びdoubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - S DINESH \& CO CHEMISTRY (HINGLISH)

EQUILIBRIUM

Example

1. A vessel has two compartments connected at the top. In one compartment (B), radioactive methyl ioddide $\left(\stackrel{*}{C} H_{3} I\right)$ is placed while in other compartment (A). Normal methly iodide $\left(\mathrm{CH}_{3} \mathrm{I}\right)$ is placed. Will the vapours over (A) and (B) become radioactive ? Will the radioactivity spread to the liquid in compartment A ? Discuss in terms of dynamic nature of the equilibrium between the vapours and the liquid.
2. During bottling a carbonated beverage was made by saturating flavoured water at $0^{\circ} \mathrm{C}$ with CO_{2} at a pressure of 4.0 atm . Later ,the bottle was opened and the soft drink allowed to come to equilibrium at $25^{\circ} \mathrm{C}$ with air containing CO_{2} at a pressure of $4.3 \times 10^{-4} \mathrm{~atm}$. Find the concentration of CO_{2} in the freshly bottled soda and in the soda after it had stood open and come to the equilibrium. The Henry's law constants for aqueous solutions fo CO_{2} are : at $0^{\circ} C, K=7.7 \times 10^{-2} \mathrm{~mol} L^{-1} \quad \mathrm{~atm} \quad{ }^{-1}$ and at $25^{\circ} C, k=3.2 \times 10$

- View Text Solution

3. Give the mathematical expression for the equilibrium constant (K_{c} and K_{p}) for the reactions.
$(i) H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
$(i i) N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
$(i i i) P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
4. The following concentrations were obtained for the formation of NH_{3} from N_{2} and H_{2} at equilibrium at 500 K .
$\left[N_{2}\right]=1.5 \times 10^{-2} M,\left[H_{2}\right]=3.0 \times 10^{-2} M$,
$\left[N H_{3}\right]=1.2 \times 10^{-2} M$. Calculate the equilibrium constant.

- Watch Video Solution

5. At $700 K$, the equilibrium constant K_{p} for the reaction
$2 \mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
is $1.80 \times 10^{-3} \mathrm{kPa}$. What is the numerical value of K_{c} in moles per litre for this reaction at the same temperature?

- Watch Video Solution

6. At $500^{\circ} \mathrm{C}$ the equilibrium constant for the reaction

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) i s 6.02 \times 10^{-2} \text { litre }^{-2} \mathrm{~mol}^{-2}
$$

What is the value of K_{p} at the same temperature?
7. The equilibrium constant for the reaction :
$F e^{3}+(a q)+S C N^{-}(a q) \Leftrightarrow F e S C N^{2+}(a q)$
at 298 K is 138 . What is the value of the equilibrium for the reaction?
$2 \mathrm{Fe}^{3+}(a q)+2 S C N^{-}(a q) \Leftrightarrow 2 \mathrm{FeSCN}^{2+}(a q)$

- Watch Video Solution

8. The equilibrium constant for the reaction
$H_{2}(g)+S(s) \Leftrightarrow H_{2} S(g)$
is 18.5 at 925 K and 9.25 at 1000 K , respectively. Calculate the enthalpy of the reaction.

- Watch Video Solution

9. Write the equilibrium constant expressions for the following reactions.
$(i) \mathrm{BaCO}_{3}(s) \Leftrightarrow \mathrm{BaO}(s)+\mathrm{CO}_{2}(g)$
$(i i) \operatorname{AgBr}(s) \Leftrightarrow A g^{+}(a q)+B r^{-}(a q)$
$(i i i) \mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{l}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{~g})$
$(i v) A l(s)+3 H^{+}(a q) \Leftrightarrow A l^{3+}(a q)+\frac{3}{2} H_{2}(g)$
$(v) \mathrm{HPO}_{4}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{PO}_{4}^{3-}(a q)$

- Watch Video Solution

10. At 800 K in a sealed vessel for the equilibrium $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$, the equilibrium concentrations of $N_{2}(g), O_{2}(g) \quad$ and $\quad N O(g) \quad$ are respectively $0.36 \times 10^{-3} M, 4.41 \times 10^{-3} M$ and $1.4 \times 10^{-3} M$. Calculate the value of K_{c} for the reaction $N O(g) \Leftrightarrow 1 / 2 N_{2}(g)+1 / 2 O_{2}(g)$ at 800 Kis:

- Watch Video Solution

11. The equilibrium constant at $278 K$ for $C u(s)+2 A g^{\oplus}(a q) \Leftrightarrow C u^{2+}(a q)+2 A g(s)$ is 2.0×10^{15}. In a solution in which copper has displaced, some silver ions from the solution, the concentration of Cu^{2+} ions from the solution, the concentration of
Cu^{2+} ions is $1.8 \times 10^{-2} \mathrm{molL}^{-1}$ and the concentration of Ag^{\oplus} ions is $3.0 \times 10^{-9} \mathrm{molL}^{-1}$. Is the system at equilibrium?

- Watch Video Solution

12. The equilibrium constant for the reaction
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
is 0.35 at 298 K . In the following mixture at 298 K , has equilibrium been reached ? If not state on which side of the equilibrium the system is :
(i) $P_{H_{2}}=0.10 \mathrm{~atm}$ and $P_{H I}=0.80 \mathrm{~atm}$ and there is solid I_{2} in the container.
(ii) $P_{H_{2}}=0.55 \mathrm{~atm}$ and $P_{H I}=0.44$ atm and there is solid i_{2} in the container.
$(I I I) P_{H_{2}}=2.5 \mathrm{~atm}$ and $P_{H i}=0.15 \mathrm{~atm}$ and there is solid I_{2} in the container.

- Watch Video Solution

13. The value of ΔG^{\ominus} for the phosphorylation of glycose in glycolysis is $13.8 \mathrm{kJmol}^{-1}$. Find the value of K_{c} at 298 K

- Watch Video Solution

14. The standard Gibbs energy change at 300 K for the reaction $2 A \Leftrightarrow B+C$ is 2494. $2 J$. At a given time, the composition of the reaction mixture is $[A]=\frac{1}{2},[B]=2$ and $[C]=\frac{1}{2}$. The reaction proceeds in which direction?
$(R=8.314 J K /$ mole $=2.718)$

- Watch Video Solution

15. Given the equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ with $k_{p}=0.15$ atm at 298 K.
(a) What is K_{p} using pressure in torr?
(b) What is K_{c} using units of moles per litre?
16. For which of the following reactions does the equilibrium constant depend upon the units of concentration?
$(a) \mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)$
(b) $\mathrm{COCl}_{2}(g) \Leftrightarrow \mathrm{CO}(g)+\mathrm{Cl}_{2}(g)$
$(C) N O(g) \Leftrightarrow 1 / 2 N_{2}(g)+1 / 2 O_{2}(g)$

- Watch Video Solution

17. The equilibrium constant for the reactions have been measured at 823
K.
$\mathrm{CoO}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{Co}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \mathrm{K}=67$
$\mathrm{CoO}(s)+\mathrm{CO}(g) \Leftrightarrow \mathrm{Co}(\mathrm{s})+\mathrm{CO}_{2}(g), \mathrm{K}=490$.
From the data, calculate the equilibrium constant for the reaction.
$\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(g)$

- Watch Video Solution

18. The following concentrations were obtained for the formation of NH_{3} from N_{2} and H_{2} at equilibrium at $500 K$.
$\left[N_{2}\right]=1.5 \times 10^{-2} M,\left[H_{2}\right]=3.0 \times 10^{-2} M$,
$\left[\mathrm{NH}_{3}\right]=1.2 \times 10^{-2} \mathrm{M}$. Calculate the equilibrium constant.

- Watch Video Solution

19. At equilibrium, the concentrations of $N_{2}=3.0 \times 10^{-3} M, O_{2}=4.2 \times 10^{-3} M$, and $N O=2.8 \times 10^{-3} M$ in a sealed vessel at 800 K . What will be K_{c} for the reaction
$N_{2}(g)+O_{2}(g) N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g) 2 N O(g)$

- Watch Video Solution

20. For the reaction, $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g), K=55.3$ at $699 K$. In a mixture consisting of 0.70 atm of HI and 0.02 atm each of H_{2} and I_{2} at 699 K , will there be any net reaction ? If so will HI be consumed or formed
21. following equilibrium is studied by taking 1 mole of N_{2} and 3 moles of H_{2} in a 1L flask at a given temperature?
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
$\mathrm{NH}_{3}(\mathrm{~g})$ formed at equilibrium is neutralised by 200 mL of 1 M HCl .
Calculate equilibrium constant.

- Watch Video Solution

22. $A B_{2}$ dissociates as
$A B_{2}(g) \Leftrightarrow A B(g)+B(g)$. If the initial pressure is 500 mm of Hg and the total pressure at equilibrium is 700 mm of Hg . Calculate K_{p} for the reaction.
23. Determine the concentration of CO_{2} which will be in equilibrium with $2.5 \times 10^{-2} \mathrm{~mol} L^{-1}$ ofCOat $100^{\circ} \mathrm{C}$ for the reaction $\mathrm{FeO}(s)+\mathrm{CO}(g) \Leftrightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}, \mathrm{~K}_{c}=5.0$

- Watch Video Solution

24. $P C l_{3}, P C l_{3}$ and $C l_{2}$ are at eqilibrium at 500 K and above have concentration 1.59 M for $\mathrm{PCl}_{3}, 1.59 \mathrm{M}$ for $C l_{2}$ and 1.41 M for PCl_{5}. Calculate K_{c} for the reaction :
$P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$

- Watch Video Solution

25. A vessel at 1000 K contains carbon dioxide with a pressure of 0.5 atm .

Some of the carbon dioxide is converted to carbon monoxide on addition of graphite. Calculate the value of K_{p} if total pressure at equilibrium is 0.8 atm .
26. For the reaction : $\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)$ the value of $K_{c}=4.24 a t 600 \mathrm{~K}$. Calculate the equilibrium concentration of $\mathrm{CO}_{2}, \mathrm{H}_{2}, \mathrm{CO}$ and $\mathrm{H}_{2} \mathrm{O}$ at 800 K , if only CO and H_{2} are present initially at a concentration of 0.10 M each.

- Watch Video Solution

27. At some temperature and under a pressure of $4 \mathrm{~atm}, \mathrm{PCl}_{5}$ is 10% dissociated. Calculated the pressure at which PCl_{5} will be 20% dissociated temperature remaining same.

- Watch Video Solution

28. 3.00 mol of $P C l_{5}$ kept in 1 L closed reaction vessel was allowed to attain equilibrium at 380 K . Calculate the composition of the mixture at equilibrium. $K_{c}=1.80$.
29. 13.8 g of $\mathrm{N}_{2} \mathrm{O}_{4}$ was placed in 1 L reaction vessel at 400 K and allowed to attain equilibrium : $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$.
the total pressure at equilibrium was found to be 9.15 bar. Calculate K_{c}, K_{p} and partial pressure at equilibrium .

- Watch Video Solution

30. The values of $K_{p 1}$ and $K_{p 2}$ for the two equilibrium reactions
$X \Leftrightarrow+Z$ and $A \Leftrightarrow 2 B$
are in the ratio 9,1 , If degree of dissociation of X and A be equal , calculate the ratio of the total pressure of the equilibrium mixture in the two cases.
31. For the reaction
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
$K_{p}=1.16$ atm at $800^{\circ} \mathrm{C}$. If 20.0 g of CaCO_{3} was put into a 10.0 L flask and heated to $800^{\circ} \mathrm{C}$, what percentage of CaCO_{3} would remain unreacted at equilibrium ?

- Watch Video Solution

32. 3.2 moles of HI were heated in a sealed bulb at $444^{\circ} \mathrm{C}$ till the equilibrium was reached. Its degree of dissociation was found to be 20%. Calculate the number of moles of hydrogen iodide, hydrogen and iodine present at the equilibrium point and determine the value of equilibrium constant.

- Watch Video Solution

33. The equilibrium constant for the reaction
$A_{2}(g)+B_{2} \Leftrightarrow 2 A B(g)$
at 373 K is 50 . If one litre flask containing one mole of A_{2} is connected to a two flask containing two moles of B_{2}, how many moles of $A B$ will be formed at 373 K ?

- Watch Video Solution

34. Two moles of $P \mathrm{Cl}_{5}$ were heated to $327^{\circ} \mathrm{C}$ in a closed two-litre vessel, and when equilibrium was achieved, $P C l_{5}$ was found to be 40% dissociated into PCl_{3} and Cl_{2}. Calculate the equilibrium constant K_{p} and K_{c} for this reaction.

- Watch Video Solution

35. The equilibrium constant for the reaction :

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}
$$

is 4.0 at $25^{\circ} \mathrm{C}$. Calculate the weight of ethyl acetate that will be obtained when 120 g of acetic acid are reacted with 92 g of ethyl alcohol.
36. Prove that the pressure necessary to obtain 50% dissociation of PCl_{5} at 500 K is numerically three times the value of K_{p}.

- Watch Video Solution

37. The dissociation of phosgene gas $\left(\mathrm{COCl}_{2}\right)$ is represented as:
$\mathrm{COCl}_{2}(g) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
When the mixture of these three gases is compressed at constanat temperature, what happens to (i) the amount of CO in the mixture (ii) the partial pressure of COCl_{2} (iii) the equilibrium constant for the reaction?

- Watch Video Solution

38. Equilibrium constant K_{c} is expreseed as the concentration of products divided by reactants, each term raised to the stoichiometric coefficient for reaction $a A+b B \Leftrightarrow c C+d D$
$K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}($ unit of concentration are $\mathrm{mol} / L)$
Answer the following on the basis of above paragrah
(i) Write the equilibrium constnat for the reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
(ii) Write the units of equilibrium constant for the reaction
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
(iii) What will be the effect of catalyst on the euilibrium constant :

- Watch Video Solution

39. for the exothermic formation of sulphur trioxide from sulphur dioxide.

And oxygen in the gas phase:
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
$K_{p}=40.5 \mathrm{~atm}^{-1} \mathrm{at} 900 \mathrm{~K}$ and $\Delta H=-198 \mathrm{~kJ}$
(i) Write the expression for the equilibrium constant for the reaction.
(ii) At room temperature ($\approx 300 K$) will K_{p} be greater than less than or equal to K_{p} at 900 K .
(iii) How will the equilibrium be affected if the volume of the vessel contaning the three gases is reduced, keeping the termperature constant
? What happens ?
(iv) What is the effect of adding 1 mole of $\mathrm{He}(\mathrm{g})$ to a flask containing $\mathrm{SO}_{2}, \mathrm{O}_{2}$ and SO_{3} at equilibrium at constant temperatrue ?

- View Text Solution

40. A weak monobasic acid is found to be 4% ionided at 0.1 M concentration. Calculate the value of the ionisation constant.

- Watch Video Solution

41. When 0.1 mole of NH_{3} is dissolved in water to make 1.0 L of solution , the $\left[\mathrm{OH}^{-}\right]$of solution is $1.34 \times 10^{-3} \mathrm{M}$. Calculate K_{b} for NH_{3}.

- Watch Video Solution

42. Calculate the degree of ionisation and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of 0.01 M acetic acid solution. K_{a} for acetic at 298 K is 1.8×10^{-5}
43. Calculate the concentration of hydroxyl ions in 0.2 M solution of ammonium hydroxide having $K_{b}=1.8 \times 10^{-5}$.

- Watch Video Solution

44. At 300 K , the degree of dissociation of 0.066 M solution of an acid HA is 0.0145 . What would be its degree of dissociation of 0.02 M solution of the acid at the same temperature?

- Watch Video Solution

45. (i) State the formula and name the conjugate base of each of the following species :
(a) $\mathrm{H}_{3} \mathrm{O}^{+}(b) \mathrm{HSO}_{4}^{-}(\mathrm{C}) \mathrm{NH}_{4}^{+}(d) \mathrm{HF}(e) \mathrm{CH}_{3} \mathrm{COOH}(f) \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}(g) \mathrm{H}_{3} \mathrm{P}_{4}$
(ii) State the formula and name the conjugate acid of each of the
following species:

$$
\text { (a) } \mathrm{OH}^{-}(b) \mathrm{HPO}_{4}^{2-}(\mathrm{C}) \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(d) \mathrm{CH}_{3} \mathrm{NH}_{2}(e) \mathrm{CO}_{3}^{2-}(f) \mathrm{NH}_{3}(g) \mathrm{CH}_{3} \mathrm{CO}
$$

- Watch Video Solution

46. The species $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}^{-}, \mathrm{HSO}_{4}^{-}$and NH_{3} and act both as Bronsted acid and base. For each case, give the correponding conjugate acid and base.

- Watch Video Solution

47. Calculate the hydrogen ion and hydroxyl ion concentration of 0.01 M solution of NaOH at 298 K .

- Watch Video Solution

48. A solution has been prepared by dissolving 0.063 g of HNO_{3} in 1000 mL of It. Calculate the $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$of the solution.
49. Find the pH of a solution of 0.01 M acetic acid which is only 20% ionised.

- Watch Video Solution

50. Calculate pH values of (i) $0.2 \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution (ii) $0.2 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ solution.

- Watch Video Solution

51. A solution has been prepared by dissolving 0.63 g of nitric acid in 100 mL . What is its pH value ? Assume that the acid is completely dissociated.

- Watch Video Solution

52. Caculate the pH value of 0.20 M solution of methyl amine $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)$ at 298 K , given that its ionisation constant $\left(K_{b}\right)$ is 4.4×10^{-5}.

- Watch Video Solution

53. At 298 K , the pH of a lemon juice is 2.32. Calculate its $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$.

- Watch Video Solution

54. Find the pH of the following soluitons:
(i) 3.2 g of hydrogen chloride dissolved in 1.0 L of water
(ii) 0.28 g of potassium hydroxide dissolved in 1.0 L of water .

- Watch Video Solution

55. The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} \mathrm{M}$. What is its pH ?

- Watch Video Solution

56. Calculate the pH of $10^{-8} \mathrm{M}$ acid solution.

- Watch Video Solution

57. Calculate the pH of $10^{-10} \mathrm{M} \mathrm{NaOH}$ solution.

- Watch Video Solution

58. An acid solution of $p H=6$ is diluted 100 times. The $p H$ of solution becomes
59. Equal volumes of three acid solutions of $\mathrm{pH} 3,4$ and 5 are mixed in a vessel. What will be the H^{+}ion concentration in the mixture?

- Watch Video Solution

60. Calculate the pH value of a solution obtained by mixing 50 mL of 0.2 N HCl solution with 50 mL of 0.1 N NaOH solution.

- Watch Video Solution

61. $1 \mathrm{~cm}^{3}$ of 0.01 N HCl solution is added to one litre of sodium chloride solution. Calculate the pH of the resulting solution.

- Watch Video Solution

62. What will be the resultant pH , when 200 mL of an aqueous solution of $\operatorname{HCI}(p H=2.0)$ is mixed with 300 mL of an aqueous solution of
$\mathrm{NaOH}(p H=12.0) ?$

- Watch Video Solution

63. Determine the degree of ionisation and pH of a 0.05 M ammonia solution. Also calculate ionisation constant of the conjugate acid ammonia. Given that K_{b} for NH_{3} is 1.77×10^{-5}.

- Watch Video Solution

64. Calculate the degree of hydrolysis of 0.1 M solution of sodium acetate at $298 K: K_{a}=1.8 \times 10^{-5}$.

- Watch Video Solution

65. Calculate the percentage hydrolysis of decinormal solution of ammonium acetate given that
$k_{a}=1.75 \times 10^{-5}, K_{b}=1.80 \times 10^{-5}$ and $K_{w}=1.0 \times 10^{-14}$
66. Calculate the degree of hydrolysis and pH of a 0.1 M sodium acetate solution. Hydrolysis constant for sodium acetate is 5.6×10^{-10}.

- Watch Video Solution

67. K_{a} for butyric acid is 2.0×10^{-5}. Calculate pH and hydroxyl ion concentration in $0.2 M$ aqueous solution of sodium butyate.

- Watch Video Solution

68. Calculate the pH of a buffer solution containing 0.1 mole of acetic acid and 0.15 mole of sodium acetate. K_{c} for acetic acid is 1.75×10^{-5}.

- Watch Video Solution

69. A buffer solution with pH 9 is to be prepared by mixing $\mathrm{NH}_{4} \mathrm{OH}$ solution. $K_{b}=1.8 \times 10^{-5}$.

- Watch Video Solution

70. What is the pH of the solution when 0.2 mole of hydrochloric acid is added to one litre of a solution containing 1 M acetic acid and acetate ion ? Assume that the total volume is one litre.K_{a} for $\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}$.

- Watch Video Solution

71. The solubility of AgCl in water at 298 K is 1.06×10^{-5} mole per litre.

Calculate its solubility product at this temperature.

- View Text Solution

72. The solubility of $C a F_{2}$ in water at 298 Kiss 1.7×10^{-3} grams per 100 mL of the solution. Calculate solubility product of CaF_{2}.

- Watch Video Solution

73. pH of saturated solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 12 . The value of solubility product $\left(K_{s p}\right)$ of $\mathrm{Ba}(\mathrm{OH})_{2}$ is

- Watch Video Solution

74. The solubility of silver bromide is $7.7 \times 10^{-13} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$. Calculate the solubility of the salt.

- Watch Video Solution

75. Calcualte the solubility of $M_{2} X_{3}$ in pure water, assuming that neither kind of ion reacts with $\mathrm{H}_{2} \mathrm{O}$. The solubility product of
$M_{2} X_{3}, K_{s p}=1.1 \times 10^{-23}$.

- Watch Video Solution

76. What is the solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in water if the value of the solubility product $\left(K_{s p}\right)=1.3 \times 10^{-11}(\mathrm{~mol} / L)^{3}$?

- Watch Video Solution

77. What is the minimum volume of water required to dissolve 1.0 g of calcium sulphate at $298 K$?
(For calcium sulphate , $K_{s p} i s 9.1 \times 10^{-6}$).

