©゙"doubtnut

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

VECTOR AND 3D - JEE MAINS AND ADVANCED QUESTIONS

Exercise

1. Given two vectors are $\hat{i}-\hat{j}$ and $\hat{i}+2 \hat{j}$. The unit vector coplanar with the two vectors nad perpendicular to first is (A) $\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$
$\frac{1}{\sqrt{5}}(2 \hat{i}+\hat{j})$
(C) $\pm \frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$
(D) none of these

- Watch Video Solution

2. The vector $\hat{i}+x \hat{j}+3 \hat{k}$ is rotated through an angle θ and doubled in magnitude, then it becomes $4 \hat{i}+(4 x-2) \hat{j}+2 \hat{k}$. Then values of x are
(A) $-\frac{2}{3}$ (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) 2

- Watch Video Solution

3. If the vectors $\vec{a}, \vec{b}, \vec{c}$ form the sides BC, CA and AB respectively of a triangle ABC then (A) $\vec{a} \cdot(\vec{b} \times \vec{c})=\overrightarrow{0}$ (B) $\vec{a} \times(\vec{b} x \vec{c})=\overrightarrow{0}$
$\vec{a} \cdot \vec{b}=\vec{c}=\vec{c}=\vec{a} . a \neq 0$ (D) $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a} \overrightarrow{0}$

- Watch Video Solution

4. I the vectors $\vec{a}, \vec{a}=x \hat{i}+y \hat{j}+z \hat{k} a$ and $\vec{b}=\hat{j}$ are such that \vec{a}, \vec{c} and \vec{b} form a righat handed system then \vec{c} is (A) $z \vec{i}-x \vec{k}$
$\overrightarrow{0}$ (C) $y \hat{j}$ (D) $-z \hat{i}+x \hat{k}$

- Watch Video Solution

5. If $\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{2}\end{array}\right|=0$ and vectors $\left(1, a, a^{2}\right),\left(1, b, b^{2}\right)$ and $\left(1, c, c^{2}\right)$ are hon coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

- Watch Video Solution

6. $\vec{a}, \vec{b}, \vec{c}$ are $3 \longrightarrow r s$, sucht^veca+vecb+vecc=0, \mid veca| $=1, \mid$ vecb|=2,|vecc|=3, then veca.vecb+vecb.vecc+veca.veca` is equal to (A) 0 (B) -7 (C) 7 (D) 1

- Watch Video Solution

7. If \vec{u}, \vec{v} and \vec{w} are three non coplanar vectors then
$(\vec{u}+\vec{v}-\vec{w}) \cdot(\vec{u}-\vec{c}) \times(\vec{v}-\vec{w})$ equals (A) $\vec{u} \cdot \vec{v} \times \vec{w}$
$\vec{u} \cdot \vec{w} \times \vec{v}$ (C) $3 \vec{u} \cdot \vec{u} \times \vec{w}$ (D) 0

- Watch Video Solution

8. Consider points A, B, C and D with position vectors $7 \hat{i}-4 \hat{j}+7 \hat{k}, \hat{i}-6 \hat{j}+10 \hat{k}, \hat{i}-3 \hat{j}+4 \hat{k}$ and $5 \hat{i}-\hat{j}+5 \hat{k}$ respectively. Then $A B C D$ is a (A) square (B) rhombus (C) rectangle (D) parallelogram but not a rhombus

- Watch Video Solution

9. The vector $\overrightarrow{A B}=3 \hat{i}+4 \hat{k}$ and $\overrightarrow{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are sides of a triangle $A B C$. The length of the median through A is (A) $\sqrt{18}$ (B) $\sqrt{72}$ (C) $\sqrt{33}$ (D) $\sqrt{288}$

