©゙doubtnut

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

VECTOR PRODUCT OF TWO VECTORS

Solved Examples

1. If $|\vec{a}|=2,|\vec{b}|=7$ and $(\vec{a} \times \vec{b})=3 \hat{i}+2 \hat{j}+6 \hat{k}$ find the angle between \vec{a} and \vec{b}

- Watch Video Solution

2. IF \vec{a} and \vec{b} re two vectors show that $(\vec{a} \times \vec{b})^{2}=a^{2} b^{2}-(\vec{a} \cdot \vec{b})^{2}$
3. If $|\vec{a}|=\sqrt{26},|\vec{b}|=7$ and $|\vec{a} \times \vec{b}|=35$, find $\vec{a} \cdot \vec{b}$

- Watch Video Solution

4. If $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=0$ prove that $\vec{a}=0$ or $\vec{b}=\overrightarrow{0}$.

- Watch Video Solution

5. If $\vec{a}, \vec{b}, \vec{c}$ are three such that $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}$ and $\vec{c} \times \vec{a}=\vec{b}$, show that $\vec{a}, \vec{b}, \vec{c}$ foem an orthogonal righat handed triad of unit vectors.

- Watch Video Solution

6. If $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\overrightarrow{\hat{i}}+2 \hat{j}+3 \hat{k}$ find $\vec{a} \times \vec{b}$.
7. If $\vec{a}=3 \hat{i}+\hat{j}-4 \hat{k}$ and $\vec{b}=6 \hat{i}+5 \hat{j}-2 \hat{k}$ find $|\vec{a} X \vec{b}|$

- Watch Video Solution

8. If $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}-5 \hat{k}$ then find $\vec{a} \times \vec{b}$ and verify that $\vec{a} \times \vec{b}$ is perpendicular to each one of \vec{a} and \vec{b}.

- Watch Video Solution

9. If $\vec{a}=4 \hat{i}+3 \hat{j}+2 \hat{k}$ and $\vec{b}=3 \hat{i}+2 \hat{k}$, find $|\vec{b} \times 2 \vec{a}|$

- Watch Video Solution

10. Find the sine of the angle between vectors $\vec{a}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=\hat{i}+3 \hat{j}+2 \hat{k}$.
11. Find a unit vector perpendicular to the plane of two vectros. $\vec{a}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}-\hat{k}$

(Watch Video Solution

12. Show that a unilt vector perpendicular to each to the vector $3 \hat{i}+\hat{j}+2 \hat{k}$ and $2 \hat{i}-2 \hat{j}+4 \hat{k} i s \frac{1}{\sqrt{3}}(\hat{i}-\hat{j}-\hat{k})$ and the sine of the angle between them is $\frac{2}{\sqrt{7}}$.

- Watch Video Solution

13. Find a vector of magnitude 15 which isperpendicular to both vectors
$4 \hat{i}-\hat{j}+8 \hat{k}$ and $-\hat{j}+\hat{k}$.

D Watch Video Solution

14. If $\vec{a}=3 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\vec{b}=7 \hat{i}-3 \hat{j}+6 \hat{k}$ find a unity vector along $(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})$.

(Watch Video Solution

15. Find a unit vector perpendicular to the plane determined by the points $(1,-1,2),(2,0,-1) \operatorname{and}(0,2,1)$.

- Watch Video Solution

16. Find the values of λ and μ for which $(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=\overrightarrow{0}$

- Watch Video Solution

17. if $\vec{a}=\hat{i}-\hat{j}-3 \hat{k}, \vec{b}=4 \hat{i}-3 \hat{j}+\hat{k}$ and $\vec{c}=2 \hat{i}+\hat{j}+2 \hat{k}$, verify that $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$

Watch Video Solution

18. If $\vec{a}=3 \hat{i}-\hat{j}+2 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}-\hat{k}, \vec{c}=\hat{i}-2 \hat{j}+2 \hat{k}$, find $(\vec{a} \times \vec{b}) \times \vec{c}$ and $\vec{a} \times(\vec{b}+\vec{c})$ and hence show that $(\vec{a} x \vec{b}) \times \vec{c} \neq \vec{a} a(\vec{b} \times \vec{c})$

- Watch Video Solution

19. If $\vec{a} a=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-2 \hat{k}$, verify that $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$.

