© ${ }^{\prime}$ doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

VECTOR AND 3D - PREVIOUS YEAR QUESTIONS

Exercise

1. Let veca=2hati+hatj-2hatk and vecb=hati+hatj. If veccisa $\longrightarrow r s u c h t^{\wedge}$ veca.vecc=|vecc|,|vecc-veca|=2sqrt(2) and the \angle between(vecaxxvecb) and veccispi/6then|(vecaxxvecb)xvec|=(A) $\frac{2}{3}$ (B) $\frac{1}{2}$ (C) $\frac{3}{2}$ (D) 1

- Watch Video Solution

2. Let $e \vec{a}=\hat{i}+\hat{j}-\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and \vec{c} be as unit vector perpendicular to veca and vecbthevecc=(A)1/sqrt(j+k)(B)1/sqrt(2)(j-k)
(C) $1 / \mathrm{sqrt}(6)(\mathrm{i}-2 \mathrm{jk})(D) 1 / \mathrm{sqrt}(6)(2 \mathrm{i}-\mathrm{j}+\mathrm{k})^{\prime}$

- Watch Video Solution

3. ABCDEF is a regular hexagon with centre a the origin such that $\overrightarrow{A B}+\overrightarrow{E B}+\overrightarrow{F C}=\lambda \overrightarrow{E D}$ then $\lambda=$ (A) 2 (B) 4 (C) 6 (D) 3

- Watch Video Solution

4. A non vector \vec{a} is parallel to the line of intersection of the plane determined by the vectors $\hat{i}, \hat{i}+\hat{j}$ and thepane determined by the vectors $\hat{i}-\hat{j}, \hat{i}+\hat{k}$ then angle between \vec{a} and $\hat{i}-2 \hat{j}+2 \hat{k}$ is $=(\mathrm{A}) \frac{\pi}{2}$
(B) $\frac{\pi}{3}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{4}$

- Watch Video Solution

5. If \vec{a} and \vec{b} are vectors in space given by $\vec{a}=\frac{\hat{i}-23 \hat{j}}{\sqrt{5}}$
$\vec{b}=\frac{2 \hat{i}+\hat{j}+3 \hat{k}}{\sqrt{14}} \quad$ then \quad the
$(2 \vec{a}+\vec{b}) \cdot[(\vec{a} \times \vec{b}) \times(\vec{a}-2 \vec{b})]$, is

- Watch Video Solution

6. Let P, Q, R and S be the points on the plane with position vectors $-2 i-j, 4 i, 3 i+3 j a n d-3 j+2 j, \quad$ respectively. The quadrilateral $P Q R S$ must be a Parallelogram, which is neither a rhombus nor a rectangle Square Rectangle, but not a square Rhombus, but not a square

- Watch Video Solution

7. Two adjacent sides of a parallelogram $A B C D$ are given by $\vec{A} B=2 \hat{i}+10 \hat{j}+11 \hat{k}$ and $\vec{A} D=-\hat{i}+2 \hat{j}+2 \hat{k}$. The side $A D$ is rotated by an acute angle α in the plane of the parallelogram so that
$A D$ becomes $A D^{\prime}$. If $A D^{\prime}$ makes a right angle with the side $A B$, then the cosine of the angel α is given by $\frac{8}{9}$ b. $\frac{\sqrt{17}}{9}$ c. $\frac{1}{9}$ d. $\frac{4 \sqrt{5}}{9}$

- Watch Video Solution

8.

Let
$\vec{a}=-\hat{i}-\hat{k}, \vec{b}=x \hat{i}+\hat{j}+(1-x) \hat{k} n a d \vec{c}=y \hat{i}+x \hat{j}+(1+x-y) \hat{\imath}$
Then $[\vec{a} \vec{b} \vec{c}]$ depends (A) only $\mathrm{x}(\mathrm{B})$ only y (C) neither x or nor y (D) both x and y

- Watch Video Solution

9. If \vec{a}, \vec{b} and \vec{c} are three vectors of which every pair is non colinear. If the vector $\vec{a}+\vec{b}$ and $\vec{b}+\vec{c}$ are collinear with the vector \vec{c} and \vec{a} respectively then which one of the following is correct? (A) $\vec{a}+\vec{b}+\vec{c}$ is a nul vector (B) veca+vecb+veccisaunit $\longrightarrow r(C)$ veca+vecb+vecc $i s a \longrightarrow$ rofmagnitude 2 units (D) veca+vecb+vecc` isd a vector of magnitude 3 units

