©゙doubtnut

CHEMISTRY

BOOKS - S DINESH \& CO CHEMISTRY (HINGLISH)

RATES OF REACTIONS AND CHEMICAL KINETICS

Multiple Choice

1. Which of the following statements is correct?
A. For reaction $x X \rightarrow y Y$

$$
\text { Rate }=\frac{1}{x} \frac{d[X]}{d t}=\frac{d[Y]}{d t}
$$

B. The parameter rate constant and specific reaction rate have
C. For any reaction the value of specific reaction rate is
independent of the initial concentrations of reactants
D. $E_{a}=E_{R}+E_{\text {Threshold }}$

Answer: C

- Watch Video Solution

2. For a hypothetical reaction, $A \rightarrow L$ the rate expression is
rate $=-\frac{d C_{A}}{d t}$
A. negative sign represents that rate is negative
B. negative sign pertains to the decrease in the concentrations
of reactants
C. negative sign indicates the attractive forces between
D. none of the above is correct

Answer: B

D Watch Video Solution

3. For a chemical reaction $2 X+Y \rightarrow Z$, the rate of appearance of Z is $0.05 \mathrm{~mol} L^{-1} \mathrm{~min}^{-1}$. The rate of disappearance of X will be
A. $0.05 \mathrm{~mol} L^{-1}$ per hour
B. $0.05 \mathrm{~mol} L^{-1}$ per min
C. $0.1 \mathrm{~mol} L^{-1} \mathrm{~min}^{-1}$
D. $0.25 \mathrm{~mol} L^{-1}$ per min

Answer: C

4. For the reaction: $2 \mathrm{HI} \rightarrow \mathrm{H}_{2}+I_{2}$, the expression $-\frac{d[H I]}{2 d t}$ represents
A. The rate of formation of HI
B. The rate of disappearance of HI
C. The instantaneous rate of the reaction
D. The average rate of reaction

Answer: C

- Watch Video Solution

5. The term $-d x / d t$ in the rate expresison refers to the
A. concentration of the reactant
B. increase in concentration of the reactants
C. instantaneous rate of the reaction
D. average rate of the reaction

Answer: C

- Watch Video Solution

6. Which of the following expression can be used to describe the instantaneous rate of the reaction ?
$2 A+B \rightarrow A_{2} B$
A. $-\frac{1}{2} \frac{d[A]}{d t}$
B. $-\frac{d[A]}{d t}$
C. $\frac{1}{2} \frac{d\left[A_{2} B\right]}{d t}$
D. $-\frac{1}{2} \frac{d[A]}{d t} \cdot \frac{d[B]}{d t}$

- Watch Video Solution

7. For the reaction $A+B \rightarrow C+D$ The variation of the concentration of the products is given by the curve

A. X
B. Y
C. W
D. Z

Answer: B

- Watch Video Solution

8. A gaseous reaction $A_{2}(g) \rightarrow B(g)+\frac{1}{2} C(g)$ shows increase in pressure form 100 mm to 120 mm in 5 min . What is the rate of disappearance of A_{2} ?
A. $4 \mathrm{~mm} \mathrm{~min}^{-1}$
B. $8 \mathrm{~mm} \mathrm{~min}^{-1}$
C. $16 \mathrm{~mm} \mathrm{~min}^{-1}$
D. $2 \mathrm{~mm} \mathrm{~min}^{-1}$

Answer: B

- Watch Video Solution

9. In the formation of sulphur trioxide by the contact process,
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{SO}_{3}(g)$
The rate of reaction is expressed as
$-\frac{d\left(O_{2}\right)}{d t}=2.5 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$
The rate of disappearance of $\left(\mathrm{SO}_{2}\right)$ will be-
A. $5.0 \times 10^{-4} \mathrm{~mol} L^{-1} s^{-1}$
B. $-2.25 \times 10^{-4} \mathrm{~mol} \mathrm{~L} L^{-1} \mathrm{~s}^{-1}$
C. $3.75 \times 10^{-4} \mathrm{~mol} L^{-1} s^{-1}$
D. $50.0 \times 10^{-4} \mathrm{~mol} L^{-1} s^{-1}$

Answer: A

- Watch Video Solution

10. In a catalytic reaction involving the formation of ammonia by Haber's process $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ the rate of appearance of
NH_{3} was measured as $2.5 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$ The rate of disappearance of H_{2} will be
A. $2.50 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$
B. $1.25 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$
C. $3.75 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$
D. $5.00 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$