- Watch Video Solution

78. What is the minimum pH of a solution of 0.1 M in Mg^{2+} from which $\mathrm{Mg}(\mathrm{OH})_{2}$ will not precipitate $K_{s p}=1.2 \times 10^{-11} \mathrm{M}^{3}$.
79. If $25.0 \mathrm{~cm}^{3}$ of $0.05 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ solution is mixed with $25.0 \mathrm{~cm}^{3}$ of 0.02 M NaF solution. Will any BaF_{2} precipitated ? $\left(K_{s p}\right.$ for $\left.B a F_{2}=1.7 \times 10^{-6}\right)$

- Watch Video Solution

80. 20 mL of $1.5 \times 10^{-5} \mathrm{M}$ barium chloride solution is mixed with 40 mL of 0.9×10^{-5} sodium sulphate. Will a precipitate get formed ?

$$
\left(K_{s p} \text { for } \mathrm{BaSO}_{4}=1 \times 10^{-10}\right)
$$

- Watch Video Solution

Short Answer Type Question

1. The ionisation of hydrochloric in water is given below:
$\mathrm{HCI}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+} \mathrm{CI}^{-}(a q)$
Label two conjugate acid- base pairs in this ionisation.

(D) Watch Video Solution

2. The aqueous solution of sugart does not conduct electricity. However when sodium chloride is added to water, it conducts electricity. How will you explain this statement on the basis of ionisation and how is it affected by concentration of sodium chloride ?

- Watch Video Solution

3. $B F_{3}$ does not have proton but still acts as an acid and reacts with
NH_{3}. Why is it so? What type of bond is formed between the two ?

- Watch Video Solution

4. Ionisation constant of a weak base MOH, is given by the expression
$K_{b}=\frac{\left[\mathrm{M}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{MOH}]}$
Values of ionisation constant of some weak bases at a particular
temperature are given below :

| Base | Dimethylamine | $H_{2} O(l)$ | Pyridine |
| :---: | :---: | :---: | :---: |\quad| Ammonia |
| :---: |
| K_{b} |$\quad 1.3 \times 10 \quad 1.77 \times 10^{-9} \quad 1.77 \times 10^{-5}$

Arrange the bases in decreasing order of the extent of their ionisation at equilibrium. Which of the above base is the strongest?

- Watch Video Solution

5. Conjugate acid of a weak base is always stronger. What will be the decrinsing order of basic strength of the following conjugate bases?
$\mathrm{OH}^{-}, \mathrm{RO}^{-}, \mathrm{CH}_{3}, \mathrm{COO}^{-}, \mathrm{CI}^{-}$

(Watch Video Solution

6. Arrange the following in increasing order of ph:
$\mathrm{KNO}_{3}(a q), \mathrm{CH}_{3} \mathrm{COONa}(\mathrm{aq}), \mathrm{NH}_{4} \mathrm{CI}(a q), \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONH}_{4}(a q)$

- Watch Video Solution

7. The value of K_{c} for the reaction $2 H I(g) \Leftrightarrow H_{2}+I_{2}(g)$ is 1×10^{-4}. At a given time, t he composition of reaction mixture is

$$
[H I]=2 \times 10^{-5} \mathrm{~mol},\left[H_{2}\right]=1 \times 10^{-5} \mathrm{~mol} \text { and }\left[l_{2}\right]=1 \times 10^{-5} \mathrm{~mol}
$$ In which direction will the reaction proceed ?

- Watch Video Solution

8. On the basis of the equation $p h=-\log \left[H^{+}\right]$,the ph of $10^{-8} \mathrm{~mol}$ $d m^{-3}$ solution of HCl should be 8 . However, it is observed to be less than 7.0. Explain the reason.

- Watch Video Solution

9. ph of a solution of a strong acid is 5.0 . What will be the ph of the solution obtained after dilluting the given solution to 100 times ?

- Watch Video Solution

10. A sparingly soluble salt gets precipitated only when the prudct of concentration of its ions in the solution $\left(Q_{s p}\right)$ becomes greater than its solubility product. If solubility of BaSO_{4} in water is $8 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$. Calculater its solubility in $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

- Watch Video Solution

11. Calculate the ph of a solution formed by mixing equal volumes of two solutions A and B of a strong acids having $p h=6$ and $p h=4$ respectively.

- Watch Video Solution

12. The solubility product of $A I(O H)_{3}$ is 2.7×10^{-11}. Calculate its solubility in $m g L^{-1}$. (Atomic mass of $A I=27 u$).
13. Calculate the volume of water required to dissolve $0.1 g$ lead (II) chloride to get a saturaed solution ($K_{s p}$ of $P b C I_{2}=3.2 \times 10^{-8}$, atomic mass of $\mathrm{Pb}=207 u)$. Multiply your answer with 10 to get answer.

- Watch Video Solution

14. A reaction between ammonia and boron triflurdie is given below :
$: \mathrm{NH}_{3}+B F_{3} \rightarrow H_{3} \mathrm{~N}: \mathrm{BF}_{3}$
Identify the acid and base in this reaction. Which theory explanis it ?
What is the hybridsation of B and N in the additon compound ?

- Watch Video Solution

15. Following data is given for the reaction :
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
$\Delta_{f} H^{\Theta}[C a O(s)]=-635.1 \mathrm{kJmol}^{-1}$
$\Delta_{f} H^{\Theta}\left[C_{2}(s)\right]=-393.5 \mathrm{kJmol}^{-1}$
$\Delta_{f} H^{\Theta}\left[\mathrm{CaCO}_{3}(s)\right]=-1206.9 \mathrm{kJmol}^{-1}$

Predict the effect of temperature on the equilibrium of the above reaction.

- Watch Video Solution

16. How can you prdict the following stages of a reaction by comparing the value of K_{c} and Q_' ${ }^{\prime}$?
(i) Net reaction proceeds in the toward direction.
(ii) Net recation proceeds in the backward dirction.
(iii) No net rection occurs.

- Watch Video Solution

17. On the basis of Le Chatelier principle explain how temperature and pressure can be adjusted to increase the yield of ammonia int he following reaction.
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g), \Delta H=-92.38 K \mathrm{JMol}^{-1}$
What will be the effect of addition of argon to the avove mixture at

- Watch Video Solution

18. A sparingly soluble slat having gereral formula, $A_{x} B_{y}$ and molar solubility S is in equilibrium with its saturated solution. Write the relationship between the solubility and solubility product for such salt.

- Watch Video Solution

19. Write a relation between ΔG and Q and deifine the meaning of each term and answer the following :

Why a reaction proceeds forward when $Q<K$ and no net reaction occure when $Q=K$.

Explain the effect of increase in presure in terms of reaction quotient Q for the reaction: $\mathrm{CO}(g)+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

- Watch Video Solution

1. A crystal of common slat of given mass is by kept in aqueous solution.

After 12 hours, its mass ramanins the same, Is the crystal in equilibrium with the solution?

- Watch Video Solution

2. Why is there a fizz when a soda water bottle is opend?

- Watch Video Solution

3. Can equilibrium be achieved between water and its vapours in an open vessel ? Explain yours answer and say what happens eventuallly.

- Watch Video Solution

4. From the values of the equilibrium constants, indicate in which case, does not reaction go farthest to completion :
$K_{1}=10^{-10}, K_{2}=10^{10}, K_{3}=10^{5}$.

- Watch Video Solution

5. The value of the equilibrium constant is less than zero. What does it indicate?

Watch Video Solution

6. Would you expect equilibrium constant for the reaction $l_{2}(g) \Leftrightarrow 2 l(g)$ to increase or decrease as temperature increases. Assign reson.

- Watch Video Solution

7. Following equilibrium is set up when $S C N^{-}$ion is added to Fe^{3+} in aqueous solution :

$$
\underset{\text { Pale yellow }}{\mathrm{Fe}^{3+}} \quad+\quad \underset{\text { Colour less }}{S C N^{-}} \Leftrightarrow \quad \underset{\text { Deep red }}{[F e(S C N)]^{2+}}
$$

When silver nitrate is added to the solution, AgSCN gets precipitate.
What will happen to the equilibrium?

- Watch Video Solution

8. Following reaction occurs in a Blast Furnace :
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \Leftrightarrow 2 \mathrm{Fe}(\mathrm{l})+3 \mathrm{CO}_{2}(\mathrm{~g})$
Use Le Chetelier's principle to predict the direction of reaction when equilibrium mixture is disturbed by (a) adding $\mathrm{Fe}_{2} \mathrm{O}_{3}$ (b) removing CO_{2} (c) removing CO.

- Watch Video Solution

9. Acetic acid is highly soluble in water but still a weak electrolyte. Why?

- Watch Video Solution

10. Discuss the role of $\mathrm{NH}_{4} \mathrm{OH}$ in group III of basic redicals.
11. How will you account for the following :
(a) Clothes dry quicker on a windy day

We sweat more on a humid day?

- Watch Video Solution

12. the solubility of CO_{2} in water decreases with increases in temperature . Explain.

- Watch Video Solution

13. Will ionic product of water increase or decrease if temperature is increased?
14. In a chemical reaction under equilibrium, there is no change in moler conertration of products and reactants. Does the reaction stop?

- Watch Video Solution

15. Out of water and silver nitrate solution, in which case silver choride will dissolve more?

- Watch Video Solution

16. Magnesium is not precipitated from a solution of its salt by $\mathrm{NH}_{4} \mathrm{OH}$ in the presence of $\mathrm{NH}_{4} \mathrm{CI}$. Explain.

- Watch Video Solution

17. SO_{3} is an acidic oxide while $\mathrm{Na}_{2} \mathrm{O}$ is basic in nature. Support the same with the halp of exaples.
18. $\mathrm{Zn}(\mathrm{OH})_{2}$ is not precipitated when $\mathrm{NH}_{4} \mathrm{OH}$ is added to a zinc salt solution containing some ammonium chloride. Explain.

- Watch Video Solution

19. Will the pH of water be same at $4^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$? Explain.

- Watch Video Solution

H.O.T.S Conceptual Questions

1. Reaction between ethyl acetate and water attains a state of equilibrium in an open vessel but not the decomposition of CaCO_{3}. Explain.

- Watch Video Solution

2. For a reaction , $B r_{2} \Leftrightarrow 2 B r$, the equilibrium constant at 600 K and 800 K are respectively 6.1×10^{-12} and 1.0×10^{-7}. What is the nature of the reaction?

- Watch Video Solution

3. Barium sulphate is washed with water containing a little amount of dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ in gravimetric analysis. Justify.

- Watch Video Solution

4. CO_{2} gas is much more soluble in aqueous NaOH solution than in water. Justify.

- Watch Video Solution

5. Why do teeth undergo decay by eating sweets regularly?
6. What is the effect of decreasing the volume of the container in the reaction.

$$
2 C(s)+O_{2}(g)<\Rightarrow 2 C O(g)
$$

- Watch Video Solution

Additional Important Questions

1. Which of the following reactions involve homogenous and which involve hetrogenous equilibria?
a) $2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})<\Rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
b) $2 \mathrm{NH}_{3}(\mathrm{~g})<\Rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
c) $2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(s)<\Rightarrow 2 \mathrm{CuO}(s)+4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
d)
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})<\Rightarrow \mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q)$
e) $\mathrm{Fe}^{3+}(a q)+3 \mathrm{OH}^{-}(a q)<\Rightarrow \mathrm{Fe}(\mathrm{OH})_{3}(s)$.
2. Write the expressioin for the equilibrium constant for each of the following reactions?
(i) $2 \mathrm{NOCl}(\mathrm{g})<\Rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
(ii) $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}(g)$
(iii) $I_{2}(s)+5 F_{2}(g) \Leftrightarrow 2 I F_{5}(g)$
(iv) $\mathrm{FeO}(s)+\mathrm{CO}(g) \Leftrightarrow \mathrm{Fe}(s)+\mathrm{CO}_{2}(g)$
(v) $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})$.

Watch Video Solution

3. What quantiative information can you obtain from the value of the equilibrium constant?

- Watch Video Solution

4. Which of the following can behave both as Bronsted acids as well as Bronsted bases?
$\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}^{-}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{HS}^{-}, \mathrm{NH}_{3}$.

- Watch Video Solution

5. Classify the following into acids and bases according to Lewis Concept:
$S^{2-}, H^{+}, O H^{-}, B F_{3}, N i^{2+}, A I C I_{3}, N F_{3}, S n C I_{4}, N H_{3}$

- Watch Video Solution

6. An aqueous solution of CuSO_{4} is acidic while that of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is neutral. Explain.

- Watch Video Solution

7. An aqueous solution of ferric chloride gives a brown precipitate upon standing . Justify.

- Watch Video Solution

8. How does water help in the dissociation of acids and base?

- Watch Video Solution

9. Water is rather neutral but becomes a strong base when HCl is dissolved in water. Explain.

- Watch Video Solution

10. (a) Arrange the following Bronsted acids in decreasing acidic strength: $\mathrm{HCI}, \mathrm{HBr}, \mathrm{HI}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{HCO}_{3}^{-} \mathrm{H}_{2} \mathrm{O}$.
(b) Arrange the following Bronsted bases in increasing basic strength:
$\mathrm{CO}_{3}^{2-}, \mathrm{NH}_{3} \mathrm{SO}_{4}^{2-}, \mathrm{CI}^{-}, \mathrm{Br}^{-}, \mathrm{NO}_{3}^{-}$.

- Watch Video Solution

11. How will you account for the acidic character of nitrous acid $\left(\mathrm{HNO}_{2}\right)$ according to both Arrhenius theory and Bronsted-Lowry theory?

- Watch Video Solution

12. With the help of Lowry-Bronsted concept show that HCIO_{4} is a stronger acid than HCIO_{3} when dissolved is water.

- Watch Video Solution

13. How does Lewis theory explain the acidic character of CO_{2} ?
14. Do you agree with the statement that Lewis base is a Bronsted base? Justify your answer.

- Watch Video Solution

15. Out of the following :
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{SO}_{3}^{2-}, \mathrm{CIO}^{-}, \mathrm{Fe}^{3+}, \mathrm{BCI}_{3}, \mathrm{NH}_{4}^{+}$, select
(a) Bronsted and Lowry and (b) Bronsted and Lowry base (C) Lewis acid (d)

Lewis base.

- Watch Video Solution

16. Out of the following pairs point out the stronger Lewis acid and assigh reason.
(a) BF_{3} or BH_{3}
(b) Sn^{2+} or Sn^{4+}

- Watch Video Solution

17. HCI is a stronger acid then $\mathrm{CH}_{3} \mathrm{COOH}$ but both have almost same acidic strength when dissolved in liquid ammonia. Explain.

- Watch Video Solution

18. Arrange the following in order of increasing acid strength:
(a) $\mathrm{NH}_{3}, \mathrm{CH}_{4}, \mathrm{HF}, \mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{HCOOH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} . \mathrm{CH}_{3} \mathrm{COOE}$

- View Text Solution

19. Find the value of equilibrium constant if the rate constante for the forward and backward reactions are, 2.38×10^{-4} and 8.15×10^{-4} respetively.

- Watch Video Solution

20. The nature of a solution whether neutral, acidic or basic depends upon its pH value. The pH of a solution changes when an acid or base
added to it. Howerver the pH of the solution is maintained by the addition of a suitable buffer whether acidic or basic.
(a) Define a buffer solution (b) Give one example each of acidic and basic buffers. (c) Define pH of a solution .

- Watch Video Solution

21. Match the column-I with column-II
Column_I
Column-II
(i)Equilibrium
(a) $\Delta G=+v e$
(ii)Spontaneous reaction
(b) $\Delta G=0$
(iii)Non-spontaneous reaction
(c) $\Delta G=-v e$

- Watch Video Solution

22. Arrhenius Concept

- Watch Video Solution

23. What is the conjugate acid of NH_{3} ?
24. Derive the relation between $p K_{a}$ and $p K_{w}$

- Watch Video Solution

25. Calculate pH of 0.01 M HCl solution.

- Watch Video Solution

26. (a) Derive a relationship between K_{p} and K_{c}
(b) What is a buffer solution?
(C) Define acid according to Lewis concept.
(d) Calculate pH value of 0.01 m HCl .

- Watch Video Solution

Problem

1. Prove $\alpha=\sqrt{\left(\frac{K_{p}}{P+K_{p}}\right)}$ for
$P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$
where α is the degree of dissociation at temperature when equilibrium constant is K_{p}.

- Watch Video Solution

2. A vessel at 1000 K contains carbon dioxide with a pressure of 0.5 atm .

Some of the carbon dioxide is converted to carbon monoxide on addition of graphite. Calculate the value of K_{p} if total pressure at equilibrium is 0.8 atm .

- Watch Video Solution

3. $20 \% \mathrm{~N}_{2} \mathrm{O}_{4}$ molecules are dissociated in a sample of gas at $27^{\circ} \mathrm{C}$ and 760 torr. Calculate the density of the equilibrium mixture.
4. The degree of dissociation is 0.4 at 400 K and 1.0 atm for the gaseous reaction
$P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$
assuming ideal behaviour of all gases, calculate the density of equilibrium mixture at 400 K and 1.0 atm (relative atomic mass of P is 31.0 and of Cl is 35.5).

- Watch Video Solution

5. $0.16 g N_{2} H_{4}$ is dissoolved in $\mathrm{H}_{2} \mathrm{O}$ and total volume is made upto 500 mL . Calculate the percentage of $\mathrm{N}_{2} \mathrm{H}_{4}$ that has reacted with $\mathrm{H}_{2} \mathrm{O}$ in this solution. K_{b} for $N_{2} H_{4}=4.0 \times 10^{-6} \mathrm{M}$.

- Watch Video Solution

6. A sample of AgCl was treated with 5.00 mL of $1.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solubility to give $\mathrm{Ag}_{2} \mathrm{CO}_{3}$. The remaining solution contained $0.0026 \mathrm{gofCI}^{-}$per litre. Calculate the solubility product of AgCl . $\left(K_{S P} f\right.$ or $\left.\mathrm{Ag}_{2} \mathrm{CO}_{3}=8.2 \times 10^{-12}\right)$

- Watch Video Solution

7. What is the value of k_{c} for the reaction at 1473 K
$I_{2}(g) \Leftrightarrow 2 I(g)$
when one mode of iodic gas is introduced into an evacuated one litre flask so that only 5% of it gets dissociated ?

- Watch Video Solution

8. Calculate pH at which $\mathrm{Mg}(\mathrm{OH})_{2}$ begins to precipitate from a solution containing $0.10 M M g^{2+}$ ions. $\left(K_{S P} o f M g(O H)_{2}=1 \times 10^{-11}\right)$
9. The $p H$ of $0.05 M$ aqueous solution of diethy1 amine is 12.0 . Caluclate K_{b}.

- Watch Video Solution

10. The solubility product of AgCl in water is 1.5×10^{-10}. Calculate its solubility in $0.01 M N a C I$.

- Watch Video Solution

11. What will be the resultant pH , when 200 mL of an aqueous solution of $H C I(p H=2.0)$ is mixed with 300 mL of an aqueous solution of $\mathrm{NaOH}(p H=12.0) ?$

- Watch Video Solution

12. (a) Prove that in the aqueous solution of $\mathrm{NH}_{4} \mathrm{CI}$ concentration of
$\mathrm{H}_{3} \mathrm{O}^{+}$ions is $\sqrt{K_{h} \times c}$.
(b) Find out the ration of $\frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}$ in the aqueous solution of carbonic acid whose pH is 7.4. $\left(K_{a}=4.5 \times 10^{-7}\right)$

- Watch Video Solution

value Based questions

1. The nature of a solution whether neutral , acidic or basic depends upon its pH value. The pH of a solution changes when an acid or base added to it. Howerver the pH of the solution is maintained by the addition of a suitable buffer whether acidic or basic.
(i) Define a buffer solution
(ii) Give one example each of acidic and basic buffers.
(iii) What is the value associated with the use of buffer solution in human beings?
2. When a certain system is in a state of equilibrium both the forward and the backward processes proceed at the same speed i.e. it is of dynamic nature. Le Chatelier's principle helps in controlling the conditions of temperature, pressure and concentration which govern the system.
(i) State the principle.
(ii) The manufacture of ammonia is based on which industrial process.
(iii) What is the condition of temperature for the process?
(iv) What is the value associated with the optimum temperature for the process ?

- Watch Video Solution

3. The concept of cmmon ion effect applies to the dissociation of weak electrolytes. Their dissociation gets further suppressed in the presence of common ions furnished by a suitable electrolyte. Similarly the solubility of sparingly soluble salts in water gets suppresessed by the presence of a common ions. You are provided with an aqueous solution containing
Cu^{2+} and Zn^{2+} ions.
(i) How are these ions precipitated from the solution
(ii) What is the colour of the precipiate formed?
(iii) How does dilute HCl help in checking the precipitation of Zn^{2+} ions in group II?
(iv) How does $\mathrm{NH}_{4} \mathrm{OH}$ help in promoting the precipitation of Zn^{2+} ions in group IV?'

- Watch Video Solution

Problems for Practice

1. Which of the following systems are at equilibrium ?
(i) Mercury and mercury vapours in a thermometre at room temperature
(ii) Water boiling in an open container

- Watch Video Solution

2. What kind of equilibrium is described by Henry's laq ?

D Watch Video Solution

3. Can equilibrium be attained in a reaction between acetic acid and ethyl alcohol carried in open container ?

- Watch Video Solution

4. What is the effect of catalyst on the equilibrium state in a chemical reaction?

- Watch Video Solution

5. under what conditions can equilibrium be achieved between a solid and its liquid state ?
6. A process $X \Leftrightarrow Y$ attains equilibrium at T. Can we increase the amount of the product on adding catalyst?

