

MATHS

BOOKS - KC SINHA MATHS (HINGLISH)

VECTOR PRODUCT OF TWO VECTORS

Solved Examples

1. If
$$\left|\overrightarrow{a}\right| = 2$$
, $\left|\overrightarrow{b}\right| = 7$ and $\left(\overrightarrow{a} \times \overrightarrow{b}\right) = 3\hat{i} + 2\hat{j} + 6\hat{k}$ find the angle between \overrightarrow{a} and \overrightarrow{b}

Watch Video Solution

2. IF
$$\overrightarrow{a}$$
 and \overrightarrow{b} re two vectors show that $\left(\overrightarrow{a} \times \overrightarrow{b}\right)^2 = a^2 b^2 - \left(\overrightarrow{a} \cdot \overrightarrow{b}\right)^2$

3. If
$$\left| \overrightarrow{a} \right| = \sqrt{26}$$
, $\left| \overrightarrow{b} \right| = 7$ and $\left| \overrightarrow{a} \times \overrightarrow{b} \right| = 35$, find $\overrightarrow{a} \cdot \overrightarrow{b}$

4. If
$$\overrightarrow{a}$$
. $\overrightarrow{b} = 0$ and $\overrightarrow{a} \times \overrightarrow{b} = 0$ prove that $\overrightarrow{a} = 0$ or $\overrightarrow{b} = \overrightarrow{0}$.

5. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are three such that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}, \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}$ and $\overrightarrow{c} \times \overrightarrow{a} = \overrightarrow{b}$, show that $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$

foem an orthogonal righat handed triad of unit vectors.

Watch Video Solution

6. If
$$\overrightarrow{a} = 2\hat{i} + 3\hat{j} - \hat{k}$$
 and $\overrightarrow{\hat{i}} + 2\hat{j} + 3\hat{k}$ find $\overrightarrow{a} \times \overrightarrow{b}$.

7. If
$$\overrightarrow{a} = 3\hat{i} + \hat{j} - 4\hat{k}$$
 and $\overrightarrow{b} = 6\hat{i} + 5\hat{j} - 2\hat{k}$ find $\left|\overrightarrow{a} X \overrightarrow{b}\right|$

8. If
$$\overrightarrow{a} = \hat{i} - 2\hat{j} + 3\hat{k}$$
 and $\overrightarrow{b} = 2\hat{i} + 3\hat{j} - 5\hat{k}$ then find $\overrightarrow{a} \times \overrightarrow{b}$ and verify that $\overrightarrow{a} \times \overrightarrow{b}$ is perpendicular to each one of \overrightarrow{a} and \overrightarrow{b} .

9. If
$$\overrightarrow{a} = 4\hat{i} + 3\hat{j} + 2\hat{k}$$
 and $\overrightarrow{b} = 3\hat{i} + 2\hat{k}$, find $\left|\overrightarrow{b} \times 2\overrightarrow{a}\right|$

Watch Video Solution

10. Find the sine of the angle between the vectors $\overrightarrow{a}=2\hat{i}-\hat{j}+3\hat{k}$ and $\overrightarrow{b}=\hat{i}+3\hat{j}+2\hat{k}.$

11. Find a unit vector perpendicular to the plane of two vectros. $\overrightarrow{a} = \hat{i} - \hat{j} + 2\hat{k}$ and $\overrightarrow{b} = 2\hat{i} + 3\hat{j} - \hat{k}$

12. Show that a unilt vector perpendicular to each to the vector $3\hat{i} + \hat{j} + 2\hat{k}$ and $2\hat{i} - 2\hat{j} + 4\hat{k}is\frac{1}{\sqrt{3}}(\hat{i} - \hat{j} - \hat{k})$ and the sine of the angle between them is $\frac{2}{\sqrt{7}}$.

Watch Video Solution

13. Find a vector of magnitude 15 which isperpendicular to both vectors

$$4\hat{i} - \hat{j} + 8\hat{k} \, ext{ and } \, - \hat{j} + \hat{k}.$$

14. If
$$\overrightarrow{a} = 3\hat{i} + 4\hat{j} - 5\hat{k}$$
 and $\overrightarrow{b} = 7\hat{i} - 3\hat{j} + 6\hat{k}$ find a unity vector along $\left(\overrightarrow{a} + \overrightarrow{b}\right) \times \left(\overrightarrow{a} - \overrightarrow{b}\right)$.