- Watch Video Solution

10. Let $\vec{u}=h a i+\hat{j}, \vec{v}=\hat{i}-\hat{j}$ and $\vec{w}=\hat{i}+2 \hat{j}+3 \hat{k}$. If \hat{n} isa unit vector such that $\vec{u} \cdot \widehat{n}=0$ and $\vec{v} \cdot \widehat{n}=0,|\vec{w} \cdot \widehat{n}|$ is equal to (A) O (B) 1
(C) 2 (D) 3
11. If $\bar{a}, \bar{b}, \bar{c}$ are non coplanar vectros and λ is a real number then the vectors $\overline{+} 2 \bar{b}+3 \bar{c}, \lambda \bar{b}+4 \bar{c}$ and $(2 \lambda-1) \bar{c}$ are non coplanar for (A) all values of lamda (B) non value of lamda (C) all except two values of lamda
(D) all except one vaue of lamda

- Watch Video Solution

12. Let $\vec{u}, \vec{v}, \vec{w}$ be such that $|\vec{u}|=1,|\vec{v}|=2,|\vec{w}| 3$. If the projection of \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{v}, \vec{w} are perpendicular to each other then $|\vec{u}-\vec{v}+\vec{w}|$ equals (A) 2 (B) $\sqrt{7}$ (C) $\sqrt{14}$ (D) 14

- Watch Video Solution

13. Let \vec{a}, \vec{b}, and \vec{c} be three non zero vector such that no two of these are collinear. If the vector $\vec{a}+2 \vec{b}$ is collinear with \vec{c} and $\vec{b}+3 \vec{c}$ iscol \in earwithveca
be \in gsomenonzeroscalar $)$ thenvecal+2vecb+6veccequals (A) lamdaveca

(D) Watch Video Solution

14. If C is the mid point of $A B$ and P is any point outside $A B$ then (A) $\overrightarrow{P A}+\overrightarrow{P B}+\overrightarrow{P C}=0$ (В) $\overrightarrow{P A}+\overrightarrow{P B}+2 \overrightarrow{P C}=\overrightarrow{0}$ (С) $\overrightarrow{P A}+\overrightarrow{P B}=\overrightarrow{P C}$ (D) $\overrightarrow{P A}+\overrightarrow{P B}=2 \overrightarrow{P C}$

- Watch Video Solution

15. For any vector \vec{a} the value of $(\vec{a} \times \hat{i})^{2}+(\vec{a} \times \hat{j})^{2}+(\vec{a} \times \hat{k})^{2}$ is equal to (A) $4 \vec{a}^{2}$ (B) $2 \vec{a}^{2}$ (C) \vec{a}^{2} (D) $3 \vec{a}^{2}$

- Watch Video Solution

16.

$$
\vec{a}=\hat{i}-\hat{k}, \vec{b}=x \hat{i}+\hat{j}+(1-x) \hat{k} \text { and } \vec{c}=y \hat{i}+x \hat{j}+(1+x-y) \hat{k} . I
$$

[veca vecb vecc]' depends on (A) neither x nor $y(B)$ both x and $y(C)$ only x
(D) only y
17. The value of a for which the points A, B, C with position vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $a \hat{i}-3 \hat{j}+\hat{k}$ respectively are the vertices are the vetices of a righat angled triangle with $C=\frac{\pi}{2}$ are (A) -2 and $-1(B)-2$ and 1 (C) 2 and -1 (D) 2 and 1

- Watch Video Solution

18. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{c}=x \hat{i}+(x-2) \hat{j}-\hat{k}$. If the vector \vec{c} lies in the plane of \vec{a} and \vec{b} then x equals (A) O (B) 1 (C) -4 (D) -2

- Watch Video Solution

19. The non zero vectors \vec{a}, \vec{b}, and \vec{c} are related byi $\vec{a}=8 \vec{b} n d \vec{c}=-7 \vec{b}$. Then the angle between \vec{a} and \vec{c} is (A) π (B)

