

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

VECTOR AND 3D - PREVIOUS YEAR QUESTIONS

Exercise

1. Let veca=2hati+hatj-2hatk and vecb=hati+hatj. If vecc*isa* \longrightarrow *rsucht*^ veca.vecc=|vecc|,|vecc-veca|=2sqrt(2) and *the*∠*between*(vecaxxvecb) and vecc*is*pi/6*then*|(vecaxxvecb)xvec|=(A) $\frac{2}{3}$ (B) $\frac{1}{2}$ (C) $\frac{3}{2}$ (D) 1

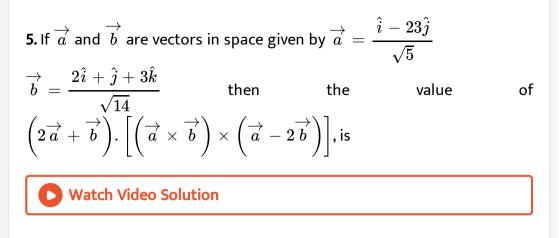
2. Let
$$e\overrightarrow{a} = \hat{i} + \hat{j} - \hat{k}$$
, $\overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$ and \overrightarrow{c} be as unit vector perpendicular to veca and vecb*the*vecc=(*A*)1/sqrt(j+k)(*B*)1/sqrt(2)(j-k)

(C)1/sqrt(6) (i-2jk)(D)1/sqrt(6) (2i-j+k)`

3. ABCDEF is a regular hexagon with centre a the origin such that $\overrightarrow{AB} + \overrightarrow{EB} + \overrightarrow{FC} = \lambda \overrightarrow{ED}$ then $\lambda = (A) 2 (B) 4 (C) 6 (D) 3$

Watch Video Solution

4. A non vector \overrightarrow{a} is parallel to the line of intersection of the plane determined by the vectors \hat{i} , $\hat{i} + \hat{j}$ and thepane determined by the vectors $\hat{i} - \hat{j}$, $\hat{i} + \hat{k}$ then angle between \overrightarrow{a} and $\hat{i} - 2\hat{j} + 2\hat{k}$ is = (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{4}$



6. Let P, Q, R and S be the points on the plane with position vectors -2i - j, 4i, 3i + 3jand - 3j + 2j, respectively. The quadrilateral PQRS must be a Parallelogram, which is neither a rhombus nor a rectangle Square Rectangle, but not a square Rhombus, but not a square

Watch Video Solution

7. Two adjacent sides of a parallelogram ABCD are given by $\overrightarrow{A}B = 2\hat{i} + 10\hat{j} + 11\hat{k}and\overrightarrow{A}D = -\hat{i} + 2\hat{j} + 2\hat{k}$. The side AD is rotated by an acute angle α in the plane of the parallelogram so that AD becomes AD'. If AD' makes a right angle with the side AB, then

the cosine of the angel α is given by $\frac{8}{9}$ b. $\frac{\sqrt{17}}{9}$ c. $\frac{1}{9}$ d. $\frac{4\sqrt{5}}{9}$

Watch Video Solution

8.

$$\vec{a} = -\hat{i} - \hat{k}, \vec{b} = x\hat{i} + \hat{j} + (1-x)\hat{k}nad\vec{c} = y\hat{i} + x\hat{j} + (1+x-y)\hat{k}nad\vec{c}$$
Then $\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]$ depends (A) only x (B) only y (C) neither x or nor y (D) both x and y

Let

Watch Video Solution

9. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three vectors of which every pair is non colinear. If the vector $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{b} + \overrightarrow{c}$ are collinear with the vector \overrightarrow{c} and \overrightarrow{a} respectively then which one of the following is correct? (A) $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is a nul vector(B)veca+vecb+vecc*isaunit* \Longrightarrow r(C)veca+vecb+vecc $isa \longrightarrow rofmagnitude2units(D)$ veca+vecb+vecc` isd a vector of magnitude 3 units

10. If
$$\overrightarrow{a} = \frac{1}{\sqrt{10}} \left(3\hat{i} + \hat{k} \right), \overrightarrow{b} = \frac{1}{7} \left(2\hat{i} + 3\hat{j} - 6\hat{k} \right)$$
, then the value of $\left(2\overrightarrow{a} - \overrightarrow{b} \right). \left\{ \left(\overrightarrow{a} \times \overrightarrow{b} \right) \times \left(\overrightarrow{a} + 2\overrightarrow{b} \right) \right\}$ is