15. Find a unit vector perpendicular to the plane determined by the points (1, -1, 2), (2, 0, -1)and(0, 2, 1).

Watch Video Solution

16. Find the values of
$$\lambda$$
 and μ for which $\left(2\hat{i}+6\hat{j}+27\hat{k}\right) imes\left(\hat{i}+\lambda\hat{j}+\mu\hat{k}\right)=\overrightarrow{0}$

Watch Video Solution

17. if $\overrightarrow{a} = \hat{i} - \hat{j} - 3\hat{k}$, $\overrightarrow{b} = 4\hat{i} - 3\hat{j} + \hat{k}$ and $\overrightarrow{c} = 2\hat{i} + \hat{j} + 2\hat{k}$, verify that $\overrightarrow{a} \times \left(\overrightarrow{b} + \overrightarrow{c}\right) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}$

18. If
$$\overrightarrow{a} = 3\hat{i} - \hat{j} + 2\hat{k}, \ \overrightarrow{b} = 2\hat{i} + \hat{j} - \hat{k}, \ \overrightarrow{c} = \hat{i} - 2\hat{j} + 2\hat{k}, \ \text{find}$$

 $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c}$ and $\overrightarrow{a} \times \left(\overrightarrow{b} + \overrightarrow{c}\right)$ and hence show that $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c} \neq \overrightarrow{a} a \left(\overrightarrow{b} \times \overrightarrow{c}\right)$

Watch Video Solution

19. If
$$\overrightarrow{a} a = \hat{i} + 2\hat{j} + 3\hat{k}$$
, $\overrightarrow{b} = 2\hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{c} = \hat{i} + \hat{j} - 2\hat{k}$, verify that $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \left(\overrightarrow{a} \cdot \overrightarrow{c}\right)\overrightarrow{b} - \left(\overrightarrow{a} \cdot \overrightarrow{b}\right)\overrightarrow{c}$.

Watch Video Solution

20. Given $\overrightarrow{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\overrightarrow{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j}$. Find a unity vector in the direction f resultant of these vectors. Also find a vector \overrightarrow{r} which is normal to both \overrightarrow{a} and \overrightarrow{b} . What is the inclination of \overrightarrow{r} and \overrightarrow{c} ?

21. The position vectors of the points A,B,C are respectively (1,1,1),(1,-1,2), (0,2,-1). Find a unit vector parallel totehplane determined by A,B,C and perpendicular to the vector (1,0,1).

Watch Video Solution

22. Find the length of perpendicular from the piont A(1, 4, -2) to the line joining P(2, 1, -2) and Q(0, -5, 1)

Watch Video Solution

23. If
$$\overrightarrow{a} = 0$$
 or $\overrightarrow{b} = 0$ then $\overrightarrow{a} \times \overrightarrow{b} = 0$. Is then converse true? Justify

your answer with and example

$$\overrightarrow{a} imes \left(\overrightarrow{b} + \overrightarrow{c}
ight) + \overrightarrow{b} imes \left(\overrightarrow{c} + \overrightarrow{a}
ight) + \overrightarrow{c} imes \left(\overrightarrow{a} + \overrightarrow{b}
ight) = 0$$

25. If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$$
, prove that $\left(\overrightarrow{a} \times \overrightarrow{b}\right) = \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \left(\overrightarrow{c} \times \overrightarrow{a}\right)$

Watch Video Solution

26. Prove that
$$\left(\overrightarrow{a} - \overrightarrow{b}\right) imes \left(\overrightarrow{a} + \overrightarrow{b}\right) = 2\left(\overrightarrow{a} imes \overrightarrow{b}\right)$$
 also interpret

this result.

Watch Video Solution

27. If
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$$
 and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$ show that $\left(\overrightarrow{a} - \overrightarrow{d}\right)$ is parallel to $\left(\overrightarrow{b} - \overrightarrow{c}\right)$. It is given that $\overrightarrow{a} \neq \overrightarrow{d}$ and $\overrightarrow{b} \neq \overrightarrow{c}$.

that

24.

28. IF $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{c}$, then prove that \overrightarrow{b} differs form \overrightarrow{c} by as vector which is parallel to \overrightarrow{a} .

Watch Video Solution

29. If
$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \cdot \overrightarrow{c}, \overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{c}$$
 and $\overrightarrow{a} \neq \overrightarrow{0}$, then prove that $\overrightarrow{b} = \overrightarrow{c}$.

Watch Video Solution

30. If $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} \neq \overrightarrow{0}$, then prove that $\overrightarrow{a} + \overrightarrow{c} = t \overrightarrow{b}$, where t

is a scalar.