Answer: C

- Watch Video Solution

11. For the reaction
$4 A+B \rightarrow 2 C+2 D$ which of the following statements is not correct:
A. Rate of dissapearance of B is $1 / 4$ th of rate of dissappearance of A
B. Rate of formation of C is $1 / 2$ the rate of consumption of A
C. Rate of apperance of D is $1 / 2$ the rate of dissappearance of B
D. Rate of formation of C and D are equal

Answer: C

- Watch Video Solution

12. For the hypothetical reaction,
$A \rightarrow$ Products, rate $=-k[A]$

The negative sign used in the rate expression indicate that
A. the rate of decreasing with time
B. the concentration of reactants decrease with time
C. there are repulsive forces between the reactants
D. the reaction is reversible.

Answer: B

- Watch Video Solution

13. Which of the following does not affect the rate of reaction?
A. Amount of the reactants taken
B. Physical state of the reactants
C. ΔH of reaction
D. Size of the vessel

Answer: C

14. The reactions $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$
$2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$
look to be identical, yet the first is faster than the second. The reason is that
A. the first reaction has lower enthalpy change than the second
B. the first reaction has lower internal energy change than the second
C. the first reaction has lower activation energy than the second
D. nitric oxide is less stable than carbon monoxide
15. If the reaction rate at a given temperature becomes slower
A. free energy of activation is higher
B. free energy of activation is lower
C. entropy changes
D. initial concentration of reactants remain constant

Answer: A

- Watch Video Solution

16. Point out the incorrect statement
A. Rate law is an experimental fact whereas law of mass action is a theoretical proposal
B. Rate law is always different from the expression of law of mass action
C. Rate law is more informative than law of mass action for the development of mechanism
D. Order of a reaction is equal to the sum of powers of concentration terms in the rate law

Answer: B

D Watch Video Solution

17. Consider the data given below for hypothetical reaction $A \rightarrow X$

Time (s) \quad Rate of the reaction $\left(m o l L^{-1} s^{-1}\right)$
$0 \quad 1.60 \times 10^{-2}$
$10 \quad 1.60 \times 10^{-2}$
20
1.60×10^{-2}
30
1.59×10^{-2}
From the above data, the order of reaction is:
A. 1
B. 0
C. 2
D. unpredictable

Answer: B

- Watch Video Solution

18. A following mechanism has been proposed for a reaction
$2 A+B \rightarrow D \rightarrow E$
$A+B \rightarrow C+D$ (slow)
$A+C \rightarrow E$ (fast)
The rate law expression for the reaction by RDS method is:
A. $r=k[A]^{2}[B]$
B. $r=k[A][B]$
C. $r=k[A]^{2}$
D. $r=k[A][C]$

Answer: B

- Watch Video Solution

19. For a chemical reaction $A \rightarrow B$, it is found that the rate of reaction doubles when the concentration of A is increased 4 times. What is the order of reaction ? Suggest the rate law also.
A. 4
B. 0
C. $1 / 2$
D. 1

Answer: C

- Watch Video Solution

20. For a hypothetical reaction
$A+B \rightarrow$ products, the law is $r=k[B][A]^{0}$ the order of
reaction is:
A. 0
B. 1
C. 2
D. 3

- Watch Video Solution

21. A hypothetical reaction $A_{2}+B_{2} \rightarrow 2 A B$ follows the mechanism as given below:
$A_{2} \Leftrightarrow A+A($ fast $)$
$A+B_{2} \rightarrow A B+B$ (slow)
$A+B \rightarrow A B$ (fast)
The order of the overall reaction is
A. 2
B. 1
C. $1 \frac{1}{2}$
D. 0

D Watch Video Solution

22. For hypothetical chemical reaction $A \rightarrow I$, it is found that the reaction is third order in A. What happens to the rate of reaction when the concentration of A is doubled?
A. Rate increases by a factor of 2
B. Rate decreases by a factor of 3
C. Rate increases by a factor of 8
D. Rate remains unaffected

Answer: C

- Watch Video Solution

23. What is the order of a reaction which has a rate expression, i.e. rate $=k[A]^{3 / 2}[B]^{-1}$?
A. $\frac{3}{2}$
B. $\frac{1}{2}$
C. zero
D. None of these

