びdoubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - S DINESH \& CO CHEMISTRY (HINGLISH)

PHYSICAL AND CHEMICAL EQUILIBRIA

Multiple Choice Questions

1. What is wrong equilibrium state ?
A. $\Delta G_{\text {equi. }}=0$
B. The reaction ceases at equilibrium.
C. Equilibrium constant is independent of initial concentrations of reactants.
D. Catalyst has no effect on equilibrium state.

- Watch Video Solution

2. In the dissociation of $P C l_{5}$ as

$$
P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)
$$

If the degree of dissociation is α at equilibrium pressure P, then the equilibrium constant for the reaction is
A. $K_{p}=\frac{\alpha^{2}}{1+\alpha^{2} P}$
B. $K_{p}=\frac{\alpha P^{2}}{1-\alpha^{2}}$
C. $K_{p}=\frac{\alpha^{2} P^{2}}{1-\alpha^{2}}$
D. $K_{p}=\frac{\alpha^{2} P}{1-\alpha^{2}}$

Answer: D

D Watch Video Solution

3. The equilibrium constant for the reaction $\mathrm{NH}_{4} \mathrm{NO}_{2}(s) \Leftrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, is given by
A. $\frac{\left[\mathrm{NH}_{4} \mathrm{NO}_{2}\right]}{\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}$
B. $\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}$
C. $\frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{NH}_{4} \mathrm{NO}_{2}\right]}$
D. $\frac{\left[\mathrm{N}_{2}\right]\left[2 \mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{NH}_{4} \mathrm{NO}_{2}\right]^{2}}$

Answer: B

- Watch Video Solution

4. In which of the following reactions, the equilibrium constant will have no units of concentration ?
A. $N O(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g)$
B. $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
C. $\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
D. In all of the above reactions.

Answer: D

- Watch Video Solution

5. The equilibrium constant for a reaction
$A+2 B \Leftrightarrow 2 C$ is 40 . The equilibrium constant for reaction $C \Leftrightarrow B+1 / 2 A$ is
A. $1 / 40$
B. $(1 / 40)^{1 / 2}$
C. $(1 / 40)^{2}$
D. 40

Answer: B

- Watch Video Solution

6. The equilibrium constant, K for the reaction :
$2 \mathrm{HI}(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$ at room temperature is 2.85 and that of at 698 K is 1.4×10^{-2}. This implies that the forward reaction is
A. Exothermic
B. Endothermic
C. Exergonic
D. Unpredictable

Answer: A

D Watch Video Solution

7. For the reaction
$2 A(g)+B(g) \Leftrightarrow 3 C(g)+4 D(g)$,brgt Two moles each of A and B were taken into a 1L flask. The following must always be true when the system attained equilibrium
A. $[A]=[B]$
B. $[A]<[B]$
C. $[B]=[C]$
D. $[A]+[B]<[C]+[D]$

Answer: B

- Watch Video Solution

8. For reaction $\mathrm{H}_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$

The value of K_{p} changes with
A. Catalyst
B. Temperature
C. Amounts of H_{2} and I_{2}
D. All of the above factors

Answer: B

9. The equilibrium constant for the reaction $\mathrm{CaSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \Leftrightarrow \mathrm{CaSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is equal to
A. $\frac{\left[\mathrm{CaSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{CaSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right]}$
B. $\frac{\left[\mathrm{CaSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CaSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right]}$
C. $\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}$
D. $\left[\mathrm{H}_{2} \mathrm{O}\right]$

Answer: C

- Watch Video Solution

10. Consider the equilibrium reactions,
$\mathrm{H}_{3} \mathrm{PO}_{4} \stackrel{K_{1}}{\Longleftrightarrow} \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \stackrel{K_{2}}{\Longleftrightarrow} \mathrm{H}^{+}+\mathrm{HPO}_{4}^{-2}$
$\mathrm{HPO}_{4}^{-2} \stackrel{K_{3}}{\Longleftrightarrow} \mathrm{H}^{+}+\mathrm{PO}_{4}^{-3}$

The equilibrium constant K for the following dissociation
$\mathrm{H}_{3} \mathrm{PO}_{4} \Leftrightarrow 3 \mathrm{H}^{+}+\mathrm{PO}_{4}^{-}$is
A. $K_{1} / K_{2} K_{3}$
B. $K_{1} K_{2} K_{3}$
C. $K_{2} / K_{1} K_{3}$
D. $K_{1}+K_{2}+K_{3}$

Answer: B

- Watch Video Solution

11. The equilibrium constant for a reaction $A+B \Leftrightarrow C+D$ is 1×10^{-2} at 298 K and is 2 at 273 K . The chemical process resulting in the formation of C and D is
A. exothermic
B. Endothermic
C. unpredictable
D. There is no relationship between K and ΔH.

Answer: B

- Watch Video Solution

12. The equilibrium constant in terms of pressure $\left(K_{p}\right)$ and concentration
(K_{c}) are related as (Δn is change in number of gas moles)
A. $K_{p}=K_{c} \times(R T)^{1-\Delta n}$
B. $K_{p}=\left(\frac{K_{c}}{R T}\right)^{\Delta n}$
C. $K_{p}=K_{c}(R T)^{\Delta n}$
D. $K_{p}=\frac{(R T)^{\Delta n}}{K_{c}}$

Answer: C

- Watch Video Solution

13. In which of the following reaction K_{p} and K_{c} are equal
A. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
B. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
C. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
D. $2 \mathrm{NO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$

Answer: C

- Watch Video Solution

14. For the reaction
$2 \mathrm{NH}_{3}(g) \Leftrightarrow N_{2}(g)+3 H_{2}(g)$ the units of K_{p} will be
A. atm
B. $(a t m)^{3}$
C. $(\mathrm{atm})^{-2}$
D. $(a t m)^{2}$

Answer: D

- Watch Video Solution

15. For a hypothetical reaction
$4 A+5 B \Leftrightarrow 4 P+6 Q$. The equilibrium constant K_{c} has units.
A. $m o l L^{-1}$
B. $\mathrm{mol}^{-1} L$
C. $\left(m o l L^{-1}\right)^{-2}$
D. unit less

Answer: A

D Watch Video Solution

16. For the equilibrium
$2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) \Leftrightarrow 2 \mathrm{NOCl}(g)$
K_{p} is related to K_{c} by the reaction
A. $K_{p}=K_{c}(R T)$
B. $K_{p}=K_{c}(R T)^{2}$
C. $K_{p}=K_{c} / R T$
D. $K_{p}=K_{c} /(R T)^{2}$

Answer: C

- Watch Video Solution

17. For a gaseous reaction
$x A+y B \Leftrightarrow l C+m D$
A. $K_{p}=K c$
B. $K_{p}=\left(K_{c}\right)^{l+m}$
C. $K_{p}=K_{c}(R T)^{(l+m)-(x+y)}$
D. $K_{p}=1 / K_{c}$.

Answer: C

- Watch Video Solution

18. "Whenever a stress is applied to a system at equilibrium, the equilibrium shifts in such a way so as to undo the effect of the stress imposed." This is the statement of
A. Rate law
B. Law of mass action
C. Le-Chatelier principle
D. Dilution law

Answer: C

19. Which among the following reactions is favoured in forward direction by increase of temperature?
A. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}+22.9 \mathrm{kcal}$
B. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)-42.8 \mathrm{kcal}$
C. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{3}(\mathrm{~g}) 45.3 \mathrm{kcal}$
D. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})-44.0 \mathrm{kcal} \Leftrightarrow 2 \mathrm{HCl}(\mathrm{g})$

Answer: B

- Watch Video Solution

20. For a hypothetical reaction of kind
$A B_{2}(g)+\frac{1}{2} B_{2}(g) \Leftrightarrow A B_{3}(g), \Delta H=-x k J$
More $A B_{3}$ could be produceed at equilibrium by
A. using a catalyst
B. removing some of B_{2}
C. increasing the temperature
D. increasing the pressure.

Answer: D

- Watch Video Solution

21. Le-Chatelier principle is not, applicable to
A. $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
B. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
C. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
D. $F e(s)+S(s) \Leftrightarrow F e S(s)$

Answer: D

- Watch Video Solution

22. The solubility of CO_{2} in water increases with
A. increase in temperature
B. reduction of gas pressure
C. increase in gas pressure
D. increase in volume.

Answer: C

- Watch Video Solution

23. Inert gas has been added to the following equilibrium system at constant volume
$\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{3}(\mathrm{~g})$
To which direction will the equilibrium shift?
A. Forward
B. Backward
C. No effect
D. Unpredictable

Answer: C

- Watch Video Solution

Multiple Choice Questions Based On Numerical Problems

1. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$ to NO_{2} is carried out at $280^{\circ} \mathrm{C}$ in chloroform. When equilibrium is reached, 0.2 mol of $\mathrm{N}_{2} \mathrm{O}_{4}$ and 2×10^{-3} mol of NO_{2} are present in a 2 L solution. The equilibrium constant for the reaction
$N_{2} O_{4} \Leftrightarrow 2 N O_{2}$ is
A. 1×10^{-2}
B. 2×10^{-3}
C. 1×10^{-5}
D. 2×10^{-5}

Answer: c

- Watch Video Solution

2. The value of the equilibrium constant for the reaction, $2 \mathrm{NO}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}_{2}$ is 0.25 , then the value of equilibrium constant for
$2 \mathrm{NO}_{2} \Leftrightarrow 2 \mathrm{NO}+\mathrm{O}_{2}$ is
A. 1.25
B. 0.25
C. 4.0
D. 0.4

Answer: C

- Watch Video Solution

3. For the reaction $N_{2} O_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$ the degree of dissociation at equilibrium is 0.2 at 1 atmospheric pressure. The equilibrium constant K_{p} will be
A. $1 / 2$
B. $1 / 4$
C. $1 / 6$
D. $1 / 8$

Answer: C

- Watch Video Solution

4.4 mol of carbon dioxide was heated in $1 d m^{3}$ vessel under conditions which produced at equilibrium 25% dissociation into carbon monoxide and oxygen. The number of moles of carbon monoxide produced
A. 0.5
B. 1
C. 2
D. 4

Answer: B

- Watch Video Solution

5.1 mol of N_{2} is mixed with 3 mol of H_{2} in a litre container. If 50% of N_{2} is converted into ammonia by the reaction $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$, then the total number of moles of gas at the equilibrium are
A. 1.5
B. 4.5
C. 3.0
D. 6.0

Answer: C

6. For reaction : $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ at certain temperature, the value of equilibrium constant is 50 . If the volume of the vessel is reduced to half of its original volume, the value of new equilibrium constant will be
A. 25
B. 50
C. 100
D. Unpredictable

Answer: B

- Watch Video Solution

7. When ethanol and acetic acid are mixed together in equimolar proportions, equilibrium is attained when $2 / 3 r d$ of acid and alcohol are consumed. The equilibrium constant for the reaction is
A. 0.4
B. 40
C. 4×10^{2}
D. $4 \times 10^{\circ}$

Answer: D

- Watch Video Solution

8. For the reaction $I_{2}(g) \Leftrightarrow 2 I(g), K_{c} 37.6 \times 10^{-6}$ at 1000 K . If 1.0 mole of I_{2} is introduced into a 1.0 litre flask at 1000 K , at equilibrium
A. $\left[I_{2}\right] \gg[I]$
B. $\left[I_{2}\right]=[I]$
C. $\left[I_{2}\right]<[I]$
D. Unpredictable
9. The system $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$ attains equilibrium. If the equilibrium concentration of $\mathrm{PCl}_{3}(g)$ is doubled, the concentration of $C l_{2}(g)$ would become
A. $1 / 4$ of its original value
B. $1 / 2$ of its original value
C. twice its original value
D. Unpredictable

Answer: D

- Watch Video Solution

10. $X Y_{2}$ dissociates $X Y_{2}(g) \Leftrightarrow X Y(g)+Y(g)$. When the initial pressure of $X Y_{2}$ is 600 mm Hg , the total equilibrium pressure is 800 mm Hg .

Calculate K for the reaction assuming that the volume of the system remains unchanged.
A. 50
B. 100
C. 166.6
D. 400

Answer: B

- Watch Video Solution

11. Consider the reaction
$A(g)+B(g) \Leftrightarrow C(g)+D(g)$
Which occurs in one step. The specific rate constant are 0.25 and 5000 for the forward and reverse reaction, respectively. The equilibrium constant is
A. 2.0×10^{-4}
B. 4.0×10^{2}
C. 5.0×10^{-5}
D. 2.5×10^{-6}

Answer: C

- Watch Video Solution

12. For the equilibrium system $2 H X(g) \Leftrightarrow H_{2}(g)+X_{2}(g)$ the equilibrium constant is 1.0×10^{-5}. What is the equilibrium concentration of HX if the equilibrium concentrations of H_{2} and X_{2} are $1.2 \times 10^{-3} M$ and $1.2 \times 10^{-4} M$ respectively ?
A. $12 \times 10^{-4} M$
B. $12 \times 10^{-3} \mathrm{M}$
C. $12 \times 10^{-2} \mathrm{M}$
D. $12 \times 10^{-6} \mathrm{M}$

Answer: C

13. For the reactions
$A \Leftrightarrow B, K_{c}=1$
$B \Leftrightarrow C, K_{c}=2$
$C \Leftrightarrow D, K_{c}=3$
K_{c} for the reaction $A \Leftrightarrow D$ is
A. 5
B. 6
C. 15
D. 1

Answer: B

- Watch Video Solution

14. The rate constans of forward and backward reactions are 8.5×10^{-5} and 2.38×10^{-4} respectively. The equilibrium constant if
A. 0.35
B. 0.42
C. 12.92
D. 0.292

Answer: A

- Watch Video Solution

15. The vapour density of $\mathrm{N}_{2} \mathrm{O}_{4}$ at a certain temperature is 30 . Calculate the percentage dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ this temperature.
A. 53.3%
B. 106.6%
C. 26.7%
D. None

Answer: A

- Watch Video Solution

16. The vapour density of $P C l_{5}$ is 104.16 but when heated to $230^{\circ} \mathrm{C}$, its vapour density is reduced to 62 . The degree of dissociation of $P C l_{5}$ at $230^{\circ} C$ is \qquad
A. 6.8%
B. 68%
C. 46%
D. 64%

Answer: B

- Watch Video Solution

17. The rate of the elementary reaction
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ at $25^{\circ} \mathrm{C}$ is given by :
Rate $=1.7 \times 10^{-18}\left[H_{2}\right]\left[I_{2}\right]$
The rate of decomposition of gaseous HI to $\mathrm{H}_{2}(g)$ and $I_{2}(g)$ at $25^{\circ} \mathrm{C}$ is
Rate $=2.4 \times 10^{-21}[H I]^{2}$
Equilibrium constant for the formation of one mole of gaseous HI from the $H_{2}(g)$ and $I_{2}(g)$ is :
A. 708
B. 354
C. 0.0014
D. 26.6

Answer: D

Watch Video Solution

18. In the following equilibria
$I: A+2 B \Leftrightarrow C, K_{e q}=K_{1}$
$I I: C+D \Leftrightarrow 3 A, K_{e q}=K_{2}$
$I I I, 6 B+D \Leftrightarrow 2 C, K_{e q}=K_{3}$
Hence,
A. $3 K_{1}+K_{2}=K_{3}$
B. $K_{1}^{3} \cdot K_{2}^{2}=K_{3}$
C. $3 K_{1}+K_{2}^{2}=K_{3}$
D. $K_{1}^{3} \cdot K_{2}=K_{3}$

Answer: D

- Watch Video Solution

19. Consider following reactions is equilibrium with equilibrium concentration 0.01 M of every species :
$I: P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$
$I I: H_{2}+I_{2} \Leftrightarrow 2 H I$
III: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$
Extent of the reactions taking place is :
A. $I=I I=I I I$
B. $I l<I I<I I I$
C. $I I I<I I<I$
D. $I I<I<I I I$

Answer: B

- Watch Video Solution

20. The equlibrium constant K_{c} for the reaction of H_{2} with I_{2} is 57.0 at 700K
$H_{2}(g)+I_{2}(g) \underset{k_{b}}{\stackrel{k_{f}}{\Longleftrightarrow}} 2 H I, K_{c}=57$ at 700K Select correct statement:
A. rate constant k_{f} for the formation of HI is smaller than that of rate constant $k_{b} \mathrm{f}$ for the dissociation of HI
B. $k_{f}>k_{b}$
C. addition of catalyst increases value of K_{c}
D. addition of catalyst decreases value of K_{c}.