Watch Video Solution

10. If $\vec{a}=\frac{1}{\sqrt{10}}(3 \hat{i}+\hat{k}), \vec{b}=\frac{1}{7}(2 \hat{i}+3 \hat{j}-6 \hat{k})$, then the value of
$(2 \vec{a}-\vec{b}) \cdot\{(\vec{a} \times \vec{b}) \times(\vec{a}+2 \vec{b})\}$ is

- Watch Video Solution

11. The vectors \vec{a} and \vec{b} are not perpendicular and $\vec{a} c$ and \vec{d} are two vectors satisfying : $\vec{b} \times \vec{c}=\vec{b} \times \vec{d}$ and $\vec{a} \cdot \vec{d}=0$. Then the \vec{d} is equal to (A) $\left.\vec{c}+\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{b}$ (B) $\left.\vec{b}+\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{c}$ (C) $\left.\vec{c}-\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{b}$
(D) $\left.\vec{b}-\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{c}$

- Watch Video Solution

12. If \vec{a} is perpendicular to \vec{b} then the vector
$\vec{a} \times[\vec{a} \times\{\vec{a} \times(\vec{a} \times \vec{b})\}]$ is equla (A) $|\vec{a}|^{2} \vec{b}$ (B) $|\vec{a}| \vec{b}$
$|\vec{a}|^{3} \vec{b}$ (D) $|\vec{a}|^{4} \vec{b}$

- Watch Video Solution

13. If the vector $8 \hat{i}+a \hat{j}$ of magnitude 10 is the directionn of the vector
$4 \hat{i}-3 \hat{j}$, then the value of a is equal to (A) 6 (B) 3 (C) -3 (D) -6

- Watch Video Solution

14. If the angle between \vec{a} and \vec{c} is 25^{0} the angle between \vec{b} and \vec{c} is 65° and $\vec{a}+\vec{b}=\vec{c}$, then the angle between \vec{a} and \vec{b} is (A) 40° (B) 115^{0} (C) 25^{0} (D) 90^{0}

- Watch Video Solution

15. The positon vector of the centroid of the triangle ABC is $2 i+4 j+2 k$. If the position vector of the vector A is
$2 i+6 j+4 k .$, thentheposition $\longrightarrow \operatorname{rofmidp}$ ¢ofBCis $(A) 2 \mathrm{i}+3 \mathrm{j}+\mathrm{k}(B)$ $2 \mathrm{i}+3 \mathrm{jk}(C) 2 \mathrm{i}-3 \mathrm{j}-\mathrm{k}(D)-2 \mathrm{i}-3 \mathrm{j}-\mathrm{k}$

- Watch Video Solution

16. The projection of the vector $2 \hat{i}+a \hat{j}-\hat{k}$ the vector $\hat{i}-2 \hat{j}+\hat{k} i s$ $-5 / \mathrm{sqrt}(6)^{\prime}$ then the value of a is equal to (A) 1 (B) 2 (C) -2 (D) 3

- Watch Video Solution

17. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$ be three vectors. A vectors \vec{v} in the plane of \vec{a} and \vec{b}, whose projection on $\vec{c} i s \frac{1}{\sqrt{3}}$ is given by

- Watch Video Solution

18. The vectors which is/are coplanar with vectors $\hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$ and perpendicular to vector $\hat{i}+\hat{j}+\hat{k}$
is /are (A) $\hat{j}-\hat{k}$ (B) $-\hat{i}+\hat{j}$ (C) $\hat{i}-\hat{j}$ (D) $-\hat{j}+\hat{k}$

- Watch Video Solution

19. The angle between the line
$\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})=\lambda(2 \hat{i}+3 \hat{j}+4 \hat{k}) \quad$ and the plane
$\vec{r} \cdot(\hat{i}+2 \hat{j}-2 \hat{k})=3$ is (A) 0^{0} (B) 60° (C) 30° (D) 90^{0}

- Watch Video Solution

20.