0 (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{2}$

Watch Video Solution

20. If $\vec{u}, \vec{v}, \vec{w}$ are noncoplanar vectors and p , q are real numbers, then the equality $[3 \vec{u}, p \vec{v}, p \vec{w}]-[p \vec{v}, \vec{w}, q \vec{u}]-[2 \vec{w}, q \vec{v}, q \vec{u}]=0$ holds for (1) exactly one value of (p, q) (2) exactly two values of $(\mathrm{p}, \mathrm{q})(3)$ more than two but not all values of $(p, q)(4)$ all values of (p, q)

- Watch Video Solution

21. If the
vectors
$\vec{a}=\hat{i}-\hat{j}+2 \hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}+\hat{k}$ and $\vec{c}=\lambda \hat{i}+\hat{j}+\mu \hat{k} \quad$ are mutually orthogonal then $(\lambda, \mu)=(A)(-2,3)(B)(3,-2)(C)(-3,2)(D)(2,-3)$

- Watch Video Solution

22. The vectors \vec{a} and \vec{b} are not perpendicular and $\vec{a} c$ and \vec{d} are two vectors satisfying : $\vec{b} \times \vec{c}=\vec{b} \times \vec{d}$ and $\vec{a} \cdot \vec{d}=0$. Then the \vec{d} is
equal to (A) $\vec{c}+\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}} \vec{b}$ (B) $\vec{b}+\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{b}} \vec{c}$ (C) $\vec{c}-\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}} \vec{b}$
$\vec{b}-\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{b}} \vec{c}$

- Watch Video Solution

23. If the
vectors
$p \hat{i}+\hat{j}+\hat{k}, \hat{i}+q \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+r \hat{k}(p \neq q \neq r \neq 1)$ are coplanar then the value of $p q r-(p+q+r)$ is (A) 0
(B) -1 (C) -2 (D) 2

- Watch Video Solution

24. Let \widehat{a} and \hat{b} be two unit vectors. If the vectors $\vec{c}=\widehat{a}+2 \hat{b}$ and $\vec{d}=5 \widehat{a}-4 \hat{b}$ are perpendicular to each other then the angle between \widehat{a} and \hat{b} is (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{6}$

- Watch Video Solution

25. Let $A B C D$ be a parallelogram such that $\overrightarrow{A B}=\vec{q}, \overrightarrow{A D}=\vec{P}$ and $\angle B A D$ be an acute angle. If \vec{r} is the vector that coincides with the altitude directed from the vertex B to the side AD, then \vec{r} is given by-

- Watch Video Solution

26. If the vectors $\overrightarrow{A B}=3 \hat{i}+4 \hat{k}$ and $\overrightarrow{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a triangle $A B C$, then the length of the median through A is (A) $\sqrt{18}$ (B)
$\sqrt{72}(C) \operatorname{sqrt}(33)(D) \operatorname{sqrt}(45)^{\wedge}$

- Watch Video Solution

27. If $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=\lambda[\vec{a} \vec{b} \vec{c}]^{2}$ then λ is equal to (A) 1

2 (C) 3 (D) 0

- Watch Video Solution

28. Let \vec{a}, \vec{b} and \vec{c} be the non zero vectors such that $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$. if theta is the acute angle between the vectors \vec{b} and \vec{a} then theta equals (A) $\frac{1}{3}$ (B) $\frac{\sqrt{2}}{3}$ (C) $\frac{2}{3}$ (D) $2 \frac{\sqrt{2}}{3}$

- Watch Video Solution

29. Let \vec{a}, \vec{b} and \vec{c} be three unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\sqrt{3}}{2}(\vec{b}+\vec{c})$. If \vec{b} is not parallel to \vec{c} then the angle between \vec{a} and \vec{b} is (A) $\frac{5 \pi}{6}$ (B) $\frac{3 \pi}{4}$ (C) $\frac{\pi}{2}$ (D) $\frac{2 \pi}{3}$

