

- Watch Video Solution

298. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $|\vec{a}|=|\vec{b}|=|\vec{c}|=4$ and angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$ angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ and angle between \vec{c} and \vec{a} is $\frac{\pi}{3}$. The heighat of the parallelopiped whose adjacent edges are represented by the ectors \vec{a}, \vec{b} and \vec{c} is (A) $4 \sqrt{\frac{2}{3}}$ (B) $3 \sqrt{\frac{2}{3}}$ (C) $4 \sqrt{\frac{3}{2}}$ (D) $\sqrt[3]{\frac{3}{2}}$

- Watch Video Solution

299. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $|\vec{a}|=|\vec{b}|=|\vec{c}|=4$ and angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$ angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ and angle between \vec{c} and \vec{a} is $\frac{\pi}{3}$. The volume of the tetrhedron whose adjacent edges are represented by the vectors \vec{a}, \vec{b} and \vec{c} is (A) $\frac{4 \sqrt{3}}{2}$ (B) $\frac{8 \sqrt{2}}{3}$ (C) $\frac{16}{\sqrt{3}}$ (D) $\frac{16 \sqrt{2}}{3}$

- Watch Video Solution

300. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $|\vec{a}|=|\vec{b}|=|\vec{c}|=4$ and angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$ angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ and angle between \vec{c} and \vec{a} is $\frac{\pi}{3}$. The volume of the triangular prism whose adjacent edges are represented by the vectors \vec{a}, \vec{b} and \vec{c} is (A) $12 \sqrt{12}$ (B) $12 \sqrt{3}$ (C) $16 \sqrt{2}$ (D) $16 \sqrt{3}$

Watch Video Solution

301. If \vec{a}, \vec{b} and \vec{c} be any three non coplanar vectors. Then the system of vectors vecal',vecbl' and \vec{c}^{\prime} which satisfies
$\vec{a} \cdot \vec{a}^{\prime}=\vec{b} \cdot \overrightarrow{b^{\prime}}=\vec{c} \cdot \vec{c}^{\prime}=1 \vec{a} \cdot \overrightarrow{b^{\prime}}=\vec{a} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{c}^{\prime}=\vec{c} \cdot \vec{a}^{\prime}=\vec{c} \cdot \overrightarrow{b^{\prime}}=0$ is called the reciprocal system to the vectors \vec{a}, \vec{b}, and \vec{c}. The value of $\left[\vec{a}^{\prime} \vec{b}^{\prime} \vec{c}^{\prime}\right]^{-1}$ is (A) $2[\vec{a} \vec{b} \vec{c}]$ (B) $[\vec{a}, \vec{b}, \vec{c}]$ (C) $3[\vec{a} \vec{b} \vec{c}]$ (D) 0

- Watch Video Solution

302. If \vec{a}, \vec{b} and \vec{c} be any three non coplanar vectors. Then the system of
veca.veca \'=vecb.vecb\'=vecc.vecc ${ }^{\prime}=1$
$\vec{a} \cdot \vec{b}^{\prime}=\vec{a} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{c}^{\prime}=\vec{c} \cdot \vec{a}^{\prime}=\vec{c} \cdot \vec{b}^{\prime}=0$ is called the reciprocal system to the vectors \vec{a}, \vec{b}, and \vec{c}. The value of $\left(\vec{a} \times \vec{a}^{\prime}\right)+(\vec{b} \times \vec{b})+\left(\vec{x}^{\prime}\right)$ is (A) $\vec{a}+\vec{b}+$
(B) $\vec{a}^{\prime}+\vec{b}^{\prime}+\vec{\prime}$
(C) 0 (D)
none of these

- Watch Video Solution

303. If \vec{a}, \vec{b} and \vec{c} be any three non coplanar vectors. Then the system of vectors vecal',vecbl' and \vec{c}^{\prime} which satisfies
$\vec{a} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{b}^{\prime}=\vec{c} \cdot \vec{c}^{\prime}=1 \vec{a} \cdot \vec{b}^{\prime}=\vec{a} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{c}^{\prime}=\vec{c} \cdot \vec{a}^{\prime}=\vec{c} \cdot \overrightarrow{b^{\prime}}=0$ is called the reciprocal system to the vectors \vec{a}, \vec{b}, and \vec{c}. $[\vec{a}, \vec{b}, \vec{c}]-\left(\vec{a}^{\prime} \times \vec{b}^{\prime}\right)+\left(\vec{b}^{\prime} \times \overrightarrow{{ }^{\prime}}\right)+\left(\vec{c}^{\prime} \times \vec{a}^{\prime}\right)=$ (A) $\vec{a}+\vec{b}+\vec{c}$ (B) $\vec{a}+\vec{b}-\vec{c}$
(C) $2(\vec{a}+\vec{b}+\vec{c})$ (D) $3\left(\vec{a}^{\prime}+\vec{b}^{\prime}+\vec{c}^{\prime}\right)$

- Watch Video Solution

304. The vector equation of the plane through the point $2 \hat{i}-\hat{j}-4 \hat{k}$ and parallel to the plane $\vec{r} \cdot(4 \hat{i}-12 \hat{j}-3 \hat{k})-7=0$, is

- Watch Video Solution