- Watch Video Solution

20. Given $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$. Find a unity vector in the directionof resultant of these vectors. Also find a vector \vec{r} which is normal to both \vec{a} and \vec{b}. What is the inclination of \vec{r} and \vec{c} ?
21. The position vectors of the points A, B, C are respectively (1,1,1),(1,-1,2), $(0,2,-1)$. Find a unit vector parallel totehplane determined by $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and perpendicular to the vector $(1,0,1)$.

- Watch Video Solution

22. Find the length of perpendicular from the piont $A(1,4,-2)$ to the line joining $P(2,1,-2)$ and $Q(0,-5,1)$

- Watch Video Solution

23. If $\vec{a}=0$ or $\vec{b}=0$ then $\vec{a} \times \vec{b}=0$. Is then converse true? Justify your answer with and example

- Watch Video Solution

24.

$\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})=0$

- Watch Video Solution

25.

$$
\vec{a}+\vec{b}+\vec{c}=0
$$

prove
that
$(\vec{a} \times \vec{b})=(\vec{b} \times \vec{c})=(\vec{c} \times \vec{a})$

- Watch Video Solution

26. Prove that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$ also interpret this result.

- Watch Video Solution

27. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ show that $(\vec{a}-\vec{d})$
is parallel to $(\vec{b}-\vec{c})$. It is given that $\vec{a} \neq \vec{d}$ and $\vec{b} \neq \vec{c}$.

- Watch Video Solution

28. IF $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$, then prove that \vec{b} differs form \vec{c} by as vector which is parallel to \vec{a}.

- Watch Video Solution

29. If $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}, \vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ and $\vec{a} \neq \overrightarrow{0}$, then prove that $\vec{b}=\vec{c}$.

- Watch Video Solution

30. If $\vec{a} \times \vec{b}=\vec{b} \times \vec{c} \neq \overrightarrow{0}$, then prove that $\vec{a}+\vec{c}=t \vec{b}$, where t is a scalar.
31. Solve $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$, where \vec{a}, \vec{b} are two given vectors

- Watch Video Solution

32. Prove that the points A, B, C wth positon vectros $\vec{a}, \vec{b}, \vec{c}$ are collinear if and only if $(\vec{b} \times \vec{c})+(\vec{c} \times \vec{a})+(\vec{a} \times \vec{b})=\overrightarrow{0}$

- Watch Video Solution

33. Show that the points $-2 \hat{i}+3 \hat{j}+5 \hat{k}, \hat{i}+2 \hat{j}+3 \hat{k}, 7 \hat{i}-\hat{k}$ are collinear

- Watch Video Solution

34. Show that the points having position vectors

$$
(\vec{a}-2 \vec{b}+3 \vec{c}),(-2 \vec{a}+3 \vec{b}+2 \vec{c}),(-8 \vec{a}+13 \vec{b})
$$

collinear whatever $\vec{a}, \vec{b}, \vec{c}$ may be

- Watch Video Solution

35. Using vector method, show that the points $A(2,-1,3), B(4,3,1)$ and $C(3,1,2)$ are collinear

- Watch Video Solution

36. Find the area of the parallel whose adjacent sides are represented by the vectors $3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+4 \hat{k}$

(Watch Video Solution

37. Show that the asreas of the parallelogram having diagonals $3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+4 \hat{k}$ is $5 \sqrt{3}$
38. Find the area of the triangle whose adjascent sides are determined by the vectors $\vec{a}=-2 \hat{i}-5 \hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}-\hat{k}$.

Watch Video Solution

39. Using vector method find the area of the triangle whose vrtices are $A(1,1,1), B(1,2,3)$ and $C(2,3,1)$

- Watch Video Solution

40. Prove by vector method that the area of $\triangle A B C i s \frac{a^{2} \sin B \sin C}{2 \sin A}$ where symbols have their usual meanings.

- Watch Video Solution

41. Prove by vector method that the parallelogram on the same base and between the same parallels are equal in area.
42. AD, BE and CF asre the medians of a triangle ASBC intersectiing in G. Show that $\triangle A G B=\triangle B G C=\triangle C G A=\frac{1}{3} \triangle A B C$.

- Watch Video Solution

43. Using vectro mehod, prove that in a $\triangle A B C, \frac{a}{\sin A}, \frac{b}{\sin B}=\frac{c}{\sin C}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the lenths of the sides opposite to the angles A, B and C respectively of $\triangle A B C$.