Answer: B

- Watch Video Solution

21. Naphthalene, a white solid used to make mothballs, has a vapour pressure of 0.10 mm Hg at $27^{\circ} C$. Hence K_{p} and K_{c} for the equilibruim are : $\mathrm{C}_{10} \mathrm{Hg}(\mathrm{s}) \Leftrightarrow \mathrm{C}_{10} \mathrm{Hg}(g)$
A. $0.10,1.10$
B. $0.10,4.1 \times 10^{-3}$
C. $1.32 \times 10^{-4} \times 10^{-3}$
D. $5.34 \times 10^{-6}, 1.32 \times 10^{-4}$

Answer: C

- Watch Video Solution

22. For the following equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
K_{p} is found to be equal to K_{c}. This is attained when :
A. $T=1 K$
B. $T=12.18 K$
C. $T=27.3 K$
D. $T=273 K$

Answer: B

- Watch Video Solution

23. For the following gaseous equilibria X, Y and Z at 300 K
$X: 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{SO}_{3}(g)$
$Y: P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
$Z: 2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$
ratio of K_{p} and K_{c} in the increasing order is :
A. $X=Y=Z$
B. $X<Y<Z$
C. $X<Z<Y$
D. $Z<Y<X$

Answer: C

- Watch Video Solution

24. For the following equilibrium
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
K_{p} is formed to be equal to K_{x}. This is attained at
A. 1 atm
B. 0.5 atm
C. 2 atm
D. 4 atm

D Watch Video Solution

25. For the reactions:
$I: \mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g), P_{\mathrm{CO}_{2}}=2 \mathrm{~atm}$
$I I: C O_{2}(g)+C(s) \Leftrightarrow 2 C O_{g}, K=6 \mathrm{~atm}$
Hence, equilibrium constnat, K_{p} (in the same units) for the reaction
$\mathrm{CaCO}_{3}(s)+C(s) \Leftrightarrow \mathrm{CaO}(s)+2 \mathrm{CO}(g)$ is
A. 8
B. 4
C. 12
D. 3

Answer: C

26. For the equilibrium :
$I: C_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{K}_{1}=6.30 \times 10^{-5}$
II: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{OH}^{-} \Leftrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}, \mathrm{K}_{2}=6.30 \times 10^{9}$
III: $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}, \mathrm{K}_{3}=$?
K_{3} using above equilibria is :
A. $(6.30)^{2} \times 10^{4}$
B. 1.0×10^{-14}
C. 1×10^{14}
D. $(6.30)^{-2} \times 10^{-4}$

Answer: B

- Watch Video Solution

27. If β_{1}, β_{2} and β_{3} are stepwise formation constants of MCl , $M C l_{2}, M C l_{3}$ and K is the overall formation constant of $M C l_{3}$, then (charges omitted) :
A. $K=\beta a_{1}+\beta_{2}+\beta_{3}$
B. $\frac{1}{K}=\frac{1}{\beta a_{1}}+\frac{1}{\beta_{2}}+\frac{1}{\beta_{3}}$
C. $\log K=\log \beta_{1}+\log \beta_{2}+\log \beta_{3}$
D. $p_{K}=\log \beta_{1}+\log \beta_{2}+\log \beta_{3}$

Answer: C

- Watch Video Solution

28. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$. This is gaseous phase reaction taking place in 1 L flask at $127^{\circ} \mathrm{C}$. Starting with 1 mole N_{2} and 3 moles H_{2}, equilibrium required 500 mL of 1 M HCl . Hence K_{c} is approximately
A. 0.06
B. 0.08
C. 0.03
D. 2.05

Answer: C

- Watch Video Solution

29. For the reaction $A+B \Leftrightarrow C+D$ taking place in a 1 L vessel, equilibrium concentration of $[C]=[D]=0.5 M$ if we start with 1 mole each A and B. Percentage of A converted into C if we start with 2 moles of A and 1 mole of B, is
A. 25%
B. 40%
C. 66.66%
D. 33.33%

Answer: D

30. Equilibrium constant, K changes with temperature. At 300 K , equilibrium constant is 25 and at 400 K it is 10 . Hence, backward reaction will have energy of activation
A. equal to that of forward reaction
B. less than that of forward reaction
C. greater than that of forward reaction
D. given values are not sufficient to explain given statement.

Answer: C

- Watch Video Solution

31. For the reaction
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$ the equilibrium constant $K_{p}=2.92 \times 10^{-5} \mathrm{~atm}^{3}$. The total pressure of the gaseous products when 1 mole of reactant is heated, will be
A. 0.0194 atm
B. 0.0388 atm
C. 0.0582 atm
D. 0.0667 atm

Answer: C

- Watch Video Solution

32. $I_{2}+I^{\ominus} \Leftrightarrow I_{3}^{\ominus}$

This reaction is set-up in aqueous medium. We start with 1 mol of I_{2} and 0.5 mol of I^{\ominus} in $1 L$ flask. After equilibrium reached, excess of AgNO_{3} gave 0.25 mol of yellow precipitate. Equilibrium constant is
A. 1.33
B. 2.66
C. 2
D. 3

- Watch Video Solution

33. Volume of the flask in which species are transferred is double of the earlier flask. In which of the following cases, equilibrium will be shifted in the forward direction ?
A. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
B. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
C. $P C l_{5}(g) \Leftrightarrow P C l(g)+C l_{2}(g)$
D. $2 N O(g) \Leftrightarrow N_{2}(g)+O_{2}(g)$

Answer: C

- Watch Video Solution

34. One mole each of A and B and 3 moles each of C and D are placed in 11L flask, if equilibrium constant is 2.25 for $A+B \Leftrightarrow C+D$ equilibrium concentration of A and C will be in the ratio :
A. 2:3
B. 3:2
C. 1:2
D. 2:1

Answer: A

- Watch Video Solution

35. $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$. Starting with 2 moles SO_{2} and 1 mole O_{2} in 1 L flask, mixture required 0.4 mole MnO_{4}^{-}in acidic medium. Hence, $K_{9} c$) is
A. 2
B. 0.4
C. 1.6
D. 2.6

Answer: A

D Watch Video Solution

36. For the reaction $P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$ in gaseous phase, $K_{c}=4$. In a 2L flask, there are 2 moles each of $P C l_{3}$ and $C l_{2}$ and 0.5 mole of $P C l_{5}$. Equilibrium concentration of $P l_{5}$ is
A. $0.25 \mathrm{~mol} L^{-1}$
B. $0.125 \mathrm{~mol} L^{-1}$
C. $0.75 \mathrm{~mol} L^{-}$
D. $1.00 \mathrm{~mol} L^{-1}$

Answer: A

37. For $N_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}, 1$ mole N_{2} and $3 \mathrm{~mol} \mathrm{H}_{2}$ are at 4 atm. Equilibrium pressure is found to be 3 atm . Hence, K_{p} is
A. $\frac{1}{(0.5)(0.15)^{3}}$
B. $\frac{1}{(0.5)(0.15)^{3}}$
C. $\frac{3 \times 3}{(0.5)(0.15)^{3}}$
D. None of these

Answer: B

- Watch Video Solution

38. Solubility (S) of a solution in a solvent (say H_{2}) is dependent on temperature as given by $S=A e^{-\Delta / R T}$ where ΔH is enthalpy of solution, Solute $+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow$ solution, $\Delta H= \pm x$

For a given solution, variation of $\log \mathrm{S}$ with temperature is shown
graphically. Hence, solute is

A. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
B. NaCl
C. Sucrose
D. CaO

Answer: D
39. $\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ in saturated aqeous solution has equilibrium constant equal to :
A. $\left[\mathrm{Hg}^{+}\right]^{2}\left[\mathrm{Cl}^{-}\right]^{2}$
B. $\left[\mathrm{Hg}_{2}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}$
c. $\left[\mathrm{Hg}^{+}\right]^{2}\left[\mathrm{Cl}_{2}^{-}\right]$
D. $\left[2 \mathrm{Hg}^{+}\right]\left[2 \mathrm{Cl}^{-}\right]$

Answer: B

- Watch Video Solution

40. The binding of oxygen by haemoglobin (Hb) giving oxy-haemoglobin $\left(\mathrm{HbO}_{2}\right)$, is partially regulated by the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$and dissolved CO_{2} in blood
$\mathrm{HbO}_{2}+\mathrm{H}_{2} \mathrm{O}^{+}+\mathrm{CO}_{2} \Leftrightarrow \mathrm{H}^{+} \mathrm{Hb}-\mathrm{CO}_{2}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$ If there is production of lactive acid and CO_{2} in a muscle during exertion, then :
A. more O_{2} is released
B. more HbO_{2} is formed
C. Both (A) and (B)
D. None of these

Answer: A

- Watch Video Solution

41. For the reversible reaction equilibrium is $N_{2}(g)+O_{2}(g) \underset{k_{2}}{\stackrel{k_{1}}{\Longleftrightarrow}} 2 N O(g) C_{0}=C e^{-2.1 \times 10^{3}}$ for the forward and $C_{0}^{\prime}=C^{\prime} e^{-4.2 \times 10^{-4 t}}$ for the backward reaction, hence, K_{c} for the above equilibrium is (both forward and backward reactions are first order reactions)
A. 5
B. 2
C. 0.5

D. 2

Answer: A

- Watch Video Solution

42. For the equilibrium in a closed vessel

$$
P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)
$$

K_{p} is found to be double of K_{e}. This is attained when :
A. $T=2 K$
B. $T=12.18 K$
C. $T=24.36 K$
D. $T=27.3 K$

Answer: C

- Watch Video Solution

43. For the equilibrium $2 \mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g)$, equilibrium constant is K_{1}

For the equilibrium $2 \mathrm{CO}_{2} \Leftrightarrow 2 \mathrm{CO}(g)+\mathrm{O}_{2}(\mathrm{~g})$, equilibrium constant is K_{2}

The equilibrium constant for :

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \text { is : }
$$

A. $K_{1} K_{2}$
B. $\frac{K_{1}}{K_{2}}$
C. $\sqrt{\frac{K_{1}}{K_{2}}}$
D. $\sqrt{\frac{K_{2}}{K_{1}}}$

Answer: D

- Watch Video Solution

44. For the following equilibrium reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}), \mathrm{NO}_{2}$ is 50% of the total volume at a given temperature. Hence, vapour density of
the equilibrium mixture is :
A. 34.5
B. 25
C. 23
D. 20

Answer: A

- Watch Video Solution

45. There is 50% dimer formation of benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)_{2}$ in benzene solution. $2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \Leftrightarrow\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)_{2}$. Hence abnormal molecular weight of benzoic acid (theorectical value $=122 \mathrm{gmol}^{-1}$) is
A. $61 \mathrm{~g} \mathrm{~mol}^{-1}$
B. $244 \mathrm{~g} \mathrm{~mol}^{-1}$
C. $163 \mathrm{~g} \mathrm{~mol}^{-1}$
D. $81 \mathrm{~g} \mathrm{~mol}^{-1}$

Answer: C

- Watch Video Solution

46. In the dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ into NO_{2}. $(1+x)$ values with the vapour densities ratio $\left(\frac{D}{d}\right)$ is given by :
A.
(A)

B.
${ }^{(\mathrm{B})^{(1+\times)} \underbrace{\text { (}}_{\frac{1}{d} \longrightarrow} \text { (}}$
(C)

C.
D.
(D) $\underbrace{}_{\frac{(1+x)}{\underbrace{}_{d}} \underbrace{-}}$

Answer: A

D Watch Video Solution

47. For the dissociation of $P C l_{5}$ into $P C l_{3}$ and $C l_{2}$ in gaseous phase reaction, if d is the observed vapour density and D the theoretical vapour density with ' α ' as degree of dissociation ,variaton of D / d with ' α ' is given by ?
(A)

B.
(B)

(C)

(D)

D.

Answer: B

- Watch Video Solution

48. For a very small extent of dissociation of $P C l_{5}$ into $P C l_{3}$ and $C l_{2}$ is a gaseous phase reaction then degree of dissociation, x :
A. $x \propto P$
B. $x \propto \frac{1}{P}$
C. $x \propto \sqrt{P}$
D. $x \propto \sqrt{\frac{1}{P}}$

Answer: D

- Watch Video Solution

49. Before equilibrium is set-up for the chemical reaction, $\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$, vapour density of the gaseous mixture was measured. If D is the theoretical value of vapour density, variation of x with D / d is by the graph.