(Watch Video Solution

7. Write the relation between K_{p} and K_{c} for the following reactions :

$$
\begin{equation*}
P C I_{5}(g) \Leftrightarrow P C I_{3}(g)+C I_{2}(g) \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g) \tag{ii}
\end{equation*}
$$

$$
\begin{gather*}
2 H_{2} O(g) \Leftrightarrow 2 H_{2}(g)+O_{2}(g) \tag{iii}\\
H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)
\end{gather*}
$$

(iv)

(Watch Video Solution

8. Write the equilibrium constant $\left(K_{c}\right)$ expression for the following reaction :
$(i) C u^{2+}(a q)+2 A(s) \Leftrightarrow C u(s)+2 A^{+}(a q)$
$(i i) 4 H C I(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{CI}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$

- Watch Video Solution

9. The value of the equilibrium constant for the reaction :
H_(2)
(g)
+I_(2)
(g)
hArr
2HI
(g)
at720Kis48. Wîsthevalueoftheequilibriumcons $\tan t f$ or thereaction:
$1 / / 2 \mathrm{H}_{-}(2)(\mathrm{g})+1 / / 2 \mathrm{I}$ (2)(g) hArr HI (g)

- Watch Video Solution

10. For an equilibrium reaction, the rate constants for the forward and the backward reaction are 2.38×10^{-4} and 8.15×10^{-5}, respectively.

Calculate the equilibrium constant for the reaction.

- Watch Video Solution

11. Two moles of HI were heated in a sealed tube at $440^{\circ} \mathrm{C}$ till the equilibrium was reached. HI was found to be 22% decomposed.The equilibrium constant for disssociation is :

- Watch Video Solution

12. The initial molar concentration of the reactants A and B were 0.1 M and 0.2 M respectively in the following reaction

$$
A+B \Leftrightarrow 2 C
$$

When equilibrium was attained the concentration of A in the reaction mixture was found to be 0.06 M . Calculate the equilibrium constant.

- Watch Video Solution

13. the degree of dissociation of $P C I_{5}$ at a certain temperature and under one atmosphere pressure is 0.2 . Calculate the pressure at which it is half dissociated at the same temperature.

- Watch Video Solution

14. In an experiment starting with $1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, 1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}$, and 1 mol of water, the equilibrium mixture mixture of analysis showa
that 54.3% of the acid is eaterified. Calculate K_{c}.

- Watch Video Solution

15. Under what pressure must an equimolar mixture of PCl_{3} and Cl_{2} be placed at $250^{\circ} \mathrm{C}$ in order to obtain $P C l_{5}$ at 1 atm? (K_{p} for dissociation of $\mathrm{PCl}_{5}=1.78$).

- Watch Video Solution

16. For the reaction,
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)$
the partial pressure of N_{2} and H_{2} are 0.80 and 0.40 atmosphere, respectively, at equilibrium. The total pressure of the system is 2.80 atm.

What is K_{p} for the above reaction?

- Watch Video Solution

17. In the reaction $A+B \Leftrightarrow C+D$, What will happen to the equilibrium if concentration of A is increased ?

- Watch Video Solution

18. The equilibrium constant for a reaction is 2×10^{-23} at $25^{\circ} \mathrm{C}$ and 2×10^{-2} at $50^{\circ} \mathrm{C}$. Is the reaction endothermic or exothermic ?

- Watch Video Solution

19. What will be the effect of increased pressure in the following equilibrium reactions?
(i) $\mathrm{H}_{-}(2)(\mathrm{g})+\mathrm{I}_{-}(2)(\mathrm{g})$ hArr $2 \mathrm{HI}(\mathrm{g})(i i) \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
(iii) N_(2)O_(4)(g) hArr 2NO_(2)(g)'

- Watch Video Solution

20. Mention atleast three ways by which the concentration of $\mathrm{SO}_{2}(\mathrm{~g})$ be increased in the following reaction in a state of equilibrium :
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})+$ heat.

- Watch Video Solution

21. What happens to the solubility to CO_{2} in water if temperature is increased ?

- Watch Video Solution

22. In a gaseous system $A(g)+B(g) \Leftrightarrow C(g)$ contained in a one litre flask, 1mole of an inert gas in pumped. Will there be any effect on the equilibria?

- Watch Video Solution

23. The dissociation constant for an acid HA is 1.6×10^{-5}. Calculate its $\mathrm{H}_{3} \mathrm{O}^{+}$in concentration in 0.01 M solution.

Watch Video Solution

24. At $298 \mathrm{~K}, 0.1 \mathrm{M}$ solution of acetic acid is 1.34% ionised. What is the ionisation constant $\left(K_{a}\right)$ for the acid ?

- Watch Video Solution

25. Calculate the degree of dissociation and concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in 0.01 M solution of formic acid $\left(K_{c}=2.1 \times 10^{-4}\right.$ at 298 K$)$

- Watch Video Solution

26. K_{a} for an acid HA is 4.9×10^{-8}. Calculate percentage dissocitation H^{+}ion concentration for its 0.1 M aqueous solution.
27. Calculate the degree of ionisation and concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in a solution of 0.01 M formic acid $\left(K_{a}=2.1 \times 10^{-4}\right)$

- Watch Video Solution

28. The values of ionisation constants for some pairs of acids and bases are given which of them is stronger ?
(a) Acetic acid $\left(K_{a}=1.8 \times 10^{5}\right)$, boric acid $\left(K_{a}=5,8 \times 10^{-10}\right)$
(b) Hydrofluoric acid $\left(K_{a}=6.7 \times 10^{-4}\right)$, benzoicacid($\mathrm{K}_{-}(\mathrm{a})=6.3 \mathrm{xx}$ 10^(-5))(c)Ammoniumhydr \otimes ide(K_(b) $\left.\quad=1.8 \quad \mathrm{xx} \quad 10^{\wedge}(-5)\right)$
$M a \geq n s i u m h y d r \otimes i d e\left(\mathrm{~K}_{-}(\mathrm{b})=8.1 \mathrm{xx} 10^{\wedge}(-3)\right)^{`}$

- Watch Video Solution

$$
\begin{aligned}
& \text { 29. Give the conjugate bases of } \\
& \mathrm{H}_{2} \mathrm{O}(i i) \mathrm{NHO}_{3}(i i i) \mathrm{NH}_{4}^{+}(\mathrm{Iv}) \mathrm{HCO}_{3}^{2-} \text {. }
\end{aligned}
$$

30. Which is the stronger base in the following : $\mathrm{CI}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{SO}_{3}^{2-}$ ions?

- Watch Video Solution

31. Which concept can explain the acitic character of CO_{2} ?

- Watch Video Solution

32. $A l C I_{3}$ is the an acid according to which concept ?

- Watch Video Solution

33. Name a species which can act both as conjugate acid and conjugate base.
34. Give the formulae of the conjugate acids of the following : ,
(i) $\mathrm{NH}_{3}(i i) \mathrm{HS}^{-}(\mathrm{iii}) \mathrm{HSO}_{4}^{-}(i v) \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

35. The hydronium ion concentration of a solution is $1.3 \times 10^{-5} \mathrm{M}$. Find out its pH value. Predict the nature of the solution.

- Watch Video Solution

36. Caculate the pH of $0.001 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution.

- Watch Video Solution

37. 4.0 g of NaOH are dissolved per litre of the solution at 298 K .

Calculate the pH of the solution.

- Watch Video Solution

38. How much KOH must be dissolved in one litre of solution to get a pH of 12 at $25^{\circ} \mathrm{C}$?

- Watch Video Solution

39. The pH of 0.1 M solution of an organic acid is 4.0. Calculate its dissociation constant.

- Watch Video Solution

40. The value of k_{w} is 9.55×10^{-14} at a certain temperature. Calculate the pH of water at this temperature .
41. The $p H$ of 0.05 M aqueous solution of diethy 1 amine is 12.0 . Caluclate K_{b}.

- Watch Video Solution

42. What is the hydrogen ion concentration of a solution with pH value 5.6 ?

- Watch Video Solution

43. How many moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ must be dissolved to produce 250 mL of an aqueous solution of pH 10.65 , assuming completer dissociation ?

- Watch Video Solution

44. The pH of 0.01 M hydrocyanic acid (HCH) is 5.2 .What is the dissociation constant for the acid ?

- Watch Video Solution

45. Calculate the pH value of $0.0001 \mathrm{M} \mathrm{HNO}_{3}$

- Watch Video Solution

46. Calculate the degree of hydrolysis of 0.01 M solution of ammonium chloride if its pH is 5.28 .

- Watch Video Solution

47. Determine the hydrolysis constantand degree of hydrolysis of 0.01 M solution of ammonium acetate , given that

$$
K_{a}=1.752 \times 10^{-5}, K_{b}=1.74 \times 10^{-5}
$$

48. Calculate the degree of hydrolysis of 0.04 M solution of $\mathrm{NH}_{4} \mathrm{CI}$ of $\mathrm{pH}=5.28$

- Watch Video Solution

49. Calculate the degree of hydrolysis and hydrolysis constant of 0.01 M solution of $\mathrm{NH}_{4} \mathrm{CI}$. Given $K_{w}=1 \times 10^{-14}, K_{b}=1.75 \times 10^{-5}$

- Watch Video Solution

50. The solubilty of barium sulphate at 298 K is $1.1 \times 10^{-5} \mathrm{~mol} L^{-1}$.

Calculate the solubilty product of barium sulphate at the same temerature.

- Watch Video Solution

51. The solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ is $8.352 \times 10^{-3} \mathrm{~g} L^{-1}$ at 298 K . Calculate the $K_{s p}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ at this temerature.

- Watch Video Solution

52. How many moles of $\operatorname{AgBr}\left(K_{w}=5 \times 10^{-13}\right)$ will dissolve in a 0.01 M NaBr solution ? (NaBr is completely ionised in solution)

- Watch Video Solution

53. Calculate the concentration of Mg^{2+} ions and OH^{-}ions in a saturated soluton of $\mathrm{Mg}(\mathrm{OH})_{2}$. The solubility product of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 9.0×10^{-12}

Watch Video Solution

54. Calculate the solubility of PbCI_{2} in grams /lite if the solubility product of

- Watch Video Solution

55. Predict whether a precipitate will be formed or not on mixing 20 mL of 0.001 M NaCl with 80 mL of $0.01 \mathrm{M} \mathrm{AgNO}_{3}$ solution $\left(K_{s p}\right.$ for $\left.A g C I=1.5 \times 10^{-10}\right)$

- Watch Video Solution

56. Equal volumes of $0.02 \mathrm{M} \mathrm{Na} \mathrm{SO}_{4}$ solution and 0.02 M BaCI solution are mixed together. Predict whether a precipitate will get formed or not. $K_{s p}$ value of BaSO_{4} is 1.5×10^{-9}

- Watch Video Solution

57. 50 mL of 0.01 M solution of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ is added to 150 mL of 0.08 M solution of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$. Predict Whether CaSO_{4} will be precipitated or not. $K_{s p}$ of $\mathrm{CaSO}_{4}=4 \times 10^{-5}$

NCERT

1. A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a. what is the initial effect of the change on vapour pressure?
b. How do rates of evaporation and condensation change initially?
c. What happens when equilibrium is restored finally and what will be the final vapour pressure?

- Watch Video Solution

2. What is K_{c} for the following equilibrium concentration of each substance is:

$$
\left[S O_{2}\right]=0.60 \mathrm{M},\left[\mathrm{O}_{2}\right]=0.82 \mathrm{M} \text { and }\left[\mathrm{SO}_{3}\right]=1.90 \mathrm{M} ?
$$

$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
3. At a certain temperature and a total pressure of $10^{5} \mathrm{~Pa}$, iodine vapour contains 40% by volume of Iatoms, Calculate K_{p} for the equilibrium.

$$
I_{2(g)} \Leftrightarrow 2 I_{(g)}
$$

- Watch Video Solution

4. Write the expression for the equilibrium constant K_{c} for each of the following reactions:
a. $2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
b. $2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(s) \Leftrightarrow 2 \mathrm{CuO}(s)+4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
c. $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(a q)+\mathrm{H}_{2} \mathrm{O}(1) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q)$
d. $F e^{3+}(a q)+3 O H^{\Theta}(a q) \Leftrightarrow F e(O H)_{3}(s)$
e. $I_{2}(s)+5 F_{2} \Leftrightarrow 2 I F_{5}$

- Watch Video Solution

5. Find out the value of K_{c} for each of the following equilibrium from the value of K_{p} :
a. $2 \mathrm{NOCl}(g) \Leftrightarrow 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g), K_{p}=1.8 \times 10^{-2}$ at 500 K
b. $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g), K_{p}=167$ at 1073 K

- Watch Video Solution

6. For the following equilibrium, $K_{c}=6.3 \times 10^{14} a t 1000 \mathrm{~K}$
$N O(g)+O_{3}(g) \Leftrightarrow \mathrm{NO}_{2}(g)+O_{2}(g)$
Both the forward and reverse reactions in the equilibrium are elementary bimolecular reactions. What is K_{c}, for the reverse reaction?

- Watch Video Solution

7. Explain why pure liquids and solids can ignored while writing the equilibrium constant expression?
8. Reaction between nitrogen and oxygen takes place as following:
$2 N_{2(g)}+O_{2} \Leftrightarrow 2 N_{2} O_{(g)}$
If a mixture of $0.482 \mathrm{~mole} N_{2}$ and 0.933 mole of O_{2} is placed in a reaction vessel of volume 10litre and allowed to form $\mathrm{N}_{2} \mathrm{O}$ at a temperature for which $K_{c}=2.0 \times 10^{-37}$ litremol $^{-1}$. Determine the composition of equilibrium mixture.

- Watch Video Solution

9. Nitric oxide reacts with bromine and gives nitrosyl-bromide as per reaction given below:
$2 N O_{(g)}+B r_{2(g)} \Leftrightarrow 2 N O B r_{(g)}$.
When 0.087 mole of NO and 0.0437 mole of $B r_{2}$ are mixed in a closed container at constant temperature, 0.0518 mole of $N O B r$ is obtained at equilibrium. Calculate equilibrium amount of nitric oxide and bromine.

(Watch Video Solution

10. At $450 K, K_{p}=2.0 \times 10^{10} /$ bar for the given reaction at equilibrium. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$

What is K_{c} at this temperature?

- Watch Video Solution

11. A sample of $H I(g)$ is placed in flask at a pressure of 0.2 atm . At equilibrium. The partial pressure of $H I(g)$ is $0.04 a t m$. What is K_{p} for the given equilibrium?
$2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$

- Watch Video Solution

12. A mixture of 1.57 mol of $\mathrm{N}_{2}, 1.92 \mathrm{~mol}$ of H_{2} and 8.13 mol of NH_{3} is introduced into a $20 L$ reaction vessel at 500 K . At this temperature, the equilibrium constant K_{c} for the reaction $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)$ is 1.7×10^{2}. Is the reaction mixture at equilibrium? If not, what is the direction of the net reaction?

- Watch Video Solution

13. The equilibrium constant expression for a gas reaction is :
$K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{\left[\mathrm{NO}^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}\right.}$
Write the balanced chemical equation corresponding to this expression.

- Watch Video Solution

14. One mole of $\mathrm{H}_{2} \mathrm{O}$ and one mole of CO are taken in a 10litre vessel and heated to 725 K . At equilibrium, 40percent of water (by mass) reacts with carbon monoxide according to the equation,

$$
\mathrm{H}_{2} \mathrm{O}_{(g)}+\mathrm{CO}_{(g)} \Leftrightarrow \mathrm{H}_{2(g)}+\mathrm{CO}_{2(g)}
$$

Calculate the equilibrium constant for the reaction.

- Watch Video Solution

15. At 700 K equilibrium constant for the reaction, $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$
is 54.8 . If 0.5 mollitre ${ }^{-1}$ of $H I_{(g)}$ is present at equilibrium at 700 K , what are the concentrations of $H_{2(g)}$ and $I_{2(g)}$, assuming that we initially started with $H I_{(g)}$ and allowed it to reach equilibrium at $700 K$.

- Watch Video Solution

16. What is the equilibrium concentration of each of the substance in the equilibrium when the initial concentration of $I C l$ was $0.78 M$?
$2 I C l(g) \Leftrightarrow I_{2}(g)+C l_{2}(g), K_{c}=0.14$

- Watch Video Solution

17. $K_{p}=0.04 a t m$ at 899 K for the equilibrium shown below. What is the equilibrium concentration of $C_{2} H_{6}$ when it is placed in a flask at 4.0atm pressure and allowed to come to equilibrium?

$$
C_{2} H_{6}(g) \Leftrightarrow C_{2} H_{4}(g)+H_{2}(g)
$$

(D) Watch Video Solution

18. The ester, ethyl acetate is formed by the reaction of ethanol and acetic acid and the equilibrium is represented as :
$\mathrm{CH}_{3} \mathrm{COOH}(l)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(l)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(i) Write the concentration ratio (concentration quotient) Q for this reaction. Note that water is not in excess and is not a solvent in this reaction.
(ii) At 293 K , if one starts with 1.000 mol of acetic acid 0.180 mol of ethanol, there is 0.171 mol of ethyl acetate in the final equilibrium mixture . Calculate the equilibrium constant.
(iii) Starting with 0.50 mol of ethanol and 1.000 mol of acetic acid and maintaining it at $293 \mathrm{~K}, 0.214 \mathrm{~mol}$ of ethyl acetate is found after some time. Has equilibrium been reached?

- Watch Video Solution

19. A sample of pure $P C l_{5}$ was introduced into an evacuted vessel at 473 K . After equilibrium was attained, concentration of PCl_{5} was found to be 0.5×10^{-1} mollitre $^{-1}$. If value of K_{c} is 8.3×10^{-3} mollitre $^{-1}$. What are the concentrations of PCl_{3} and Cl_{2} at equilibrium ?

- Watch Video Solution

20. One of the reaction that takes plece in producing steel from iron ore is the reduction of iron(II) oxide by carbon monoxide to give iron metal and CO_{2}.
$F e O(s)+C O(g) \Leftrightarrow F e(s)+\mathrm{CO}_{2}(g), K_{p}=0.265$ atm at 1050 K
What are the equilibrium partial pressure of CO and CO_{2} at 1050 K if the partical pressure are: $p_{\mathrm{CO}}=1.4 \mathrm{~atm}$ and $p_{\mathrm{CO}_{2}}=0.80 \mathrm{~atm}$?

- Watch Video Solution

21. Equilibrium constant, K_{c} for the reaction,

$$
N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 N H_{3(g)},
$$

at 500 K is 0.061 litre ${ }^{2} \mathrm{~mole}^{-2}$. At a particular time, the analysis shows that composition of the reaction mixture is 3.00 mollitre $^{-1} N_{2}$, 2.00 mollitre ${ }^{-1} \mathrm{H}_{2}$, and 0.500 mollitre ${ }^{-1} \mathrm{NH}_{3}$. Is the reaction at equilibrium? If not, in which direction does the reaction tend to proceed to reach equilibrium?

Watch Video Solution

22. Bromine monochloride, (BrCl) decomposes into bromine and chlorine and reaches the equilibrium.
$2 B r C l_{(g)} \Leftrightarrow B r_{2(g)}+C l_{2(g)}$
For which $K_{c}=32$ at 500 K . If initially pure BrCl is present at a concentration of 3.30×10^{-3} mollitre $^{-1}$, what is its molar concentration in the mixture at equilibrium?

- Watch Video Solution

23. At 1127 K and 1 atm pressure, a gaseous mixture of CO and CO_{2} in equilibrium with solid carbon has $90.55 \% C O$ by mass:
$C_{(s)}+C O_{2(g)} \Leftrightarrow 2 C O_{(g)}$
Calculate K_{c} for the reaction at the above temperature.

- Watch Video Solution

24. Calculate (a) ΔG^{Θ} and (b) the equilibrium constant for the formation of NO_{2} from NO and O_{2} at 298 K
$\mathrm{NO}(g)+1 / 2 \mathrm{O}_{2}(g) \Leftrightarrow \mathrm{NO}_{2}(g)$ where
$\Delta_{f} G^{\Theta}\left(N O_{2}\right)=52.0 \mathrm{~kJ} / \mathrm{mol}, \Delta_{f} G^{\Theta}(N O)=87.0 \mathrm{~kJ} / \mathrm{mol}, \Delta_{f} G^{\Theta}\left(O_{2}\right)=$

- Watch Video Solution

25. Does the number of moles of reaction products increase, decrease, or remain same when each of the following equilibrium is subjected to a decrease in pressure by increasing the volume?
a. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
b. $\mathrm{CaO}(s)+\mathrm{CO}_{2}(g) \Leftrightarrow \mathrm{CaCO}_{3}(s)$
c. $3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$
26. which of the following reactions will get affected by increase in pressure ? Also mention whether the change will cause the reaction to go the right or left direction.
(i) $\left.\mathrm{CH}_{4}(g)+2 S\right)_{2}(g) \Leftrightarrow \mathrm{CS}_{2}(g)+2 \mathrm{H}_{2} S(g)$
(ii) $\mathrm{CO}_{2}(g)+\mathrm{C}(\mathrm{s}) \Leftrightarrow 2 \mathrm{CO}(g)$
(iii) $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \Leftrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$
(iv) $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$
(v) $\mathrm{COCI}_{2}(g) \Leftrightarrow C O(g)+C I_{2}(g)$
(vi) $\mathrm{CaCO}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$

- Watch Video Solution

27. The equilibrium constant for the following reaction is 1.6×10^{5} at $1024 K$
$H_{2}(g)+B r_{2}(g) \Leftrightarrow 2 H B r(g)$
find the equilibrium pressure of all gases if 10.0 bar of HBr is introduced into a sealed container at $1024 K$.

- Watch Video Solution

28. Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction:
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$
a. Write an expression for $\mathrm{K}_{-}(\mathrm{p})$ for the above reaction.
b. How will the value of $K_{_}(p)$ and composition of equilibrium mixture be affected by
i. Increasing the pressure
ii. Increasing the temperature
iii. Using a catalyst?