31. Solve
$$\overrightarrow{r} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{b}$$
, where \overrightarrow{a} , \overrightarrow{b} are two given vectors

32. Prove that the points A,B,C wth positon vectros $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are collinear if and only if $\left(\overrightarrow{b} \times \overrightarrow{c}\right) + \left(\overrightarrow{c} \times \overrightarrow{a}\right) + \left(\overrightarrow{a} \times \overrightarrow{b}\right) = \overrightarrow{0}$

Watch Video Solution

33. Show that the three points $-2\hat{i}+3\hat{j}+5\hat{k},\,\hat{i}+2\hat{j}+3\hat{k},7\hat{i}-\hat{k}$ are

collinear

Watch Video Solution

34. Show that the points having position vectors $\left(\overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}\right), \left(-2\overrightarrow{a} + 3\overrightarrow{b} + 2\overrightarrow{c}\right), \left(-8\overrightarrow{a} + 13\overrightarrow{b}\right)$ re collinear whatever $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ may be

36. Find the area of the parallel whose adjacent sides are represented by the vectors $3\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{i} - 3\hat{j} + 4\hat{k}$

37. Show that the asreas of the parallelogram having diagonals $3\hat{i}+\hat{j}-2\hat{k}$ and $\hat{i}-3\hat{j}+4\hat{k}$ is $5\sqrt{3}$

38. Find the area of the triangle whose adjascent sides are determined by the vectors $\vec{a} = -2\hat{i} - 5\hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} - \hat{k}$. **Watch Video Solution**

39. Using vector method find the area of the triangle whose vrtices are A(1, 1, 1), B(1, 2, 3) and C(2, 3, 1)

Watch Video Solution

40. Prove by vector method that the area of $riangle ABCis rac{a^2 \sin B \sin C}{2 \sin A}$

where symbols have their usual meanings.

between the same parallels are equal in area.

42. AD, BE and CF asre the medians of a triangle ASBC intersectiing in G.

Show that
$$riangle AGB = riangle BGC = riangle CGA = rac{1}{3} riangle ABC.$$

Watch Video Solution

43. Using vectro mehod, prove that in a
$$\triangle ABC$$
, $\frac{a}{\sin A}$, $\frac{b}{\sin B} = \frac{c}{\sin C}$ where a,b,c are the lenths of the sides opposite to the angles A,B and C respectively of $\triangle ABC$.

44. Prove by vector methods that $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

45. A force $\overrightarrow{F} = 2\hat{i} + \hat{j} - \hat{k}$ acts at point A whose position vector is $2\hat{i} - \hat{j}$. Find the moment of force \overrightarrow{F} about the origin.

Watch Video Solution

46. Forces $2\hat{i} + \hat{j}$, $2\hat{i} - 3\hat{j} + 6\hat{k}$ and $-\hat{i} + 2\hat{j} - \hat{k}$ act at a point P, with position vector $4\hat{i} - 3\hat{j} - \hat{k}$. Find the vector moment of the resultant of these forces about the point Q whose position vector is $6\hat{i} + \hat{j} = 3\hat{k}$

Watch Video Solution

Exercise

1. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} asre two vectors such that $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 7$ and $\overrightarrow{a} \times \overrightarrow{b} = 3\hat{i} + 6\hat{k}$ find the angle between \overrightarrow{a} and \overrightarrow{b}

2. Given
$$\left| \overrightarrow{a} \right| = 10$$
, $\left| \overrightarrow{b} \right| = 2$ and $\overrightarrow{a} \cdot \overrightarrow{a} = 12$, find $\left| \overrightarrow{a} \times \overrightarrow{b} \right|$

3. Find
$$\overrightarrow{a}$$
. \overrightarrow{b} if $|\overrightarrow{a}|2, |\overrightarrow{b}| = 5, a$ and $|\overrightarrow{a} \times \overrightarrow{b}| = 8$

Watch Video Solution

4. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are two such that $|\overrightarrow{a}| = 5$, $|\overrightarrow{b}| = 4$ and $|\overrightarrow{a}, \overrightarrow{b}| = 10$, find the angel between \overrightarrow{a} and \overrightarrow{b} and hence find $|\overrightarrow{a} \times \overrightarrow{b}|$

Watch Video Solution

5.
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are three vectors such that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}, \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}$.
Prove that $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are mutually at righat angles and $\left|\overrightarrow{b}\right| = 1, \left|\overrightarrow{c}\right| = \left|\overrightarrow{a}\right|$.