- Watch Video Solution

30. Let $\vec{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}$. Let \vec{c} be vector such that $|\vec{c}-\vec{a}|=3,|(\vec{a} \times \vec{b}) \times \vec{c}|=3 \quad$ and \quad the angle between \vec{c} and $\vec{a} \times \vec{b}$ be 30° Then, $\vec{a} \cdot V e$ is equal to

- Watch Video Solution

31. Let \vec{a}, \vec{b}, and \vec{c} be three non coplanar unit vectors such that the angle between every pair of them is $\frac{\pi}{3}$. If $\vec{a} \times \vec{b}+\vec{b} \times \vec{x}=p \vec{a}+q \vec{b}+r \vec{c}$ where $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are scalars then the value of $\frac{p^{2}+2 q^{2}+r^{2}}{q^{2}}$ is

- Watch Video Solution

32. If R^{2} if the magnitude of the projection vector of the vecrtor $\alpha \hat{i}+\beta \hat{j} o n \sqrt{3} \hat{i}+\hat{j} i s \sqrt{3}$ and if $\alpha=2+\sqrt{3} \beta$ then possible value (s) of $|\alpha|$ is /are

- Watch Video Solution

33. Let $\sqrt{3 i}+\hat{j}, \hat{i}+\sqrt{3 j}$ and $\beta \hat{i}+(1-\beta) \hat{j}$ respectively be the position vedors of the points A, B and C with respect the origin O . If the distance of C from the bisector of the acute angle between $O A$ and $O B$ is $\frac{3}{\sqrt{2}}$, then the sum all possible values of β is \qquad .
34. If the four points with position vectors $-2 \hat{i}+\hat{k}, \hat{i}+\hat{j}+\hat{k}, \hat{j}-\hat{k}$ and $\lambda \hat{j}+\hat{k}$ are coplanar then $\lambda=$ (A) 1 (B) 2/3 (C) -1 (D) 0

- Watch Video Solution

35. Let O be the origin and let PQR be an arbitrary triangle. The point S is such that $\quad \vec{O} P \vec{O} Q+\vec{O} R \vec{O} S=\vec{O} R \vec{O} P+\vec{O} Q \vec{O} S=\vec{O} Q$ $\vec{O} R+\overrightarrow{O P} \vec{O} S$ Then the triangle PQ has S as its: circumcentre (b) orthocentre (c) incentre (d) centroid

- Watch Video Solution

36. A plane which passes through the point $(3,2,0)$ nd the line $\frac{x-4}{1}=\frac{y-7}{5}=\frac{z-4}{4}$ is (A) $x-y+z=1$ (B) $\mathrm{x}+\mathrm{y}+\mathrm{z}=5(C) \mathrm{x}+2 \mathrm{y}-\mathrm{z}=1$
(D) $2 x-y+z=5^{`}$

© Watch Video Solution

37. A parallelepiped is formed by planes drawn through the points $(2,3,5) \operatorname{and}(5,9,7)$, parallel to the coordinate planes. The length of a diagonal of the parallelepiped is 7 unit b. $\sqrt{38}$ unit c. $\sqrt{155}$ unit d. none of these

- Watch Video Solution

38. The equation of the plane containing the line $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}$
$a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$, where $a x_{1}+b y_{1}+c z_{1}=0 \mathrm{~b}$.
$a l+b m+c n=0$ c. $\frac{a}{l}=\frac{b}{m}=\frac{c}{n}$ d. $l x_{1}+m y_{1}+n z_{1}=0$

- Watch Video Solution

39. The radius of the circle in which the sphere $x^{I 2}+y^{2}+z^{2}+2 z-2 y-4 z-19=0 \quad$ is cut by the plane
$x+2 y+2 z+7=0$ is a. 2 b. 3 c. 4 d. 1

- Watch Video Solution

40. The lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}$ and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$ are coplanar if (A) $k=0$ or -1 (B) $k=1$ or -1 (C) $k=0$ or -3 (D) $k=3$ or -3