- Watch Video Solution

29. Decribe the effect of:
a. Addition of H_{2}
b. Addition of $\mathrm{CH}_{3} \mathrm{OH}$
c. Removal of $C O$
d. Removal of $\mathrm{CH}_{3} \mathrm{OH}$
on the equilibrium of the reaction:

$$
2 \mathrm{H}_{2}(g)+\mathrm{CO}(g) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(g)
$$

(Watch Video Solution

30. At $473 K$, equilibrium constant K_{c} for decomposition of phosphorus pentachloride, $P C l_{5}$ is 8.3×10^{-3}. If decomposition is depicted as,

$$
P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g) \Delta_{r} H^{\Theta}=124.0 \mathrm{kJmol}^{-1}
$$

a. Write an expression for K_{c} for the reaction.
b. What is the value of K_{c} for the reverse reaction at the same temperature?
c. What would be the effect on K_{c} if
i. More $P C l_{5}$ is added
ii. Pressure is increased
iii. The temperature is increased?

- Watch Video Solution

31. Dihydrogen gas used in Haber's process is produced by reacting methane from natural gas with high temperature steam. The first stage of the two 2 stage reaction involves the formation of CO and H_{2}. In second stage, $C O$ formed in first stage is reacted with more steam in water gas shift reaction,

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

If a reaction vessel at $400^{\circ} C$ is charged with an equimolar mixture of $C O$ and steam such that $p_{\mathrm{CO}}=p_{\mathrm{H}_{2} \mathrm{O}}=4.0$ bar, what will be the partial pressure of H_{2} at equilibrium? $K_{p}=0.1$ at $400^{\circ} \mathrm{C}$.

- Watch Video Solution

32. Predict which of the following reactions will have appreciable concentration of rectants and products:
a. $C l_{2}(g) \Leftrightarrow 2 C l(g), K_{c}=5 \times 10^{-39}$
b. $C l_{2}(g)+2 N O(g) \Leftrightarrow 2 N O C l(g), K_{c}=3.7 \times 10^{8}$
c. $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}), \mathrm{K}_{c}=1.8$

- Watch Video Solution

33. The value of K_{c} for the reaction $3 O_{2}(g) \Leftrightarrow 2 O_{3}(g)$ is 2.0×10^{-50} at $25^{\circ} \mathrm{C}$. If the equilibrium concentration of O_{2} in air at $25^{\circ} \mathrm{C}$ is 1.6×10^{-2} , what is the concentration of O_{3} ?

- Watch Video Solution

34. The reaction, $\mathrm{CO}(g)+3 \mathrm{H}_{2}(g) \Leftrightarrow \mathrm{CH}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(g)$ is at equilibrium at 1300 K in a $1 L$ flask. It also contains 0.30 mol of $\mathrm{CO}, 0.10 \mathrm{~mol}$ of H_{2} and 0.02 mol of $\mathrm{H}_{2} \mathrm{O}$ and an unknown amount of CH_{4} in the flask. Determine the concentration of CH_{4} in the mixture. The equilibrium constant K_{c} for the reaction at the given temperature us 3.90 .

- Watch Video Solution

35. What is meant by the conjugate acid-base pair? Find the conjugate acid / base for the following species:
$\mathrm{HNO}_{2}, \mathrm{CN}^{\Theta}, \mathrm{HClO}_{4}, \mathrm{~F}^{\ominus}, \stackrel{\ominus}{\mathrm{O}} \mathrm{H}, \mathrm{CO}_{3}^{2-}$, and S^{2-}

(D) Watch Video Solution

36. Which of the followings are Lewis acids: $\mathrm{H}_{2} \mathrm{O}, \mathrm{BF}_{3}, \mathrm{H}^{\oplus}$ and NH_{4} ?

- Watch Video Solution

37. What will be the conjugate bases for the Bronsted acids ? HF, $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{CO}_{3}$?

- Watch Video Solution

38. Wirte the conjugate acids for the following Brdddotosted bases:
a. $\stackrel{\ominus}{\mathrm{N}} \mathrm{H}_{2}$ b. NH_{3} c. HCOO^{Θ}

- Watch Video Solution

39. The species: $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}^{\Theta}, \mathrm{HSO}_{4}^{\Theta}$ and NH_{3} can act both as Bronsted acids and bases. For each case give the corresponding conjugate acid and base.

- Watch Video Solution

40. Classify the following species into Lewis acid and Lewis base and show how these act as such.
a. $\stackrel{\Theta}{O} H$ b. F^{Θ}
c. H^{\oplus}
d. $B C I_{3}$

- Watch Video Solution

41. The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} \mathrm{M}$. What is its pH ?

- Watch Video Solution

42. The $p H$ of a sample of vinegar is 3.76 , Calculate the concentration of hydrogen ion in it.

Watch Video Solution

43. The ionization constant of $\mathrm{HF}, \mathrm{HCOOH}$ and HCN at 298 K are $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ and 4.8×10^{-9} respectively. Calculate the ionization constant of the corresponding conjugate base.

- Watch Video Solution

44. The ionization constant of phenol is 1.0×10^{-10}. What is the concentration of phenolate ion in $0.05 M$ solution of phenol? What will be its degree of ionization if the solution is also $0.01 M$ in sodium phenolate?

- Watch Video Solution

45. The first ionization constant of $H_{2} S$ is 9.1×10^{-8}. Calculate the concentration of $H S^{\Theta}$ ion in its $0.1 M$ solution. How will this concentration be affected if the solution is 0.1 M in HCl also? If the second dissociation constant if $H_{2} S$ is 1.2×10^{-13}, calculate the concentration of S^{2-} under both conditions.

- Watch Video Solution

46. The ionization constant of acetic acid 1.74×10^{-5}. Calculate the degree of dissociation of acetic acid in its $0.05 M$ solution. Calculate the concentration of acetate ion in the solution and its $p H$.

- Watch Video Solution

47. It has been found that the $p H$ of a $0.01 M$ solution of an organic acid is 4.15. Calculate the concentration of the anion, the ionization constant of the acid and its $p K_{a}$.
48. Assuming complete dissociation, calculate the $p H$ of the following solutions,

a. $0.003 M H C l, b .0 .005 M N a O H$,
c. $0.002 M H B r, d .0 .002 M K O H$

(D) Watch Video Solution

49. Calculate the $p H$ of the following solutions:
a. $2 g$ of TlOH dissolved in water to give 2 litre of solution.
b. $0.3 g$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ dissolved in water to give 500 mL of solution.
c. $0.3 g$ of NaOH dissolved in water to give 200 mL of solution.
d. 1 mL of 13.6 MHCl is duluted with water to give 1 litre of solution.

- Watch Video Solution

50. The degree of ionisation of a $0.1 M$ bromoacetic acid solution is 0.13 .

Calculate the $p H$ of the solution and the $p K_{a}$ of bromoacetic acid.

- Watch Video Solution

51. The $p H$ of 0.005 M codenine $\left(\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}\right)$ solution is 9.95 . Calculate its ionisation constant and $p K_{b}$.

- Watch Video Solution

52. What is the $p H$ of $0.001 M$ aniline solution? The ionization constant of aniline 4.27×10^{-10}. Calculate the degree of ionization of aniline in the solution. Also calculate the ionization constant of the conjugate acid of aniline.

- Watch Video Solution

53. Calculate the degree of ionisation of $0.05 M$ acetic acid if its $p K_{a}$ value is 4.74 . How is the degree of dissociation affected when its solution also contains
a. 0.01 M , b. 0.1 M in HCl ?

- Watch Video Solution

54. The ionisation constant of dimethylamine is 5.4×10^{-4}. Calculate its degree of ionization in its $0.02 M$ solution. What percentage of dimethylamine is ionized if the solution is also 0.1 M in NaOH ?

- Watch Video Solution

55. Calculate the hydrogen ion concentration in the following biological fluids whose $p H$ are given below:
a. Human muscle-fluid, 6.83
b. Human stomach fluid, 1.2
c. Human blood, 7.38
d. Human saliva, 6.4.

- Watch Video Solution

56. The $p H$ of milk, black coffee, tomato juice, lemon juice and egg white are $6.8,5.0,4.2,2.2$ and 7.8 respectively. Calculate corresponding hydrogen ion concentration in each.

- Watch Video Solution

57. If 0.561 g of (KOH) is dissolved in water to give. 200 mL of solution at 298 K . Calculate the concentration of potassium, hydrogen and hydroxyl ions. What is its $p H$?

- Watch Video Solution

58. The solubility of $\mathrm{Sr}(\mathrm{OH})_{2}$ at 298 K is $19.23 g L^{-1}$ of solution.

Calculate the concentrations cf strontium and hydroxyl ions and the $p H$ of the solution.

- Watch Video Solution

59. The ionization constant of propionic acid is 1.32×10^{-5}. Calculate the degree of ionization of the acid in its 0.05 M solution and also its pH .

What will be its degree of ionization in the solution of 0.01 NHCI ?

- Watch Video Solution

60. The $p H$ of $0.1 M$ solution of cyanic acid (HCNO) is 2.34. Calculate the ionization constant of the acid and its degree of ionisation in the solution.

- Watch Video Solution

61. The ionization constant of nitrous acid is 4.5×10^{-4}. Calculate the $p H$ of $0.04 M$ sodium nitrite solution and also its degree of hydrolysis.

- Watch Video Solution

62. A $0.02 M$ solution of pyridinium hydrochloride has $p H=3.44$. Calculate the ionization constant of pyridine.

Watch Video Solution

63. Predict if the solution of the following salts are neutral, acidic or basic:
$\mathrm{NaCI}, \mathrm{KBr}, \mathrm{NaCN}, \mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{NaNO}_{2}$ and KF

- Watch Video Solution

64. The ionization constant of chloroacetic acid is 1.35×10^{-3}. What will be the $p H$ of $0.1 M$ acid and its $0.1 M$ sodium salt solution?

- Watch Video Solution

65. Ionic product of water at 310 K is 2.7×10^{-14}. What is the $p H$ of netural water at this temperature?

- Watch Video Solution

66. Calculate the pH of the resultant mixture:
a. 10 mL of $0.2 \mathrm{MCa}(\mathrm{OH})_{2}+25 \mathrm{~mL}$ of 0.1 MHCl
b. 10 mL of $0.01 \mathrm{MH}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL}$ of $0.01 \mathrm{MCa}(\mathrm{OH})_{2}$.
c. 10 mL of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL}$ of 0.1 MKOH .

- Watch Video Solution

67. Determine the solubilities of silver chromate, barium chromate, ferric hydroxide, lead chloride and mercurous iodide at 298 K form their solubility product constants given below. Determine also the molarities of individual ions.

$$
K_{S P\left(\mathrm{Ag}_{2} C r O_{4}\right)}=1.1 \times 10^{-12},
$$

$K_{S P\left(\mathrm{BaCrO}_{4}\right)}=1.2 \times 10^{-10}$,
$K_{S P\left[\mathrm{Fe}(\mathrm{OH})_{3}\right]}=1.0 \times 10^{-38}$,
$K_{S P\left(P b C I_{2}\right)}=1.6 \times 10^{-5}$,
$K_{S P\left(H g_{2} I_{2}\right)}=4.5 \times 10^{-29}$.

- Watch Video Solution

68. The solubility product constant of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ and AgBr are 1.1×10^{-12} and 5.0×10^{-13} respectively. Calculate the ratio of the molarities of their saturated solutions.

- Watch Video Solution

69. Equal volumes of 0.002 M solution of sodium iodate and cupric chlorate are mixed togather. Will it lead to precipitation of copper iodate?
(for cupric iodate $K=7.4 \times 10^{-8}$).

- Watch Video Solution

70. The ionisation constant of benzoic acid (PhCOOH) is 6.46×10^{-5} and $K_{s p}$ for silver benzoate is 2.5×10^{-3}. How many times is silver benzoate more soluble in a buffer of pH 3.19 compared to its solubility is pure water?

- Watch Video Solution

71. What is the maximum concentration of equimolar solutions of ferrous sulphate and sodium sulphide so that when mixed in equal volumes, there is no precipitation of iron sulphide? (For iron sulphide, $\left.K_{s p}=6.3 \times 10^{-18}\right)$.

- Watch Video Solution

72. What is the minimum volume of water required to dissolve 1.0 g of calcium sulphate at $298 K$?
(For calcium sulphate, $K_{s p} i s 9.1 \times 10^{-6}$).
73. The concentration of suphide ion in 0.1 MHCl solution saturated with hydrogen sulphide is $1.0 \times 10^{-19} \mathrm{M}$. If 10 mL of this is added to $5 m L$ of $0.04 M$ solution of the following: $\mathrm{FeSO}_{4}, \mathrm{MnCl}_{2}, \mathrm{ZnCl}_{z}$ and CdCl_{2}. In which of these solutions precipitation will take place?

- Watch Video Solution

74. We know that the relationship between K_{c} and K_{p} is
$K_{p}=K_{c}(R T)^{\Delta n g}$
What would be the value of $\Delta^{n g}$ for the reaction
$\mathrm{NH}_{4} \mathrm{CI}_{(s)} \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCI}(\mathrm{g})$
A. 1
B. 0.5
C. 1.5
D. 2
75. For the reaction $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$, the standard free energy is $\Delta G^{\Theta}>0$. the equilibrium constant (k) would be.
A. $K=0$
B. $K>1$
C. $k=1$
D. $k<1$

- Watch Video Solution

76. Which of the following is not a general characteristic of equilibrium involving physical processes ?
A. Equilibrium is possible only in a closed system at a given
B. All measurable properties of the system remain constant.
C. All the physical processes stop at equilibrium .
D. The opposing processes occur at the same rate and there is dynamic but stable condition.

D Watch Video Solution

77. $P C I_{5}, P C I_{3}$ and $C I_{2}$ are in equilibrium at 500 K in a closed container and their concentration are $0.8>10^{-3} \mathrm{~mol} L^{-1}$ and $1.2 \times 10^{-3} \mathrm{~mol} L^{-1}$ and $1.2 \times 10^{-3} \mathrm{~mol} L^{-1}$ respectively. The value of K_{c} for the reaction $P C I_{5}(g) \Leftrightarrow P C I_{3}(g)+C I_{2}(g)$ will be
A. $1.8 \times 10^{3} \mathrm{~mol}^{-1}$
B. 1.8×10^{-3}
C. $1.8 \times 10^{-3} \mathrm{~mol} L^{-1}$

D. 0.55×10^{4}

- Watch Video Solution

78. Which of the following statements is incorrect?
A. In equilibrium mixture of ice and water kept in perfectly insulated flask mass of ice and water do not change with time.
B. the intensity of red colur increases when oxalic acid is added to a solution containing iron (III) nitrate and potassium thiocyanate.
C. On addition of catalyst. The equilibrium constant value is not affected.
D. equilibrim constant for a reaction with negative ΔH value dcreases
as the temperature increases.
79. When hydrochloric aicd is addded to cobalt and nitrate solution at room temperautre, the following reaction takes place and the reaction mixture becomes blue. On cooling the mixture it becomes pink. On the basis of this information mark the corect ansewer.

$$
\underset{\text { pink }}{\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}}(a q)+4 \mathrm{CI}^{-} \Leftrightarrow \underset{\text { blue }}{\mathrm{CoCI}_{4}{ }^{2-}(a q)+6 \mathrm{H}_{2} \mathrm{O}(l)}
$$

A. $\Delta H>0$ for the reaction
B. $\Delta H<0$ for the reaction
C. $\Delta H=0$ for the reaction
D. The sign of ΔH cannot be predicted on the basis of this information

Answer: A

- Watch Video Solution

80. The Ph OF NEUTRAL WATER AT $25^{\circ} C$ is 7.0 . As the temperature increases, ionisation of water increases, however the concentration of H^{+}ions nad $O H^{-}$ions equal. What will be the ph of puire water at $60^{\circ} C ?$
A. Equal to 7.0
B. Greater than 7.0
C. Less than 7.0
D. Equal to zero

Answer: C

- Watch Video Solution

81. The ionisation cosntabnt of an acid, K_{a} is the meaure of strength of an acid. The K_{a} values of acetic acid, hypochlorous acid and formic acid are $1.74 \times 10^{-5}, 3.0 \times 10^{-8}$ and 1.8×10^{-4} respectively. Which of the
following orders of ph of $0.1 \mathrm{~mol} d m^{-3}$ solutions of these acids is correct ?
A. acetic acid gt hypochlorous acid gt formic acid
B. hypochlorous acid gt acetic acid gt formic acid
C. formic gt hypochlorous acid gt acetic acid
D. formic acid gt acetic acid gt hypochlorous acid

Answer: B

- Watch Video Solution

82. $K_{a 1}, K_{a 2}$ and $K_{a 3}$ are the respective ionisation constants for the following reactions.
$H_{2} S \Leftrightarrow H^{+}+H S^{-}, H S^{-} \Leftrightarrow H^{+} S^{-2}$
$H_{2} S \Leftrightarrow 2 H^{+}+S^{2-}$
The correct relationship between $K_{a 1}, K_{a 2}$ and $K_{a 3}$ is

$$
\text { A. } K_{a 3}=K_{a 1} \times K_{a 2}
$$

B. $K_{a 3}=K_{a 1}+K_{a 2}$
C. $K_{a 3}=K_{a 1}-K_{a 2}$
D. $K_{a 3}=K_{a 1} / K_{a 2}$

Answer: A

- Watch Video Solution

83. Acidity of $B F_{3}$ can be explained on ths basis of which of the follwoing concepts?
A. Arrhenius concept
B. Bronsted Lowry concept
C. Lewis concept
D. Bronsted Lowry as well as Lewis concept.

Answer: C

84. Which of the following will produce a buffer sollution when mixed in equal volumes?
A. $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{4} \mathrm{OH}$ and $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCI}$
B. $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{4} \mathrm{OH}$ and $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCI}$
C. $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{4} \mathrm{OH}$ and $0.05 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCI}$
D. $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{CH}_{3} \mathrm{COONA}$ and $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{CH}_{3} \mathrm{COOH}$

Answer: D

- Watch Video Solution

85. In which of the following solvents silver chloride easily soluble ?
A. 0.1 moldm ${ }^{-3} \mathrm{AgNO}_{3}$ solution
B. 0.1 moldm ${ }^{-3} \mathrm{HCI}$ solution
C. $\mathrm{H}_{2} \mathrm{O}$
D. Aqueous ammonia

Answer: D

- Watch Video Solution

86. What will be the volume of $p H$ of 0.01 mold m^{-3}
$\mathrm{CH}_{3} \mathrm{COOH}\left(K_{a}=1.74 \times 10^{-5}\right)$
A. 3.4
B. 3.6
C. 3.9
D. 3.0

Answer: A

87. K_{a} for $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.8×10^{-5} and K_{b} for $\mathrm{NH}_{4} \mathrm{OH}$ is 1.8×10^{-5} The pH of ammonium acetate will be :
A. 7.005
B. 4.75
C. 7
D. Between 6 and 7

Answer: C

- Watch Video Solution

88. Which of the following options will be correct for the stage of half competiton of the reaction $A \rightarrow B$?
A. $\Delta G^{\Theta}=0$
B. $\Delta G^{\Theta}>0$
C. $\Delta G^{\Theta}<0$
D. $\Delta G^{\Theta}=-R T \operatorname{In} 2^{-}$

Answer: A

- Watch Video Solution

89. On increasing the pressure, in which dirction will the gas phase reaction proceed to re-establish equilibrium, is predicated by applying the Le Chatelier's principle. Consider the reaction.
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
Which of the following is correct, if the total pressure at which the equlibrium is established, is increased without changing the temperature $?$
A. K will remain same
B. K will decrease
C. K will increase
D. K will increase initially and decreases when pressure is very high

- Watch Video Solution

90. What will be the correct order of vapour pressure of water, acetone and ether at $30^{\circ} \mathrm{C}$. Given that among these compounds, water bus maximum boiling point?

- View Text Solution

91. At 500 K , equlibrium constant, K_{c} for the following reaction is 5 .
$1 / 2 H_{2}(g)+1 / 2(g) \Leftrightarrow H I(g)$
What would be the equilibrium constant K_{c} for the reaction
$2 h i(g) \Leftrightarrow H_{2}(g)+l_{2}(g)$
A. 0.04
B. 0.4
C. 25
D. 2.5

Answer: A

- Watch Video Solution

92. In which of the following reactions, the equilibrium reamins unaffected on addition of small amount of argon at constant volume?
A. $H_{2}(g)+l_{2}(g) \Leftrightarrow 2 H I(g)$
B. $P C I_{5}(g) \Leftrightarrow P C I_{3}(g)+C I_{2}(g)$
C. $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
D. The equilibrium will remain unaffected in all the three cases.

Answer: D

- Watch Video Solution

1. For the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$, the value of K is 50 at 400 K and 1700 at 500 K . Which of the following options is correct?
A. The reaction is endothermic
B. The reaction is exothermic
C. If $\mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ are mixed at 400 K at partial pressures 20 bar and 2 bar respectively, more $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ will be formed.
D. The entropy of the system increases.

Answer: A::C::D

- Watch Video Solution

2. At a particular temperature and atmospheric pressure, the solid and liquid phases of a pure substance can exist i equilibrium. Which of the following term defines this temperature ?
A. Noraml melting point
B. Equilibrium temperature
C. Boiling point
D. Freezing point

Answer: A::D

- Watch Video Solution

3. Le Chatelier's principle is applicable to:
A. only homogeneous chemical reversible reactions
B. only heterogeneous chemical reversible reactions
C. only physical equilibria.
D. all systems, chemical or physical in equilibrium .

Answer: D

4. In the melting of ice, which one of the conditions will be more favourable?
A. High temperature and high pressure
B. Low temperature and low pressure.
C. Low temperature and high pressure
D. High temperature and low pressure.