11. The vectors \overrightarrow{a} and \overrightarrow{b} are not perpendicular and $\overrightarrow{a}c$ and \overrightarrow{d} are two vectors satisfying: $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$ and $\overrightarrow{a} \cdot \overrightarrow{d} = 0$. Then the \overrightarrow{d} is equal to (A) $\overrightarrow{c} + \frac{\overrightarrow{a} \cdot \overrightarrow{c}}{\overrightarrow{a} \cdot \overrightarrow{b}} \right) \overrightarrow{b}$ (B) $\overrightarrow{b} + \frac{\overrightarrow{b} \cdot \overrightarrow{c}}{\overrightarrow{a} \cdot \overrightarrow{b}} \right) \overrightarrow{c}$ (C) $\overrightarrow{c} - \frac{\overrightarrow{a} \cdot \overrightarrow{c}}{\overrightarrow{a} \cdot \overrightarrow{b}} \right) \overrightarrow{b}$ (D) $\overrightarrow{b} - \frac{\overrightarrow{b} \cdot \overrightarrow{c}}{\overrightarrow{a} \cdot \overrightarrow{b}} \right) \overrightarrow{c}$

12. If
$$\overrightarrow{a}$$
 is perpendicular to \overrightarrow{b} then the vector
 $\overrightarrow{a} \times \left[\overrightarrow{a} \times \left\{\overrightarrow{a} \times \left(\overrightarrow{a} \times \overrightarrow{b}\right)\right\}\right]$ is equila (A) $\left|\overrightarrow{a}\right|^2 \overrightarrow{b}$ (B) $\left|\overrightarrow{a}\right| \overrightarrow{b}$ (C)

$$\left|\overrightarrow{a}\right|^{3} \overrightarrow{b}$$
 (D) $\left|\overrightarrow{a}\right|^{4} \overrightarrow{b}$

13. If the vector $8\hat{i} + a\hat{j}$ of magnitude 10 is the directionn of the vector

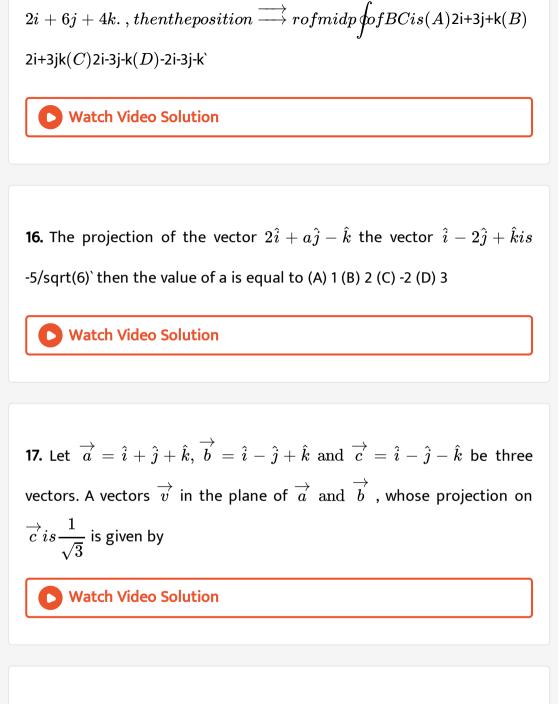
 $4\hat{i}-3\hat{j}$, then the value of a is equal to (A) 6 (B) 3 (C) -3 (D) -6

Watch Video Solution

14. If the angle between \overrightarrow{a} and \overrightarrow{c} is 25^0 the angle between \overrightarrow{b} and \overrightarrow{c} is 65^0 and $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{c}$, then the angle between \overrightarrow{a} and \overrightarrow{b} is (A) 40^0 (B) 115^0 (C) 25^0 (D) 90^0

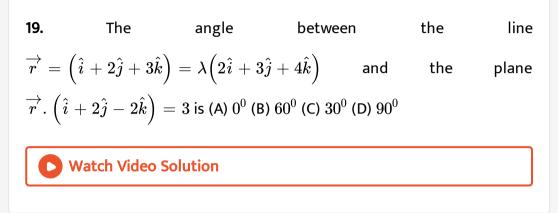
15. The positon vector of the centroid of the triangle ABC is 2i + 4j + 2k.