A. 0
B. 0.5
C. 1
D. 1.5

Answer: C

- Watch Video Solution

50.1 mole each of $\mathrm{CO}(\mathrm{g}), \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ are placed in one placed in one litre flask at $25^{\circ} \mathrm{C}$. When following equilibrium is set -up $\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$ $K_{p}=0$. Hence CO_{2} present at equilibrium is :
A. 0.5 mol
B. 1.5 mol
C. 0.25 mol
D. 3.0 mol

- Watch Video Solution

51. $60 \mathrm{~g} \mathrm{CH}_{3} \mathrm{COOH}$ and $46 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ react in 5 L flask to form 44 g $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ at equilibrium. On taking 120 g CH 33 COOH and 46 g $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ formed at equilibrium is :
A. 44 g
B. 20.33 g
C. 22 g
D. 58.66 g

Answer: D

52. One mole of $N_{20 O_{4}(g)}$ at 300 K is kept in a closed container under one atmosphere. It is heated to 600 K when 20% of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is converted to $\mathrm{NO}_{2}(\mathrm{~g})$
$N_{2} O_{4} \Leftrightarrow 2 \mathrm{NO}_{2}(g)$ Hence resultant pressure is :
A. 1.2 atm
B. 2.4 atm
C. 2.0 atm
D. 1.0 atm

Answer: A

- Watch Video Solution

53. For the equilibrium $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$ we start with 2 moles of $S O_{2}$ and 1 mole of O_{2} at 3 atm . When equilibrium is attained, pressure changes to 2.5 atm . Hence, K_{p} is :
A. $3 \mathrm{~atm}^{-1}$
B. $2.5 \mathrm{~atm}^{-1}$
C. $2 a \mathrm{tm}^{-1}$
D. $0.5 \mathrm{~atm}^{-1}$

Answer: C

- Watch Video Solution

54. Sulphide ion $\left(S^{2-}\right)$ reacts with solid sulphur forming S_{2}^{2-} and S_{3}^{2-} with formation constants 12 and 132 respectively. Formation constant of S_{3}^{2-} from sulphur and S_{2}^{2-} is :
A. 12
B. 132
C. $132 x 12$
D. 11

Answer: D

- Watch Video Solution

55. The equilibrium constant for the reaction $\mathrm{H}_{3} \mathrm{BO}_{3}+$ glycerin $\Leftrightarrow\left(H_{3} B O_{3}\right.$ glycerine $)$ is 0.90 . Glycerine present per litre of 0.1 M $\mathrm{H}_{3} \mathrm{BO}_{3}$ to convert 60% of $\mathrm{H}_{3} \mathrm{BO}_{3}$ into $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right.$ glycerine $)$ is :
A. 0.167 M
B. $1.73 M$
C. 0.0167 M
D. 10.67 M

Answer: B

56. 1 mole of $P C l_{5}$ taken at 5 atm , dissociates into PCl_{3} and $C l_{2}$ to the extent of 50%
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$ Thus K_{p} is :
A. 2.5
B. 1.67
C. 0.5
D. 2

Answer: A

- Watch Video Solution

57. For the following equilibrium $N_{2} O_{4} \Leftrightarrow 2 N O_{2} K_{c}=0.67$. If we start with 3 moles of NO_{2} and 1 mole of $\mathrm{N}_{2} \mathrm{O}$ in 1 L flask, then NO_{2} present at equilibrium is :
A. 1.5 mol
B. 2.0 mol
C. 0.5 mol
D. 1.0 mol

Answer: B

- View Text Solution

58. $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$

For the equilibrium, it is found that
$\log K_{p}=8-\frac{6400(K)}{T}$
$T=527^{\circ} C$ if :
A. $K_{p}=7.2 \times 10^{-5}$
B. $K_{p}=1$
C. $K_{p}=13.04 \times 10^{3}$
D. $K_{p}=10$.

- Watch Video Solution

59. For the following equilibrium :
$\mathrm{NH}_{2} \mathrm{CO}_{2} \mathrm{NH}_{4}(s) \Leftrightarrow 2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(s)$
K_{p} is found to be 0.5 at 4400 K . Hence, partial pressure of NH_{3} and CO_{2} are respectively :
A. 2.0,1.0 atm
B. 1.0,2.0 atm
C. 1.0,0.5 atm
D. $0.5,1.0 \mathrm{~atm}$

Answer: C

60. In each of the following, total pressure set - up at equilibrium is assumed to be equal and is P atm with equilibrium constants K_{p} given :
$I: \mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g), K_{1}$
$I I: \mathrm{NH}_{4} H S(s) \Leftrightarrow \mathrm{NH}_{3}(g)+\mathrm{H}_{2} S(g), K_{2}$
III: $\mathrm{NH}_{2} \mathrm{CO}_{2} \mathrm{NH}_{4}(\mathrm{~s}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{K}_{3}$
In the increasing order :
A. $K_{1}=K_{2}=K_{3}$
B. $K_{1}<K_{2}<K_{3}$
C. $K_{3}<K_{2}<K_{1}$
D. None

Answer: C

- Watch Video Solution

$K_{p}=2.25 \times 10^{-4} \mathrm{~atm}^{2}$ and vapour pressure of water is 22.8 torr at 298 K. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(s)$ is efflorescent (i.e., losses water) when relative humidity is :
A. less than 33.3%
B. above 33.3\%
C. less than 66.6%
D. above 66.6\%

Answer: A

- Watch Video Solution

62. At what relative humidity with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ be deliquescent (absorb moisture) when exposed to the air at $0^{\circ} \mathrm{C}$? Given $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}(s) \Leftrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(s)+10 \mathrm{H}_{2} \mathrm{O}(g), K_{p}=4.08 \times 10^{-25}$ and vapour pressure of water at $0^{\circ} \mathrm{C}=4.58$ Torr ?
A. below 60.5%
B. above 60.5%
C. above 39.5\%
D. below 39.5%

Answer: B

- Watch Video Solution

Revision Question From Competitive Exams

1. $H I$ was heated in a sealed tube at $400^{\circ} C$ till the equilibrium was reached. HI was found to be 22% decomposed. The equilibrium constant for dissociation is
A. 0.282
B. 0.0796
C. 0.0199
D. 1.99

Answer: C

D Watch Video Solution

2. For reaction,
$P C l_{3}(g)+C l_{2}(g) \Leftrightarrow P C l_{5}(g)$
the value of K_{c} at $250^{\circ} C$ is 26 . The value of K_{p} at this temperature will be .
A. 0.6055
B. 0.57
C. 0.83
D. 0.46

Answer: A

3. The state of equilibrium refers to
A. State of rest
B. Dynamic state
C. Stationary state
D. State of inertness.

Answer: B

- Watch Video Solution

4.4 moles of A are mixed with 4 moles of B, when 2 moles of C are formed at equilibrium according to the reaction $A+B \Leftrightarrow C+D$.

The value of equilibrium constant is
A. 4
B. 1
C. $1 / 2$
D. $1 / 4$

Answer: B

- Watch Video Solution

5. Consider the reaction
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
in closed container at equilibrium. What would be the effect of addition of CaCO_{3} on the equilibrium concentration of CO_{2} ?
A. Increase
B. Decreases
C. Data is not sufficient to predict it
D. Remains unaffected

Answer: D

6. At 1000 K , the value of K_{p} for the reaction: $A(g)+2 B(g) \Leftrightarrow 3 C(g)+D(g)$ is 0.05 atmosphere. The value of K_{c} in terms of R would be:
A. 20000 R
B. 0.02 R
C. $5 \times 10^{-5} R$
D. $\left(5 \times x 10^{\wedge}(-5)\right) /(R)^{\prime}$

Answer: D

- Watch Video Solution

7. For a reaction, $H_{2}+I_{2} \Leftrightarrow 2 H I$ at 721 K , the value of equilibrium constant is 50 . If 0.5 moles each of H_{2} and I_{2} is added to the system the value of equilibrium constant will be :
A. 0.02
B. 0.2
C. 50
D. 25

Answer: C

- Watch Video Solution

8. In which of the following cases, the reaction goes farthest to completion?
A. $K=10^{3}$
B. $K=10^{-2}$
C. $K=10$
D. $K=10^{0}$

Answer: A

9. In an exothermic reaction, a 10° rise in temperature will
A. decrease the value of equilibrium constant
B. double the value of K_{c}
C. not produce any change in K_{c}
D. produce some increase in K_{c}

Answer: A

- Watch Video Solution

10. The equilibrium constant for a reacton
$N_{2}(g)+O_{2}(g)=2 N O(g)$ is 4×10^{-4} at 2000 K . In the presence of catalyst, the equilibrium constant is attained 10 times faster. The equilibrium constant in the presence of catalyst, at 2000 K is
A. 40×10^{-4}
B. 4×10^{-4}
C. 4×10^{-2}
D. Difficult to compute without more data

Answer: B

- Watch Video Solution

11. The factor which changes equilibrium constant of the reaction $A_{2}(g)+B_{2}(g) \rightarrow 2 A B(g)$ is
A. Total pressure
B. Amounts of A_{2} and B_{2}
C. Temperature
D. Catalyst.

Answer: C

12. In which of the following reaction, the yield of the products does not increase by increase in the pressure?
A. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
B. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
C. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D. $P C l_{3}(g)+C l_{2}(g) \Leftrightarrow P C l_{5}(g)$.

Answer: A

- Watch Video Solution

13. For which of the following reaction $K_{p}=K_{c}$?
A. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
B. $2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
C. $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
D. $H_{2}(g)+\mathrm{Cl}_{2}(g) \Leftrightarrow \mathrm{HCl}(g)$.

Answer: D

(Watch Video Solution

14. In which of the following system, doubling the volume of the container causes a shift to the right
A. $2 \mathrm{CO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}_{2}(g)$
B. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
C. $P C l_{5}(g) \Leftrightarrow \mathrm{PCl}_{3}(g)+C l_{2}(g)$
D. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HCl}(\mathrm{g})$

Answer: C

- Watch Video Solution

15. At certain temperature 50% of HI is dissociated into H_{2} and I_{2} the equilibrium constant is
A. 1
B. 3
C. 0.5
D. 0.25

Answer: D

- Watch Video Solution

16. 1.1 mole of A mixed with 2.2 mole of B and the mixture is kept in a 1 litre at the equilibrium 0.2 mole of C is formed, then the value of K_{c} will be:
A. 0.002
B. 0.004
C. 0.001
D. 0.003

Answer: C

- Watch Video Solution

17. In which of the following reaction $K_{p}>K_{c}$
A. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
B. $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
C. $P C l_{3}(g)+C l_{2} \Leftrightarrow P C l_{5}(g)$
D. $2 \mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$.

Answer: D

- Watch Video Solution

18. If the equilibrium constant of the reaction $2 \mathrm{HI} \Leftrightarrow H_{2}+I_{2}$ is 0.25 , then the equilibrium constant of the reaction $H_{2}+I_{2} \Leftrightarrow 2 H I$ would be
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

19. The law of mass action was proposed by
A. Bodenstein
B. Berthelot
C. Graham
D. Bulberg and Waage.

Answer: D

- Watch Video Solution

20. The reaction $2 \mathrm{SO}_{2}+2 \mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$ will be favoured by
A. high temperature and low pressure
B. low temperature and high pressure
C. low temperature and low pressure
D. high temperature and high pressure

Answer: B

- Watch Video Solution

21. The standard state Gibbs's energy change for the isomerisation
$-3.67 \mathrm{kJmol}^{-1}$ at 400 K . If more trans $-2-$ pentence is added to the reaction vessel, then:
A. More cis - 2 - pentene is formed
B. Equilibrium shifts in the forward direction
C. Equilibrium remains unaltered
D. More trans - $2-$ pentene is produced

Answer: A

- Watch Video Solution

22. The equilibrium constant $\left(K_{p}\right)$ for the reaction, $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$ is 16 . If the volume of the container is reduced to half of its original volume, the value of K_{p} for the reaction at the same temperature will be:
A. 32
B. 64
C. 16
D. 4

Answer: C

- Watch Video Solution

23. In a reaction $A+2 B \Leftrightarrow 2 C, 2.0$ moles of ' A ' 3 moles of ' B ' and 2.0 moles of ' C ' are placed in a 2.0 L flask and the equilibrium concentration of ' C ' is $0.5 \mathrm{~mol} / \mathrm{L}$. The equilibrium constant (K) for the reaction is
A. 0.073
B. 0.147
C. 0.05
D. 0.026

Answer: C

24. In a reversible reaction, two substances are in equilibrium. If the concentration of each one is reduced to half, the equilibrium constant will be
A. reduced to half of its original value
B. doubled
C. same
D. reduced to one fourth its original value.

Answer: C

- Watch Video Solution

25. The concentration of reactants is increased by x, then equilibrium constant K becomes
A. $\ln K / x$
B. K / x
C. $K+x$
D. K.

Answer: D

- Watch Video Solution

26. In which case K_{p} is less than K_{c} ?
A. $P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$
B. $\mathrm{H}_{2}+\mathrm{Cl}_{2} \Leftrightarrow 2 \mathrm{HCl}$
C. $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$
D. All of above

Answer: C

27. The reaction
$3 \mathrm{Fe}(s)+4 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(s)+4 \mathrm{H}_{2}(g)$ is reversible if it is carried out
A. at constant pressure
B. at constant temperature
C. in an open vessel
D. in a closed vessel.

Answer: D

- Watch Video Solution

28. In a reaction $A+B \Leftrightarrow C+D$, the initial concentrations of A and B were $0.9 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ each. At equilibrim the concentration of D was found to be $0.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$. What is the value of equilibruim constant for the reaction?
A. 8
B. 4
C. 9
D. 3

Answer: B

- Watch Video Solution

29. At a given temperature, the equilibrium constant for the reactions
$\mathrm{NO}(g)+1 / 2 \mathrm{O}_{2}(g) \Leftrightarrow \mathrm{NO}_{2}(g)$ and $2 \mathrm{NO}_{2}(g) \Leftrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$ are K_{1} and K_{2} respectivel. If K_{1} is 4×10^{-3} then K_{2} will be
A. 8×10^{-3}
B. 16×10^{-3}
C. 6.25×10^{4}
D. 6.25×10^{6}

Answer: C

30. The yield of NH_{3} in the reaction
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}, \Delta H=-22.08 \mathrm{kcal}$ is affected by
A. change in pressure and temperature
B. change in temperature and concentration of N_{2}
C. change in pressure and concentration of N_{2}
D. change in pressure, temperature and concentration of N_{2}

Answer: D

- Watch Video Solution

31. For the reaction $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$ the forward reaction at constant temeprature is favoured by
A. introduction of an inert gas at constant volume
B. introduction of $\mathrm{PCl}_{3}(\mathrm{~g})$ at constant volume.
C. introduction of $\mathrm{PCl}_{5}(\mathrm{~g})$ at constant volume.
D. introduction of Cl_{2} at constant volume.