The
line
$\vec{r}=\hat{i}+\hat{j}-\hat{k}+\lambda(3 i-j)$ and $\vec{r} .=4 \hat{i}-h * k+\mu(2 \hat{i}+3 \hat{k})$
intersect at the point (A) (0,0,0) (B) (0,0,1) (C) (0,-4-1) (D) (4,0,-1)

- Watch Video Solution

21. If \vec{a} and \vec{b} are vectors such that

$$
|\vec{a}+\vec{b}|=\sqrt{29} \text { and } \vec{a} \times(2 \hat{i}+3 \hat{j}+4 \hat{k})=(2 \hat{i}+3 \hat{j}+4 \hat{k}) \times \vec{b},
$$

then possible value of $(\vec{a}+\vec{b}) \cdot(-7 \hat{i}+2 \hat{j}+3 \hat{k})$ is (A) O (B) 3 (C) 4 (D) 8

- Watch Video Solution

22. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors satisfying
$|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}=9$ then $|2 \vec{a}+5 \vec{b}+3 \vec{c}|$ is

- Watch Video Solution

23. Let $\overline{P R}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\overline{S Q}=\hat{i}-3 \hat{j}-4 \hat{k}$ determine diagonals of a parallelogram PQRS and $\overline{P T}=\hat{i}+2 \hat{j}+3 \hat{k}$ be another vector. Then the volume of the parallelepiped determined by the vectors $\overline{P T}, \overline{P Q}$ and $\overline{P S}$ is

- Watch Video Solution

24. Consider the set of eight vector $V=\{a \hat{i}+b \hat{j}+c \hat{k} ; a, b c \in\{-1,1\}\}$. Three non-coplanar vectors can be chosen from V is 2^{p} ways. Then p is \qquad .

- Watch Video Solution

25. If \vec{a} and \vec{b} are non colinear vectors, then the value of α for which the vectors $\vec{u}=(\alpha-2) \vec{a}+\vec{b}$ and $\vec{v}=(2+3 \alpha) \vec{a}-3 \vec{b}$ are collinear is (A) $\frac{3}{2}$ (B) $\frac{2}{3}$ (C) $\frac{-3}{2}$ (D) $\frac{-2}{3}$

- Watch Video Solution

26. If the vectors $\overrightarrow{A B}=3 \hat{i}+4 \hat{k}$ and $\overrightarrow{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a triangle ABC, then the length of the median through A is (A) $\sqrt{33}$
$\sqrt{45}$ (C) $\sqrt{18}$ (D) $\sqrt{720}$

- Watch Video Solution

27. If $\vec{a} \perp \vec{b}$ and $(\vec{a}+\vec{b}) \perp(\vec{a}+m \vec{b})$, then $m=(A)-1$ (B) 1 (C) $\frac{-1 \vec{a}^{2}}{\left.\vec{b}\right|^{2}}$ (D) 0

- Watch Video Solution

28. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$ then $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=$ (A) $\frac{3}{2}$ (B) $-\frac{3}{2}$ (C) $\frac{2}{3}$
(D) $\frac{1}{2}$

- Watch Video Solution

29. If \vec{a} is perpendicular to both \vec{b} and \vec{c} then (A)
$\vec{a} \cdot(\vec{b} \times \vec{c})=\overrightarrow{0}$
(B) $\quad \vec{a} \times(\vec{b} x \vec{c})=\overrightarrow{0}$
$\vec{a} \times(\vec{b}+\vec{c})=\overrightarrow{0}$ (D) $\vec{a}+(\vec{b}+\vec{c})=\overrightarrow{0}$

- Watch Video Solution

30. If \vec{p} and \vec{q} are non collinear unit vectors $|\vec{p}+\vec{q}|=\sqrt{3}$ then $(2 \vec{p}-3 \vec{q}) \cdot(3 \vec{p}+\vec{q})$ is equal to (A) 0 (B) $\frac{1}{3}$
(C) $-\frac{1}{3}$ (D) $-\frac{1}{2}$

- Watch Video Solution

31. The triangle formed by the three points whose position vectors are $2 \hat{i}+4 \hat{j}-\hat{k}, 4 \hat{i}+5 \hat{j}+\hat{k}$ and $3 \hat{i}+6 \hat{j}-3 \hat{k} \quad$ is (A) an equilateral triangle (B) a right singled triangle but not sides (C) an isosceles triangle but not right angled triangle (D) a right angled isosceles triangle

- Watch Video Solution

32. If $(1,2,4)$ and $(2,-\lambda,-3)$ are the initial and terminal points of the vector $\hat{i}+5 \hat{j}-7 \hat{k}$ then the value λ is equal to (A) 7 (B) -7 (C) -5
(D) 5
$\vec{u}=5 \vec{a}+6 \vec{b}+7 \vec{c}, v=7 \vec{a}+\vec{b}+9 \vec{c}$ and $\vec{w}=3 \vec{a}+20 \vec{b}+5 \vec{c}$ where $\vec{a}, \vec{b}, \vec{c}$ are non zero vectors.If $\vec{u}=l \vec{v}+m \vec{w}$ then the values of I and m respectively are (A) $\frac{1}{2}, \frac{1}{2}$ (B) $\frac{1}{2},-\frac{1}{2}$ (C) $-\frac{1}{2}, \frac{1}{2}$ (D) $\frac{1}{3}, \frac{1}{3}$