- Watch Video Solution

44. Prove by vector methods that $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$

- Watch Video Solution

45. A force $\vec{F}=2 \hat{i}+\hat{j}-\hat{k}$ acts at point A whose position vector is $2 \hat{i}-\hat{j}$. Find the moment of force \vec{F} about the origin.

- Watch Video Solution

46. Forces $2 \hat{i}+\hat{j}, 2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $-\hat{i}+2 \hat{j}-\hat{k}$ act at a point P , with position vector $4 \hat{i}-3 \hat{j}-\hat{k}$. Find the vector moment of the resultant of these forces about thepoint Q whose position vector is $6 \hat{i}+\hat{j}=3 \hat{k}$

- Watch Video Solution

Exercise

1. If \vec{a} and \vec{b} asre two vectors such that $|\vec{a}|=2,|\vec{b}|=7$ and $\vec{a} \times \vec{b}=3 \hat{i}+6 \hat{k}$ find the angle between \vec{a} and \vec{b}

- Watch Video Solution

2. Given $|\vec{a}|=10,|\vec{b}|=2$ and $\vec{a} \cdot \vec{a}=12$, find $|\vec{a} \times \vec{b}|$

- Watch Video Solution

3. Find $\vec{a} \cdot \vec{b}$ if $|\vec{a}| 2,|\vec{b}|=5, a$ and $|\vec{a} \times \vec{b}|=8$

- Watch Video Solution

4. If \vec{a} and \vec{b} are two such that $|\vec{a}|=5,|\vec{b}|=4$ and $|\vec{a} \cdot \vec{b}|=10$, find the angel between \vec{a} and \vec{b} and hence find $|\vec{a} \times \vec{b}|$

- Watch Video Solution

5. $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}$. Prove that $\vec{a}, \vec{b}, \vec{c}$ are mutually at right angles and $|\vec{b}|=1,|\vec{c}|=|\vec{a}|$.
6.

Find

$$
\vec{a} \times \vec{b} \text { and }|\vec{a} \times \vec{b}|
$$

$\Longrightarrow 2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}$

- Watch Video Solution

7. Find $\vec{a} \times \vec{b}$ and $|\vec{a} \times \vec{b}|$ if $\Longrightarrow \hat{i}-7 \hat{j}+7 \hat{k} \vec{b}=3 \hat{i}-2 \widehat{+2 \hat{k}}$

- Watch Video Solution

8. If $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=3 \hat{i}+4 \hat{j}-\hat{k}$, prove that $\vec{a} \times \vec{b}$ represents a vector which perpendicular to both \vec{a} and \vec{b}.

- Watch Video Solution

9. If $\vec{a}=7 \hat{i}+3 \hat{j}-6 \hat{k}, \vec{b}=2 \hat{i}+5 \hat{j}-\hat{k}$ and $\vec{c}=-\hat{i}+2 \hat{j}+4 \hat{k}$.

Find $(\vec{a}-\vec{b}) \times(\vec{c}-\vec{b})$.

- Watch Video Solution

10. Two vectros \vec{A} and \vec{B} are obtained by joining the origin to the points whose coordinates are ($1,0,1-1$) and ($(1,1,1)$. Findteh magnitude of the vectors $\vec{A} \times \vec{B}$ and the direction cosines of this vector.

- Watch Video Solution

11. If $\vec{A}=2 \hat{i}-3 \hat{j}+\hat{k}$ and $\vec{B}=3 \hat{i}+2 \hat{j}$. Find $\vec{A} \cdot \vec{B}$ and $\vec{A} \times \vec{B}$

- Watch Video Solution

12. Find a unit vectro perpendicular to the plane of two vectors \vec{a} and \vec{b} where $\vec{a}=4 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=-2 \hat{i}+\hat{j}-\hat{k}$

- Watch Video Solution

13. Find a unit vectro perpendicular to the plane of two vectors \vec{a} and \vec{b} where $\vec{a}=\hat{i}-\hat{j}$ and $\vec{b}=\hat{j}+\hat{k}$

- Watch Video Solution

14. Find unit vectors perpendicular to each of the vector in the following:
$2 \hat{i}+3 \hat{j}-\hat{k}, \hat{i}+2 \hat{j}+3 \hat{k}$

- Watch Video Solution

15. Find unit vectors perpendicular to each of the vector in the following:
$2 \hat{i}-\hat{j}-\hat{k}, 2 \hat{i}-\hat{j}+3 \hat{k}$