- Watch Video Solution

41. the two lines
$x=a y+b, z=c y+d$ and $x=a^{\prime} y+b, z=c^{\prime} y+d^{\prime} \quad$ will be perpendicular, if and only if: (A) $a a^{\prime}+^{\prime}=1=0$

$$
\begin{array}{lll}
a a^{\prime}+\prime+{ }^{\prime}=1=0 & \text { (C) } & a a^{\prime}+\prime+^{\prime}=0 \\
\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right)+\left(c+c^{\prime}\right)=0 & \tag{D}
\end{array}
$$

42. The shortest distance from the plane $12 x+y+3 z=327$ to the sphere $x^{2}+y^{2}+z^{2}+4 x-2 y-6 z=155$ is a. 39 b. 26 c. $41-\frac{4}{13} \mathrm{~d}$. 13

- Watch Video Solution

43. Two systems of rectangular axes have the same origin. If a plane cuts them at distance $a, b, c a n d d, b^{\prime}, c^{\prime}$ from the origin, then a.
$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}=0$
b.
$\frac{1}{a^{2}}-\frac{1}{b^{2}}-\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}-\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
c.
$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}-\frac{1}{a^{\prime 2}}-\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}=0$
d.

- Watch Video Solution

44.

$O(0,0,0), A(1,2,1), B(2,1,3)$, and $C(-1,1,2)$, then angle between face $O A B$ and $A B C$ will be a. $\cos ^{-1}\left(\frac{17}{31}\right)$ b. 30^{0} c. 90^{0} d. $\cos ^{-1}\left(\frac{19}{35}\right)$

(D) Watch Video Solution

45. Distance between two parallel planes $2 x+y+2 z$ and $4 x+2 y+4 z+5=0$ (A) $\frac{3}{2}$ (B) $\frac{9}{2}$ (C) $\frac{7}{2}$ (D) $\frac{5}{2}$

- Watch Video Solution

46. A line makes an angel θ with each of the x -and z -axes. If the angel β, which it makes with the y-axis, is such that $\sin ^{2} \beta=3 \sin ^{2} \theta$, then $\cos ^{2} \theta$ equals a. $\frac{2}{3}$ b. $\frac{1}{5}$ c. $\frac{3}{5}$ d. $\frac{2}{5}$

- Watch Video Solution

47. A line with direction cosines proportional to $2,1,2$ meet each of the lines $x=y+a=z n d x+a=2 y=2 z$. The coordinastes of each of the points of intersection are given by (A) $(3 a, 2 a, 3 a),(a, a, 2 a)$
$(3 a, 2 a, 3 a),(a, a, a 0$
(C)
$(3 a, 3 a, 3 a),(a, a, a)$
$92 a, 3 a, 3 a),(2 a, a, a 0$

- Watch Video Solution

48. If the straighat
lines
$x=1+s, y=-3-\lambda s, z=1+\lambda s$ and $x=\frac{t}{2}, y=1+t, z=2-t$
with parameters s and t respectively, are coplanar, then λ equals (A) $-\frac{1}{2}$
(B) -1 (C) -2 (D) 0

- Watch Video Solution

49. The intersection of \quad the
$x^{2}+y^{2}+z^{2}+7 x-2 y-z=13 a n d x^{2}+y^{2}=z^{2}-3 x+3 y+4 z=8$
is the same as the intersection of one of the spheres and the plane a.

$$
x-y-z=1 \text { b. } x-2 y-z=1 \text { c. } x-y-2 z=1 \text { d. } 2 x-y-z=1
$$

- Watch Video Solution

50. If the plane $2 a x-3 a y+4 a z+6=0$ passes through the midpoint of the line joining centres of the spheres $x^{2}+y^{2}+z^{2}+6 x-8 y-2 z=13$ and $x^{2}+y^{2}+z^{2}-10 x+4 y-2 z=$ then a equals (A) $2(B)-2(C) 1(D)-1$