6. Find
$$\overrightarrow{a} \times \overrightarrow{b}$$
 and $\left| \overrightarrow{a} \times \overrightarrow{b} \right|$ if
 $\overrightarrow{a} + \hat{j} + 3\hat{k}$ and $\overrightarrow{b} = 3\hat{i} + 5\hat{j} - 2\hat{k}$

7. Find
$$\overrightarrow{a} \times \overrightarrow{b}$$
 and $\left| \overrightarrow{a} \times \overrightarrow{b} \right|$ if $\overrightarrow{=} \hat{i} - 7\hat{j} + 7\hat{k}\overrightarrow{b} = 3\hat{i} - 2\widehat{+} 2\hat{k}\hat{k}$

8. If
$$\overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}$$
 and $\overrightarrow{b} = 3\hat{i} + 4\hat{j} - \hat{k}$, prove that $\overrightarrow{a} \times \overrightarrow{b}$
represents a vector which perpendicular to both \overrightarrow{a} and \overrightarrow{b} .

Natch Video Solution

9. If
$$\overrightarrow{a} = 7\hat{i} + 3\hat{j} - 6\hat{k}$$
, $\overrightarrow{b} = 2\hat{i} + 5\hat{j} - \hat{k}$ and $\overrightarrow{c} = -\hat{i} + 2\hat{j} + 4\hat{k}$.
Find $\left(\overrightarrow{a} - \overrightarrow{b}\right) \times \left(\overrightarrow{c} - \overrightarrow{b}\right)$.

10. Two vectros \overrightarrow{A} and \overrightarrow{B} are obtained by joining the origin to the points whose coordinates are (1,0,1-1) and (-1,1,1). Findteh magnitude of the vectors $\overrightarrow{A} \times \overrightarrow{B}$ and the direction cosines of this vector.

Watch Video Solution

11. If
$$\overrightarrow{A} = 2\hat{i} - 3\hat{j} + \hat{k}$$
 and $\overrightarrow{B} = 3\hat{i} + 2\hat{j}$. Find $\overrightarrow{A} \cdot \overrightarrow{B}$ and $\overrightarrow{A} \times \overrightarrow{B}$

Watch Video Solution

12. Find a unit vectro perpendicular to the plane of two vectors

$$\stackrel{
ightarrow}{a} \,\, {
m and} \,\, \stackrel{
ightarrow}{b} \,\, {
m where} \,\, \stackrel{
ightarrow}{a} = 4 \hat{i} - \hat{j} + 3 \hat{k} \,\, {
m and} \,\, \stackrel{
ightarrow}{b} = \, - 2 \hat{i} + \hat{j} - \hat{k}$$

13. Find a unit vectro perpendicular to the plane of two vectors \overrightarrow{a} and \overrightarrow{b} where $\overrightarrow{a} = \hat{i} - \hat{j}$ and $\overrightarrow{b} = \hat{j} + \hat{k}$

14. Find unit vectors perpendicular to each of the vector in the following:

 $2\hat{i}+3\hat{j}-\hat{k},\,\hat{i}+2\hat{j}+3\hat{k}$

Watch Video Solution

15. Find unit vectors perpendicular to each of the vector in the following:

$$2\hat{i}-\hat{j}-\hat{k},2\hat{i}-\hat{j}+3\hat{k}$$

Watch Video Solution

16. Find unit vectors perpendicular to each of the vector in the following:

$$4\hat{i}-\hat{j}+3\hat{k},2\hat{i}+2\hat{j}-\hat{k}$$

17. Find a vector which is perpendicular to each of the vectors in the following: $\hat{i} - \hat{j} + \hat{k}$ and $2\hat{i} + 3\hat{j} - \hat{k}$

Watch Video Solution

18. Find a vector which is perpendicular to each of the vectors in the following: $\hat{i} + \hat{j} - 2\hat{k}$ and $2\hat{i} - 2\hat{j} + \hat{k}$

Watch Video Solution

19. Find a unity vector perpendicular to each of the vectors $\left(\overrightarrow{a} + \overrightarrow{b}\right)$ and $\left(\overrightarrow{a} - \overrightarrow{b}\right)$, where $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$ and $\overrightarrow{b} = \hat{i} + 2\hat{j} + 3\hat{k}$

20. Determine the angel between the vectors $\hat{i} + 2\hat{j} + \hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$

. Also find the unit vector perpendicular to each of the two vectors.