Answer: A

- Watch Video Solution

5. Solubility of a gas in liquid increases on:
A. addition of a catalyst
B. decreasing of pressure
C. increasing of pressure
D. increasing of temperature

Answer: C

D Watch Video Solution

6. When KOH is dissolved in water, heat is evolved. If the temperature is raised, the solunility of KOH
A. increases
B. decreases
C. remains the same
D. cannot be predicted

Answer: B

- Watch Video Solution

7. The yield of product in the reaction,
$A_{2}(g)+2 B(g) \Leftrightarrow C(g)+Q K J$
would be higher at:
A. low temperature and high pressure
B. high temperature and high pressure
C. low temperature and low pressure
D. high temperature and low pressure.

Answer: A

- Watch Video Solution

8. Manufacture of ammonia from the elements is represented by

$$
N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N_{3}(g)+22.4 k c a l
$$

The maximum yield of ammonia will be obtained when the process is made to take place
A. at low pressure and high temperature
B. at low pressure and low temperature
C. at high pressure and high temperature
D. at high pressure and low temperature

Answer: D

- Watch Video Solution

9. The degree of dissociation in a weak electrolyte increase
A. on increasing pressure
B. on decreasing dilution
C. on increasing dilution
D. on increasing concentration.

Answer: C

- Watch Video Solution

10. Which of the following is the weakest base?
A. NaOH
B. $\mathrm{Ca}(\mathrm{OH})_{2}$
C. $\mathrm{NH}_{4} \mathrm{OH}$
D. KOH

Answer: C

- Watch Video Solution

11. Acetic Acid is a weak electrolyte because:
A. its molecular mass is high
B. it is a covalent compound
C. it is highly unstable
D. it does not dissociate much or its ionisation is very small.

Answer: D

12. when $\mathrm{NH}_{4} \mathrm{CI}$ is added to $\mathrm{NH}_{4} \mathrm{OH}$ solution the dissociation of ammonium hydroxide is reduced. It is due to
A. common ion effect
B. hydrolysis
C. oxidation
D. reducation

Answer: A

- Watch Video Solution

13. The addition of HCl will not supress the ionisation of
A. acetic acid
B. sulphuric acid
C. $H_{2} S$
D. benzoic acid

Answer: B

- Watch Video Solution

14. $\mathrm{H}_{2} \mathrm{~S}$ in the presence of HCl precipitates II group but not IV group because :
A. HCl activates $\mathrm{H}_{2} \mathrm{~S}$
B. HCl decreases concentration of sulphide ions
C. HCl increases concentration of sulphide ions
D. sulphides of IV group are unstable in HCl .

Answer: B

- Watch Video Solution

15. Which of the following is a Lawis base ?
A. $A I C I_{3}$
B. $A g$
C. $\mathrm{Al}(\mathrm{OH})_{3}$
D. NH_{3}

Answer: D

D Watch Video Solution

16. which is correct about the following reaction ?
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
A. $K_{p}=p C O_{2}$
B. $K_{p}=\left(p \mathrm{CO}_{2}\right)^{2}$
C. $k_{P}=p C a O$
D. $K_{p}=p C a C O_{3}$

D Watch Video Solution

Matching Type Questions

1.

- View Text Solution

2. For the reaction : $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})=2 \mathrm{NH}_{3}(\mathrm{~g})$

Equilibrium constant $K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$

View Text Solution
(A) $\Delta G^{\Theta}>0$
(i) $K>1$
(B) $\Delta G^{\Theta}<0$
(ii) $K=1$
(C) $\Delta G^{\Theta}>0$
(iii) $K=0$
(iv) $K<1$

- Watch Video Solution

(A$) \mathrm{NH}_{3} \quad$ (i) CO_{3}^{2-}
(B) HCO_{3}^{-}
(ii) NH_{4}^{+}
4. $(C) \mathrm{H}_{2} \mathrm{O}$
(iii) $\mathrm{H}_{3} \mathrm{O}^{+}$
(D) HSO_{4}^{-}
(iv) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(E) $\mathrm{H}_{2} \mathrm{CO}_{3}$

- View Text Solution

5.

- View Text Solution

6.

Assertion \& Reason

1. Asseration (A) : Increasing order of acidity of hydrogen halides is
$H F<H C I<H B r<H I$
Reason (R): While comparing acids formed by the elements belonging to the same group of periodic table, H-A bond strength is a more important factor in determining acidity of an acid than the polar nature of the bond.
A. Both A and B are true and R is the correct explanation of A.
B. Both A and R are ture but R is not the correct explanation of A.
C. A is the ture R is false.
D. Both A and R are false.

Answer: A

2. Asseration : A solution containing a mixture of acetic acid and sodium acetate maintains a constant value of ph on addition of small amounts of acid or alkali.

Reason : A solution containing a mixture of acetic acid and sodium acetate acts as a buffer solution around ph 4.75.
A. Both A and R are ture and R is correct explanation of A.
B. Both A and R are ture but R is not the correct explanation of A.
C. A is true but R is false.
D. Both A and R are false.

Answer: A

- Watch Video Solution

3. Asseration : The ionisation of hydrogen sulphide in water is low in the presence of hydrochloric acid.

Reason : Hydrogen sulphide is a weak acid.
A. Both A and R are ture and R is correct explanation of A.
B. Both A and R are true but R is not correct explanation of A.
C. A is true but R is false.
D. Both A and R are false.

Answer: B

- Watch Video Solution

4. Asseration : For any chemical reaction at particular temperautre, the equilibrium constant is fixed and is a characteristic property.

Equilibrium constant is independent of temperature.
A. Both A and R are true and R is correct explanation of A.
B. Both A and R are true but R is not correct explanation of A.
C. A is true but R is false.
D. Both A and R are false.

Answer: C

- Watch Video Solution

5. Asseration : A queous solution of ammonium carbonate is basic.

Reason : Acidic/basic nature of a salt of weak acid base depends on K_{a} and K_{b} value of the acid and the base forming it.
A. Both A and R are ture and R is correct explanation of A.
B. Both A and R are true but R is not correct explanation of A.
C. A is the false but R is true.
D. Both A and R are false.

Answer: A

- Watch Video Solution

6. Asseration : An aqeous solution of ammonium acetate can act as buffer.

Reason: Acetic acid is a weak acid and $\mathrm{NH}_{4} \mathrm{OH}$ is a weak base.
A. Both A and R are true and R is correct explanation of A.
B. Both A and R are true but R is not correct explanation of A.
C. A is false but R is true.
D. Both A and R are false.

Answer: C

- Watch Video Solution

7. Asseration : In the dissociation of $P C I_{5}$ at constant pressure and temperature addition of helium at equilibrium increases the dissociation of $P C I_{5}$.

Reason : Helium removes $C I_{2}$ from the field of action.
A. Both A and R are true and R is correct explanation of A.
B. Both A and R are ture but R is not correct explanation of A.
C. A is true but R is false.
D. Both A and are false.

Answer: C

- Watch Video Solution

very short answer questions

1. Define equilibrium state. In which type of reactions is equilibrium attained ?
2. What is the nature of chemical equilibrium ?
3. What happes if the temperature of saturated solution be increased ?

- Watch Video Solution

4. Can a catalyst disturb the state of equilibrium?

- Watch Video Solution

5. What happes to the solubility of a gas in water if temperature is increased ?

- Watch Video Solution

6. State Henry's law.

- Watch Video Solution

7. What is the nature of physical equilibrium ?

- Watch Video Solution

8. Under what conditions, ice \Leftrightarrow water system is in equilibrium ?
(a) at $273 \mathrm{~K}(\mathrm{~b})$ below $273 \mathrm{~K}(\mathrm{C})$ above 273 K ?

- Watch Video Solution

9. What is the equilibrium constant expression for the following reaction
?
$A I(s)+3 H^{+}(a q) \Leftrightarrow A I^{3+}(a q)+3 / 2 H_{2}(g)$

- Watch Video Solution

10. How are K_{p} and K_{c} related to each other in the reaction
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g) ?$
11. can equilibrium be obtained in reaction between acetic acid and ethyl alcohol in an open container?

- Watch Video Solution

12. under what conditions can equilibrium be achieved between a solid and its liquid state ?

- Watch Video Solution

13. In a reaction $Q_{c}=K$, What does it indicate?

- Watch Video Solution

14. Write the relation between K_{p} and K_{c} for the reaction:
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$

- Watch Video Solution

15. State law of mass action.

- Watch Video Solution

16. Name the factors which can disturb the state of equilibrium in a reversible reaction.

- Watch Video Solution

17. State Le Chatelier's principle.

- Watch Video Solution

18. Mention atleast three ways by which the concentration of $\mathrm{SO}_{2}(\mathrm{~g})$ be increased in the following reaction in a state of equilibrium :
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})+$ heat.

- Watch Video Solution

19. What is the effect of increase in temperature on the solubility of a gas in water ?

- Watch Video Solution

20. Under what conditions does pressure not influence the equilibrium state?

- Watch Video Solution

21. What will happen to the equilibrium state if an inert gas is added at constant volume ?

- Watch Video Solution

22. The formation of $\mathrm{NH}_{3}(\mathrm{~g})$ is exothermic in nature. What will happen if the temperature of the reaction mixture is increased ?

- Watch Video Solution

23. What happens to the solubility of KCI in water if the temperature is increased?

- Watch Video Solution

Short Answer Question

1. Define equilibrium state. In which type of reactions is equilibrium attained ?

Watch Video Solution

2. Discuss how equilibrium is indicated in copper sulphate crystals when dissolved in water.

- Watch Video Solution

3. What is the nature of physical equilibrium ?

- Watch Video Solution

4. Give three example representing physical equilibrium.

- Watch Video Solution

5. The measurable properties of the system donot change When equilibrium is achieved. Explain.

- Watch Video Solution

6. VAPOUR PRESSURE AND EFFECT OF TEMPERATURE

- Watch Video Solution

7. The value of equilibrium constant for the reaction
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ is 48 at 720 K
What is the value of the equilibrium constant for the reaction
$2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$

- Watch Video Solution

8. The equilibrium state can be attained from both sides of the chemical reaction.

- Watch Video Solution

9. How does the value of equilibrium constant predict the extent of the reaction.

- Watch Video Solution

10. Does a chemical reaction become static when equilibrium is reached ?

Comment and explain.

- Watch Video Solution

11. The expression for the equilibrium constant for a reaction in the gaseous phase is :
$K_{c}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}$
Write the balanced chemical equation corresponding to this expression.

- Watch Video Solution

12. The increase in concentration of the reactants shifts the equilibrium towards the products side. Explain.

- Watch Video Solution

13. What is the effect of increase in the pressure on the following reaction ?

$$
P C I_{5}(g) \Leftrightarrow P C I_{3}(g)+C I_{2}(g)
$$

- Watch Video Solution

14. In a gaseous reaction, the reactant moles are more than the product moles. Discuss the effect of increase in pressure on the equilibrium state

- Watch Video Solution

15. An inert gas does not alter the state of chemical equilibrium when added at constant volume. Discuss.

- Watch Video Solution

16. What is an electrolyte ? How are electrolytes classified ?

D Watch Video Solution

17. OSTWALD'S DILUTION LAW

- Watch Video Solution

18. All Arrhenius acids are Bronsted acids but all Arrhenius bases are not Bronsted bases. Discuss.

- Watch Video Solution

19. Discuss two limitations of Arrhenius theory .

- Watch Video Solution

20. Relative strangths of weak acids and weak bases are compared in terms of the square roots of their dissociation constants. Explain.

- Watch Video Solution

21. What are conjugate acid base pairs. Give two examples.

- Watch Video Solution

22. Select the conjugate pairs in the following reactions:
$\mathrm{HCI}+\mathrm{HCO}_{3}^{-} \Leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{CI}^{-}$
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{HSO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

- Watch Video Solution

23. Even ions can act as acids and bases. State the concept which accounts for it.

- Watch Video Solution

24. Predict whether the following substance will give, acidic, basic or neutral solutions
(i) $\mathrm{K}_{2} \mathrm{CO}_{3}$
(ii) $K C I$
(iii) FeCI_{3}
(iv) $\mathrm{NH}_{3} \mathrm{CI}$
(v)
CuSO_{4}

- Watch Video Solution

25. Write the conjugate base of the following :
(i) NH_{3} (ii) $H F$
(iii) $\mathrm{H}_{3} \mathrm{PO}_{4}$ (iv) $\mathrm{HS}{ }^{-}$.

Watch Video Solution

26. Explain ionic product of water. What is the effect of temperature on ionic product of water ?

- Watch Video Solution

27. The nature of a solution can be expressed in terms of its $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$.

Explain.

- Watch Video Solution

28. Explain the term pH of a solution. What is pH of blood?
29. How can you calculate the pH of a buffer soluiton ? Write the mathematical equation.

- Watch Video Solution

30. Identify the acid-base pair in the following reaction :
$\mathrm{HSO}_{4}^{-}(a q)+\mathrm{PO}_{4}^{3-}(a q) \rightarrow \mathrm{SO}_{4}^{2-}(a q)+\mathrm{HPO}_{4}^{2-}(a q)$

- Watch Video Solution

31. COMMON ION EFFECT

- Watch Video Solution

32. DIFFERENCE BETWEEN IONIC PRODUCT AND SOLUBILITY PRODUCT

- Watch Video Solution

33. When HCl gas is passed through the saturated solution of impure sodium chloride, pure sodium chloride is precipitate why

- Watch Video Solution

Long Answer Question

1. Describe the general characteristics of the equilibria in the physical systems.

- Watch Video Solution

2. What is chamical equilibrium ? Write the characteristics of the chemical equilibrium.

- Watch Video Solution

3. Explain the following :
(i) A chemical equilibrium is of dynamic nature.
(ii) In a reversible reaction, equilibrium can be achieved from either sides.
(iii) Equilibrium is generally attained in reaction carried in close containers.

D Watch Video Solution

4. Derive an expression for the relation between K_{p} and K_{c} State the law of chemical equilibrium.

D Watch Video Solution

5. (a) Write the expressions for the concentration quotient for the reactions:
(i) $\mathrm{CrO}_{4}^{2-}(a q)+\mathrm{Pb}^{2+}(a q) \Leftrightarrow \mathrm{PbCrO}_{4}(s)$
$(i i) \mathrm{N}_{2} \mathrm{O}_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$
$(i i i) \mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
(b) Write the main characteristics of the equilibrium constant.
6. In a reversible chemical reaction the equilibrium can be achieved from either sides. Justify

- Watch Video Solution

7. State Le Chatelier's principle.

- Watch Video Solution

8. Discuss briefly the factors which can alter the state of equilibrium in a reversible reaction ?
9. What will be the effect of increase in pressure on the following equilibria :
(i) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
(ii) $P C I_{5}(g) \Leftrightarrow P C I_{3}(g)+C I_{2}(g)$
$(i i i) N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
$(i v) H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$

- Watch Video Solution

10. (a) Discuss the effect of addition of inert gas on the equilibrium point when added at constant volume and at constant pressure ?
(b) By making use of Le Chatelier's principle, predict the influence of:
(i) temperature and pressure on the vaporisation of water.
(ii) temperature and pressure on the melting of ice.

- Watch Video Solution

11. (a) How will you shoe that in a reversible reaction equilibrium can be achieved from either sides ?
(b) Enilst the factors on which the value of the equilibrium constant depends.

- Watch Video Solution

12. What is the effect of temperature and pressure on the yields of products?
a. $N_{2}(s)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}+x c a l$
b. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)-y c a l$
c. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})+46.9 \mathrm{kcal}$
d. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)-15.0 \mathrm{kcal}$

- Watch Video Solution

13. For the reaction :
$P C I_{5}(g) \Leftrightarrow P C I_{3}(g)+C I_{2}(g)$

Which of the following are favourable for the forward reaction ? Justify your answer.
(i) Introduction of inert gas at constant volume
(ii) Introduction of inert gas at constant pressure
(iii) Increasing the volume of the container
(iv) Introducing $P \mathrm{PI}_{5}$ at constant volume.

- Watch Video Solution

14. Account for the following :
(i) Addition of CI_{2} to the following equilibrium mixture increases the temperature of the system
$\mathrm{SO}_{2} \mathrm{CI}_{2}+$ heat $\Leftrightarrow \mathrm{SO}_{2}+C I_{2}$
(ii) Ice melts when pressure is applied on it.
(iii) Pressure has no effect on the reaction
$H_{2}(g)+C I_{2}(g) \Leftrightarrow 2 H C I(g)$

- Watch Video Solution

15. (a) How are the relative strengths of electrolytes expressed ?
(b) Silver chloride dissolves in water to a samll extent only. Is it a weak or strong electrolyte?

- Watch Video Solution

16. Discuss the Arrhenius theory of acids and bases. What are its limiations?

- Watch Video Solution

17. (a) What is the Lewis concept of acids and bases?
(b) Name three species which can cat as Lewis acids and Lewis bases.
(C) How does Lewis concept explain the acidic character of CO_{2} and basic character of NH_{3} ?
18. A buffer has a reserve acidity and reserve alkalinity. Explain with a suitalbe example.

- Watch Video Solution

19. What is an indicator ? Name the indicators commonly used in acid base titrations and discuss the specific role played by them.

- Watch Video Solution

20. Assign for the following :
(i) An aqueous of NaCl is neutral
(ii) NH_{3} is a Lewis as well as Bronsted base.
(iii) Phenolphthalein is not a suitable indicator for titration between HCl against $\mathrm{NH}_{4} \mathrm{OH}$.
(iv) pH value of an aqueous $10^{-2} \mathrm{M}$ acetic acid solution is not 2 .
21. What is an electrolyte?

- Watch Video Solution

2. How do electrolytes conduct electric current?

- Watch Video Solution

3. How is dissociation constant of a weak electrolyte related tol its degree of dissociation?

- Watch Video Solution

4. How does H^{+}exist in solution ?
5. Define an acid and base according to Arrhenius theory .

Watch Video Solution

6. Can CO_{2} act as acid according to Arrhenius concept ?

- Watch Video Solution

7. Water is amphoteric according to which concept?

- Watch Video Solution

8. Write the conjugate acid and base for $\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

9. Define pH value of a solution.

- Watch Video Solution

10. Can a neutral solution have pH equal to 7 at all the temperature ?

- Watch Video Solution

11. Write conjugate acid for the following :
(i) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$
(ii) $\mathrm{CH}_{3} \mathrm{COOH}$

- Watch Video Solution

12. Can we prepare a solution with pH more than 14 ?

- Watch Video Solution

13. Give an example of acidic buffer.

- Watch Video Solution

14. Lewis acids are called electrophiles. Why?

- Watch Video Solution

15. Select Lewis acid and Lewis base from the following :
$\mathrm{Cu}^{2+}, \mathrm{H}_{2} \mathrm{O}, \mathrm{BF}_{3}, \mathrm{OH}^{-}$

- Watch Video Solution

16. Mention the conjugate acid for each of the following :
$\mathrm{OH}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{CI}^{-} \mathrm{CO}_{3}^{2-}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{NH}_{2}^{-},$.

- Watch Video Solution

17. Arrange the following in increasing order of base strength. $\mathrm{KOH}, \mathrm{NH}_{4} \mathrm{OH}, \mathrm{Ca}(\mathrm{OH})_{2}$.

- Watch Video Solution

18. On the basis of the pH values classify the following as strong acids, strong bases, weak acids and weak bases :

Solution: ABCDEF
pH :8.8
0.1
5.2
6.0
8.4

- Watch Video Solution

19. $A I C I_{3}$ is the an acid according to which concept ?

- Watch Video Solution

20. Give two example of cations which can act as Lewis acids.
21. Define solubility product.

- Watch Video Solution

22. Write the solubility product expression for :
$(i) \mathrm{BaCO}_{3}(s) \Leftrightarrow \mathrm{Ba}^{2+}(a q)+\mathrm{CO}_{3}^{2-}(a q)$,
(ii) $\mathrm{Ag}_{2} \mathrm{CrO}_{4}(s) \Leftrightarrow 2 \mathrm{Ag}^{+}(a q)+\mathrm{CrO}_{4}^{2-}(a q)$

- Watch Video Solution

23. When does a salt get precipitated in solution ?

- Watch Video Solution

24. The $K_{s p}$ value of a salt is high. What does it indicate ?
25. Out of pure water and 0.1 M KCl in which silver chloride will dissolve more ?

- Watch Video Solution

26. Out of ZnS and CuS which has more $K_{s p}$ value ?

- Watch Video Solution

Multiple Choice Qestions Bank

1. For a reaction :
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
at 721 K , the value of the equilibrium constant is 50 . If 0.5 mole each of
H_{2} and I_{2} are added to the system the value of the equilibrium constant will be :
A. 0.02
B. 0.2
C. 50
D. 25

Answer: C

- Watch Video Solution

2. 0.1 M solution of which of the substances will behave basic?
A. Sodium borate
B. Ammonium chloride
C. Calcuium nitrate
D. Sodium sulphate

Answer: A

3. In which of the following solvents will AgBr has highest solubility?
A. $10^{-3} \mathrm{M} \mathrm{NaBr}$
B. $10^{-3} \mathrm{MNH}_{4} \mathrm{OH}$
C. Pure water
D. $10^{-3} \mathrm{MHBr}$

Answer: B

- Watch Video Solution

4. In the gaseous phase reaction
$C_{2} H_{4}+H_{2} \Leftrightarrow C_{2} H_{6}$, the equilibrium constant can be expressed in the units to :
A. litre $^{-1} \mathrm{~mol}^{-1}$
B. mol^{2} litre $^{-2}$
C. litre mol^{-1}
D. mol litre

Answer: C

- Watch Video Solution

5. According to Lewis concept acid is
A. Proton donor
B. Electron pair donor
C. Electron pair acceptor
D. Proton accetor

Answer: C

6. Ostwald's dilution law is applicable to
A. Strong electrolytes only
B. Weak electrolytes only
C. Non-electrolytes
D. Strong and weak electrolytes.