- Watch Video Solution

51. The distance of the line $\vec{r}=2 \hat{i}-2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-2 \hat{j}+4 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}+5 \hat{j}+\hat{k})=5$ is (A) $\frac{10}{3}$ (B) (1,-2) (C) $\frac{10}{3 \sqrt{3}}$ (D) $\frac{10}{9}$

- Watch Video Solution

52. If the angle θ between the line $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2 x-y+\sqrt{\lambda} z+4=0$ is such that $\sin \theta=\frac{1}{3}$ then the value of λ is (A) $-\frac{4}{3}$ (B) $\frac{4}{3}$ (C) $-\frac{3}{5}$ (D) $\frac{5}{3}$

- Watch Video Solution

53. The angle between the lines $2 x=3 y=-z$ and $6 x=-y=-4 z$ is (A) 0^{0} (B) 90^{0} (C) 45^{0} (D) 30^{0}

Watch Video Solution

54. The plane $x+2 y-z=4$ cuts the sphere $x^{2}+y^{2}+z^{2}-x+z-2=0$ in a circle of radius (A) $\sqrt{2}$ (B) 2 (C) 1 (D) 3

- Watch Video Solution

55. the two
$x=a y+b, z=c y+d$ and $x=a^{\prime} y+b, z=c^{\prime} y+d^{\prime} \quad$ will be perpendicular, if and only if: (A) $a a^{\prime}+{ }^{\prime}=1=0$
$a a^{\prime}+\prime+^{\prime}=1=0$
(C) $a a^{\prime}+\prime+^{\prime}=0$
$\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right)+\left(c+c^{\prime}\right)=0$

- Watch Video Solution

56. The image of the point $(-1,3,4)$ in the plane $-2 y=0$ is a.

$$
\left(-\frac{17}{3},-\frac{19}{3}, 4\right) \text { b. }(15,11,4) \text { c. }\left(-\frac{17}{3},-\frac{19}{3}, 1\right) \text { d. }\left(\frac{9}{5}, \frac{13}{5}, 4\right)
$$

- Watch Video Solution

57. If a line makes an angle of $\frac{\pi}{4}$ with the positive directions of each of x axis and y-axis, then the angle that the line makes with the positive direction of the z-axis is (1) $\frac{\pi}{6}$ (2) $\frac{\pi}{3}$ (3) $\frac{\pi}{4}$ (4) $\frac{\pi}{2}$

- Watch Video Solution

58. If $(2,3,5)$ is one end of a diameter of the sphere $x^{2}+y^{2}+z^{2}-6 x-12 y-2 z+20=0$, then the coordinates of the other end of the diameter are (1) $(4,9,-3)(2)(4,-3,3)(3)(4,3,5)$
(4) $(4,3,-3)$

- Watch Video Solution

59. Let L be the line of intersection of the planes $2 x+3 y+z=1 a n d x+3 y+2 z=2$. If L makes an angle α with the positive x-axis, then $\cos \alpha$ equals a. $\frac{1}{2}$ b. 1 c. $\frac{1}{\sqrt{2}}$ d. $\frac{1}{\sqrt{3}}$

- Watch Video Solution

60. The line passing through the points ($5,1, a$) and $(3, b, 1)$ crosses the yzplane at the point $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$.Then (1) $a=2, b=8$
$a=4, b=6$ (3) $a=6, b=4$ (4) $a=8, b=2$

- Watch Video Solution

61. If the straight lines $\frac{x-1}{k}=\frac{y-2}{2}=\frac{z-3}{3} \quad$ and $\frac{x-2}{3}=\frac{y-3}{k}=\frac{z-1}{2}$ intersect at a point, then the integer k is equal to (1) $-5(2) 5(3) 2(4)-2$