If the position vector of the vector A is



18. The vectors which is/are coplanar with vectors $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$ and perpendicular to the vector $\hat{i} + \hat{j} + \hat{k}$

is /are (A)
$$\hat{j} - \hat{k}$$
 (B) $-\hat{i} + \hat{j}$ (C) $\hat{i} - \hat{j}$ (D) $-\hat{j} + \hat{k}$



20. The line
$$\vec{r} = \hat{i} + \hat{j} - \hat{k} + \lambda(3i - j) \text{ and } \vec{r} = 4\hat{i} - h * k + \mu(2\hat{i} + 3\hat{k})$$

interset at the point (A) (0,0,0) (B) (0,0,1) (C) (0,-4-1) (D) (4,0,-1)

21. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are vectors such that $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \sqrt{29}$ and $\overrightarrow{a} \times \left(2\hat{i} + 3\hat{j} + 4\hat{k}\right) = \left(2\hat{i} + 3\hat{j} + 4\hat{k}\right) \times \overrightarrow{b}$,

then possible value of
$$\left(\overrightarrow{a}+\overrightarrow{b}
ight)$$
. $\left(-7\hat{i}+2\hat{j}+3\hat{k}
ight)$ is (A) 0 (B) 3 (C) 4

(D) 8

22. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are unit vectors satisfying
 $\left|\overrightarrow{a} - \overrightarrow{b}\right|^{2} + \left|\overrightarrow{b} - \overrightarrow{c}\right|^{2} + \left|\overrightarrow{c} - \overrightarrow{a}\right|^{2} = 9$ then $\left|2\overrightarrow{a} + 5\overrightarrow{b} + 3\overrightarrow{c}\right|$ is **Watch Video Solution**

23. Let $\overline{PR} = 3\hat{i} + \hat{j} - 2\hat{k}$ and $\overline{SQ} = \hat{i} - 3\hat{j} - 4\hat{k}$ determine diagonals of a parallelogram PQRS and $\overline{PT} = \hat{i} + 2\hat{j} + 3\hat{k}$ be another vector. Then the volume of the parallelepiped determined by the vectors $\overline{PT}, \overline{PQ}$ and \overline{PS} is

24. Consider the set of eight vector $V = \left\{a\hat{i} + b\hat{j} + c\hat{k}; a, bc \in \{-1, 1\}
ight\}$. Three non-coplanar vectors can be chosen from V is 2^p ways. Then p is_____.

Watch Video Solution

25. If \overrightarrow{a} and \overrightarrow{b} are non colinear vectors, then the value of α for which the vectors $\overrightarrow{u} = (\alpha - 2)\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{v} = (2 + 3\alpha)\overrightarrow{a} - 3\overrightarrow{b}$ are collinear is (A) $\frac{3}{2}$ (B) $\frac{2}{3}$ (C) $\frac{-3}{2}$ (D) $\frac{-2}{3}$

Watch Video Solution

26. If the vectors $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC, then the length of the median through A is (A) $\sqrt{33}$ (B) $\sqrt{45}$ (C) $\sqrt{18}$ (D) $\sqrt{720}$

27. If
$$\overrightarrow{a} \perp \overrightarrow{b}$$
 and $\left(\overrightarrow{a} + \overrightarrow{b}\right) \perp \left(\overrightarrow{a} + m\overrightarrow{b}\right)$, then m= (A) -1 (B) 1 (C)
$$\frac{-1\overrightarrow{a}^2}{\overrightarrow{b}} (D) 0$$

28. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are unit vectors such that
 $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$ then $\overrightarrow{a}, \overrightarrow{b} + \overrightarrow{b}, \overrightarrow{c} + \overrightarrow{c}, \overrightarrow{a} = (A) \frac{3}{2} (B) - \frac{3}{2} (C) \frac{2}{3}$
(D) $\frac{1}{2}$

Watch Video Solution

29. If
$$\overrightarrow{a}$$
 is perpendiculasr to both \overrightarrow{b} and \overrightarrow{c} then (A)
 $\overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \overrightarrow{0}$ (B) $\overrightarrow{a} \times \left(\overrightarrow{b} x \overrightarrow{c}\right) = \overrightarrow{0}$ (C)
 $\overrightarrow{a} \times \left(\overrightarrow{b} + \overrightarrow{c}\right) = \overrightarrow{0}$ (D) $\overrightarrow{a} + \left(\overrightarrow{b} + \overrightarrow{c}\right) = \overrightarrow{0}$

30. If
$$\overrightarrow{p}$$
 and \overrightarrow{q} are non collinear unit vectors
 $\left|\overrightarrow{p} + \overrightarrow{q}\right| = \sqrt{3}then\left(2\overrightarrow{p} - 3\overrightarrow{q}\right).\left(3\overrightarrow{p} + \overrightarrow{q}\right)$ is equal to (A) 0 (B) $\frac{1}{3}$
(C) $-\frac{1}{3}$ (D) $-\frac{1}{2}$