- Watch Video Solution

34. If $3 \vec{p}+2 \vec{q}=\hat{i}+\hat{j}+\hat{k}$ and $3 \vec{p}-2 \vec{q}=\hat{i}-\hat{j}-\hat{k}$ then the angle between \vec{p} and \vec{q} is (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

- Watch Video Solution

35. Equation of the plane containing the straighat line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the lane containing the straighat lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3} \quad$ is \quad (A) $\quad x+2 y-2 z=0$
$3 x+2 y-2 z=0$ (C) $x-2 y+z=0$ (D) $5 x+2 y-4 z=0$
36. If the distance between the plane $A x 2 y+z=d$ and the plane containing the lines $21 x=32 y=43 z$ and $32 x=43 y=54 z$ is 6 , then $|d|$ is

- Watch Video Solution

37. A parallelopiped is formed by planes drawn through the point $(2,2,5)$ and $(5,9,7)$ parallel to the coordinte planes. The length of a diagonal of the parallelopiped is (A) 7 (B) 9 (C) 11 (D) $\sqrt{155}$

- Watch Video Solution

38. If $P(x, y, z)$ is a point on the line segment joining $Q(2,2,4) \operatorname{and} R(3,5,6)$ such that the projections of $\vec{O} P$ on te axes are $13 / 5,19 / 5$ and $26 / 5$, respectively, then find the ratio in which P divides $Q R$.
39. If the angle between the line $x \frac{y-1}{2}=\frac{z-3}{\lambda}$ and the plane $x+2 y+3 z=4$ is $\cos ^{-1}\left(\sqrt{\frac{5}{14}}\right)$, then $\lambda=$ (A) $\frac{2}{5}$ (B) $\frac{5}{3}$ (C) $\frac{2}{3}$ (D) $\frac{3}{2}$

- Watch Video Solution

40. Find the equation of the plane passing through the points $1,0,0$ and $0,2,0$ and at a distance $6 / 7$ units from the origin

- Watch Video Solution

41. IF the
strasighrt
line
$\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{0}$ and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1} \quad$ are coplanar then the value of k is (A) -3 (B) 0 (C) 1 (D) -2
42. A line from the origin meets the lines $\frac{x-2}{1}=\frac{y-1}{-2}=\frac{z+1}{1}$ and $\frac{x-\frac{8}{3}}{2}=\frac{y+3}{-1}=\frac{z-1}{1}$ at P and Q respectively. If length $P Q=d$, then d^{2} is

- Watch Video Solution

43. Assertion: The point $A(3,1,6)$ is the mirror image of the point $B(1,3,4)$ in the plane $x-y+z=5$. Reason: The plane $x-y+z=5$ bisects the line segment joining $A(3,1,6)$ and $B(1,3,4)$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

44. Assertion: The point $A(1,0,7)$ is the mirror image of the point $B(1,6,3)$ in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ Reason: The line
$\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ bisects the segment joining ${ }^{\wedge}(1,0,7)$ and $\mathrm{B}(1,6,3)$.
(A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

45. The equation of a plane passing through the line of intersection of the planes $x+2 y+3 z=2$ and $x y+z=3$ and at a distance 23 from the point ($3,1,1$) is (A) $5 \mathrm{x} 11 \mathrm{y}+\mathrm{z}=17$ (B) 2 x y 321 (C) $\mathrm{x}+\mathrm{y}+\mathrm{z}=3$ (D) x 2 y 12

- Watch Video Solution

46. If the straight lines $x 1 y 1 z 2 k 2$ and $x 1 y 1 z 52 k$ are coplanar, then the plane (s) containing these two lines is (are) (A) $y+2 z=1$ (B) $y+z=1$
(C) $y z=1$ (D) $y 2 z=155$

- Watch Video Solution

47. The point P is the intersection of the straight line joining the points $Q(2,3,5)$ and $R(1,-1,4)$ with the plane $5 x-4 y-z=1$. If S is the foot of the perpendicular drawn from the point $T(2,1,4)$ to QR , then the length of the line segment PS is (A) $\frac{1}{\sqrt{2}}$ (B) $\sqrt{2}$ (C) 2 (D) $2 \sqrt{2}$