- Watch Video Solution

62. Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lie in the plane $x+3 y-\alpha z+\beta=0$ then (α, β) equals (A) $(6,-17)(B)(-6,7)(C)(5,-15)(D)$ $(-5,15)$

- Watch Video Solution

63. The projections of a vector on the three coordinate axis are $6,3,2$ respectively. The direction cosines of the vector are (1) $6,-3,2$ (2) $\frac{6}{5}, \frac{-3}{5}, \frac{2}{5}$ (3) $\frac{6}{7}, \frac{-3}{7}, \frac{2}{7}$ (4) $\frac{-6}{7}, \frac{-3}{7}, \frac{2}{7}$

- Watch Video Solution

64. A line $A B$ in three-dimensional space makes angles 45 oand $120 o$ with the positive x-axis and the positive y-axis respectively. If $A B$ makes an acute angle q with the positive z-axis, then q equals (1) 450 (2) $60 o$ (3) 750 (4) 30 o
65. Asertion: The point $A(3,1,6)$ is the mirror image of the point $B(1,3,4)$ in the plane $x-y+z=5$. Reason: The plane $x-y+z=5$ bisects he segment joining ${ }^{\wedge}(3,1,6)$ and $B(1,3,4)$. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

66. If the angle between the line $x \frac{y-1}{2}=\frac{z-3}{\lambda}$ and the plane $x+2 y+3 z=4$ is $\cos ^{-1}\left(\sqrt{\frac{5}{14}}\right)$, then $\lambda=$ (A) $\frac{2}{5}$ (B) $\frac{5}{3}$ (C) $\frac{2}{3}$ (D) $\frac{3}{2}$

(D) Watch Video Solution

67. Assertion: The point $A(1,0,7)$ is the mirror image of the point $b(1,6,3)$ in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ Reason: The line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3} \quad$ bisects the segment joining
$A(1,0,7)$ and $B(1,6,3)$. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

68. The distance of the point $(1,-5,9)$ from the plane $x-y+z=5$ measured along a straighat line $x=y=z$ is (A) $5 \sqrt{3}$ (B) $3 \sqrt{10}$ (C) $3 \sqrt{5}$ (D) $10 \sqrt{3}$

- Watch Video Solution

69. The length of the perpendicular drawn from the point $(3,-1,11)$ to the line $\frac{x}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ is (A) $\sqrt{33}$ (B) $\sqrt{53}$ (C) $\sqrt{66}$ (D) $\sqrt{29}$

- Watch Video Solution

70. If the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect then the value of k is (A) $\frac{2}{9}$ (B) $\frac{9}{2}$ (C) 0 (D) -1

- Watch Video Solution

71. An equation of the plane through the point $(1,0,0)$ and $(0,2,0)$ and at a distance $\frac{6}{7}$ units from origin is (A) $x-2 y+2 z+1=0$ $x-2 y+2 z-1=0(C) \mathrm{x}-2 \mathrm{y}+2 \mathrm{z}+5=\mathrm{O}(D)$ None of above`

- Watch Video Solution

72.

Distance
between
two
parallel
planes
$2 x+y+2 z=8$ and $4 x+2 y+4 z+5=0$ is (A) $\frac{7}{2}$ (B) $\frac{5}{2}$ (C) $\frac{3}{2}$ (D) $\frac{9}{2}$

- Watch Video Solution

73. If the lines $\left.\frac{x-2}{1}=\frac{y-3}{1}\right) \frac{z-4}{-k}$ and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$ are coplanar then k can have (A) exactly two values (B) exactly thre values (C) any value (D) exactly one value

- Watch Video Solution

74. The image of the line $\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-4}{-5}$ in the plane $2 x-y+z+3=0$ is the line (1) $\frac{x+3}{3}=\frac{y-5}{1}=\frac{z-2}{-5}$
$\frac{x+3}{-3}=\frac{y-5}{-1}=\frac{z+2}{5}$
$\frac{x-3}{-3}=\frac{y+5}{-1}=\frac{z-2}{5}$
(3) $\frac{x-3}{3}=\frac{y+5}{1}=\frac{z-2}{-5}$