31. The triangle formed by the three points whose position vectors are $2\hat{i} + 4\hat{j} - \hat{k}$, $4\hat{i} + 5\hat{j} + \hat{k}$ and $3\hat{i} + 6\hat{j} - 3\hat{k}$ is (A) an equilateral triangle (B) a right singled triangle but not sides (C) an isosceles triangle but not right angled triangle (D) a right angled isosceles triangle

Watch Video Solution

32. If (1, 2, 4) and $(2, -\lambda, -3)$ are the initial and terminal points of the vector $\hat{i} + 5\hat{j} - 7\hat{k}$ then the value λ is equal to (A) 7 (B) -7 (C) -5 (D) 5

$$\overrightarrow{u} = 5\overrightarrow{a} + 6\overrightarrow{b} + 7\overrightarrow{c}, v = 7\overrightarrow{a} + \overrightarrow{b} + 9\overrightarrow{c}$$
 and $\overrightarrow{w} = 3\overrightarrow{a} + 20\overrightarrow{b} + 5\overrightarrow{c}$
where $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are non zero vectors. If $\overrightarrow{u} = l\overrightarrow{v} + m\overrightarrow{w}$ then the values
of l and m respectively are (A) $\frac{1}{2}, \frac{1}{2}$ (B) $\frac{1}{2}, -\frac{1}{2}$ (C) $-\frac{1}{2}, \frac{1}{2}$ (D) $\frac{1}{3}, \frac{1}{3}$

34. If
$$3\overrightarrow{p} + 2\overrightarrow{q} = \hat{i} + \hat{j} + \hat{k}$$
 and $3\overrightarrow{p} - 2\overrightarrow{q} = \hat{i} - \hat{j} - \hat{k}$ then the angle between \overrightarrow{p} and \overrightarrow{q} is (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

Watch Video Solution

35. Equation of the plane containing the straighat line $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and perpendicular to the lane containing the straighat lines $\frac{x}{3} = \frac{y}{4} = \frac{z}{2}$ and $\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$ is (A) x + 2y - 2z = 0 (B) 3x + 2y - 2z = 0 (C) x - 2y + z = 0 (D) 5x + 2y - 4z = 0

36. If the distance between the plane Ax 2y + z = d and the plane containing the lines 2 1x = 3 2y = 4 3z and 3 2x = 4 3y = 5 4z is 6, then |d| is

37. A parallelopiped is formed by planes drawn through the point (2,2,5) and (5,9,7) parallel to the coordinte planes. The length of a diagonal of the parallelopiped is (A) 7 (B) 9 (C) 11 (D) $\sqrt{155}$

38. If P(x, y, z) is a point on the line segment joining Q(2, 2, 4) and R(3, 5, 6) such that the projections of $\overrightarrow{O}P$ on te axes are 13/5, 19/5 and 26/5, respectively, then find the ratio in which P divides QR.

39. If the angle between the line $x\frac{y-1}{2} = \frac{z-3}{\lambda}$ and the plane x + 2y + 3z = 4 is $\cos^{-1}\left(\sqrt{\frac{5}{14}}\right)$, $then\lambda =$ (A) $\frac{2}{5}$ (B) $\frac{5}{3}$ (C) $\frac{2}{3}$ (D) $\frac{3}{2}$

40. Find the equation of the plane passing through the points 1,0,0 and

0,2,0 and at a distance 6/7 units from the origin

Watch Video Solution

41. IF the strasight line
$$\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{0}$$
 and $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ are

coplanar then the value of k is (A) -3 (B) 0 (C) 1 (D) -2

42. A line from the origin meets the lines $\frac{x-2}{1} = \frac{y-1}{-2} = \frac{z+1}{1}$ and $\frac{x-\frac{8}{3}}{2} = \frac{y+3}{-1} = \frac{z-1}{1}$ at P and Q respectively. If length PQ = d, then d^2 is

Watch Video Solution

43. Assertion: The point A(3, 1, 6) is the mirror image of the point B(1, 3, 4) in the plane x - y + z = 5. Reason: The plane x - y + z = 5 bisects the line segment joining A(3, 1, 6) and B(1, 3, 4) (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Watch Video Solution

44. Assertion: The point A(1,0,7) is the mirror image of the point B(1,6,3) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ Reason: The line

 $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ bisects the segment joining `A(1,0,7) and B(1,6,3). (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Watch Video Solution