Answer: C

- Watch Video Solution

32. If the equilibrium constant for the reaction $2 A B \Leftrightarrow A_{2}+B_{2}$ is 49 , what is the value of equilibrium constant for $A B \Leftrightarrow \frac{1}{2} A_{2}+\frac{1}{2} B_{2}$
A. 49
B. 2401
C. 7
D. 0.02

Answer: C

33. 4.5 moles each of hydrogen and iodine heated in a sealed 10 litrevesel.

At equilibrium, 3 moles of HI was foun. The equilibrium constant for
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ is
A. 1
B. 10
C. 5
D. 0.33

Answer: A

- Watch Video Solution

34. The equilibrium constant for the reversible reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ is K and for the reaction $\frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2} \Leftrightarrow N H_{3}$, the equilibrium constant is $K^{\prime}, . K$ and K^{\prime} will be related as
A. $K=K^{\prime}$
B. $K^{\prime}=\sqrt{K}$
C. $K=\sqrt{K^{\prime}}$
D. $K \times K^{\prime}=1$

Answer: B

- Watch Video Solution

35. On the basis of Le- Chatelier's principle, predict which of the following conditions would be unfavourable for the formation of SO_{3} ? Given that
$2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}, \Delta H=-42 \mathrm{kcal}$
A. Low pressure
B. High pressure
C. High temperature
D. High concentration of SO_{2}

- Watch Video Solution

36. If K_{1} and K_{2} are the equilibrium constants of the equilibria (a) and
(b) respectivel, what is the relationship between the two constants?
(a) $\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2}(g) \Leftrightarrow \mathrm{SO}_{3}(g), K_{1}$
(b) $2 \mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{2}$
A. $\left(K_{1}\right)^{2}=\frac{1}{K_{2}}$
B. $K_{2}=\left(K_{1}\right)^{2}$
C. $K_{1}=\frac{1}{K_{2}}$
D. $K_{1}=K_{2}$

Answer: A

- Watch Video Solution

37. For the reaction, $\mathrm{ZnCO}_{3}(s) \Leftrightarrow \mathrm{ZnO}(s)+\mathrm{CO}_{2}(g)$ expression for the partial pressure constant for the above reaction would be
A. $K_{p}=\frac{[\mathrm{ZnO}]\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{ZnCO}_{3}\right]}$
B. $K_{p}=\frac{p_{(Z n O)} \times p_{C O_{2}}}{p_{Z n C O_{3}}}$
C. $K_{p}=p_{(Z n O)}^{2} \times p_{C O_{2}}$
D. $K_{p}=p_{\mathrm{CO}_{2}}$

Answer: D

- Watch Video Solution

38. In the reaction $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g), \Delta H=+180.7 k J$. On increasing the temperature the production of NO
A. increases
B. Decreases
C. remains same
D. cannot be predicted

Answer: A

- Watch Video Solution

39. When 3 moles of A and 1 mole of B are mixed in 1 litre vessel, the following reaction takes place $A_{(g)}+B_{(g)} \Leftrightarrow 2 C_{(g)} .1 .5$ moles of C are formed. The equilibrium constant for the reaction is
A. 0.12
B. 0.5
C. 0.25
D. 4

Answer: D

- Watch Video Solution

40. Choose the equilibrium that is not influenced by pressure
A. $2 S O_{2}(g)+O_{2}(g) \Leftrightarrow 2 S_{3}(g)$
B. $P C l_{3}(g)+C l_{3}(g) \Leftrightarrow P C l_{5}(g)$
C. ${ }^{\prime} N_{-}(2)(g)$
D. $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N O(g)$

Answer: D

- Watch Video Solution

41. $H_{2}+I_{2} \Leftrightarrow 2 H I$ Which one of the following will not affect the rate of this reaction?
A. Pressure change
B. Temperature change
C. Concentration change
D. Catalyst

- Watch Video Solution

42. In which of the following equilibrium, change in the volume of the system does not alter the number of moles?
A. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
B. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
C. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D. $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

Answer: A

- Watch Video Solution

43. For the reaction
$\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}(g), K_{p} / K_{c}$ is
A. RT
B. $(R T)^{-1}$
C. $(R T)^{-1 / 2}$
D. $(R T)^{1 / 2}$

Answer: C

- Watch Video Solution

44. For the reaction $2 \mathrm{HI} \Leftrightarrow H_{2}+I_{2}$
A. $K_{p}>K_{c}$
B. $K_{c}>K_{p}$
C. $K_{p}=K_{c}$
D. None of these

Answer: C

45. A gas bulb is filled with $N O_{2}$ gas and immersed in an ice bath at $0^{\circ} \mathrm{C}$, which becomes colourless after sometime. This colourless gas will be:
A. NO_{2}
B. $\mathrm{N}_{2} \mathrm{O}$
C. $\mathrm{N}_{2} \mathrm{O}_{4}$
D. $\mathrm{N}_{2} \mathrm{O}_{5}$

Answer: C

- Watch Video Solution

46. What are the most favourable conditions for the reaction
$S O_{2}+/ 2 O_{2} \Leftrightarrow S O_{3}, \Delta H=-v e$ to occur
A. low T, high P
B. low T and low P
C. high T, low P
D. high T, high P.

Answer: A

- Watch Video Solution

47. When H_{2} and I_{2} are mixed and equilibrium is attained,then
A. amount of HI formed is equal to the amount of H_{2} dissociated
B. HI dissociation stops
C. the reaction stops completely
D. None of these

Answer: D

- Watch Video Solution

48. In the case of gaseous homogeneous reaction, the active mass of the reaction is obtained by the expression.
A. $\frac{P V}{R T}$
B. $\frac{P}{R T}$
C. $\frac{R T}{P}$
D. $\frac{n}{V} R T$.

Answer: B

- Watch Video Solution

49. Which of the following favours the reverse reaction in chemical equilibrium?
A. Increasing the concentration of the reactant
B. Removal of at least one of the products at regular intervals
C. Increasing the concentrations of one or more of the products
D. increasing the pressure.

Answer: C

- Watch Video Solution

50. If $\mathrm{N}_{2}+3 \mathrm{H}_{2} \stackrel{K}{\Longleftrightarrow} 2 \mathrm{NH}_{3}$ then $2 \mathrm{~N}_{2}+6 \mathrm{H}_{2} \stackrel{K}{\Longleftrightarrow} 4 \mathrm{NH}_{3}-K^{\prime}$ is equal to
A. K^{2}
B. \sqrt{K}
C. $\frac{1}{\sqrt{K}}$
D. $\frac{1}{K^{2}}$

Answer: A

- Watch Video Solution

51.1 mol of hydrogen and 2 mol of iodine are taken initially in a 2 L vessel.

The number of moles of hydrogen at equilibrium is 0.2 . Then the number of moles of iodine and hydrogen iodide at equilibrium are
A. 1.2,1.6
B. 1.8,1.0
C. 0.4,2.4
D. 0.8,2.0

Answer: A

- Watch Video Solution

52.1 mol of N_{2} and 2 mol of H_{2} are allowed to react in a $1 \mathrm{dm}^{3}$ vessel. At equilibrium, 0.8 mol of NH_{3} is formed. The concentration of H_{2} in the vessel is
A. 0.6 mole
B. 0.8 mole
C. 0.2 mole
D. 0.4 mole

Answer: B

- Watch Video Solution

53. The rate of forward reaction is two times that of reverse reaction at a given temperature and identical concentration. $K_{\text {equilibrium }}$ is
A. 0.5
B. 1.5
C. 2.5
D. 2

Answer: D

54. The equilibrium constant for the following reaction will be
$3 A+2 B \rightarrow C$
A. $\frac{[3 A][2 B]}{[C]}$
B. $\frac{[C]}{[3 A][2 B]}$
c. $\frac{[C]}{[A]^{2}[B]^{2}}$
D. $\frac{[C]}{[A]^{3}[B]^{2}}$

Answer: D

- Watch Video Solution

55. A chemical reaction is in equilibrium when
A. formation of product is minimum
B. reactants are completely transformed into products
C. rates of forard and backward reactions are equal
D. equal amounts of reactants and products are present.

Answer: C

- Watch Video Solution

56. Under what conditoin of temperature and pressur the formation of atomic hydrogen from molecular hydrogen will be favoured most ?
A. high temperature and high pressure
B. low temperature and low pressure
C. high temperature and low pressure
D. low temperature and high pressure

Answer: C

- Watch Video Solution

57. The reaction quotient (Q) for thereaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
is given by
$Q=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$
The reaction will proceed from right to left if where K_{C} is the equilibrium constant.
A. $\mathrm{Q}=0$
B. $Q=K_{c}$
C. $Q<K_{c}$
D. $Q>K_{c}$

Answer: D

Watch Video Solution
58. The following equilibria are given by :
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}, \mathrm{~K}_{1}$
$N_{2}+O_{2} \Leftrightarrow 2 N O, K_{2}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}, \mathrm{K}_{3}$
The equilibrium constant of the reaction
$2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$ in terms of K_{1}, K_{2} and K_{3} is
A. $K_{2} K_{3}^{3} / K_{1}$
B. $K_{1} K_{2} K_{3}$
C. $K_{1} K_{2} / K_{3}$
D. $K_{1} K_{3}^{2} / K_{2}$

Answer: A

- Watch Video Solution

59.

the
reaction
equilibrium,
$2 S_{2(g)}+O_{2(g)} \Leftrightarrow, \Delta H^{\circ}=-198 k J$. On the basis of Le-Chatelier's principle, the condition favourable for the forward reaction is
A. lowering of temperature as well as pressure
B. increasing of temperature as well as pressure
C. lowering of temperature and increasing of pressure
D. any value of temperature and pressure

Answer: C

- Watch Video Solution

60. For an equilibrium reaction, $\quad N_{2} O_{4}(g) \Leftrightarrow 2 N O_{2}(g)$, the concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at equilibrium are 4.8×10^{-2} and $1.2 \times 10^{-2} \mathrm{~mol} / L$ respectively. The value of K_{c} for the reaction is
A. $3.3 \times 10^{2} \mathrm{molL}^{-1}$
B. $3.3 \times 10^{-1} \mathrm{molL}^{-1}$
C. $3.3 \times 10^{-3} \mathrm{molL}^{-1}$
D. $3.3 \times 10^{3} \mathrm{molL}^{-1}$

Answer: C

61. The gaseous reaction $A+B \Leftrightarrow 2 C+D,+Q$ is most favoured at
A. High temperature and low pressure
B. Loww temperature and low pressure
C. Low temperature and high pressure
D. High temperature and high pressure

Answer: B

- Watch Video Solution

62. For a reaction if $K_{p}>K_{c}$, the forward reaction is favoured by ($T>15 K$)
A. High temperature
B. Low temperature
C. Low pressure
D. High temperature

Answer: C

- Watch Video Solution

63. In a lime kiln, to get higher yield of CO_{2} the measure that can be taken is :
A. to maintain high temperature
B. to pump out CO_{2}
C. to remove CaO
D. to add more CaCO_{3}

Answer: B

64. In the reaction
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$, the equilibrium concentrations of $P C l_{5}$ and PCl_{3} are 0.4 and 0.2 mole / litre respectively. If the value of K_{c} is 0.5 , what is the concentration of $C l_{2}$ in moles / litre?
A. 2
B. 1.5
C. 1
D. 0.5

Answer: C

- Watch Video Solution

65. One mole of a compound $A B$ reacts with 1 mole of a compound CD according to the equation $A B+C D \Leftrightarrow A D+C B$.
When equilibrium had been established it was found that $\frac{3}{4}$ mole each of
reactant $A B$ and $C D$ has been converted to $A D$ and $C B$. There is no change in volume. The equilibrium constant for the reaction is
A. $9 / 16$
B. $1 / 9$
C. $16 / 9$
D. 9

Answer: D

- Watch Video Solution

66. For the synthesis of ammonia by the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ in the Haber's process ,the attainment of equilibrium is correctly predicated bt the curve

B.

C.

D.

Answer: A

- Watch Video Solution

67. When the rate of formation of reactants is equal to the rate of formation of products, this is known as ,
A. Chemical reaction
B. Chemical equilibrium
C. Chemical kinetics
D. None

Answer: B

- Watch Video Solution

68. Which of the following is a characterisstic of a reversible reaction ?
A. it never proceeds by a catalyst
B. it proceeds onlly in the forward direction
C. number of moles of reactants and products are equal.
D.