21. Find a unit vectro perpendicular to the vectors $\vec{a} = 3\hat{i} + 2\hat{j} - \hat{k}$ and $\vec{b} = 12\hat{i} + 5\hat{j} - 5\hat{k}$ Also determine the sine of the angle between \vec{a} and \vec{b} .

Watch Video Solution

22. Whast is the unit vedctro perpendicular to each of the vectros $2\hat{i} - \hat{j} + \hat{k}$ and $3\hat{i} + 4\hat{j} - \hat{k}$? Prove that the sine of the angle between these two vectors is $\sqrt{\frac{155}{156}}$

23. If A,B,C are points (1,0,-1), (0,1,-1) and (-1,0,1)` respectively find the sine of

the angle between the lines AB and AC.

24. Calculate the components of a vector of magnitude unity which is at right angles to the vectors $2\hat{i} + \hat{j} - 4\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$.

> Watch Video Solution

25. If the position vectors of the three points A,B,C are $2\hat{i} + 4\hat{j} - \hat{k}$, $\hat{i} + 2\hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} + 2\hat{k}$ respectively, find a vector perpendicular to the plane ABC.

Given

$$\overrightarrow{a} = rac{1}{7} \Big(2 \hat{i} + 3 \hat{j} + 6 \hat{k} \Big), \ \overrightarrow{=} \ rac{1}{7} \Big(3 \hat{i} - 6 \hat{j} + 2 \hat{k} \Big) \ ext{and} \ \overrightarrow{c} rac{1}{7} \Big(6 \hat{i} + 2 \hat{j} - 3 \hat{k} \Big)$$

. Show that $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are of unit length mutually perpendicular and that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$.

Watch Video Solution

27. If
$$\overrightarrow{a} = 7\hat{i} + 3\hat{j} - 5\hat{k}$$
, $\overrightarrow{b} = 2\hat{i} + 5\hat{j} - \hat{k}$ and $\overrightarrow{c} - \hat{i} + 2\hat{j} + 4\hat{k}$,
then verify that $\overrightarrow{a} \times (b + c) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}$

Watch Video Solution

28. Let

$$\overrightarrow{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, \overrightarrow{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k} \text{ and } \overrightarrow{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$$

then show that $\overrightarrow{a} \times \left(\overrightarrow{b} + \overrightarrow{c}\right) = \overrightarrow{a} \times b + \overrightarrow{a} \times \overrightarrow{c}$

29. If
$$\overrightarrow{a} = 2\hat{i} + 5\hat{j} - 7\hat{k}$$
, $\overrightarrow{b} = -3\hat{i} + 4\hat{j} + \hat{k}$ and $\overrightarrow{c} = \hat{i} - 2\hat{j} - 3\hat{k}$, show that $\left(\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c}\right)$, $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$ are not same.

30. If
$$\overrightarrow{a} = 2\hat{i} + 2\hat{j} - \hat{k}$$
, $\overrightarrow{b} = 3\hat{i} - \hat{j} - \hat{k}$ and $\overrightarrow{c} = \hat{i} + 2\hat{j} - 3\hat{k}$ then verify that $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \left(\overrightarrow{a} \cdot \overrightarrow{c}\right)\overrightarrow{b} - \left(\overrightarrow{a} \cdot \overrightarrow{b}\right)\overrightarrow{c}$.

Watch Video Solution

31. Find the perpendicular distance of $P\left(-\hat{i}+2\hat{j}+6\hat{k}\right)$ from the line joining $A\left(2\hat{i}+3\hat{j}-4\hat{k}\right)$ and $B\left(8\hat{i}+6\hat{j}-8\hat{k}\right)$

32. Let
$$\overrightarrow{a} = (3, -1, 0)$$
 and $\overrightarrow{b} = \left(\frac{1}{2}, \frac{3}{2}, 1\right)$ Fidnthe vector \overrightarrow{c} satisfying $\overrightarrow{a} \times \overrightarrow{c} = 4\overrightarrow{b}$ and $\overrightarrow{a} \cdot \overrightarrow{c} = 1$

33. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
 and $\overrightarrow{=} \hat{j} - \hat{k}$ find a vector \overrightarrow{c} such that $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b}$ and $\overrightarrow{a} \cdot \overrightarrow{c} = 3$.