45. The equation of a plane passing through the line of intersection of the planes x+2y+3z = 2 and x y + z = 3 and at a distance 2 3 from the point (3, 1, 1) is (A) 5x 11y + z = 17 (B) 2x y 3 2 1 (C) x + y + z = 3 (D) x 2y 1 2

Watch Video Solution

46. If the straight lines x 1 y 1 z 2 k 2 and x 1 y 1 z 5 2 k are coplanar, then

the plane (s) containing these two lines is (are) (A) y + 2z = 1 (B) y + z = 1

(C) y z = 1 (D) y 2z = 1 55

47. The point P is the intersection of the straight line joining the points Q(2, 3, 5) and R(1, -1, 4) with the plane 5x - 4y - z = 1. If S is the foot of the perpendicular drawn from the point T(2, 1, 4) to QR, then the length of the line segment PS is (A) $\frac{1}{\sqrt{2}}$ (B) $\sqrt{2}$ (C) 2 (D) $2\sqrt{2}$

Watch Video Solution

48. Perpendiculars are drawn from points on the line $\frac{x+2}{2} = \frac{y+1}{-1} = \frac{z}{3}$ to the plane x + y + z = 3 The feet of perpendiculars lie on the line (a) $\frac{x}{5} = \frac{y-1}{8} = \frac{z-2}{-13}$ (b) $\frac{x}{2} = \frac{y-1}{3} = \frac{z-2}{-5}$ (c) $\frac{x}{4} = \frac{y-1}{3} = \frac{z-2}{-7}$ (d) $\frac{x}{2} = \frac{y-1}{-7} = \frac{z-2}{5}$

Watch Video Solution

49. Two lines $L_1x = 5$, $\frac{y}{3-\alpha} = \frac{z}{-2}$ and $L_2: x = \alpha \frac{y}{-1} = \frac{z}{2-\alpha}$ are

coplanar. Then lpha can take value (s) a. 1 b. 2 c. 3 d. 4

50. If the projection of a line segment of the x,y and z-axes in 3dimensional space are 2,3, and 6 respectively, then the length of the line segmetn is (A) 13 (B) 9 (C) 6 (D) 7

Watch Video Solution

51. If the lines
$$\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$$
 and $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ are

coplanar then k can have (A) exactly two values (B) exactly thre values (C) any value (D) exactly one value

Watch Video Solution

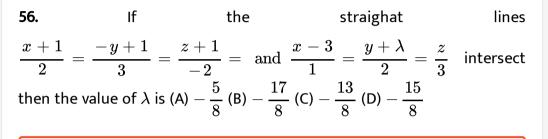
52. The point of intersection of the straighat line $\frac{x-2}{2} = \frac{y-1}{-3} = \frac{z+2}{1}$ with the plane x + 3y - z + 1 = 0 (A) (3,-1,1) (B) (-5,1,-1) (C) (2,0,3) (D) (4,-2,-1)

53. If the lines $\frac{2x-1}{2} = \frac{3-y}{1} = (z-1)3 \text{ and } \frac{xc+3}{2} = \frac{z+1}{p} = \frac{y+2}{5} \text{ are}$ perpendicular to each other then p is equal to (A) 1 (B) -1 (C) 10 (D) $-\frac{7}{5}$ Watch Video Solution

54. The point P(x, y, z) lies in the first octant and its distance from the origin is 12 units. If the positon vector of P makes 45^0 and 60^0 with the x-axis and y-axis respectively, then the coordinastes of P are (A) $(3\sqrt{3}, 6, 3\sqrt{2})$ (B) $(4\sqrt{3}, 8, 4\sqrt{2})$ (C) $(6\sqrt{2}, 6, 6)$ (D) $(6, 6, 6\sqrt{2})$

55. The distance between the plane $\vec{r} \cdot (\hat{i} + 2\hat{j} - 2\hat{k}) + 5 = 0$ and $\vec{r} \cdot (2\hat{i} + 4\hat{j} - 4\hat{k}) - 16 = 0$ is (A) 3

(B)
$$\frac{11}{3}$$
 (C) 13 (D) $\frac{13}{3}$



Watch Video Solution

57. If the angle θ between the line $\frac{x+1}{1} = \frac{y-1}{2} = \frac{z-2}{2}$ and the plane $2x - y + \sqrt{pz} + 4 = 0$ is such that $\sin \theta = \frac{1}{3}$, then the values of p is (A) 0 (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) $\frac{5}{3}$

Watch Video Solution

58. The ratio in which the plne y - 1 = 0 divides the straighat line joining (1,-1,3) and (-2,5,4)is(A)1:2(B)3:1(C)5:2(D)1:3`