- Watch Video Solution

48. Perpendiculars are drawn from points on the line $\frac{x+2}{2}=\frac{y+1}{-1}=\frac{z}{3}$ to the plane $x+y+z=3$ The feet of perpendiculars lie on the line (a) $\frac{x}{5}=\frac{y-1}{8}=\frac{z-2}{-13}$
$\frac{x}{2}=\frac{y-1}{3}=\frac{z-2}{-5}$
$\frac{x}{2}=\frac{y-1}{-7}=\frac{z-2}{5}$
(c) $\quad \frac{x}{4}=\frac{y-1}{3}=\frac{z-2}{-7}$

- Watch Video Solution

49. Two lines $L_{1} x=5, \frac{y}{3-\alpha}=\frac{z}{-2} \operatorname{and} L_{2}: x=\alpha \frac{y}{-1}=\frac{z}{2-\alpha}$ are coplanar. Then α can take value (s) a. 1 b. 2 c. 3 d. 4
50. If the projection of a line segment of the x, y and z-axes in 3 dimensional space are 2,3, and 6 respectively, then the length of the line segmetn is (A) 13 (B) 9 (C) 6 (D) 7

- Watch Video Solution

51.

If
the
lines
$\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}$ and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$
are
coplanar then k can have (A) exactly two values (B) exactly thre values (C) any value (D) exactly one value

- Watch Video Solution

52. The point of intersection of the straighat line $\frac{x-2}{2}=\frac{y-1}{-3}=\frac{z+2}{1}$ with the plane $x+3 y-z+1=0$ (A) $(3,-1,1)$
(B) $(-5,1,-1)(C)(2,0,3)(D)(4,-2,-1)$

Watch Video Solution

53. If the lines $\frac{2 x-1}{2}=\frac{3-y}{1}=(z-1) 3$ and $\frac{x c+3}{2}=\frac{z+1}{p}=\frac{y+2}{5} \quad$ are perpendicular to each other then p is equal to (A) 1 (B) -1 (C) 10 (D) $-\frac{7}{5}$

- Watch Video Solution

54. The point $P(x, y, z)$ lies in the first octant and its distance from the origin is 12 units. If the positon vector of P makes 45^{0} and 60° with the $x-$ axis and y-axis respectively, then the coordinastes of P are (A)
$(3 \sqrt{3}, 6,3 \sqrt{2})$
(B) $(4 \sqrt{3}, 8,4 \sqrt{2})$
(C) $(6 \sqrt{2}, 6,6)$
(D) $(6,6,6 \sqrt{2})$

- Watch Video Solution

55. The distance between the plane
$\vec{r} \cdot(\hat{i}+2 \hat{j}-2 \hat{k})+5=0$ and $\vec{r} \cdot(2 \hat{i}+4 \hat{j}-4 \hat{k})-16=0$ is (A) 3
(B) $\frac{11}{3}$ (C) 13 (D) $\frac{13}{3}$

- Watch Video Solution

56.

the
straighat
lines
$\frac{x+1}{2}=\frac{-y+1}{3}=\frac{z+1}{-2}=$ and $\frac{x-3}{1}=\frac{y+\lambda}{2}=\frac{z}{3}$ intersect
then the value of λ is (A) $-\frac{5}{8}$ (B) $-\frac{17}{8}$ (C) $-\frac{13}{8}$ (D) $-\frac{15}{8}$

- Watch Video Solution

57. If the angle θ between the line $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2 x-y+\sqrt{p z}+4=0$ is such that $\sin \theta=\frac{1}{3}$, then the values of p is (A) O (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) $\frac{5}{3}$

- Watch Video Solution

58. The ratio in which the plne $y-1=0$ divides the straighat line joining (1,-1,3) and (-2,5,4)is(A)1:2(B)3:1(C)5:2(D)1:3`
59. Equation of theine passing through hati+hatj-3hatk and perpendicr \rightarrow thepla $\neq 2 \mathrm{x}-4 \mathrm{y}+3 \mathrm{z}+5=0 i s(A)(\mathrm{x}-\mathrm{1}) / 2=(1-\mathrm{y}) /(-4)=(\mathrm{z}-$ $3) / 3(B)(\mathrm{x}-1) / 2=(1-\mathrm{y}) / 4=(\mathrm{z}+3) / 3(C)(\mathrm{x}-2) / 1=(\mathrm{y}+4) / 1)=(\mathrm{z}-3) / 3(D)(\mathrm{x}-1) /(-2)=(1-$ $y) /(-4)=(z-3) / 3^{\prime}$