- Watch Video Solution

75. The angle between the lines whose direction cosines satisfy the equations $l+m+n=0$ and $l^{2}=m^{2}+n^{2}$ is (1) $\frac{\pi}{3}$ (2) $\frac{\pi}{4}$ (3) $\frac{\pi}{6}$ (4) $\frac{\pi}{2}$

- Watch Video Solution

76. The distance of the point $(1,0,2)$ from the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $\mathrm{x} \mathrm{y}+\mathrm{z}=16$, is : (1) $2 \sqrt{14}$ (2) 8 (3) $3 \sqrt{21}$ (4) 27

- Watch Video Solution

77. The equation of the plane containing the line $2 x-5 y+z=3 ; x+y+4 z=5$, and parallel to the plane, $x+3 y+6 z=1$, is: (1) $2 x+6 y+12 z=13$ (2) $x+3 y+6 z=-7$ (3) $x+3 y+6 z=7(4) 2 x+6 y+12 z=-13$

- Watch Video Solution

78. If the line, $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$ lies in the place, $l x+m y-z=9$, then $l^{2}+m^{2}$ is equal to: (1) 26 (2) 18 (3) 5 (4) 2

- Watch Video Solution

79. The distance of the point $(1,-5,9)$ from the plane $x-y+z=5$ measured along the line $x=y=z$ is : (1) $3 \sqrt{10}$ (2) $10 \sqrt{3}$ (3) $\frac{10}{\sqrt{3}}$ (4) $\frac{20}{3}$

- Watch Video Solution

80. If the image of the point $P(1,-2,3)$ in the plane, $2 x+3 y-4 z+22=0$ measured parallel to the line, $\frac{x}{1}-\frac{y}{4}-\frac{z}{5}$ is Q, then $P Q$ is equal to : $\sqrt{42}(2) 6 \sqrt{5}$ (3) $3 \sqrt{5}(4) 3 \sqrt{42}$

- Watch Video Solution

81. The distance of the point $(1,3,-7)$ from the plane passing through the point $(1,-1,-1)$, having normal perpendicular to both the lines $\frac{x-1}{1}=\frac{y+2}{-2}=\frac{z-4}{3}$ and $\frac{x-2}{2}=\frac{y+1}{-1}=\frac{z+7}{-1}$ is: $\quad \frac{5}{\sqrt{83}}$
$\frac{10}{\sqrt{74}}$ (3) $\frac{20}{\sqrt{74}}$ (4) $\frac{10}{\sqrt{83}}$
82. From a point $P(\lambda, \lambda, \lambda)$, perpendicular PQ and PR are drawn respectively on the lines $y=x, z=1$ and $y=-x, z=-1$.If P is such that $\angle Q P R$ is a right angle, then the possible value(s) of λ is/(are)

- Watch Video Solution

83. In R', consider the planes $P_{1}, y=0$ and $P_{2}: x+z=1$. Let P_{3}, be a plane, different from P_{1}, and P_{2}, which passes through the intersection of P_{1}, and P_{2}. If the distance of the point $(0,1,0)$ from P_{3}, is 1 and the distance of a point (α, β, γ) from P_{3} is 2 , then which of the following relation is (are) true ?

- Watch Video Solution

84. The value of λ or which the straighat line $\frac{x-\lambda}{3}=\frac{y-1}{2+\lambda}=\frac{z-3}{-1}$ may lie on the plane $x-2 y=0$ (A) 2 (B) 0 (C) $-\frac{1}{2}$ (D) there is no such λ

- Watch Video Solution

85. the mirror image of point $(3,1,7)$ with respect to the plane $x-y+z=3$ is P. then equation plane which is passes through the point P and contains the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$.

- Watch Video Solution