Answer: B

- Watch Video Solution

7. The pH of a solution of hydrochloric acid is 4 . The molarity of this solution is
A. 4.0
B. 0.4
C. `.0001
D. 0.04

Answer: C

- Watch Video Solution

8. A compound having the formula $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ may behave
A. only as acid
B. only as base
C. both acid and base
D. neither acid nor base

Answer: C

- Watch Video Solution

9. The $K_{s p}$ of CuS, $A g_{2} S$ and $H g S$ are $10^{-31}, 10^{-44}$ and 10^{-54} respectively. The solubility of these sulphides are in the order.
A. $A g_{2} S>C u S<H g S$
B. $A g_{2} S>H g S>C u S$
C. $\mathrm{HgS}>A g_{2} S>C u S$
D. $\mathrm{CuS}>A g_{2} S>H g S$

Answer: D

- Watch Video Solution

10. Which of the following on reaction with $H_{2} S$ does not produce metallic sulphide ?
A. $C d C I_{2}$
B. $Z n C I_{2}$
C. COCI_{2}
D. CuCI_{2}

Answer: C

11. If $K_{s p}$ for HgSO_{4} is 6.4×10^{-5}, then solubility of this substance in mole per m^{3} is
A. 8×10^{-6}
B. $8 \times X 10^{-3}$
C. 4.6×10^{-5}
D. None of these

Answer: B

- Watch Video Solution

12. A white salt is readily soluble in water and gives a colourless solution with a $p H$ of about 9 . The salt would be
A. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
B. $\mathrm{CH}_{3} \mathrm{COONa}$
C. $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
D. CaCO_{3}.

Answer: B

- Watch Video Solution

13. The strongest conjugate base is
A. NO_{3}^{-}
B. $C I^{-}$
C. SO_{4}^{-}
D. $\mathrm{CH}_{3} \mathrm{COO}^{-}$

Answer: D

14. A base according to Bronsted concept is a substance which can :
A. lose a pair of electrons
B. donate protons
C. Gain a pair or electrons
D. accept protons

Answer: A

- Watch Video Solution

15. Ionisation constant of $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.7×10^{-5} and concentration fo H^{+}in certain acetic acid solution is $3.4 \times 10^{-4} M$. The concentration of acetic acid solution is
A. 3.4×10^{-4}
B. 3.4×10^{-3}
C. 6.8×10^{-4}
D. 1.7×10^{-3}

Answer: A

- Watch Video Solution

16. Solubility if $M_{2} S$ type salt is 3.5×10^{-6}, then find out its solubility product
A. 1.7×10^{-6}
B. 3.4×10^{-16}
C. 1.7×10^{-16}
D. 6.8×10^{-12}

Answer: C

17. The relationship between ionisation and change in concentration of any weak electrolyte is expressed as :
A. $\alpha=\frac{K_{a}}{C}$
B. $\alpha=\sqrt{\frac{K_{a}}{C}}$
C. $\alpha=K_{a} C$
D. $\alpha=\sqrt{\frac{K_{a}}{C^{2}}}$

Answer: B

- Watch Video Solution

18. Reaction $2 \mathrm{BaO}_{2}(s) \Leftrightarrow 2 \mathrm{BaO}(s)+O_{2}(g), \Delta H=+v e$ At equilibrium condition, pressure of O_{2} is depended on:
A. increase in mass of BaO_{2}
B. increase in mass of BaO
C. increase in temperature on equilibrium
D. increase in mass of BaO_{2} and BaO both.

Answer: C

- Watch Video Solution

19. For the reaction:
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
A. $K_{p}=p_{\left(\mathrm{CaCO}_{3}\right)}$
B. $K_{p}=p\left(\mathrm{CO}_{2}\right)$
C. $K_{p}=\frac{1}{p_{\left(\mathrm{CaCO}_{3}\right)}}$
D. $K_{p}=\frac{1}{p_{\left(\mathrm{CO}_{2}\right)}}$

Answer: B

20. The $\left[A g^{+}\right]=10^{-5}$ in a solution. The $\left[C I^{-}\right]$to precipitate $A g C I\left(K_{s p}\right.$ of $\left.A g C I=2 \times 10^{-12}\right)$ is :
A. 10^{-5}
B. 10^{-7}
C. 10^{-8}
D. 10^{-9}

Answer: A

- Watch Video Solution

21. The solubility product of a sparingly soluble salt $A X_{2}$ is 3.2×10^{-11}. Its solubility (in $m o / L$) is
A. 5.6×10^{-6}
B. 3.1×10^{-4}
C. 2×10^{-4}
D. 4×10^{-4}

Answer: C

- Watch Video Solution

22. Which of the following is a buffer solution?
A. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
B. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONH}_{4}$
C. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{CI}$
D. $\mathrm{NaOH}+\mathrm{HCI}$

Answer: A

- Watch Video Solution

23. The principal buffer present in human blood is
A. $\mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{Na}_{2} \mathrm{HPO}_{4}$
B. $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NaH} \mathrm{H}_{2} \mathrm{PO}_{4}$
C. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
D. $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{HCO}_{3}^{-}$
24. For reacrtion $2 N O C 1(g) \Leftrightarrow 2 N O(g)+C 1_{2}(g), K_{c}$ at $427^{\circ} C$ is $3 \times 10^{-6} \mathrm{~L} \mathrm{~mol}^{-1}$. The value of K_{p} is nearly
A. 7.5×10^{-5}
B. 2.50×10^{-5}
C. 2.5×10^{-4}
D. 1.75×10^{-4}

Answer: D
25. Which of the following pairs consitutes buffer?
A. NaOH and HCI
B. HNO_{3} and $\mathrm{NH}_{4} \mathrm{NO}_{3}$
C. $H C I$ and $K C I$
D. HNO_{2} and NaNO_{2}

Answer: D

- Watch Video Solution

26. A weak acid, HA, has a K_{a} of 1.00×10^{-5}. If 0.100 mol of the acid is dissolved in 1 L of water, the percentage of the acid dissociated at equilibrium is the closed to
A. 1.0%
B. 99.9%
C. 0.10%
D. 99.0%

Answer: A

- Watch Video Solution

27. the value of equilibrium constant for the reaction
$H I(g) \Leftrightarrow 1 / 2 H_{2}(g)+1 / 2 I_{2}(g)$ is 8.0
The equilibrium constant for the reaction
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ will be
A. 16
B. $1 / 8$
C. $1 / 16$
D. $1 / 64$

Answer: D

28. The dissociation equilibrium of a gas $A B_{2}$ can be represented as :
$2 A B_{2} \Leftrightarrow 2 A B(g)+B_{2}(g)$
The degree of dissocaition x is very small as compared to 1 . The expression which relates the degree of dissociation (x) with equilibrium constant $\left(K_{p}\right)$ and total pressure (p) is :
A. $\left(2 K_{p} / P\right)^{1 / 2}$
B. $\left(K_{p} / P\right)$
C. $\left(2 K_{p} / P\right)$
D. $\left(2 K_{p} / P\right)^{1 / 3}$

Answer: D

- View Text Solution

29. Which of the following molecules acts as a Lewis acid ?
A. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$
B. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}$
C. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
D. $\left(\mathrm{CH}_{3}\right)_{3} B$

Answer: D

- View Text Solution

30. What is the $\left[\mathrm{OH}^{-}\right]$in the final solution prepared by mixing 20.0 mL of 0.050 MHCl with 30.0 mL of $0.10 \mathrm{MBa}(\mathrm{OH})_{2}$?
A. 0.40 M
B. 0.0050 M
C. 0.12 M
D. 0.10 M
31. What is $\left[\mathrm{H}^{+}\right]$in $\mathrm{mol} / \mathrm{L}$ of a solution that is 0.20 M in $\mathrm{CH}_{3} \mathrm{COONa}$ and 0.1 M in $\mathrm{CH}_{3} \mathrm{COOH}$? K_{a} for $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.8×10^{-5} ?
A. 3.5×10^{-7}
B. 1.1×10^{-5}
C. 4.0×10^{-6}
D. 9.0×10^{-6}

Answer: D

- Watch Video Solution

32. Ph of a saturated solution of $B a(O H)_{2}$ is 12 . The value of solubility product is :
A. 3.3×10^{-7}
B. 5.0×10^{-7}
C. 4.0×10^{-6}
D. 5.0×10^{-6}

Answer: B

- View Text Solution

33. Equimolar solutions of the following substances were prepared separately. Which one of these has highest pH value?
A. $B a C I_{2}$
B. $A I C I_{2}$
C. LiCI
D. $B e C I_{2}$

Answer: A

34. Buffer solutions have constant acidity and alkalinity because
A. these give unionised acid or base on reaction with added acid or alkali
B. acids and alkalies in these solutions are shielded from attacks by other ions
C. They have large excess of H^{+}or OH^{-}ions
D. they have fixed value of $p H$

Answer: A

- Watch Video Solution

35. Given that equilibrium constant for the reaction $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ has a value of 278 at a particular temperature. What is the value of the equilibrium constant for the
following reaction at
$\mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
A. 1.8×10^{-3}
B. 3.6×10^{-3}
C. 6.0×10^{-2}
D. 1.3×10^{-5}

Answer: C

- Watch Video Solution

36. Given the reaction between 2 gases represented by A_{2} and B_{2} to given the compound $\mathrm{AB}(\mathrm{g}) . A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g)$

At equilibrium, the concentrtation
of $A_{2}=3.0 \times 10^{-3} M$
of $B_{2}=4.2 \times 10^{-3} M$
of $A B=2.8 \times 10^{-3} M$

If the reaction takes place in a sealed vessel at $527^{\circ} \mathrm{C}$. then the value of K_{c} will be
A. 2.0
B. 1.9
C. 0.62
D. 4.5

Answer: C

- Watch Video Solution

37. Which of these is least likely to act as Lewis base?
A. $P F_{3}$
B. $C O$
C. F^{-}
D. $B F_{3}$

Answer: D

- Watch Video Solution

38. Which of the following salts will give highest $p H$ in water?
A. CuSO_{4}
B. $K C I$
C. $N a C I$
D. $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Answer: D

- Watch Video Solution

39. For the reversible reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)+$ Heat
The equilibrium shifts in forward direction
A. by increasing the concentration of $\mathrm{NH}_{3}(\mathrm{~g})$
B. by decreasing the pressure
C. by decreasing the concentrations of $N_{2}(g)$ and $H_{2}(g)$
D. by increasing pressure and decreasing temperature.

Answer: D

- Watch Video Solution

40. The $K_{s p}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}, \mathrm{AgCl}, \mathrm{AgBr}$ and AgI are respectively, $1.1 \times 10^{-12}, 1.8 \times 10^{-10}, 5.0 \times 10^{-13}, 8.3 \times 10^{-17}$. Which one of the following salts will precipitate last if AgNO_{3} solution is added to the solution containing equal moles of $\mathrm{NaCl}, \mathrm{NaBr}, \mathrm{NaI}$ and $\mathrm{Na}_{2} \mathrm{CrO}_{4}$?
A. $A g B r$
B. $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$
C. $A g l$
D. $A g C I$.

Answer: B

- Watch Video Solution

41. If the value of equilibrium constant for a particular reaction is
1.6×10^{12}, then art equilibrium the system will contain
A. mostly products
B. similar amounts of reactants and products
C. all reactans
D. mostly reactants

Answer: A

- Watch Video Solution

42. If the equilibrium constant for
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$ is K , the equilibrium
constant for $\frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g) \Leftrightarrow N O(g)$ will be
A. $\frac{1}{2} K$
B. K
C. K^{2}
D. $K^{1 / 2}$

Answer: D

- Watch Video Solution

43. What is the $p H$ of the resulting solution when equal volumes of 0.1 MNaOH and 0.01 MHCl are mixed?
A. 2.0
B. 7.0
C. 1.04
D. 12.65

Answer: D

D Watch Video Solution

44. Which one of the following pairs of solution is not an acidic buffer?
A. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$
B. $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C. $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{Na}_{3} \mathrm{PO}_{4}$
D. HCIO_{4} and NaCIO_{4}

Answer: D

- Watch Video Solution

45. The solubility product of a salt having general formula $M X_{2}$ in water is 4×10^{-12}. The concentration of M^{2+} ions in the aqueous solution of the salt is:
A. $1 \times 10^{-4} M$
B. $4 \times 10^{4} M$
C. $16 \times 10^{-6} \mathrm{M}$
D. $2 \times 10^{-4} M$

Answer: A

- Watch Video Solution

46. Which one of the following species cannot act as both Bronsted acid and base ?
A. $\mathrm{H}_{2} \mathrm{O}$
B. HCO_{3}^{-}
C. HSO_{4}^{-}
D. NH_{2}^{-}
47. MY and $N Y_{3}$ two nearly insoluble salts, have the same $K_{s p}$ values of 6.2×10^{-13} at room temperature. Which statement would be true in rearged to MY and NY_{3} ?
A. the salts MY and $N Y_{3}$ are more soluble in 0.5 M KY than in pure water.
B. The addition of the salt of KY to solution of MY and NY_{3} will have no effect on their solubilites.
C. The molar solubility of MY and $N Y_{3}$ in water are identical.
D. The molar solubility of MY in water is less than that of $N Y_{3}$

Answer: D

- Watch Video Solution

48. The pH of a solution of $\mathrm{AgCl}(\mathrm{s})$ with solubility product 1.6×10^{-10} in 0.1 M Nacl solution would be :
A. $1.26 \times 10^{-5} M$
B. $1.6 \times 10^{-9} M$
C. $1.6 \times 10^{-11} M$
D. Zero

Answer: B

- Watch Video Solution

49. The pH of a solution obtained by mixing 60 mL of 0.1 M NaOH solution and 40 mL of 0.15 MHCl solution is :
A. 10
B. 12
C. 2
D. 7

- Watch Video Solution

50. The equilibrium constants for the following reactions
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g) N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$ and $\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{Ig})$ are K_{1}, K_{2} and K_{3}
respectively.
The equilibrium constant (K) for the reaction
$\left.2 \mathrm{NH}_{3}(g)+2^{1} / 2\right) \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ is
A. $K_{2} . K_{3}^{3} / K_{1}$
B. $K_{2}^{2} K_{3} / K_{1}$
C. $K_{1} . K_{2} / K_{3}$
D. $K_{2} . K_{3} / K_{1}$

Answer: D

Select the correct Answer

1. In lime kiln the reaction given below does not proced to completion
because
$\mathrm{CaCO}_{3} \Leftrightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
A. of high temperature
B. CO_{2} evolved escapes
C. CaO is removed
D. of low temperature

Answer: B

- Watch Video Solution

2. K_{p} and K_{c} are related to each other as:
A. $K_{p}=K_{c}(R T)^{-\Delta n}$
B. $K_{c}=K_{p}(R T)^{-\Delta n}$
C. $K_{p}=(R T)^{\Delta n} / K_{c}$
D. $K_{p}-K_{c}=(R T) \Delta^{n}$

Answer: B

- Watch Video Solution

3. The relation K_{p} and K_{c} for the reaction:
$2 \mathrm{NO}(g)+C I_{2}(g) \Leftrightarrow 2 N O C I(g)$ is:
A. $K_{p}=K_{c}$
B. $K_{p}=K_{c}(R T)$
C. $K_{p}=K_{c} / R T$
D. $K_{p}=K_{c} / R T^{2}$
4. In which of the following reactions K_{p} and K_{c} are equal ?
A. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})$
B. $P C I_{5}(g) \Leftrightarrow P C I_{3}(g)+C I_{2}(g)$
C. $2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$
D. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$

Answer: C

- Watch Video Solution

5. A small value of equilibrium constant shows that:
A. The reaction is more in the forward direction than in the backward direction
B. the reaction is less in the forward direction and more in the bacward direction
C. the reaction proceeds very little both in the forward and backward directions.
D. The reaction is taking place at high temperature.

Answer: B

- Watch Video Solution

6. Changing the volume of the system does not after the number of moles in which of the following equilibrium.
A. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
B. $P C I_{5}(g) \Leftrightarrow P C I_{3}(g)+C I_{2}(g)$
C. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D. ${S O_{2} C I_{2}(g) \Leftrightarrow S O_{2}(g)+C I_{2}(g) ~}_{\text {g }}$

D Watch Video Solution

7. For the reaction
$\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g}), \mathrm{K}_{p} / K_{c}$ is
A. RT
B. $(R T)^{-1}$
C. $(R T)^{-1 / 2}$
D. $(R T)^{1 / 2}$

Answer: C

- Watch Video Solution

8. For an equilibrium reaction, $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$, the concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at equilibrium are 4.8×10^{-2} and $1.2 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$
respectively. The value of K_{c} for the reaction is
A. $3 \times 10^{-1} \mathrm{~mol} L^{-1}$
B. $3 \times 10^{-3} \mathrm{~mol} \mathrm{~L} L^{-1}$
C. $3 \times 10^{3} \mathrm{~mol} L^{-1}$
D. $3.3 \times 10^{3} \mathrm{~mol} \mathrm{~L}{ }^{-1}$

Answer: B

- Watch Video Solution

9. Which is the correct representation for the solubility product constant of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$?
A. $\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{2-}\right]$
B. $\left.2 \mathrm{Ag}^{+}\right]\left[\mathrm{Cro}_{4}^{2-}\right]$
C. $\left[2 \mathrm{Ag}^{+}\right]\left[\mathrm{CrO}_{4}^{2-}\right]$
D. $\left[2 \mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{2-}\right]$

- Watch Video Solution

10. The solubility product of $H g_{2} I_{2}$ is equal to
A. $\left[H g_{2}^{++}\right]\left[I^{-}\right]$
B. $\left[\mathrm{Hg}^{++}\right]\left[\mathrm{I}^{-}\right]$
C. $\left[H g_{2}^{+}\right]\left[I^{-}\right]^{2}$
D. $\left[H g^{++}\right]\left[I^{-}\right]^{2}$

Answer: C

- Watch Video Solution

11. The units of solubility product of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ will be (connentration being expressed in mol L^{-1}):
A. $\mathrm{mol} L^{-1}$
B. $m o l^{2} L^{-2}$
C. $m o l^{3} L^{-3}$
D. none of these

Answer: C

- Watch Video Solution

12. Precipitation takes place when the ionic product
A. equals their solubility product
B. exceeds their solubility product
C. is less than their solubility product
D. is almost zero.

Answer: B

13. What is the equilibrium expression for the reaction $P_{4(s)}+5 O_{2(g)} \Leftrightarrow P_{4} O_{10(s)} ?$
A. $K_{c}=\left[O_{2}\right]^{5}$
B. $K_{c}=\left[P_{4} O_{10}\right] /\left[P_{4}\right]\left[O_{2}\right]^{5}$
C. $K_{c}=\left[P_{4} O_{10}\right] / 4\left[P_{4}\right]\left[O_{2}\right]$
D. $K_{c}=\frac{1}{\left(\left[O_{2}\right]\right]^{5}}$

Answer: D

D Watch Video Solution

14. 1 M NaCl and 1 M HCl are present in an aqueous solution. The solution is
A. not a buffer with $p H<7$
B. not a buffer with $p H<7$
C. a buffer with $p H<7$
D. a buffer with $p H<7$.

Answer: A

- Watch Video Solution

15. Species acting as both Bronsted acid and base is:
A. $\left(\mathrm{HSO}_{4}\right)^{2-}$
B. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C. $\left(\mathrm{NH}_{2}\right)^{1-}$
D. $(O H)^{1-}$

Answer: A

16. If the solubility of an aqueoues solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ be X mole litre, then $K_{S P}$ of $M g(O H)_{2}$ is:
A. $4 x^{3}$
B. $108 x^{5}$
C. $27 x^{4}$
D. $9 X$.