34. If $\overrightarrow{a} = (0, 1, -1,)$ and $\overrightarrow{c} = (1, 1, 1)$ are given vectors then find a vector \overrightarrow{b} satisfying $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{c} = 0$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 3$

Watch Video Solution

Show

that:

$$\left(\overrightarrow{a} - \overrightarrow{d}\right) \times \left(\overrightarrow{b} - \overrightarrow{c}\right) + \left(\overrightarrow{b} - \overrightarrow{d}\right) \times \left(\overrightarrow{c} - \overrightarrow{a}\right) + \left(\overrightarrow{c} - \overrightarrow{d}\right) \times \left(\overrightarrow{a}\right)$$

is independent of d.

36. Prove that
$$\left(\overrightarrow{a}+\overrightarrow{b}\right) \times \left(\overrightarrow{a}+\overrightarrow{b}\right) + \left(\overrightarrow{aa}-\overrightarrow{bb}\right) \times \left(\overrightarrow{a}-\overrightarrow{b}\right) = 0$$

37. Prove that:
$$\left| \left(\overrightarrow{a} + \overrightarrow{b} \right) \times \left(\overrightarrow{a} - \overrightarrow{b} \right) \right| = 2ab \text{ if } \overrightarrow{a} \perp \overrightarrow{b}$$

Watch Video Solution

38.
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are non zero vectors. If $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{c}$ and $\overrightarrow{a}, \overrightarrow{b} = \overrightarrow{a}, \overrightarrow{c}$ then show that $\overrightarrow{b} = \overrightarrow{c}$.

Watch Video Solution

39. Find the value of
$$\left|\left(\hat{i}+\hat{j}
ight) imes\left(\hat{i}+2\hat{j}+\hat{k}
ight)
ight|$$

40. Find the value of
$$\left|\left(3\hat{i}+\hat{j}
ight) imes\left(2\hat{i}-\hat{j}
ight)
ight|$$

41. Find the value of
$$\left| \hat{i} imes \left(\hat{i} + \hat{j} + \hat{k}
ight)
ight|$$

Watch Video Solution

42. Find the value of $\left| \hat{i} imes \hat{j}
ight| + \hat{j} imes \hat{k}
ight|$

Watch Video Solution

43. Prove that:
$$\left(2\hat{i}+3\hat{j}
ight) imes\left(\hat{i}+2\hat{j}
ight)=\hat{k}$$

44. Prove that:
$$\left(2\overrightarrow{a} - \overrightarrow{b}\right) \times \left(\overrightarrow{a} + 2\overrightarrow{b}\right) = 5\overrightarrow{a} \times \overrightarrow{b}.$$

45. Show that the three points whose position vectors are $-3\hat{i} + \hat{j} + 5\hat{k}, 2\hat{i} + 3\hat{k}, -13\hat{i} + 3\hat{j} + 9\hat{k}$ are collinear

Watch Video Solution

46. Show that the three points whose position vectors are $\overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}, 2\overrightarrow{a} + 3\overrightarrow{b} - 4\overrightarrow{c}, -7\overrightarrow{b} + 10\overrightarrow{c}$ are collinear

Watch Video Solution

47. Find the area of the prallelogram whose adjacent sides are $\overrightarrow{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\overrightarrow{b} = 3\hat{i} - 2\hat{j} + \hat{k}$.

48. Find the area of the parallelogram whose adjacent sides are given by the vectors $\vec{a} = 3\hat{i} + \hat{j} + 4\hat{k}$ and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$

Watch Video Solution

49. Find the area of the parallelogram whose adjacent sides are given by the vectors $\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$

Watch Video Solution

50. Find the area of the parallelogram having diagonals $2\hat{i} - \hat{j} + \hat{k}$ and $3\hat{i} + 3\hat{j} - \hat{k}$

Watch Video Solution

51. Find the area of a parallelogram whose diagonals are the vectors $2\overrightarrow{m} - \overrightarrow{n}$ and $4\overrightarrow{m} - 5\overrightarrow{n}$, where \overrightarrow{m} and \overrightarrow{n} are unit vectors forming an

angle of 45^0

Watch Video Solution

52. Show that the area of the triangle whose two adjacent sides are determined by the vectors $\vec{a} = 3\hat{i} + 4\hat{j}$, $\vec{b} = -5\hat{i} + 7\hat{j}$ is $20\frac{1}{2}$ square units.

Watch Video Solution

53. Find the vector area of the triangle, the position vectors of whose vertices are $\hat{i} + \hat{j} + 2\hat{k}$, $2\hat{i} + 2\hat{j} - 3\hat{k}$ and $3\hat{i} - \hat{j} - \hat{k}$. Find also its scalar area.

Watch Video Solution

54. Find the area of the triangle with vertices A(1, 1, 2), B(2, 3, 5) and C(1, 5,

5).