Answer: A

- Watch Video Solution

69. What is the equilibrium expression for the reaction $P_{4(s)}+5 O_{2(g)} \Leftrightarrow P_{4} O_{10(s)} ?$
A. $K_{c}=\frac{\left[P_{4} O_{10}\right]}{\left[P_{4}\right]\left[O_{2}\right]^{5}}$
B. $K_{c}=\frac{1}{\left[O_{2}\right]^{5}}$
C. $K_{c}=\left[O_{2}\right]^{5}$
D. $K_{c}=\frac{\left[P_{4} O_{10}\right]}{5\left[P_{4}\right]\left[O_{2}\right]}$

Answer: B

- Watch Video Solution

70. For the reaction $\mathrm{CO}(g)+\mathrm{Cl}_{2}(g) \leftrightarrow \mathrm{COCl}_{2}(g), K_{p} / K_{c}$ is equal to:
A. $\frac{1}{R T}$
B. 1.0
C. $\sqrt{R T}$
D. RT

Answer: A

- Watch Video Solution

71. The equilibrium constant for the reaction
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
at temperature T is 4×10^{-4}.
The value of K_{c} for the reaction
$N O(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g)$
at the same temperature is
A. 2.5×10^{2}
B. 0.02
C. 4×10^{-4}
D. 50

Answer: D

Watch Video Solution

72. Calculate the partial pressure of carbon monoxide from the following data :
$\mathrm{CaCO}_{3} \stackrel{\Delta}{\Longleftrightarrow} \mathrm{CaO}(s)+\mathrm{CO}_{2} \uparrow, \mathrm{~K}(p)=8 \times 10^{-2}$
$\mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 \mathrm{CO}(g), K_{p}=2$
A. 0.2
B. 0.4
C. 1.6
D. 4

Answer: B

- Watch Video Solution

73. Of the following, which change will shift the reaction towards the product ?

$I_{2}(g) \Leftrightarrow 2 I(g), \Delta H_{r}^{\circ}(298 K)=+150 J$

A. increase in concentration of I
B. decrease in concentration of I_{2}
C. increase in temperature
D. increase in total pressure

Answer: C

- Watch Video Solution

74. Consider the following reversible reactionat equilibrium:
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \Delta \mathrm{H}=+24.7 \mathrm{~kJ}$
Which one of the following changes in conditions will lead to maximum decomposition of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$?
A. Increasing both temeprature and pressure
B. Decreasing temperature and increasing pressure
C. Increasing temperature and decreasing pressure
D. Increasing temperature at constant pressure

Answer: C

- Watch Video Solution

75. Ammoina carbonate when heated to $200^{\circ} \mathrm{C}$ gives a mixture of NH_{3} and CO_{2} vapour with a density of 13.0 What is the degree of dissociation of ammonium carbonate?
A. $\frac{3}{2}$
B. $\frac{1}{2}$
C. $\frac{5}{2}$
D. 1

Answer: D

- Watch Video Solution

76. Given reaction is $2 X_{(\text {gas })}+Y_{(g a s)} \Leftrightarrow 2 Z_{(g a s)}+80$ Kcal

Which combination of pressure and temperature gives the highest yield of Z at equilibrium ?
A. 1000 atm and $200^{\circ} \mathrm{C}$
B.
C.
D.

Answer: C

- Watch Video Solution

77. The compounds A and B are mixed in equimolar proportion to form the products, $A+B \Leftrightarrow C+D$

At equilibrium, one third of A and B are consumed. The equilibrium constant for the reaction is
A. 0.5
B. 4
C. 2.5
D. 0.25

Answer: D

- Watch Video Solution

78. In the manufacture of ammonia by Haber's process,
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)+92.3 k J$, which of the following conditions is unfavourable ?
A. increasing the temperature
B. increasing the pressure
C. reducing the temperture
D. removing ammonia as it is formed.

Answer: A

79. The chemical equlibrium of a reversible reaction is not influenced by :
A. Pressure change
B. catalyst
C. concentration of the reactants
D. temperature

Answer: B

- Watch Video Solution

80. The equilibrium:
$P_{4}(g)+6 C l_{2}(g) \Leftrightarrow 4 P C l_{3}(g)$
is attained by mixing equal moles of P_{4} and $C l_{2}$ in an evacuated vessel.
Then at equilibrium:
A. $\left[\mathrm{Cl}_{2}\right]>\left[\mathrm{PCl}_{3}\right]$
B. $\left[C l_{2}\right]>\left[P_{4}\right]$
C. $\left[P_{4}\right]>\left[C l_{2}\right]$
D. $\left[P C l_{3}\right]>\left[P_{4}\right]$

Answer: C

- Watch Video Solution

81. The following equilibrium exists in a closed vessel in $1 L$ capacity
$A(g)+3 B(g) \Leftrightarrow 4 C(g)$
initial cocentration of $A(g)$ is equal to that $B(g)$. The equilibrium concentration of $A(g)$ and $C(g)$ are equal. K_{c} for the reaction is
A. 0.08
B. 0.8
C. 8
D. 80

Answer: C

- Watch Video Solution

82. 2mole of $P \mathrm{Pl}_{5}$ were heated in a closed vessel of 2litre capacity. At equilibrium 40% of $P C l_{5}$ dissociated into $P C l_{3}$ and $C l_{2}$. The value of the equilibrium constant is:
A. 0.532
B. 0.266
C. 0.133
D. 0.174

Answer: B

83. Equilibrium constants K_{1} and K_{2} for the following equilibria $\mathrm{NO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \stackrel{K_{1}}{\Longleftrightarrow} \mathrm{NO}_{2}(\mathrm{~g}) \quad$ and $\quad 2 \mathrm{NO}_{-}(2)(\mathrm{g}) \quad$ overset(K_(2)) (hArr)2NO(g)+O_(2)(g)
are related as
A. $K_{2}=1 / K_{1}$
B. $K_{2}=K_{1}^{2}$
C. $K_{2}=K_{1} / 2$
D. $K_{2}=1 / K_{1}^{2}$

Answer: D

- Watch Video Solution

84. The exothermic formation of ClF_{3} is represented by thr equation:

$$
C l_{2}(g)+3 F_{2}(g) \Leftrightarrow 2 C l F_{3}(g), \Delta H=-329 k J
$$

Which of the following will increase the quantity of $C l F_{3}$ in an equilibrium mixture of $C l_{2}, F_{2}$, and $C l F_{3}$?
A. increasing the temperature
B. removing Cl_{2}
C. increasing the volume of the container
D. adding F_{2}

Answer: D

- Watch Video Solution

85. For the reaction $2 \mathrm{NO}_{2}(g) \Leftrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$
$K_{c}=1.8 \times 10^{-6}$ at $184^{\circ} C, R=0.00831 \mathrm{~kJ} /$ (mol.K) when K_{p} and K_{c} are compared at $184^{\circ} \mathrm{C}$, it is found
A. K_{p} is greater than K_{c}
B. K_{p} is less than K_{c}
C. $K_{p}=K_{c}$
D. whether K_{p} is greater than, less than or equal to K_{c} depends upon the total gas pressure.

Answer: A

D Watch Video Solution

86. A schematic plot of $\ln K_{e q}$ versus inverse o ftemperature for a reaction is shown below

the reaction must be:
A. exothermic
B. Endothermic
C. one with negligible enthalpy change
D. highly spontaneous at ordinary temperature

Answer: A

D Watch Video Solution

87. An amount of solid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in a flask already containing ammonia gas at a certain temperature and 0.50 atm pressure.Ammonium hydrogen sulphide decomposes to yield NH_{3} and $H_{2} S$ gases in the flask.When the decomposition reaction reaches equilibrium, the total pressure in the flask rises to 0.84 atm ? The equilibrium constant for $\mathrm{NH}_{4} \mathrm{HS}$ decomposition at this temperature is :
A. 0.3
B. 0.18
C. 0.17

D. 0.11

Answer: D

- Watch Video Solution

88. For the hypothetic reaction, the equilibrium constant (K) values are
given
$A \Leftrightarrow B, K_{1}=2.0$
$B \Leftrightarrow C, K_{2}=4.0$
$C \Leftrightarrow D, K_{3}=3.0$
The equilibrium constant for the reaction
$A \Leftrightarrow D$ is
A. 48
B. 6
C. 2.7
D. 24

Answer: D

D Watch Video Solution

89. $\mathrm{CaCO}_{3} \Leftrightarrow \mathrm{CaO}+\mathrm{CO}_{2}$ reaction in a lime kiln goes to completion because
A. CaO does not react with CO_{2} to give CaCO_{3}
B. backward reaction is very slow
C. CO_{2} formed escpaes out
D. None of these

Answer: C

- Watch Video Solution

90. A 550 K , the K_{c} for the following reaction is $10^{4} \mathrm{~mol}^{-1} L$
$X(g)+Y(g) \Leftrightarrow Z(g)$

At equilibrium, it was observed that
$[X]=\frac{1}{2}[Y]=\frac{1}{2}[Z]$
What is the value of [Z] (in $\mathrm{mol} L^{-1}$) at equilibrium ?
A. 2×10^{-4}
B. 10^{-4}
C. 2×10^{4}
D. 10^{4}

Answer: A

- Watch Video Solution

91. $A+B \Leftrightarrow C+D$. If finally the concentrations of A an d B are both equal but at equilibrium concentration of D will be twice of that of A then what will be the equilibrium constant of reaction.
A. $4 / 9$
B. $9 / 4$
C. $1 / 9$
D. 4

Answer: D

- Watch Video Solution

92. Partial pressure of O_{2} in the reaction
$2 \mathrm{Ag}_{2} \mathrm{O}(s) \Leftrightarrow 4 \mathrm{Ag}(s)+\mathrm{O}_{2}(g)$ is
A. K_{p} is greater than K_{c}
B. $\sqrt{K_{p}}$
C. $3 \sqrt{K_{p}}$
D. $2 K_{p}$

Answer: A

93. $\mathrm{NH}_{4} \mathrm{COONH}_{4}(s) \Leftrightarrow 2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(\mathrm{~g})$. If equilibrium pressure is 3 atm for the above reaction, K_{p} will be
A. 4
B. 27
C. $4 / 27$
D. $1 / 27$

Answer: A

- Watch Video Solution

94. For the reaction $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}$, the value of K_{c} at $800^{\circ} C$ is 0.1 . When the equilibrium concentrations of both the reactants is 0.5 mol , what is the value of K_{p} at the same temperature
A. 0.5
B. 0.1
C. 0.001
D. 0.025

Answer: B

- Watch Video Solution

95. For the reaction

$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, if the initial concentration of $\left[\mathrm{H}_{2}\right]=\left[\mathrm{CO}_{2}\right]$ and x moles /litres of hydrogen is consummed at equilibrium , the correct expression of K_{p} is :
A. $\frac{x^{2}}{(1-x)^{2}}$
B. $\frac{(1+x)^{2}}{(1-x)}$
C. $\frac{x^{2}}{2+x^{2}}$
D. $\frac{x^{2}}{1-x^{2}}$

Answer: A

96. One mole of H_{2} and 2 moles of I_{2} are taken initially in a two litre vessel. The number of moles of H_{2} at equilibrium is 0.2 . Then the number of moles of I_{2} and $H I$ at equilibrium is
A. 1.2,1.6
B. 1.8,1.0
C. 0.4,2.4
D. 0.8,2.0

Answer: A

- Watch Video Solution

97. When hydrogen molecules decompose into its atoms, which conditions give the maximum yield of hydrogen atoms ?
A. High temperature and low pressure
B. low temperature and high pressure
C. high temperature and high pressure
D. low temperature and low pressure.

Answer: A

- Watch Video Solution

98. For the reaction, $H_{2}+I_{2} \Leftrightarrow 2 H I, K=47.6$. If the initial number of moles of each reactant and product is 1 mole then at equilibrium
A. $\left[I_{2}\right]=\left[H_{2}\right],\left[I_{2}\right]>[H I]$
B. $\left[I_{2}\right]<\left[H_{2}\right],\left[I_{2}\right]=[H I]$
C. $\left[I_{2}\right]=\left[H_{2}\right],\left[I_{2}\right]<[H I]$
D. $\left[I_{2}\right]>\left[H_{2}\right],\left[I_{2}\right]=[H I]$

Answer: C

99. The equilibrium constant $\left(K_{p}\right)$ for the decomposition of gaseous

$\mathrm{H}_{2} \mathrm{O}$

$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
is related to the degree of dissociation α at a total pressure P by
A. $K_{p}=\frac{\alpha^{3} p_{2}^{2}}{(1+\alpha)(2+\alpha)^{1 / 2}}$
B. $K_{p}=\frac{\alpha^{3} p^{3 / 2}}{(1-\alpha)(2+\alpha)^{1 / 2}}$
C. $K_{p}=\frac{\alpha^{3 / 2} p^{2}}{(1-\alpha)(2+\alpha)^{1 / 2}}$
D. $K_{p}=\frac{\alpha^{3 / 2} p^{1 / 2}}{(1-\alpha)(2+\alpha)^{1 / 2}}$

Answer: D

- Watch Video Solution

100. At equilibrium of the reaction,
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
the observed molecular weight of $\left.N_{92}\right) O_{4}$ is $80 \mathrm{~g} \mathrm{~mol}^{-1}$ at 350 K . The percentage dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ at 350 K is
A. 10%
B. 15%
C. 20%
D. 18%

Answer: B

- Watch Video Solution

101. According to Le- Chatelier's principile, maximum yiled of NH_{3} is obtained at
A. High temperature and low pressure
B. High pressure
C. Low temperature
D. Low temperature and high pressure

Answer: D

- Watch Video Solution

102. Given the equilibrium system :
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{g}) \Leftrightarrow \mathrm{NH}_{44}^{+}(a q)+\mathrm{Cl}^{-}(a q),(\Delta H=+35 \mathrm{kcal} / \mathrm{mol})$.
What change will shift the equilibrium to the right ?
A. decreasing the temperature
B. increasing the temperature
C. dissolving NaCl crystals in the equilibrium mixture
D. dissolving $\mathrm{NH}_{4} \mathrm{NO}_{3}$ crystals in the equlibrium mixture

Answer: B

- Watch Video Solution

103. Equilivalent amounts of H_{2} and I_{2} are heated in a closed vessel till equilibrium is obtained. If 80% of the hydrogen is converted to $H I$, the K_{c} at this temperature is
A. 64
B. 16
C. 0.25
D. 14

Answer: A

- Watch Video Solution

104. 16 mol of $\mathrm{PCl}_{5}(\mathrm{~g})$ is placed in $4 \mathrm{dm}^{-3}$ closed vessel. When the temperature is raised to 500 K , it decompses and at equilibrium, 1.2 mol of $P C l_{5}(g)$ remains. What is K_{c} value for the decomposition of $P C l_{5}(g)$ to $\mathrm{PCl}_{3}(\mathrm{~g})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$ at 500 K .
A. 0.013
B. 0.05
C. 0.033
D. 0.067

Answer: C

- Watch Video Solution

105. Equimolar concentrations of H_{2} and I_{2} are heated to equilibrium in a 2 L flask. At equilibrium, the forward and backward rate constants are found to be equal. What percentage of initial concentration of H_{2} has reached at equilibrium ?
A. 0.33
B. 0.66
C. 50%
D. 0.4

D Watch Video Solution

106. Three moles of $P C l_{5}$, three moles of $P C l_{3}$ and two moles of $C l_{2}$ are taken in a closed vessel. If at equilibium, the vessel has 1.5 moles of $P C l_{5}$ the number of moles of $P C l_{3}$ present in it is
A. 6
B. 4.5
C. 5
D. 3

Answer: B

107. For equilibrium $H_{2}+I_{2} \Leftrightarrow 2 H I$ which of the following will affect the equilibrium constant ?
A. Pressure change
B. Concentration change
C. Catalyst
D. Temperature Change