Answer: A

(Watch Video Solution

17. Which of the following statements is not ture?
A. $p H+p O H=14$ for all aqueous solutions.
B. The pH of $1 \times 10^{-8} \mathrm{MHCI}$ solution is $8 . a^{2}$
C. 96500 C of electricity when passed through CuSO_{4} solution deposits 1 gram equivalent of copper at the cathode.
D. The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is HPO_{4}^{2-}

Answer: B

- Watch Video Solution

18. The equilibrium constant for the given reaction:
$S O_{3(g)} \Leftrightarrow S O_{2(g)}+1 / 2 O_{2(g)},\left(K_{c}=4.9 \times 10^{-2}\right)$
The value of K_{c} for the reaction:
$2 \mathrm{SO}_{2(g)}+O_{2(g)} \Leftrightarrow 2 \mathrm{SO}_{3(g)}$, will be :
A. 416
B. 2.4×10^{-3}
C. 9.8×10^{-2}
D. 4.9×10^{-2}

Answer: A

19. The $p K_{a}$ of a weak acid $(H A)$ is 4.5 . The $p O H$ of an aqueous buffered solution of $H A$ in which 50% of the acid is ionized is:
A. 7.0
B. 4.5
C. 2.5
D. 9.5

Answer: D

- Watch Video Solution

20. The first and second dissociation constant of an acid $H_{2} A$ are 1.0×10^{-5} and 5.0×10^{-10} repectively. The overall dissociation constant of the acid will be
A. 0.2×10^{5}
B. 5.0×10^{-5}
C. 5.0×10^{-15}
D. 5.0×10^{-15}

Answer: D

- Watch Video Solution

21. The equilibrium constants $K_{p 1}$ and $K_{p 2}$ for the two equilibrium reactions are
$X \Leftrightarrow Y+Z$ and $A \Leftrightarrow 2 B$
in the ratio $9: 1$. If the degree of dissociation of X and A be equal then the ratios of the total pressure at these equilibria will be :
A. 9:1
B. $36: 1$
C. 1:1
D. 3:1

- View Text Solution

22. Solid $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)$ is gradually dissolved in a $1.0 \times 10^{-4} \mathrm{MNa}_{2} \mathrm{CO}_{3}$ solution. At what concentrations of Ba^{2+}, will a precipitate begin to form?
$\left(K_{S P}\right.$ for $\left.\mathrm{BaCO}_{3}=5.1 \times 10^{-9}\right)$
A. $4.1 \times 10^{-5} \mathrm{M}$
B. $5.1 \times 10^{-5} \mathrm{M}$
C. $8.1 \times 10^{-8} M$
D. $8.1 \times 10^{-7} M$

Answer: B

- Watch Video Solution

23. If $10^{-4} \mathrm{dm}^{3}$ of water is introduced into a $1.0 \mathrm{dm}^{3}$ flask to 300 K how many moles of water are in the vapour phase when equilibrium is
established ? (Given vapour pressure of $\mathrm{H}_{2} \mathrm{O}$ at 300 K is $\left.3170 \mathrm{PaR}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$.
A. $1.27 \times 10^{-3} \mathrm{~mol}$
B. $5.56 \times 11^{-3} \mathrm{~mol}$
C. $1.53 \times 10^{-2} \mathrm{~mol}$
D. $4.46 \times 10^{-2} \mathrm{~mol}$

Answer: A

- Watch Video Solution

24. Solubility product of silver bromide is 5.0×10^{-13}. The quantity of potassium bromide (molar mass taken as $120 \mathrm{gmol}^{-1}$) to be added to $1 L$ of $0.05 M$ solution of silver nitrate to start the precipitation of AgBr is
A. $5.0 \times 10^{-8} g$
B. $1.2 \times 10^{-10} g$
C. $1.2 \times 10^{-9} g$
D. $6.2 \times 10^{-5} g$

Answer: C

- Watch Video Solution

25. The $p H$ of a 0.1 molar solution of the acid $H Q$ is 3 . The value of the ionisation constant, K_{a} of the acid is
A. 1×10^{-3}
B. 1×10^{-5}
C. 1×10^{-7}
D. 3×10^{-1}

Answer: B

26. The equilibrium constant for the reaction
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
at temperature T is 4×10^{-4}.
The value of K_{c} for the reaction
$N O(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g)$
at the same temperature is
A. 2.5×10^{2}
B. 4×10^{-4}
C. 50.0
D. 0.02

Answer: C

- Watch Video Solution

27. How many litres of water must be added to $1 L$ of an aqueous solution of HCl with a pH of 1 to create an aqueous solution with pH of 2 ?
A. $9.0 L$
B. $0.1 l$
C. $0.9 l$
D. 2.0 L

Answer: A

- Watch Video Solution

28. For the reaction, $\mathrm{SO}_{2}(g)+\frac{1}{2} O_{2}(g) \Leftrightarrow S O_{3}(g)$ if $K_{p}=K_{C}(R T)^{x}$ where, the symbols have usual meaning, then the value of x is (assuming ideality)
A. $=-1$
B. $-1 / 2$
C. $1 / 2$
D. 1

Answer: B

- Watch Video Solution

29. The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} M$. What is its $p H$?
A. 3.84
B. 2.42
C. 4.44
D. 1.42

Answer: B

D Watch Video Solution

30. In the reaction at constant volume
$C_{(s)}+\mathrm{CO}_{2}(g) \Leftrightarrow 2 C O_{(g)}$
argon gas is added which does not takes part in the reaction. Choose the correct statement.
A. the equilibrium constant is unchanged
B. The equilibrium shifts in the forward direction
C. The equilibrium shifts in the backward direction
D. The direction of equilibrium depends on the amount of argon added.

Answer: A

- Watch Video Solution

31. The K_{p} value for the reaction.

$$
H_{2}+I_{2} \Leftrightarrow 2 H i
$$

at $460^{\circ} \mathrm{C}$ is 49. If the initial pressure of H_{2} and I_{2} is 0.5 atm respectively, what will be the partial pressure of H_{2} at equilibrium ?
A. 0.111 atm
B. 0.123 atm
C. 0.133 atm
D. 0.222 atm

Answer: A

- Watch Video Solution

32. One mole of ammonia was completely absorbed in one litre solution each of (1) $1 \mathrm{MHCI},(2) 1 \mathrm{MCH}_{3} \mathrm{COOH}$ and (3) $1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ at 298 K . The decreasing order for the pH of the resulting solution is
(Given , $\left.K_{b}\left(\mathrm{NH}_{3}\right)=4.74\right)$
A. $2>3>1$
B. $1>2>3$
C. $2>1>3$
D. $3>2>1$

- Watch Video Solution

33. The standard Gibbs energy change at $300 K$ for the reaction $2 A \Leftrightarrow B+C$ is 2494. $2 J$. At a given time, the composition of the reaction mixture is $[A]=\frac{1}{2},[B]=2$ and $[C]=\frac{1}{2}$. The reaction proceeds in the
$(R=8.314 J K / \mathrm{mol} e=2.718)$
A. forward direction because $Q<K_{c}$
B. reverse direction because $Q<K_{c}$
C. forward direction because $Q>K_{c}$
D. reverse direction because $Q>K_{c}$

Answer: D

- Watch Video Solution

34. The ratio of volumes of $\mathrm{CH}_{3} \mathrm{COOH} 0.1$ (N) to $\mathrm{CH}_{3} \mathrm{COONa} 0.1$ (N) required to prepare a buffer solution of pH 5.74 is
(given : $p K_{a}$ of $\mathrm{CH}_{3} \mathrm{COOH}$ is 4.74)
A. 10: 1
B. 5: 1
C. 1:5
D. 1: 10

Answer: D

- Watch Video Solution

35. Which of the following salts in aqueous solution has the lowest pH value?
A. NaCIO
B. NaCIO_{4}
C. NaCIO_{3}
D. NaCIO_{2}

Answer: B

- Watch Video Solution

36. How many times a 0.1 M strong monobasic solution should be diluted so that the pH of the resulting solution is tripled?
A. 50
B. 10
C. 25
D. 100

Answer: D

37. Equilibrium constants K_{1} and K_{2} for the following equilibria $\mathrm{NO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \stackrel{K_{1}}{\Longleftrightarrow} \mathrm{NO}_{2}(\mathrm{~g}) \quad$ and $\quad 2 \mathrm{NO}_{-}(2)(\mathrm{g}) \quad$ overset(K_(2)) (hArr)2NO(g)+O_(2)(g)'
are related as
A. $K_{1}=\sqrt{K_{2}}$
B. $K_{2}=\frac{1}{K_{1}}$
C. $K_{1}=2 K_{2}$
D. $K_{2}=\frac{1}{K_{1}^{-2}}$

Answer: D

- Watch Video Solution

38. The equilibrium constant at $298 K$ for a reaction, $A+B \Leftrightarrow C+D$ is 100. If the initial concentrations of all the four species were 1 M each, then equilibirum concentration of D (in $\mathrm{mol} L^{-1}$) will be
B. 0.818
C. 1.818
D. 1.182

Answer: C

- Watch Video Solution

Comprehesion 1

1. Chemical equilibrium is attained in a reversible reaction carried in a close container and is of dynamic nature. The value of equilibrium constant may be expressed either as K_{p} and K_{c} and the two are related to each other as :
$K_{p}=K_{c}(R T)^{\Delta n g}$
Free energy change (ΔG) at equilibrium point is zero. The value of equilibrium constant gives the extent to which a particular reation has proceeded to attain the equilibrium . Its value gets reversed if the
reaction is reversed and becomes the square root of the initial value if the reaction is divided by 2 .

A reaction attains equilibrium when the free energy change accompanying the reaction is :
A. Positive and large
B. Zero
C. Negative
D. Negative and small.

Answer: B

- View Text Solution

Comprehesion 2

1. The equilibrium constant for the reversible reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ is K and for the reaction $\frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2} \Leftrightarrow N H_{3}$, the equilibrium constant is $K^{\prime}, . K$ and K^{\prime} will be related as
A. $K=K$
B. $K=\sqrt{k}$
C. $K=\sqrt{K}$
D. $K \times K=1$

Answer: B

- Watch Video Solution

Comprehesion 3

1. Chemical equilibrium is attained in a reversible reaction carried in a close container and is of dynamic nature. The value of equilibrium constant may be expressed either as K_{p} and K_{c} and the two are related to each other as :

$$
K_{p}=K_{c}(R T)^{\Delta n g}
$$

Free energy change (ΔG) at equilibrium point is zero. The value of equilibrium constant gives the extent to which a particular reation has
proceeded to attain the equilibrium . Its value gets reversed if the reaction is reversed and becomes the square root of the initial value if the reaction is divided by 2 .

For the reaction
$P C I_{3}(g)+C I_{2}(s) \Leftrightarrow P C I_{5}(g)$
The value of k_{c} at $250^{\circ} C$ is $\mathrm{mol}^{-1} L^{-1}$. The value of k_{p} at the same temperature will be :
A. $0.61 \mathrm{~atm}^{-1}$
B. $0.56 \mathrm{~atm}^{-1}$
C. $0.83 \mathrm{~atm}^{-1}$
D. $0.46 \mathrm{~atm}^{-1}$

Answer: A

- View Text Solution

1. Chemical equilibrium is attained in a reversible reaction carried in a close container and is of dynamic nature. The value of equilibrium constant may be expressed either as K_{p} and K_{c} and the two are related to each other as :
$K_{p}=K_{c}(R T)^{\Delta n g}$
Free energy change (ΔG) at equilibrium point is zero. The value of equilibrium constant gives the extent to which a particular reation has proceeded to attain the equilibrium. Its value gets reversed if the reaction is reversed and becomes the square root of the initial value if the reaction is divided by 2 .
when the two reactants A and B are mixed to give products C and D, the reaction quotient Q at initial stage of the reaction:
A. is zero
B. decreases with time
C. is independent of time
D. increases with time

Answer: D

D Watch Video Solution

Comprehesion 5

1. For the chemical reaction
$3 X(g)+Y(g) \Leftrightarrow X_{3} Y(g)$,
the amount of $X_{3} Y$ at equilibrium is affected by
A. temperature and pressure
B. pressure only
C. temperature only
D. temperature pressure and catalyst.

Answer: A

1. Temperature pressure and molar concentration are the three factors which can disturb the equilibrium in a reversible reaction. Their effect is governed by Le Chatelier's principle. Whereas high concentration of the reactants always favours the formation of the products irrespective of its nature the effect of temperature and pressure depends upon the nature of the reaction. pressure does not disturb the equilibrium point in a reaction in which the reactants and products have same number of moles in the gaseous state.

For a reaction
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
at a given temperature the equilibrium amount of CO_{2}
(g) can be increased by
A. adding a catalyst
B. adding and inert gas
C. decreasing the volume of the container
D. increasing the amount of $\mathrm{CO}(\mathrm{g})$.

Answer: D

- View Text Solution

Comprehesion 7

1. Temperature pressure and molar concentration are the three factors which can disturb the equilibrium in a reversible reaction. Their effect is governed by Le Chatelier's principle. Whereas high concentration of the reactants always favours the formation of the products irrespective of its nature the effect of temperature and pressure depends upon the nature of the reaction. pressure does not disturb the equilibrium point in a reaction in which the reactants and products have same number of moles in the gaseous state.

In a closed system

$$
A(s) \Leftrightarrow 2 B(g)+3 C(g)
$$

if partical pressure of C is doubled then partial pressure of B will be :
A. $2 \sqrt{2}$ times the original value
B. $\frac{1}{2}$ times the original value
C. 2 times of the original value
D. $\frac{1}{2 \sqrt{2}}$ times the original value.

Answer: D

- Watch Video Solution

Comprehesion 8

1. The strength of elctrolytes is expressed in terms of degree of dissociation α For strong electrolyte α is close to one and for weak electrolytes α is quite small. According to Ostwald Dilution Law $\alpha=\sqrt{\frac{K}{C}}$
For an acid $\left[H^{+}\right]=\sqrt{K_{a} C}$
For a base $\left[\mathrm{OH}^{-}\right]=\sqrt{K_{b} C}$
The relative strengths of acids or bases can be compared in terms of the
square roots of their K_{a} or K_{b} values.
The dissociation constant of monobasic acids A, B and C are $10^{-4}, 10^{-6}$ and 10^{-10} respectively. The concentration of each is 0.1 M .

Which is correct order or their pH values ?
A. $A<B<C$
B. $C<A<B$
C. $B<C<A$
D. $B<A \approx C$

Answer: A

D View Text Solution

Comprehesion 9

1. The strength of elctrolytes is expressed in terms of degree of dissociation α For strong electrolyte α is close to one and for weak electrolytes α is quite small. According to Ostwald Dilution Law
$\alpha=\sqrt{\frac{K}{C}}$
For an acid $\left[H^{+}\right]=\sqrt{K_{a} C}$
For a base $\left[\mathrm{OH}^{-}\right]=\sqrt{K_{b} C}$
The relative strengths of acids or bases can be compared in terms of the square roots of their K_{a} or K_{b} values.

A monoprotic acid in 0.1 M solution ionises to 0.001 \% . Its ionisation constant is :
A. 1.0×11^{-3}
B. 1.0×10^{-6}
C. 1.0×10^{-8}
D. 1.0×10^{-11}

Answer: D

- Watch Video Solution

Comprehesion 10

1. The strength of elctrolytes is expressed in terms of degree of dissociation α For strong electrolyte α is close to one and for weak electrolytes α is quite small. According to Ostwald Dilution Law $\alpha=\sqrt{\frac{K}{C}}$
For an acid $\left[H^{+}\right]=\sqrt{K_{a} C}$
For a base $\left[\mathrm{OH}^{-}\right]=\sqrt{K_{b} C}$
The relative strengths of acids or bases can be compared in terms of the square roots of their K_{a} or K_{b} values.

At infinite dilution, the percentage ionisation of both strong and weak electrolytes is:
A. 1%
B. 20%
C. 50%
D. 100%

Answer: D

- View Text Solution

1. Thermal decomposition of gaseous X_{2} to gaseous X at $298 K$ takes place according to the following equation:

$$
X(g) \Leftrightarrow 2 X(g)
$$

The standard reaction Gibbs energy $\Delta_{r} G^{\circ}$, of this reaction is positive. At the start of the reaction, there is one mole of X_{2} and no X. As the reaction proceeds, the number of moles of X formed is given by β. Thus $\beta_{\text {equilibrium }}$ is the number of moles of X formed at equilibrium. The reaction is carried out at a constant total pressure of 2 bar. Consider the gases to behave ideally.
[Given, $R=0.083 L$ bar $K^{-1} \mathrm{~mol}^{-1}$)
The equilibrium constant K_{p} for this reaction at $298 K$, in terms of $\beta_{\text {equilibrium }}$ is
A. $\frac{8 \beta_{\text {equilibrium }}^{2}}{2-\beta_{\text {equilibrium }}}$
B. $\frac{8 \beta_{\text {equilibrium }}^{2}}{4-\beta_{\text {equilibrium }}^{2}}$
C. $\frac{4 \beta_{\text {equilibrium }}^{2}}{2-\beta_{\text {equilibrium }}}$
D. $\frac{4 \beta_{\text {equilibrium }}^{2}}{4-\beta_{\text {equilibrium }}^{2}}$

Answer: B

- Watch Video Solution

Comprehesion 12

1. Thermal decomposition of gaseous X_{2} to gaseous X at 298 K takes place according to following equation

$$
X_{2}(g) \Leftrightarrow 2 X(g)
$$

The standard reaction Gibbs energy $\Delta_{r} G^{\circ}$ of this reaction is positive. At the start of the reaction there is one mole of X_{2} and no. X. As the reaction proceeds the number of moles of X formed is given by β. Thus $\beta_{\text {equilibrium }}$ is the the number of moles of X formed at equilibrium . The reaction is carried out a constant total pressure of 2 bar. Consider the gases to behave ideally.
(Given: $R=0.083 L$ bar $K^{-1} \mathrm{~mol}^{-1}$)
The incorrect statement among the following for this reaction is
A. Decrease in the total pressure will result in formation of more moles of gaseous X
B. At the start of the reaction, dissocition of gaseous X_{2} takes place spontaneously
C. $\beta_{\text {equilibrium }}=0.7$
D. $K_{c}<7$

Answer: C

- View Text Solution

Straight Objective Type MCQs

1. The $p K_{a}$ of acteylsalicylic acid (aspirin) is 3.5 . The pH of gastric juice in human stomach is about $2-3$ and the pH in the small intestine is about
2. Aspirin will be:
A. Unionised in the small intestine and in the stomach .
B. Completely ionised in the small intestine and in the stomach.
C. lonised in the stomach and almost unionised in the small intestine.
D. lonised in the small intestine and almost unionised in the equilibrium

Answer: D

- Watch Video Solution

2. The equilibrium

$$
S O_{2} C I_{2}(g) \Leftrightarrow S O_{2}(g)+C I_{2}(g)
$$

is attained at $25^{\circ} \mathrm{C}$ in a closed container and inert gas helium is introduced. Which of the following statement (s) is / are correct ?
(1).concentrations of $\mathrm{SO}_{2}, \mathrm{CI}_{2}$ and $\mathrm{SO}_{2} \mathrm{CI}_{2}$ change
(2). More chlorine is formed
(3).Concentration of SO_{2} is reduced
(4).More $\mathrm{SO}_{2} \mathrm{CI}_{2}$ is formed
A. $1,2,3$
B. $2,3,4$
C. 3,4
D. None

Answer: D

- Watch Video Solution

3. Amongest the following hydroxides, the one which has the lowest value of $K \mathrm{sp}$ at ordinary temperature is:
A. $\mathrm{Mg}(\mathrm{OH})_{2}$
B. $\mathrm{Ca}(\mathrm{OH})_{2}$
C. $\mathrm{Ba}(\mathrm{OH})_{2}$
D. $\mathrm{Be}(\mathrm{OH})_{2}$

Answer: D

4. In a reaction $A_{2}(g)+4 B_{2}(g) \Leftrightarrow 2 A B_{4}(g), \Delta H<0$. The formation of $A B_{4}$ is not favoured by
A. low temperature and high pressure
B. high temperature nad low pressure
C. low temperature and low pressrue
D. high temperature and high pressrue

Answer: A

- Watch Video Solution

5. The compound whose $0.1 M$ solution is basic is
A. Ammonium acetate
B. Ammonium chloride
C. Ammonium Sulphate
D. Sodium acetate.

Answer: D

- Watch Video Solution

6. For which of the following reaction $K_{p}=K_{c}$?
A. $\operatorname{NOCI}(g) \Leftrightarrow 2 N O(g)+C I_{2}(g)$
B. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
C. $H_{2}(g)+C I_{2}(g) \Leftrightarrow 2 H C I(g)$
D. $P C I_{3}(g)+C I_{2}(g) \Leftrightarrow P C I_{5}(g)$

Answer: C

- Watch Video Solution

7. The pH of the neutralisation point of 0.1 N ammonium hydroxide with
0.1 NHCl is
A. 1
B. 6
C. 7
D. 9

Answer: B

- Watch Video Solution

8. For the reaction
$P C I_{5}(g) \Leftrightarrow P C I_{3}(g)+C I_{2}(g)$
The forward reaction at constant temperature is favoured by
(1).introducing an inert gas at constant volume
(2).introducing chloride gas at constant volume
(3).introduding as inert gas at constant pressure
(4). increasing the volume of the contianer
(5). Introducing $P C I_{5}$ at constant volume.
A. 1, 2
B. 4,5
C. 2, 3, 4
D. $3,4,5$

Answer: B

- Watch Video Solution

9. The following equilibrium is established when hydrogen chloride is dissolved in acetic acid

$$
\mathrm{HCl}(a q)+\mathrm{CH}_{3} \mathrm{COOH}(a q) \Leftrightarrow \mathrm{Cl}^{-}(a q)+\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}(a q)
$$

The set that characterises the conjugate acid-base pairs is :
A. $\left(\mathrm{HCI}, \mathrm{CH}_{3} \mathrm{COOH}\right)$ and $\left(\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}, \mathrm{CI}^{-}\right)$
B. $\left(\mathrm{HCI}, \mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}\right)$and $\mathrm{HCI},\left(\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}\right)$ and $\left(\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CI}^{-}\right)$
C. $\left(\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}, \mathrm{HCI}\right)$ and $\left(\mathrm{CI}^{-} \mathrm{CH}_{3} \mathrm{COOH}\right)$
D. $\left(\mathrm{HCI}, \mathrm{CI}^{-}\right)$and $\left(\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}, \mathrm{CH}_{3} \mathrm{COOH}\right)$

Answer: D

- Watch Video Solution

10. Which of the following solutions will have pH close to 1.0 ?
A. 100 ml of $(M / 10) \mathrm{HCl}+100 \mathrm{ml}$ of $(M / 10) \mathrm{NaOH}$
B. 55 ml of $(M / 10) \mathrm{HCl}+45 \mathrm{ml}$ of $(M / 10) \mathrm{NaOh}$
C. 10 ml of $(M / 10) \mathrm{HCl}+90 \mathrm{ml}$ of $(M / 10) \mathrm{NaON}$
D. 75 ml of $(M / 10) \mathrm{HCl}+25 \mathrm{ml}$ of $(M / 5) \mathrm{NaOH}$

Answer: D

11. An equilibrium mixture for the reaction
$2 H_{2} S(g) \Leftrightarrow 2 H_{2}(g)+S_{2}(g)$
had 1 mole of $H_{2} S, 0.2$ mole of H_{2} and 0.8 mole of S_{2} in a 2 litre flask. The value of K_{c} in $\mathrm{mol} L^{-1}$ is
A. 0.004
B. 0.08
C. 0.016
D. 0.16

Answer: C

- Watch Video Solution

12. The decreasing order of strength of the bases, $\mathrm{OH}^{-}, \mathrm{NH}_{2}^{-}, \mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-}$and $\mathrm{CH}_{3}-\mathrm{CH}_{2}^{-}$:
A. $\mathrm{CH}_{3}-\mathrm{CH}_{2}^{-}>\mathrm{NH}_{2}^{-}>\mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-}>\mathrm{OH}^{-}$
B. $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-}>\mathrm{CH}_{3}-\mathrm{CH}_{2}^{-}>\mathrm{NH}_{2}^{-}>\mathrm{OH}^{-}$
c. $\mathrm{OH}^{-}>\mathrm{NH}_{2}^{-}>\mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-}>\mathrm{CH}_{3}-\mathrm{CH}_{2}^{-}$
D. $\mathrm{NH}_{2}^{-}>\mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-}>\mathrm{OH}^{-}>\mathrm{CH}_{3}-\mathrm{CH}_{2}^{-}$

Answer: B

- Watch Video Solution

13. Fear or exitement, generally cause one to breathe rapidaly and it results in the decrease of concentration of CO_{2} in blood. In what way it will change pH of blood ?
A. pH will increase
B. pH will decrease
C. No change
D. No change pH will adust to 7 .