- Watch Video Solution

16. Find unit vectors perpendicular to each of the vector in the following:
$4 \hat{i}-\hat{j}+3 \hat{k}, 2 \hat{i}+2 \hat{j}-\hat{k}$
17. Find a vector which is perpendicular to each of the vectors in the following: $\hat{i}-\hat{j}+\hat{k}$ and $2 \hat{i}+3 \hat{j}-\hat{k}$

- Watch Video Solution

18. Find a vector which is perpendicular to each of the vectors in the following: $\hat{i}+\hat{j}-2 \hat{k}$ and $2 \hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

19. Find a unity vector perpendicular to each of the vectors $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$, where
$\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$
20. Determine the angel between the vectors $\hat{i}+2 \hat{j}+\hat{k}$ and $3 \hat{i}+\hat{j}-\hat{k}$
. Also find the unit vector perpendicular to each of the two vectors.

- Watch Video Solution

21. Find a unit vectro perpendicular to the vectors $\vec{a}=3 \hat{i}+2 \hat{j}-\hat{k}$ and $\vec{b}=12 \hat{i}+5 \hat{j}-5 \hat{k}$ Also determine the sine of the angle between \vec{a} and \vec{b}.

- Watch Video Solution

22. Whast is the unit vedctro perpendicular to each of the vectros $2 \hat{i}-\hat{j}+\hat{k}$ and $3 \hat{i}+4 \hat{j}-\hat{k}$? Prove that the sine of the angle between these two vectors is $\sqrt{\frac{155}{156}}$

- Watch Video Solution

23. If A, B, C are points $(1,0,-1),(0,1,-1)$ and $(-1,0,1)^{\prime}$ respectively find the sine of the angle between the lines $A B$ and $A C$.

- Watch Video Solution

24. Calculate the components of a vector of magnitude unity which is at right angles to the vectors $2 \hat{i}+\hat{j}-4 \hat{k}$ and $3 \hat{i}+\hat{j}-\hat{k}$.

- Watch Video Solution

25. If the position vectors of the three points A, B, C are $2 \hat{i}+4 \hat{j}-\hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{j}+2 \hat{k}$ respectively, find a vector perpendicular to the plane ABC.

- Watch Video Solution

$\vec{a}=\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k}), \Longrightarrow \frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k})$ and $\vec{c} \frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k})$
. Show that $\vec{a}, \vec{b}, \vec{c}$ are of unit length mutually perpendicular and that $\vec{a} \times \vec{b}=\vec{c}$.

- Watch Video Solution

27. If $\vec{a}=7 \hat{i}+3 \hat{j}-5 \hat{k}, \vec{b}=2 \hat{i}+5 \hat{j}-\hat{k}$ and $\vec{c}-\hat{i}+2 \hat{j}+4 \hat{k}$, then verify that $\vec{a} \times(b+c)=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$

- Watch Video Solution

28.

Let
$\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ then show that $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times b+\vec{a} \times \vec{c}$
29. If $\vec{a}=2 \hat{i}+5 \hat{j}-7 \hat{k}, \vec{b}=-3 \hat{i}+4 \hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}-3 \hat{k}$, show that $((\vec{a} \times \vec{b}) \times \vec{c}), \vec{a} \times(\vec{b} \times \vec{c})$ are not same.

(Watch Video Solution

30. If $\vec{a}=2 \hat{i}+2 \hat{j}-\hat{k}, \vec{b}=3 \hat{i}-\hat{j}-\hat{k}$ and $\vec{c}=\hat{i}+2 \hat{j}-3 \hat{k}$ then verify that $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$.

- Watch Video Solution

31. Find the perpendicular distance of $P(-\hat{i}+2 \hat{j}+6 \hat{k})$ from the line joining $A(2 \hat{i}+3 \hat{j}-4 \hat{k})$ and $B(8 \hat{i}+6 \hat{j}-8 \hat{k})$

- Watch Video Solution

32. Let $\vec{a}=(3,-1,0)$ and $\vec{b}=\left(\frac{1}{2}, \frac{3}{2}, 1\right)$ Fidnthe vector \vec{c} satisfying $\vec{a} \times \vec{c}=4 \vec{b}$ and $\vec{a} \cdot \vec{c}=1$
33. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{j}-\hat{k}$ find a vector \vec{c} such that $\vec{a} \times \vec{c}=\vec{b}$ and $\vec{a} \cdot \vec{c}=3$.