Answer: D

- Watch Video Solution

108. For a reaction $2 \mathrm{SO}_{2}(g)+O_{2}(g) \Leftrightarrow 2 \mathrm{SO}_{3}(g), \Delta H=-188.3 k J$

The number of moles of SO_{3} formed is increased if
A. Temperature is increased at constant volume
B. Inert gas is added to the mixture
C. O_{2} is removed from the mixture
D. Volume of the reaction flask is decreased

Answer: D

- Watch Video Solution

109. The equilibrium constant for the given reaction is 100 .
$N_{2}(g)+2 O_{2}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$
What is the equilibrium constant for the reaction?
$N O_{2}(g) \Leftrightarrow 1 / 2 N_{2}(g)+O_{2}(g)$
A. 10
B. 1
C. 0.1
D. 0.01

Answer: C

110. If $K_{1}=$ Rate constant at temperature T_{1} and k_{2} rate constant at temperature T_{2} for a first order reaction, then which of the following relation is correct ?
A. \log. $\frac{k_{2}}{k_{1}}=\frac{2.303}{R T}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$
B. $\log \cdot \frac{k_{2}}{k_{1}}=\frac{E_{a}}{2.303 R T}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$
C. log. $\frac{k_{2}}{k_{1}}=\frac{E_{a}}{2.303 R T}\left[\frac{T_{1} T_{2}}{T_{2}-T_{1}}\right]$
D. log. $\frac{k_{1}}{k_{2}}=\frac{E_{a}}{2.303 R T}\left[\frac{T_{2} T_{2}}{T_{2}-T_{1}}\right]$

Answer: B

- Watch Video Solution

111. In which of the following pairs, the constant / quantities are not mathematically related to each other ?
A. Gibb's free energy and standard cell potential
B. Equilibrium constant and standard cell potential
C. Rate constant and activation energy
D. Rate constant and standard cell potential

Answer: D

D Watch Video Solution

112. At equilibrium of the reaction
$2 X(g)+Y(g) \Leftrightarrow X_{2} Y(g)$
the number of moles of $X_{2} Y$ at equilibrium is affected by the
A. temperature and pressure
B. Temperature only
C. pressure only
D. temperature, pressure and catalyst.

Answer: A

113. 100 mL of phosphine $\left(\mathrm{PH}_{3}\right)$ on hearing forms phosphorous (P) and hydrogen $\left(\mathrm{H}_{2}\right)$. The volume change in the reaction is
A. an increase of 50 mL
B. an increase of 100 mL
C. an increase of 150 Ml
D. a decrease of 50 Ml

Answer: A

- Watch Video Solution

114.5 moles of SO_{2} and 5 moles of O_{2} are allowed to react .At equilibrium , it was foumnd that 60% of SO_{2} is used up .If the pressure of the equilibrium mixture is one aatmosphere, the parital pressure of O_{2} is:
A. 0.82 atm
B. 0.52 atm
C. 0.21 atm
D. 0.41 atm

Answer: D

- Watch Video Solution

115. The equilibrium constant (K) of a reaction may be written as
A. $K=e^{-\Delta G / R T}$
B. $K=e^{-\Delta G^{\circ} R T}$
C. $K=e^{-\Delta H / R T}$
D. $K=e^{-\Delta H^{\circ} R T}$

Answer: B

116. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$,

In the reaction given above, the addition of small amount of an inert gas at constant pressure will shift the equilibrium towardss which side of
A. LHS(left Hand side)
B. RHS (Right Hand Side)
C. neither side
D. either side

Answer: A

- Watch Video Solution

117. $\mathrm{NH}_{4} H S(s) \Leftrightarrow \mathrm{NH}_{3}(g)+H_{2} S(g)$

In the above reaction, if the pressure at equilibrium and at 300 K is 100atm then what will be equilibrium constant K_{p} ?
A. $2500 \mathrm{~atm}^{2}$
B. $50 \mathrm{~atm}^{2}$
C. $100 \mathrm{~atm}^{2}$
D. $200 \mathrm{~atm}^{2}$

Answer: A

- Watch Video Solution

118. consider the following gaseous equilibrium with equilibrium constant
K_{1} and K_{2} respectively
$S O_{2}(g)+1 / 2 O_{2} \Leftrightarrow S O_{3}(g)$
$2 \mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
The equilibrium constants are related as
A. $K_{1}^{2}=\frac{1}{K_{2}}$
B. $2 K_{1}=K_{2}^{2}$
C. $K_{2}=\frac{2}{K_{1}^{2}}$
D. $K_{2}^{2}=\frac{1}{K}$

D Watch Video Solution

119. Consider the following reactions in which all the reactants and the products are in gaseous state.
$2 P Q \Leftrightarrow P_{2}=Q_{2}, K_{1}=2.5 \times 10^{5}$
$\left.P Q+1 / 2 R_{2} \Leftrightarrow P Q R, K_{92}\right)=5 \times 10^{-3}$
The value of K_{2} for the equilibrium
$1 / 2 P_{2}+1 / 2 Q_{2}+1 / 2 R_{2} \Leftrightarrow P Q R$, is
A. 2.5×10^{-3}
B. 2.5×10^{3}
C. 1.0×10^{-5}
D. 5×10^{3}

Answer: C

120. For the reaction
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
The equilibrium constant K_{p} changes with
A. total pressure
B. temperature
C. catalyst
D. amount of H_{2} and I_{2} present

Answer: B

D Watch Video Solution

121. In the preparation of CaO from CaCO_{3} using the equilibrium,
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
K_{p} is expressed as
$\log K_{p}=7.282-\frac{8500}{T}$

For complete decomposition of CaCO_{3}, the temperature in celsius to be used is:
A. 1167
B. 894
C. 8500
D. 850

Answer: B

- Watch Video Solution

122. For the reaction $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(g), k_{p}=63$ atm at 100 K . If at equilibrium $p_{\mathrm{CO}}=10 p_{\mathrm{CO}_{2}}$ then the total pressure of the gases at equilibrium is
A. 6.3 atm
B. 6.93 atm
C. 0.63 atm
D. 0.693 atm

Answer: B

- Watch Video Solution

123. In the reaction $A B(g) \Leftrightarrow A(g)+B(g)$ at $30^{\circ} C, k_{p}$ for the dissociation equilibrium is $2.56 \times 10^{-2} \mathrm{~atm}$. If the total pressure at equilibrium is 1 atm, then the percentage dissociation of $A B$ is
A. 0.87
B. 0.13
C. 0.435
D. 0.16

Answer: D

D Watch Video Solution

124. Choose the equilibrium that is not influenced by pressure
A. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
B. $\mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
C. $P C l_{5}(g) \Leftrightarrow P C l(g)+C l_{2}(g)$
D. $2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$

Answer: D

- Watch Video Solution

Selected Straight Objective Type Mcqs

1. When NaNO_{3} is heated in a closed vessel, oxygen is liberated and
NaNO_{2} is left behind. At equilibrium
A. Addition of NaNO_{2} favours reverse reaction
B. Addition of NaNO_{3} favours forward reaction
C. Increasing temperature favours forward reaction
D. Increasing pressure favours reverse reaction

Answer: C,D

- Watch Video Solution

2. Which of the following will not affect the value of equilibrium constant of the reaction
$H_{2}(g)+I_{2} \Leftrightarrow 2 H I(g)$
A. Change in initial conc. Of reactanst
B. change in temperature
C. Addition of catalyst
D. Change in pressure

Answer: A,C,D

3. For the gas phase reaction
$C_{2} H_{4}+H_{2} \Leftrightarrow C_{2} H_{6}(\Delta H=-32.7 \mathrm{kcal})$
carried out in a vessel, the equilibrium concentration of $C_{2} H_{4}$ can be increased by
A. Increasing the temperature
B. Decreasing the pressure
C. Removing some $C_{2} H_{6}$
D. Adding some H_{2}

Answer: A,B

- Watch Video Solution

4. For the reaction $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$ the forward reaction at constant temeprature is favoured by
A. introducing inert gas at constant pressure
B. introducing inert gas at constant volume
C. introducing PCl_{5} at constant volume
D. introducing Cl_{2} at constant volume.

Answer: A,C

- Watch Video Solution

Mcqs With Only One Correct Answer

1. One mole of $N_{20 O_{4}(g)}$ at 300 K is kept in a closed container under one atmosphere. It is heated to 600 K when 20% of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is converted to $\mathrm{NO}_{2}(\mathrm{~g})$
$N_{2} O_{4} \Leftrightarrow 2 \mathrm{NO}_{2}(g)$ Hence resultant pressure is :
A. 1.2 atm
B. 2.4 atm
C. 2.0 atm
D. 1.0 atm

Answer: B

- Watch Video Solution

2. In the reaction,
$A(s)+B(g)+$ heat $\Leftrightarrow 2 C(s)+2 D(g)$
at equilibrium, pressure of B is doubled to re-establish the equilibrium.
The factor, by which conc. Of D is changed, is
A. $\sqrt{2}$
B. 2
C. 3
D. $\sqrt{3}$

Answer: A

3. A vessel at 1000 K contains carbon dioxide with a pressure of 0.5 atm .

Some of the carbon dioxide is converted to carbon monoxide on addition of graphite. Calculate the value of K_{p} if total pressure at equilibrium is 0.8 atm .
A. 0.18 atm
B. 1.8 atm
C. 2 atm
D. 2.8 atm

Answer: B

- Watch Video Solution

4. The equilibrium
$\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
is attained at $25^{\circ} \mathrm{C}$ in a closed container and inert gas helium is introduced. Which of the following statement /s is / are correct ?
A. Concentrations of $\mathrm{SO}_{2} \mathrm{Cl}_{2}, \mathrm{SO}_{2}$ and Cl_{2} will change
B. More chlorine is formed
C. Conc. Of $S O_{2}$ is reduced
D. Equilibrium constant will remain unaffected.

Answer: D

- Watch Video Solution

5. For the reaction
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
The equilibrium constant K_{p} changes with
A. Total pressure
B. catalyst
C. The amounts of H_{2} and I_{2} present
D. Temperature

Answer: D

- Watch Video Solution

6. The oxidation of SO_{2} by O_{2} to SO_{3} is an exothermic reaction. The yield of SO_{2} will be maximum if
A. temperature is increased and pressure is kept constant
B. temperature is reducted and pressure is increased
C. both temperature and pressure is increased
D. both temperature and pressure are decreased.

Answer: B

- Watch Video Solution

7. In the reaction $A_{2}(g)+4 B_{2}(g) \Leftrightarrow 2 A B_{4}(g), \Delta H<0$. The decomposition of $A B_{4}(\mathrm{~g})$ will be favoured at
A. low temperature and high pressure
B. high temperature and low pressure
C. low temperature and low pressure
D. high temperature and high pressure

Answer: A

- Watch Video Solution

8. For the reaction

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

at a given temperature, the equilibrium amount of $\mathrm{CO}_{2}(\mathrm{~g})$ can be increased by
A. adding a suitable catalyst
B. adding an inert gas
C. decreaseing the volume of the container
D. increasing the amount of $C O(g)$

Answer: D

- Watch Video Solution

9. For the chemical reaction
$3 X(g)+Y(g) \Leftrightarrow X_{3} Y(g)$,
the amount of $X_{3} Y$ at equilibrium is affected by
A. temperature and pressure
B. temperature only
C. pressure only
D. temperature , pressure and catalyst.

Answer: A

10. For the reversible reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
at $500^{\circ} \mathrm{C}$, the value of K_{p} is 1.44×10^{-5} when the partial pressure is measured in atmosphere. The corresponding value of K_{c} with concentration in $\mathrm{mol} L^{-1}$ is
A. $1.44 \times 10^{-5} /(0.082 \times 500)^{-2}$
B. $1.44 \times 10^{-5} /(8.314 \times 773)^{-2}$
C. $1.44 \times 10^{-5} /(0.0832 \times 500)^{2}$
D. $1.44 \times 10^{-5} /(0.0832 \times 773)^{-2}$

Answer: D

- Watch Video Solution

11. At constant temperature, the equilibrium constant $\left(K_{p}\right)$ for the decomposition reaction
$\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$
is expressed by $K_{p}=4 x^{2} p /\left(1-x^{2}\right)$, where $\mathrm{p}=$ pressure $\mathrm{x}=$ extent of decomposition. Which of the following statements is true?
A. K_{p} increases with increase of P
B. K_{p} increases wih increase of x
C. K_{p} increases with decrease of x
D. K_{p} remains constant with change in P or x .

Answer: D

- Watch Video Solution

12. Consider the following equilibrium in a closed container
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
At a fixed temperature, the volume of the reaction container is halved. For this change, which of the following statement holds true regarding the equilibrium constant $\left(K_{p}\right)$ and the degree of dissociation (α) ?
A. neither K_{p} nor α changes
B. both K_{p} and α change
C. K_{p} changes, but α does not change
D. K_{p} does not change, but α changes.

Answer: D

- Watch Video Solution

13. $P C l_{5}$ dissociation a closed container as :
$P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$
If total pressure at equilibrium of the reaction mixture is P and degree of dissociation of PCl_{5} is α, the partial pressure of PCl_{3} will be:
A. $\left(\frac{x}{x-1}\right) P$
B. $\left(\frac{x}{1-x}\right) P$
C. $\left(\frac{x}{x+1}\right) P$
D. $\left(\frac{2 x}{1-x}\right) P$

Answer: C

- Watch Video Solution

14. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$

Which of the following statements is correct if N_{2} added at equilibrium condition?
A. The equilibrium will shift to forward direction because according to 2nd law of thermodynamics, the entropy must increase in the direction of the spontaneous reaction
B. The condition for equilibrium is $G\left(N_{2}\right)+3 G\left(H_{2}\right)=2 G\left(N H_{3}\right)$,
where G is Gibbs free energy per mole of the gaseous species measured at ehtir partial pressure. The condition of equilibrium is unaffected by the use of catalyst which increases the rate of both the forward and the backward directions to the same extent
C. The catalyst will increase the rate of forward reaction by β.
D. The catalyst will not alter the rate either of the reaction.