Answer: C

14. The $p K_{a}$ of $H C N$ is 9.30 . The pH of a solutin prepared by mixing 2.5 moles of $K C N$ and 2.5 moles of $H C N$ in water and making up the total volume to 500 mL is
A. 9.30
B. 7.30
C. 10.30
D. 8.30

Answer: A

- Watch Video Solution

15. In what manner will the increase of pressure affect the following equation ? $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}(g)+\mathrm{H}_{2}(g)$
A. Shift in the forward direction
B. Shift in the reverse direction
C. increase in the yield of hydrogen
D. No effect

Answer: B

- Watch Video Solution

16. One "mole" of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ at 300 K is kept in a closed container under 1 atm. It is heated to 600 K , when 20% by mass of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ decomposes to $\mathrm{NO}_{2}(\mathrm{~g})$. The resultant pressure is
A. $1.2 a t m$
B. 2.4 atm
C. 2.0 atm
D. 1.0 atm

- Watch Video Solution

17. If $p K_{b}$ for fluoride ion at $25^{\circ} C$ is 10.83 the ionisation constant of hydrofluoric acid at this temperature is
A. 1.74×10^{-5}
B. 3.52×10^{-3}
C. 6.75×10^{-4}
D. 5.38×10^{-2}

Answer: C

- Watch Video Solution

18. the solubility of $A_{2} B_{3}$ is $\mathrm{y} \mathrm{mol} d m^{-3}$. Its solubility product is
A. $6 y^{4}$
B. $64 y^{4}$
C. $36 Y^{5}$
D. $108 y^{5}$

Answer: D

D Watch Video Solution

19. For the reaction
$\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)$
at a given temperature the equilibrium amount of CO_{2}
(g) can be increased by
A. adding a suitable catalyst
B. adding an inert gas
C. decreasing the volume of the container
D. increasing the amount of CO (g)

Answer: D

D Watch Video Solution

20. Which of the following statement (s) is (are) correct ?
(1). The pH of $1.0 \times 10^{-8} \mathrm{M}$ solution of HCl is 8
(2). The conjugate base of $H_{2} \mathrm{PO}_{4}^{-}$is HPO_{4}^{2-}
(3). Autoprotolysis constant of water increases with temperature
(4). When a solution of a weak monoprotic acid is titrated against a strong base at half neutralization point $\mathrm{pH}=(1 / 2) p K_{a}$
A. 2,3
B. $1,2,3$
C. 3,4
D. $2,3,4$

Answer: A

21. For the chemical reaction
$3 X(g)+Y(g) \Leftrightarrow X_{3} Y(g)$,
the amount of $X_{3} Y$ at equilibrium is affected by
A. temperature and pressure
B. temperature only
C. pressure only
D. temperature pressure and catalyst.

Answer: A

Watch Video Solution

22. The pH 0.1 M solution the following salts increases in the order.
A. $\mathrm{NaCI}<\mathrm{NH}_{4} \mathrm{CI}<\mathrm{NaCN}<\mathrm{HCI}$
B. $\mathrm{HCI}<\mathrm{NH}_{4} \mathrm{CI}<\mathrm{NaCI}<\mathrm{NaCN}$
C. $\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{CI}<\mathrm{NaCI}<\mathrm{HCI}$
D. $\mathrm{HCI}<\mathrm{NaCI}<\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{CI}$

Answer: B

- Watch Video Solution

23. A buffer solution can be prepared from a mixture of
(1).Sodium acetate and acetic acid in water
(2).Sodium acetate and hydrochloric acid in water
(3).ammonia and ammonium chloride in water
(4). Ammonia and sodium hydroxide in water.

The correct answer is :
A. $1,3,4$
B. 2, 3, 4
C. $1,2,4$
D. 1, 3

Answer: D

D Watch Video Solution

24. For the reversible reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)$
at $500^{\circ} C$, the value of K_{p} is 1.44×10^{-5} when the partial pressure is measured in atmosphere. The corresponding value of K_{c} with concentration in $\mathrm{mol} L^{-1}$ is
A. $1,44 \times 10^{-5} /(0.082 \times 500)^{-2}$
B. $1.44 \times 10^{-5} /(8.314 \times 773)^{-2}$
C. $1.44 \times 10^{-5} /(0.082 \times 773)^{2}$
D. $1.44 \times 10^{-5} /(0.082 \times 773)^{-2}$

Answer: D

- Watch Video Solution

25. When two reactants A and B are mixed to give products, C and D, the reaction quotient (Q) at the initial stages of the reaction
A. is zero
B. decreases with time
C. is independent of time
D. increases with time

Answer: D

- Watch Video Solution

26. At constant temperature, the equilibrium constant $\left(K_{p}\right)$ for the decomposition reaction
$\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$
is expressed by $K_{p}=4 x^{2} p /\left(1-x^{2}\right)$, where $\mathrm{p}=$ pressure $\mathrm{x}=$ extent of decomposition. Which of the following statements is true?
A. K_{p} increases with increase of P
B. K_{p} increases with increase of x
C. K_{p} increases with decreases of x
D. K_{p} remains constant with change in P and X .

Answer: D

- Watch Video Solution

27. Consider the following equilibrium in a closed container
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
At a fixed temperature, the volume of the reaction container is halved. For this change, which of the following statement holds true regarding the equilibrium constant (K_{p}) and the degree of dissociation (α) ?
A. Neither K_{p} nor α changes
B. Both K_{p} and α change
C. K_{p} changes but α does not change
D. K_{p} does not change order of solubility of :

Answer: D

- Watch Video Solution

28. Identify the correct order of solubility of $N a_{2} S, C u S$ and ZnS in aqueous solution
A. $C u S>Z n S>N a_{2} S$
B. $Z n S>N a_{2} S>C u S$
C. $N a_{2} S>C u S>Z n S$
D. $N a_{2} S>Z n S>C u S$

Answer: D

- Watch Video Solution

29. A weak acid HX has $K_{a}=1 \times 10^{-5} \mathrm{M}$. If forms a salt NaX on reaction with alkali. The perentage degree of dissociation of 0.1 M solution of NaX
A. 1.0E-5
B. 0.01
C. 0.1
D. 0.15

Answer: B

- View Text Solution

30. 0.1 mole of $\mathrm{CH}_{3} \mathrm{NH}_{2}\left(K_{b}=5 \times 10^{-4}\right)$ is mixed with 0.08 mole of HCl and diluted to one litre. The $\left[\mathrm{H}^{+}\right]$in solution is
A. 8×10^{-2}
B. 2×10^{11}
C. 1.23×10^{-4}
D. 8×10^{-11}

Answer: D

- Watch Video Solution

31. The solubility product constant $\left(K_{s p}\right)$ of salts of types $M X, M X_{2}$, and $M_{3} X$ at temperature T are $4.0 \times 10^{-8}, 3.2 \times 10^{-14}$, and 2.7×10^{-15}, respectively. The solubilities of the salts at temperature T are in the order
A. $M X>M X_{2}>M_{3} X$
B. $M_{3} X>M X_{2}>M X$
C. $M X_{2}>M_{2} X>M X$
D. $M X>M_{3} X>M X_{2}$

Answer: D

D Watch Video Solution

32. Aqueous solutions of $\mathrm{HNO}_{3}, \mathrm{KOH}, \mathrm{CH}_{3} \mathrm{COOH}$, and $\mathrm{CH}_{3} \mathrm{COONa}$ of identical concentrations are provided. The pair (s) of solution which form a buffer upon mixing is// are
A. HNO_{3} and $\mathrm{CH}_{3} \mathrm{COOH}$
B. KHO and $\mathrm{CH}_{3} \mathrm{COONa}$
C. HNO_{3} and $\mathrm{CH}_{3} \mathrm{COONa}$
D. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$

Answer: D

- Watch Video Solution

33. Upon treatment with ammonical $H_{2} s$, the metal ion that precipitates as a sulfide is
A. $F e(I I I)$
B. $A I(I I I)$
C. $M g(I I)$
D. $Z n(I I)$

Answer: D

- Watch Video Solution

34. The $K_{s p}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is 1.1×10^{-12} at 298 K . The solubility (in mol/L) of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in a $0.1 \mathrm{MAgNO}_{3}$ solution is
A. 1.1×10^{-11}
B. 1.1×10^{-10}
C. 1.1×10^{-12}
D. 1.1×10^{-9}

Answer: B

- Watch Video Solution

1. For the gas phase reaction
$C_{2} H_{4}+H_{2} \Leftrightarrow C_{2} H_{6}(\Delta H=-32.7 \mathrm{kcal})$
carried out in a vessel, the equilibrium concentration of $C_{2} H_{4}$ can be increased by
A. increasing the temperature
B. decreasing the pressure
C. removing some hydrogen $\left(\mathrm{H}_{2}\right)$
D. adding some ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$

Answer: A::B::C::D

- Watch Video Solution

2. Which of the following will favour the formation of NH_{3} by Haber's
A. increases of temperature
B. increase of pressure
C. Addition of catalyst
D. Addition of promoter.

Answer: B::C::D

- Watch Video Solution

3. Which of the following will not affect the value of equilibrium constant of a reaction?
A. Change in concentration of reactants
B. Change in temperature
C. Change in pressure
D. Addition of catalyst.

Answer: A::C::D

4. The equilibrium
$\mathrm{SO}_{2} \mathrm{CI}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{CI}_{2}(\mathrm{~g})$
is attained at $25^{\circ} \mathrm{C}$ in a closed container and inert gas helium is introduced. Which of the following statement (s) is / are correct ?
(1).concentrations of $\mathrm{SO}_{2}, \mathrm{CI}_{2}$ and $\mathrm{SO}_{2} \mathrm{CI}_{2}$ change
(2). More chlorine is formed
(3).Concentration of SO_{2} is reduced
(4).More $\mathrm{SO}_{2} \mathrm{CI}_{2}$ is formed
A. Concentration of $\mathrm{SO}_{2}, C I_{2}$ and $\mathrm{SO}_{2} C I_{2}$ change
B. more of chlorine is formed
C. Concentration of SO_{2} is reduced
D. More of $\mathrm{SO}_{2} \mathrm{CI}_{2}$ is formed.
5. A buffer solution can be prepared from a mixture of
A. sodium acetate and acetic acid in water
B. sodium acetate and HCl in water
C. ammonia and ammonia chloride in water
D. ammonia and sodium hydroxide in water.

Answer: A::C

- Watch Video Solution

6. When two reactants A and B are mixed to give products, C and D, the reaction quotient (Q) at the initial stages of the reaction
A. at initial state of reaction is zero
B. decreas with time
C. is independent of time
D. increases with time

- Watch Video Solution

7. The thermal dissociation of equilibrium of $\mathrm{CaCo}_{3}(s)$ is studied under different conditions
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
For this equilibrium, the correct statement (s) is/are
A. ΔH is dependent on T
B. K is independent of the initial amount of CaCO_{3}
C. K is dependent on the pressure of CO_{2} at a given T
D. ΔH is independent of the catalyst if any.

Answer: A::B::D

D Watch Video Solution

1. Assertion : A catalyst does no alter the equilibrium constant of a reaction.

Reason : The catalyst forms a complex with the reactant and provides an alternate path with lowe energy of in activation for the reaction. The forward and reverse reaction are affected to the same extent.
A. if both assertion and reason are correct and reason is correct explanation for assertion.
B. if both assertion and reason are correct but reason is not correct explanation for assertion.
C. if assertion is correct but reason is incorrect.
D. if assertion and reason boht are incorrect.

Answer: A

2. In the Haber process $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ pressure is about 200 atm in pressure of catalyst and temperature is kept $500^{\circ} \mathrm{C}$ even though the reaction is exothermic.

Reason : Energy needed for this reaction is easily obtained at this temperature.
A. if both assertion and reason are correct and reason is correct explanation for assertion.
B. if both assertion and reason are correct but reason is not correct explanation for assertion.
C. if assertion is correct but reason is incorrect.
D. if assertion and reason boht are incorrect.

Answer: B

- View Text Solution

3. Assertion : concentration of the reactant and product does not change with time at equilibrium for a a chemical reaction.

Reason : The rate of a reaction is zero at equilibrium .
A. if both assertion and reason are correct and reason is correct explanation for assertion.
B. if both assertion and reason are correct but reason is not correct explanation for assertion.
C. if assertion is correct but reason is incorrect.
D. if assertion and reason boht are incorrect.

Answer: A

D View Text Solution

4. Assertion : The reaction $2 N O(g)+O_{2}(g) \Leftrightarrow 2 N O_{2}(g)$ is favoured in the forward direction with increase of pressure.

Reason : The reaction is exothermic.
A. if both assertion and reason are correct and reason is correct explanation for assertion.
B. if both assertion and reason are correct but reason is not correct explanation for assertion.
C. if assertion is correct but reason is incorrect.
D. if assertion and reason boht are incorrect.

Answer: B

D View Text Solution

5. Assertion : Haber's synthesis of NH_{3} is carried out in the presence of a catalyst.

Reason: the catalyst shifts the position of the equilibrium of the reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ to the product side.
A. if both assertion and reason are correct and reason is correct explanation for assertion.
B. if both assertion and reason are correct but reason is not correct explanation for assertion.
C. if assertion is correct but reason is incorrect.
D. if assertion and reason boht are incorrect.

Answer: C

- View Text Solution

6. Assertion: When $\mathrm{CaCO}_{3}(s)$ is heated the loss of $\mathrm{CO}_{2}(\mathrm{~g})$ from the system causes the reaction to go almost to completion to leava a residue of $\mathrm{CaO}(s)$

Reason : Heating causes gas particles to move with more energy.
A. if both assertion and reason are correct and reason is correct explanation for assertion.
B. if both assertion and reason are correct but reason is not correct explanation for assertion.
C. if assertion is correct but reason is incorrect.
D. if assertion and reason boht are incorrect.

Answer: B

- View Text Solution

7. Assertion : Acetic acid is a weak acid.

Reason : It has weak conjugate base.
A. if both assertion and reason are correct and reason is correct explanation for assertion.
B. if both assertion and reason are correct but reason is not correct explanation for assertion.
C. if assertion is correct but reason is incorrect.
D. if assertion and reason boht are incorrect.

Answer: C

- View Text Solution

8. Assertion (A): $p H$ of water increases with an increase in temperature.

Reason (R) : K_{w} or water increases with increase in temperature.
A. if both assertion and reason are correct and reason is correct explanation for assertion.
B. if both assertion and reason are correct but reason is not correct explanation for assertion.
C. if assertion is correct but reason is incorrect.
D. if assertion and reason boht are incorrect.

Answer: A

9. Assertion (A): $p H$ of $H C I$ solution is less than that of acetic acid of the some concentartion.

Reason (R) : In equimolar solution, the number of titrable protons present in $H C I$ is less than that present in acetic acid.
A. if both assertion and reason are correct and reason is correct explanation for assertion.
B. if both assertion and reason are correct but reason is not correct explanation for assertion.
C. if assertion is correct but reason is incorrect.
D. if assertion and reason boht are incorrect.

Answer: C

- Watch Video Solution

10. Assertion : For the reaction : $A(g)+B(g) \Leftrightarrow C(g)+D(g)$ at a given temperature , there will be no effect of the addition inert gas at constant pressure or at constant volume.

Reason : For the reaction $\Delta^{n}=0$. Therefore there is no effect of addition of inert gas either at constant volume or at constant pressure.
A. if both assertion and reason are correct and reason is correct explanation for assertion.
B. if both assertion and reason are correct but reason is not correct explanation for assertion.
C. if assertion is correct but reason is incorrect.
D. if assertion and reason boht are incorrect.

Answer: A

- Watch Video Solution

11. Assertion : For the physical equilibrium , Ice \Leftrightarrow wate

On increasing temperature and increasing pressure more of water will form.

Reason : Since the forward reaction is endothermic in nature and the volume of water is lesser than the volume of ice.
A. if both assertion and reason are correct and reason is correct explanation for assertion.
B. if both assertion and reason are correct but reason is not correct explanation for assertion.
C. if assertion is correct but reason is incorrect.
D. if assertion and reason boht are incorrect.

Answer: A

- Watch Video Solution

1. Statement $-1 \mathrm{HCO}_{3}^{-}$ion can act as a strong base.

Statement -2 CO_{3}^{2-} ion can act as a weak base.
A. Statements -1 is true , statement -2 is also true, statement -2 is the correct explanation of statement -1
B. Statement -1 is true , statement- 2 is also true, statement- 2 is not the correct explanation of statement-1
C. Statement -1 is true, statement -2 is false.
D. Statement -1 is false, satement-2 is true.

Answer: B

- Watch Video Solution

2. Statement-1 An aqueous solution of $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ can act as buffer.

Statement -2 An aqueous solution of pure salt can act as buffer.
A. Statements -1 is true, statement -2 is also true, statement -2 is the correct explanation of statement -2
B. Statement -1 is true, statement- 2 is also true, statement- 2 is not the correct explanation of statement-2
C. Statement -1 is true, statement -2 is false.
D. Statement -1 is false, satement-2 is true.

Answer: C

D Watch Video Solution

3. Statement -1 Soda water becomes flat if kept open.

Statement -2 the amount of dissolved carbon dioxide decrease with increase in pressure.
A. Statements -1 is true, statement -2 is also true, statement -2 is the correct explanation of statement -3
B. Statement -1 is true , statement- 2 is also true, statement- 2 is not the correct explanation of statement-3
C. Statement -1 is true, statement -2 is false.
D. Statement -1 is false, satement-2 is true.

Answer: A

- Watch Video Solution

4. Statement -1 Reaction between iron and steam is irreversible if carried in an open container.

Statement -2 An irreversible reaction cannot proceed in the reverse direction.
A. Statements -1 is true , statement -2 is also true, statement -2 is the correct explanation of statement -4
B. Statement -1 is true , statement-2 is also true, statement-2 is not the correct explanation of statement-4
C. Statement -1 is true, statement -2 is false.
D. Statement -1 is false, satement- 2 is true.

Answer: B

- Watch Video Solution

5. Assertion: Addition of silver ions to a mixture of aqueous sodium chloride and sodium bromide solution will first precipitate $A g B r$ rather than $A g C l$.

Reason : $K_{s p}$ of $A g C l<K_{s p}$ of $A g B r$.
A. Statements -1 is true, statement -2 is also true, statement -2 is the correct explanation of statement -5
B. Statement -1 is true, statement- 2 is also true, statement- 2 is not the correct explanation of statement-5
C. Statement -1 is true, statement -2 is false.
D. Statement -1 is false, satement- 2 is true.

- Watch Video Solution

6. Asseration : In the dissociation of $P C I_{5}$ at constant pressure and temperature addition of helium at equilibrium increases the dissociation of $P C I_{5}$.

Reason : Helium removes $C I_{2}$ from the field of action.
A. Statements -1 is true , statement -2 is also true, statement -2 is the correct explanation of statement -6
B. Statement -1 is true , statement-2 is also true, statement-2 is not the correct explanation of statement-6
C. Statement -1 is true, statement -2 is false.
D. Statement -1 is false, satement-2 is true.

Answer: C

Matrix - Match Type Questions

Column I
(A) $\mathrm{CH}_{3} \mathrm{COONa}$

1. (B) $\mathrm{NH}_{4} \mathrm{CI}$ (C) NaNO_{3}
(D) $\mathrm{CH}_{3} \mathrm{COONH}_{4}$

Column II
(i)Almost neutral $p H>7$ or <7
(ii)AcidicpH <7
(iii) Alkaline $p H>7$
(iv)Neutral $p H=7$
A. $(A) \rightarrow(i i i),(B) \rightarrow(i i),(C) \rightarrow(i v),(D) \rightarrow(i)$
B. $(A) \rightarrow(i i),(B) \rightarrow(i v),(C) \rightarrow(i),(D) \rightarrow(i i i)$
C. $(A) \rightarrow(i),(B) \rightarrow(i i i),(C) \rightarrow(i i),(D) \rightarrow(i v)$
D. $(A) \rightarrow(i v),(B) \rightarrow(i),(C) \rightarrow(i i i)(D) \rightarrow(i i)$

Answer: A

- Watch Video Solution

Column I Column II
(A) $\mathrm{Fe}(\mathrm{OH})_{3}$
(i) $K_{s p}=s^{2}$
2. B$) \mathrm{Ag}_{2} \mathrm{CrO}_{4}$
(ii) $K_{s p}=27 s^{4}$
(C) $\mathrm{CH}_{3} \mathrm{COOAg}$
(iii) $K_{s p}=108 s^{5}$
(D) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
$(i v) K_{s p}=4 s^{3}$
A. $(A) \rightarrow(I I I),(B) \rightarrow(i i),(C) \rightarrow(i i i),(D) \rightarrow(i)$
B. $(A) \rightarrow(i i),(B) \rightarrow(i v),(C) \rightarrow(i),(D) \rightarrow(i i i)$
C. $(A) \rightarrow(i),(B) \rightarrow(i i i),(C) \rightarrow(i i),(D) \rightarrow(i v)$
D. $(A) \rightarrow(i v),(B) \rightarrow(i),(C) \rightarrow(i i i),(D) \rightarrow(i i)$

Answer: B

Watch Video Solution