- Watch Video Solution

34. If $\vec{a}=(0,1,-1$,$) and \vec{c}=(1,1,1)$ are given vectors then find a vector \vec{b} satisfying $\vec{a} \times \vec{b}+\vec{c}=0$ and $\vec{a} \cdot \vec{b}=3$

- Watch Video Solution

35. Show that:
$(\vec{a}-\vec{d}) \times(\vec{b}-\vec{c})+(\vec{b}-\vec{d}) \times(\vec{c}-\vec{a})+(\vec{c}-\vec{d}) \times(\vec{a}$ is independent of \vec{d}.

- Watch Video Solution

36.

$(\vec{a}+3 \vec{b}) \times(\vec{a}+\vec{b})+(3 \vec{a}-5 \vec{b}) \times(\vec{a}-\vec{b})=0$

- Watch Video Solution

37. Prove that: $|(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|=2 a b$ if $\vec{a} \perp \vec{b}$

- Watch Video Solution

38. $\vec{a}, \vec{b}, \vec{c}$ are non zero vectors.
$\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ and $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$ then show that $\vec{b}=\vec{c}$.

- Watch Video Solution

39. Find the value of $|(\hat{i}+\hat{j}) \times(\hat{i}+2 \hat{j}+\hat{k})|$
40. Find the value of $|(3 \hat{i}+\hat{j}) \times(2 \hat{i}-\hat{j})|$

- Watch Video Solution

41. Find the value of $|\hat{i} \times(\hat{i}+\hat{j}+\hat{k})|$

- Watch Video Solution

42. Find the value of $|\hat{i} \times \hat{j}|+\hat{j} \times \hat{k} \mid$

- Watch Video Solution

43. Prove that: $(2 \hat{i}+3 \hat{j}) \times(\hat{i}+2 \hat{j})=\hat{k}$

- Watch Video Solution

44. Prove that: $(2 \vec{a}-\vec{b}) \times(\vec{a}+2 \vec{b})=5 \vec{a} \times \vec{b}$.

- Watch Video Solution

45. Show that the three points whose position vectors are $-3 \hat{i}+\hat{j}+5 \hat{k}, 2 \hat{i}+3 \hat{k},-13 \hat{i}+3 \hat{j}+9 \hat{k}$ are collinear

- Watch Video Solution

46. Show that the three points whose position vectors are $\vec{a}-2 \vec{b}+3 \vec{c}, 2 \vec{a}+3 \vec{b}-4 \vec{c},-7 \vec{b}+10 \vec{c}$ are collinear

(Watch Video Solution

47. Find the area of the prallelogram whose adjacent sides are $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

48. Find the area of the parallelogram whsoe adjacent sides are given by the vectors $\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$

- Watch Video Solution

49. Find the area of the parallelogram whsoe adjacent sides are given by the vectors $\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$

- Watch Video Solution

50. Find the area of the parallelogram having diagonals $2 \hat{i}-\hat{j}+\hat{k}$ and $3 \hat{i}+3 \hat{j}-\hat{k}$

- Watch Video Solution

51. Find the area of a parallelogram whose diagonals are the vectors $2 \vec{m}-\vec{n}$ and $4 \vec{m}-5 \vec{n}$, where \vec{m} and \vec{n} are unit vectors forming an

- Watch Video Solution

52. Show that the area of the triangle whose two adjacent sides are determined by the vectors $\vec{a}=3 \hat{i}+4 \hat{j}, \vec{b}=-5 \hat{i}+7 \hat{j}$ is $20 \frac{1}{2}$ square units.

- Watch Video Solution

53. Find the vector area of the triangle, the position vectors of whose vertices are $\hat{i}+\hat{j}+2 \hat{k}, 2 \hat{i}+2 \hat{j}-3 \hat{k}$ and $3 \hat{i}-\hat{j}-\hat{k}$. Find also its scalar area.

- Watch Video Solution

54. Find the area of the triangle with vertices $\mathrm{A}(1,1,2), \mathrm{B}(2,3,5)$ and $\mathrm{C}(1,5$, 5).
55. Show by vector method that $\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$.

- Watch Video Solution

56. Show by vector method that $\sin 2 A=2 \sin A \cos A$.

- Watch Video Solution