Answer: B

- Watch Video Solution

15. If the concentration of OH^{-}ions in the reaction
$\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{Fe}^{3+}(a q)+.3 \mathrm{OH}^{-}(a q$.
is decreased by $1 / 4$ times, then the equilibrium concentration of Fe^{3+} will increase by
A. 8 times
B. 16 times
C. 64 times
D. 4 times

Answer: C

16. The dissociation equilibrium of a gas $A B_{2}$ can be represented as
$2 A B_{2}(g) \Leftrightarrow 2 A B(g)+B_{2}(g)$
The degree of dissociation is x and is small compared to 1 . The expression relating the degree of dissociation (x) with equilibrium contant K_{p} and total pressure p is
A. $2 K_{p} / P$
B. $\left(2 K_{p} / P\right)^{1 / 3}$
C. $2\left(K_{p} / P\right)^{1 / 2}$
D. $\left(K_{p} / P\right)$

Answer: B

- Watch Video Solution

17. The value of equilibrium constant of the reaction, $\mathrm{HI} \Leftrightarrow \frac{1}{2} H_{2}+\frac{1}{2} I_{2}$ is 8 . The equilibrium constant of the reaction $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ will be
A. $1 \frac{\cdot}{16}$
B. $1 / 64$
C. 16
D. $1 / 8$

Answer: B

- Watch Video Solution

18. The values of $K_{p_{1}}$ and $K_{p_{2}}$ for the reactions
$X \Leftrightarrow Y+Z \ldots$ (i)
and $A \Leftrightarrow 2 B$...(ii)
are in ratio of $9: 1$. If degree of dissociation of X and A be equal, then total presure at equilibrium (i) and (ii) are in the ratio.
A. $3: 1$
B. 1: 9
C. $36: 1$
D. 1:1

Answer: C

- Watch Video Solution

19. For the following reactions (1), (2) and (3) equilibrium constants are given
(1) $\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g), K_{1}$
$(2) \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}), \mathrm{K}_{2}$
$(3) \mathrm{CH}_{4}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}), \mathrm{K}_{3}$
Which of the following relation is correct ?
A. $K_{3}=K_{1} \times K_{2}$
B. $K_{3} K_{2}^{3}=K_{1}^{2}$
C. $K_{1} \sqrt{K_{2}}=K_{3}$
D. $K_{2} K_{3}=K_{1}$

Watch Video Solution

20. For the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$, if $\frac{d\left[\mathrm{NH}_{3}\right]}{d t}$. $=4 \times 10^{-4} \mathrm{~mol}$ $L^{-1} s^{-1}$, the value of $\frac{-d\left[H_{2}\right]}{d t}$ would be
A. $1 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$
B. $3 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$
C. $4 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$
D. $6 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$

Answer: D

- Watch Video Solution

21. In the reaction
$\mathrm{BrO}^{-3}(a q)+5 \mathrm{Br}^{-}(a q)+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{Br}_{2}(1)+3 \mathrm{H}_{2} \mathrm{O}(1)$
The rate of appearance of bromine $\left(B r_{2}\right)$ is related to rate of disapperance of bromide ions as folllwoing :
A. $\frac{d\left[B r_{2}\right]}{d t}=\frac{3}{5} \frac{d\left[B r^{-}\right]}{d t}$
B. $\frac{d\left[B r_{2}\right]}{d t}=\frac{-3}{5} \frac{d\left[B r^{-}\right]}{d t}$
C. $\frac{d\left[B r_{2}\right]}{d t}=\frac{-5}{3} \frac{d\left[B r^{-}\right]}{d t}$
D. $\frac{d\left[B r_{2}\right]}{d t}=\frac{-5 d}{3} \frac{d\left[B r^{-}\right]}{d t}$

Answer: B

- Watch Video Solution

22. A vessel at 1000 K contains carbon dioxide with a pressure of 0.5 atm .

Some of the carbon dioxide is converted to carbon monoxide on addition of graphite. Calculate the value of K_{p} if total pressure at equilibrium is $0.8 a t m$.
A. 3 atm
B. 0.3 atm
C. 0.18 atm
D. 1.8 atm

Answer: D

- Watch Video Solution

23. The value of ΔH for the reaction $\left.X_{2}(g)+4 Y_{2} g\right) \Leftrightarrow 2 X Y_{4}(g)$ is less than zero. Formation of $X Y_{4}(g)$ will be favoured at :
A. High temperature and low pressure
B. High pressure and low temperature
C. high temperature and high pressure
D. Low pressure and low temperature

Answer: B

D Watch Video Solution

24. For the reaction $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$, the equilibrium constant is K_{1}. The equilibrium constant is K_{2} for the reaction
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
What is K for the reaction
$N O_{2}(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+O_{2}(g) ?$
A. $\left[1 / K_{1} K_{2}\right]^{1 / 2}$
B. $1 /\left(K_{1} K_{2}\right)$
C. $1 /\left(2 K_{1} K_{2}\right)$
D. $1 /\left(4 K_{1} K_{2}\right)$

Answer: A

- Watch Video Solution

Linked Comprehension Type Mcq S Comprehension 1

1. The reaction which is in dynamic equilibrium, ensured us, that the reaction is reversible. But if that the reaction is in equilibrium. The reaction quotient predict either the reversible reaction is in equilibrium or tries to achieve equilibrium. In those reactions which have not
achieved equilibrium, we obtain reaction quotient Q_{c} in place of equilibrium constant (K_{c}) by substituting the concentration of reactant and product at the time, at whih we have to calculate the value of Q_{c}. To determine the direction at which the net reaction will proceed to achieve equilibrium, we compare values of Q_{c} and K_{c}. The three possible cases are shown as comparison of K_{c} and Q_{c} in the following figures.

Change in Gibbs free energy, i.e., ΔG is the driving force of any reaction.
For spontaneous reaction, $\Delta G=-v e$
For non-spontaneous reaction , $\Delta G=+v e$
For reaction at equilibrium, $\Delta G=0$
Thermodynamically, we know that
$\Delta G=\Delta G^{\circ}+R T \ln Q$, where Q is reaction quotient and $\Delta G^{\circ}=$ change in Gibbs energy at standard condition.

For equilibrium $A(g) \Leftrightarrow B(g)\left(K_{e q}=1.732\right)$ If the pressure of the
system [varied by introducing a stream of $A(g)$ and $\mathrm{B}(\mathrm{g})$ is represented by the curve at constant temperature T .

What will be the value of difference of standard Gibbs free energy to Gibbs free energy change at point Q in the figure above ?
A. $-v e$
B. $+v e$
C. 0
D. cannot be predicted

Answer: A

2. The reaction which is in dynamic equilibrium, ensured us, that the reaction is reversible. But if that the reaction is in equilibrium. The reaction quotient predict either the reversible reaction is in equilibrium or tries to achieve equilibrium. In those reactions which have not achieved equilibrium, we obtain reaction quotient Q_{c} in place of equilibrium constant (K_{c}) by substituting the concentration of reactant and product at the time, at whih we have to calculate the value of Q_{c}. To determine the direction at which the net reaction will proceed to achieve equilibrium, we compare values of Q_{c} and K_{c}. The three possible cases are shown as comparison of K_{c} and Q_{c} in the following figures.

$\xrightarrow{\text { Reactants }}$

Equilibrium
\longrightarrow no net
Change

Reactants Products

Change in Gibbs free energy, i.e., ΔG is the driving force of any reaction.

For spontaneous reaction, $\Delta G=-v e$
For non-spontaneous reaction , $\Delta G=+v e$
For reaction at equilibrium, $\Delta G=0$
Thermodynamically, we know that
$\Delta G=\Delta G^{\circ}+R T \ln Q$, where Q is reaction quotient and $\Delta G^{\circ}=$ change in Gibbs energy at standard condition.

For equilibrium $A(g) \Leftrightarrow B(g)\left(K_{e q}=1.732\right)$ If the pressure of the system [varied by introducing a stream of $A(g)$ and $\mathrm{B}(\mathrm{g})$ is represented by the curve at constant temperature T .

Which of the following is the correct statement at point R in the figure above?
A. The reaction will move in backward direction in order to gain equilibrium
B. The reaction will move in forward direction in order to gain equilibrium
C. ΔG of the reaction will be zero
D. Cannotbe predicted.

Answer: B

D View Text Solution

3. The reaction which is in dynamic equilibrium, ensured us, that the reaction is reversible. But if that the reaction is in equilibrium. The reaction quotient predict either the reversible reaction is in equilibrium or tries to achieve equilibrium. In those reactions which have not achieved equilibrium, we obtain reaction quotient Q_{c} in place of equilibrium constant $\left(K_{c}\right)$ by substituting the concentration of reactant and product at the time, at whih we have to calculate the value of Q_{c}. To
determine the direction at which the net reaction will proceed to achieve equilibrium, we compare values of Q_{c} and K_{c}. The three possible cases are shown as comparison of K_{c} and Q_{c} in the following figures.

Reactants -
Products

Change in Gibbs free energy, i.e., ΔG is the driving force of any reaction.
For spontaneous reaction , $\Delta G=-v e$
For non-spontaneous reaction , $\Delta G=+v e$
For reaction at equilibrium , $\Delta G=0$
Thermodynamically, we know that
$\Delta G=\Delta G^{\circ}+R T \ln Q$, where Q is reaction quotient and $\Delta G^{\circ}=$ change in Gibbs energy at standard condition.

For equilibrium $A(g) \Leftrightarrow B(g)\left(K_{e q}=1.732\right)$ If the pressure of the system [varied by introducing a stream of $A(g)$ and $\mathrm{B}(\mathrm{g})$ is represented by the curve at constant temperature T .

If A and B are enclosed in the cylinder and piston of the cylinder be moved downward so that volume of cylinder becomes half, then what will be the effect in K_{c} at constant temeprature ?
A. K_{c} will increase
B. K_{c} will decrease
C. K_{c} has no relation with K_{p}
D. No effect in K_{c}

Answer: D
4. The reaction which is in dynamic equilibrium, ensured us, that the reaction is reversible. But if that the reaction is in equilibrium. The reaction quotient predict either the reversible reaction is in equilibrium or tries to achieve equilibrium. In those reactions which have not achieved equilibrium, we obtain reaction quotient Q_{c} in place of equilibrium constant (K_{c}) by substituting the concentration of reactant and product at the time, at whih we have to calculate the value of Q_{c}. To determine the direction at which the net reaction will proceed to achieve equilibrium, we compare values of Q_{c} and K_{c}. The three possible cases are shown as comparison of K_{c} and Q_{c} in the following figures.

Reactants
\longrightarrow Products

Equilibrium
\longrightarrow no net Change

Reactants \longleftarrow Products

Change in Gibbs free energy, i.e., ΔG is the driving force of any reaction.
For spontaneous reaction, $\Delta G=-v e$

For non-spontaneous reaction, $\Delta G=+v e$
For reaction at equilibrium , $\Delta G=0$
Thermodynamically, we know that
$\Delta G=\Delta G^{\circ}+R T \ln Q$, where Q is reaction quotient and $\Delta G^{\circ}=$ change in Gibbs energy at standard condition.

For equilibrium $A(g) \Leftrightarrow B(g)\left(K_{e q}=1.732\right)$ If the pressure of the system [varied by introducing a stream of $A(g)$ and $\mathrm{B}(\mathrm{g})$ is represented by the curve at constant temperature T .

Suppose $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is enclosed in a cylinder fitted with a movable piston which attains the following equilibrium
$\left.N_{2} O_{4}\right)(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$

Given that for the 10 atmosphere pressure of the equilibrium mixture, the content of NO_{2} is $8 \times 1^{5} \mathrm{ppm}$. if the piston of cylinder is moved upward in such a manner so that the volume of the gaseous mixture becomes double, then what will be new ppm of $\mathrm{NO}_{2}(\mathrm{~g})$ in the cylinder ? (Assuming that the temperature of the cylinder remains constant)
A. $8.2 \times 10^{5} \mathrm{ppm}$
B. $10^{5} \mathrm{ppm}$
C. $8.72 \times 10^{5} \mathrm{ppm}$
D. $7.4 \times 10^{5} \mathrm{ppm}$

Answer: C

- View Text Solution

5. The reaction which is in dynamic equilibrium, ensured us, that the reaction is reversible. But if that the reaction is in equilibrium. The reaction quotient predict either the reversible reaction is in equilibrium or tries to achieve equilibrium. In those reactions which have not
achieved equilibrium, we obtain reaction quotient Q_{c} in place of equilibrium constant (K_{c}) by substituting the concentration of reactant and product at the time, at whih we have to calculate the value of Q_{c}. To determine the direction at which the net reaction will proceed to achieve equilibrium, we compare values of Q_{c} and K_{c}. The three possible cases are shown as comparison of K_{c} and Q_{c} in the following figures.

Reactants
\longrightarrow Products

Equilibrium
\longrightarrow no net Change

Reactants Products

Change in Gibbs free energy, i.e., ΔG is the driving force of any reaction.
For spontaneous reaction, $\Delta G=-v e$
For non-spontaneous reaction , $\Delta G=+v e$
For reaction at equilibrium, $\Delta G=0$
Thermodynamically, we know that
$\Delta G=\Delta G^{\circ}+R T \ln Q$, where Q is reaction quotient and $\Delta G^{\circ}=$ change in Gibbs energy at standard condition.

For equilibrium $A(g) \Leftrightarrow B(g)\left(K_{e q}=1.732\right)$ If the pressure of the
system [varied by introducing a stream of $A(g)$ and $\mathrm{B}(\mathrm{g})$ is represented by the curve at constant temperature T .

Suppose the equilibrium system
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
$N_{2} O_{4}(g)$ is in a cylinder fitted with a movable piston. Which of the following statements is correct ?
A. If piston is pushed downwards at constant temperature, $Q_{c}>K_{c}$ and the direction shifts in the left direction.
B. If pistaon is pushed downwards at constant temperature $Q_{c}>K_{c}$ and the reaction shifts in the right direction.
C. If piston is released at constant temperature , $Q_{c}>K_{c}$ and the reaction shifts in the left direction.
D. If piston is released at a constant temperature, and the reaction shifts in the right direction.

Answer: A

- View Text Solution

6. The reaction which is in dynamic equilibrium, ensured us, that the reaction is reversible. But if that the reaction is in equilibrium. The reaction quotient predict either the reversible reaction is in equilibrium or tries to achieve equilibrium. In those reactions which have not achieved equilibrium, we obtain reaction quotient Q_{c} in place of equilibrium constant (K_{c}) by substituting the concentration of reactant and product at the time, at whih we have to calculate the value of Q_{c}. To determine the direction at which the net reaction will proceed to achieve equilibrium, we compare values of Q_{c} and K_{c}. The three possible cases
are shown as comparison of K_{c} and Q_{c} in the following figures.

Reactants
\longrightarrow Products

Equilibrium
\longrightarrow no net Change

Reactants
Products

Change in Gibbs free energy, i.e., ΔG is the driving force of any reaction.
For spontaneous reaction, $\Delta G=-v e$
For non-spontaneous reaction , $\Delta G=+v e$
For reaction at equilibrium , $\Delta G=0$
Thermodynamically, we know that
$\Delta G=\Delta G^{\circ}+R T \ln Q$, where Q is reaction quotient and $\Delta G^{\circ}=$ change in Gibbs energy at standard condition.

For equilibrium $A(g) \Leftrightarrow B(g)\left(K_{e q}=1.732\right)$ If the pressure of the system [varied by introducing a stream of $A(g)$ and $\mathrm{B}(\mathrm{g})$ is represented by the curve at constant temperature T .

For the equilibrium

n Butane $(g) \Leftrightarrow$ Isobutane $(g),\left(K_{e q}=1.732\right)$ If the pressure of the system (varied by introducing a stream of n butane and isobutane) is represented by the curve at constant temperature T .

At a particular point Q , which of the following statements holds good ?
A. The reaction moves in the backward direction.
B. The reaction movess in the forward direction.
C. The reaction is at equilibrium .
D. The data is insufficient to prodict

Answer: C

- View Text Solution

7. The reaction which is in dynamic equilibrium, ensured us, that the reaction is reversible. But if that the reaction is in equilibrium. The reaction quotient predict either the reversible reaction is in equilibrium or tries to achieve equilibrium. In those reactions which have not achieved equilibrium, we obtain reaction quotient Q_{c} in place of equilibrium constant (K_{c}) by substituting the concentration of reactant and product at the time, at whih we have to calculate the value of Q_{c}. To determine the direction at which the net reaction will proceed to achieve equilibrium, we compare values of Q_{c} and K_{c}. The three possible cases are shown as comparison of K_{c} and Q_{c} in the following figures.

Reactants
\longrightarrow Products

Equilibrium
\longrightarrow no net Change

Reactants Products

Change in Gibbs free energy, i.e., ΔG is the driving force of any reaction.
For spontaneous reaction, $\Delta G=-v e$
For non-spontaneous reaction,$\Delta G=+v e$

For reaction at equilibrium, $\Delta G=0$
Thermodynamically, we know that
$\Delta G=\Delta G^{\circ}+R T \ln Q$, where Q is reaction quotient and $\Delta G^{\circ}=$ change in Gibbs energy at standard condition.

For equilibrium $A(g) \Leftrightarrow B(g)\left(K_{e q}=1.732\right)$ If the pressure of the system [varied by introducing a stream of $A(g)$ and $\mathrm{B}(\mathrm{g})$ is represented by the curve at constant temperature T .

If the gaseous substances A, B, C, be in equilibrium as under :
$B(g) \Longleftrightarrow A(g)$
$10 \% \quad 60 \%$
$B(g) \Longleftrightarrow C(g)$
$10 \% \quad 30 \%$
then which of the following is the correct order of stability of A, B, and C in the equilibrium mixture ?
A. $A>B>C$
B. $C>B>A$
C. $A>C>B$
D. $B>A>C$

Answer: C

- View Text Solution

8. The reaction which is in dynamic equilibrium, ensured us, that the reaction is reversible. But if that the reaction is in equilibrium. The reaction quotient predict either the reversible reaction is in equilibrium or tries to achieve equilibrium. In those reactions which have not achieved equilibrium, we obtain reaction quotient Q_{c} in place of equilibrium constant (K_{c}) by substituting the concentration of reactant and product at the time, at whih we have to calculate the value of Q_{c}. To
determine the direction at which the net reaction will proceed to achieve equilibrium, we compare values of Q_{c} and K_{c}. The three possible cases are shown as comparison of K_{c} and Q_{c} in the following figures.

Reactants
\longrightarrow Products

Equilibrium
\longrightarrow no net
Change

Reactants \longleftarrow Products

Change in Gibbs free energy, i.e., ΔG is the driving force of any reaction.
For spontaneous reaction, $\Delta G=-v e$
For non-spontaneous reaction , $\Delta G=+v e$
For reaction at equilibrium , $\Delta G=0$
Thermodynamically, we know that
$\Delta G=\Delta G^{\circ}+R T \ln Q$, where Q is reaction quotient and $\Delta G^{\circ}=$ change in Gibbs energy at standard condition.

For equilibrium $A(g) \Leftrightarrow B(g)\left(K_{e q}=1.732\right)$ If the pressure of the system [varied by introducing a stream of $A(g)$ and $\mathrm{B}(\mathrm{g})$ is represented by the curve at constant temperature T .

For equilibrium system
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is in a cylinder which is fitted with movable piston. Assume that equilibrium partial pressure of $\mathrm{N}_{2} \mathrm{O}_{4}(g)$ and $\mathrm{NO}_{2}(g)$ are 10 and 14 atmospheres respectively. If the piston of the cylinder is pulled out in such way so that volume of the system than what will be the value of equilibrium partial pressure of the NO_{2} gas ?
A. 10.7 atm
B. 9.72 atm
C. 5.72 atm
D. 7.72 atm

Answer: D

- View Text Solution

Matrix Match Type Mcqs

1. Statements in Column I are labelled as A, B, C and D whereas the statements in Column II are labelled as p,q,r and s. The answers to these question are to be appropriately bubbled as illustrated in the following example.

If the correct matches are $A-p, A-S B-q, B-r, C-p, C-q$ and
$D-p$ then correctly labelled 4×4 matrix should look like the following

(Column I, , , , Column II), ((A) $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g), \Delta H=-9$ $\left((B) N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O_{2}(g), \Delta H=+180 k J,,,,(q) \mathrm{K}\right.$ decreases wi $((C) A(g)+B(g) \Leftrightarrow 2 C(g)+D .(g), \Delta H=+v e,,,,(\mathrm{r})$ Pressure has n

- View Text Solution

2.

Column I
Chemical equilirium
Physical equilibrium
Ionic equilibrium
Equilibrium constant

Column II
(p) Dynamic
(q) Reversible chamical change
(r) Reversible physical change
(s) Affected by change in temperature

- View Text Solution

Reason Assertion Type Mcqs

1. Assertion (A) : The equilibrium constant is fixed and characteristic for any given chemical reaction at a specified temperature.

Reason (R) : The composition of the final equilibrium mixture at a particular temperature depends upon the starting amount of reactants.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not a correct explanation of A.
C. A is true but R is false
D. A is false but R is true.

Answer: c

- Watch Video Solution

2. Assertion (A): Water boiling at $100^{\circ} \mathrm{C}$ at 1 atmospheric pressure in a beaker is not at equilibrium.

Reason (R): If refers to an open system.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not a correct explanation of A.
C. A is true but R is false
D. A is false but R is true.

Answer: a

- Watch Video Solution

3. Assertion (A) : The values of equilibrium constant of forward and backward reactions are same.

Reason (R) : Under particular set of conditions, the values of equilibrium constants of forward and backward reactions are reciprocal to each other.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not a correct explanation of A.
C. A is true but R is false
D. A is false but R is true.

Answer: d

- Watch Video Solution

4. Assertion (A) : Chemical equilibrium represents a state of a reversible reaction in which measurable properties of the system (pressure, concentration , colour etc.) become constant under the given set conditions.

Reason (R) : A chemical equilibrium is attained when the concentrations of the reactants become equal to the concentrations of the products.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not a correct explanation of A.
C. A is true but R is false
D. A is false but R is true.

Answer: c

5. Assertion (A) : The value of equilibrium constant tells us about the extent to which the reactants are converted into the products before the equilibrium is attained at that given temperature.

Reason (R) : A small value of K means only small quantities of reactant have undergone change into the products.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not a correct explanation of A.
C. A is true but R is false
D. A is false but R is true.

Answer: a

- Watch Video Solution

6. Assertion (A) : The equilibrium is not static but a dynamic one.

Reason (R) : The chemical equilibrium is an apparent state of rest in
which two opposing reactions are proceeding at the same rate.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not a correct explanation of A.
C. A is true but R is false
D. A is false but R is true.

Answer: a

- Watch Video Solution

7. Assertion (A) : The value of equilibrium constant alters with temperature.

Reason (R) : The forward and backward reactions differ in their activation energies.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not a correct explanation of A.
C. A is true but R is false
D. A is false but R is true.

Answer: a

- Watch Video Solution

8. Assertion (A) : For the reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
unit of $K_{c}=L^{2} \mathrm{~mol}^{-2}$

Reason (R) : For the reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)$
equilibrium constant $K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right] \times\left[\mathrm{H}_{2}\right]^{3}}$
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not a correct explanation of A.
C. A is true but R is false
D. A is false but R is true.

Answer: a

- Watch Video Solution

9. Assertion (A) : For gaseous reaction when $\Delta n=0, K_{p}=K_{c}$.
$\Delta n=$ change in the number of gas moles
Reason (R) : For gaseous reaction, $K_{p}=K_{c}(R T)^{\Delta n}$
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not a correct explanation of A.
C. A is true but R is false
D. A is false but R is true.

Answer: a

10. Assertion (A) : Addition of an inert gas to the equilibrium mixture has no effect on the state of equilibrium at constant volume or at constant pressure.

Reason (R) : The addition of inert gas at constant volume will not alter the concentrations of the reactants as well as products of a reaction mixture.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not a correct explanation of A.
C. A is true but R is false
D. A is false but R is true.

Answer: d

- Watch Video Solution

Ultimate Preparatory Package

1. For the equilibrium
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ at 298 K
and 5 atm. Pressure, increasing pressure to 50 atm, will (here K is the equilibrium constant)
A. decrease the yield of NH_{3} as well as the value of K
B. increase the yield of NH_{3} as well as the value of K
C. increase the yield of NH_{3}, but will not change the value of K
D. increase the yield of NH_{3}, but will decrease the value of K

Answer: C

- Watch Video Solution

2. External pressure on ice at $0^{\circ} \mathrm{C}$ is increased from 1 to 1.2 atm
A. It has no effect on the melting point of ice
B. It increases the melting point of water
C. It decreases the melting point of water
D. None of these

Answer: C

- Watch Video Solution

3. Flash evaporation is
A. evaporating a liquid in a flash of light
B. evaporating a liquid under reduced pressure
C. instant evaporationg by very strong heating with a laser
D. none of these

Answer: B

4. Freeze drying is
A. drying a wet substance by putting it in a fridge
B. freezing a substance and drying it mechanicallye
C. subliming off water at a temperature below the freezing point of water by reducing external pressure
D. none of these

Answer: C

- Watch Video Solution

5. Which of the following equilibrium will shift left on increasing temperature.
(i) $\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow+1 / 2 \mathrm{O}_{2}(g)$
(ii) $\quad \mathrm{CO}_{2}(g)+C(s) \Leftrightarrow \mathrm{CO}(g)$
(iii) $C(s$, diamond $) \Leftrightarrow C(s$, graphite $)$
A. Only (i)
B. Both (i) and (ii)
C. Only (iii)
D. None

Answer: C

- Watch Video Solution

6. Which of the following equilibrium will shift left on increasing pressure
(i) $\mathrm{CO}(g)+\mathrm{H}_{2}(g) \Leftrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)$
(ii) $\quad C(s$, diamond $) \Leftrightarrow C(s$, graphite $)$
(iii) $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
A. Only (i)
B. Only (iii)
C. Both (ii) and (iii)
D. None

Answer: C

- Watch Video Solution

7. A system at equilibrium is described by the equation
$S O_{2} C l_{2} \Leftrightarrow S O_{2}+C l_{2}, \Delta H=+v e$.

When $C l_{2}$ is added to the equilibrium mixture at constant volume, the temperture of the system
A. increases
B. decreases
C. does not change
D. first increases and then decreases.

Answer: A

8. For the reaction of XO with O_{2} to form XO_{2} the equilibrium constant at 398 K is $1.0 \times 10^{-4} \mathrm{~mol}^{-1}$. If 1.0 mol of XO and $2,0 \mathrm{~mol}$ of O_{2} are placed in a 1.0 L flask and allowed to come to equilibrium, the equilibrium concentration of XO_{2} will be
A. $1.4 \times 10^{-2} \mathrm{~mol}^{-1}$
B. $2.8 \times 10^{-2} \mathrm{molL}^{-1}$
C. $2.8 \times 10^{-3} \mathrm{molL}^{-1}$
D. none of these

Answer: A

Watch Video Solution

9. For the hypothetical reaction

$$
A+B \Leftrightarrow C+2 D
$$

equilibrium constant at 400 K is $1.8 \times 10^{-6} \mathrm{~mol} L^{-1}$
A. $9.5 \times 10^{-5} \mathrm{molL}^{-1}$
B. $9.5 \times 10^{-4} \mathrm{molL}^{-1}$
C. $4.75 \times 10^{-4} \mathrm{molL}^{-1}$
D. None of these

Answer: B

- View Text Solution

10. The theoretically computed equilibrium constant for the polymerisation of formaldehyde to glucose in aqueous solution: $6 \mathrm{HCHO} \Leftrightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is 1.0×10^{24} If 1 M -solution of glucose was taken, what should be the equilibrium concentration of formaldehyde?
A. $1.6 \times 10^{22} M$
B. $1.6 \times 10^{-4} M$
C. $6 \sqrt{6 \times 10^{4}} \times 10^{3} M$
D. None of these

Answer: B

- Watch Video Solution

11. $\mathrm{NH}_{4} \mathrm{ClO}_{4}$ crystallises in orthohombic structure with unit cell volume of $395 \AA^{3}$. The structure of $\mathrm{HClO}_{4} . \mathrm{H}_{2} \mathrm{O}$ will be
A. tetragonal will unit cell volume of $210 \AA^{3}$
B. cubic with unit cell volume of $78 \AA^{3}$
C. orthorhomibic with unit cell volume of $370 \AA^{3}$
D. the data given is not sufficient to find the structure.

Answer: C

- Watch Video Solution

12. Solubility of NaOH in water
A. increases with increase in temperature
B. decreases with increase in temperature
C. is not affected by a change in temperature
D. first increases and then decreases with temperature.

Answer: B

- Watch Video Solution

13. Solubility of N_{2} in water
A. increases with increase in temperature
B. decreases with increase in temperature
C. is not affected by a change in temperature
D. first increases and then decreases with temperature.

Answer: B

\square