Answer: B

- Watch Video Solution

24. For which of the following reactions, the units of rate constant and rate of reaction are same?

A. first order reaction

B. Second order reaction
C. Third order reaction
D. Zero order reaction

Answer: D

- Watch Video Solution

25. If the first order reaction involves gaseous reactants and gaseous products the units of its rate are
A. atm
B. atm-sec
C. atm sec $^{-1}$
D. $a t m^{2} \mathrm{sec}^{2}$

Answer: C

- Watch Video Solution

26. For a single step reaction $X+2 Y \rightarrow$ Products, the molecularity is
A. 0
B. 2
C. 3
D. 1

Answer: C

(Watch Video Solution
27. A reaction $A_{2}+B_{2} \rightarrow 2 A B$ occurs by the following mechanism:
$A_{2} \rightarrow A+A$ â€ $€_{l}^{\prime}$ (slow)
$A+B_{2} \rightarrow A B+B \hat{a} €_{\mathrm{l}}^{\prime}$ (fast)
$A+B \rightarrow A B$ â $€_{l}^{\prime}$ (fast)
Its order would be
A. $3 / 2$
B. 1
C. zero
D. 2

Answer: B

28. If order of reaction $A+B \xrightarrow{h v} A B$ is zero. It means that
A. rate of reaction is independent of temperature
B. rate of reaction is independent of the concentration of the reacting species
C. the rate of formation of activated complex is zero
D. rate of decomposition of activated complex is zero

Answer: B

- Watch Video Solution

29. In acidic medium the rate of reaction between $\left(\mathrm{BrO}_{3}\right)^{-}$and
$B r^{-}$ions is given by the expression
$-\frac{d\left(\mathrm{BrO}_{3}^{-}\right)}{d t}=k\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$ it means
A. rate constant of overall reaction is $4 \mathrm{sec}^{-1}$
B. rate of reaction is independent of the conc. Of acid
C. the change in pH of the solution will not affect the rate
D. doubling the conc. Of H^{+}ions will increase the reaction rate by 4 times

Answer: D

- Watch Video Solution

30. For a reaction $p A+q B \rightarrow$ products, the rate law expression is
$r=k[A]^{l}[B]^{m}$ then
A. $(p+q)=(l+m)$
B. $(p+q)>(l+m)$
C. $(p+q)$ may or may not be equal to $(l+m)$
D. $(p+q) \neq(l+m)$

Answer: C

- Watch Video Solution

31. The chemical reaction $2 \mathrm{O}_{3} \xrightarrow{k_{1}} 3 \mathrm{O}_{2}$ proceeds as follows:
$O_{3} \stackrel{k_{e q}}{\Longleftrightarrow} O_{2}+O$ (fast)
$\mathrm{O}+\mathrm{O}_{3} \xrightarrow{k} 2 \mathrm{O}_{2}$ (slow)

What should be the rate law expresison ?
A. $r=k\left[O_{3}\right]^{2}$
B. $r=k\left[O_{3}\right]^{2}\left[O_{2}\right]^{-1}$
C. $r=k\left[O_{3}\right]\left[O_{2}\right]$
D. unperidictable

- Watch Video Solution

32. For the reaction
$\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{I}_{2} \xrightarrow{\mathrm{H}^{+}}$Products
The rate is governed by expression
$\frac{d x}{d t}=k[$ Acetone $]\left[H^{+}\right]$
The order w.r.t. I_{2} is
A. 0
B. 1
C. 2
D. 3

Answer: A
33. Which of the following rate laws has the overall order of the reaction equal to 0.5 ?
A. $r=k[x]^{1 / 2}[y]^{1 / 2}[z]^{1 / 2}$
B. $r=k[x]^{3 / 2}[y]^{-1}[z]^{0}$
C. $r=k[x][y]^{0}[z]^{-1}$
D. $r=k[x][y][z]$

Answer: B

- Watch Video Solution

34. The rate of certain hypothetical reaction
$A+B+C \rightarrow$ Products, is given by
$r=-\frac{d A}{d t}=k[A]^{1 / 2}[B]^{1 / 3}[C]^{1 / 4}$
The order of a reaction is given by
A. 1
B. $1 / 2$
C. 2
D. $13 / 12$

Answer: D

- Watch Video Solution

35. A chemical reaction involves two reacting species. The rate of reaction is directly proportional to the conc. Of one of them and inversely proportional to the concentration of the other. The order of reaction is
A. 1
B. 2
C. zero
D. unpredictable

Answer: C

- Watch Video Solution

36. Which one of the following is a reaction of zero order?
A. $\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}$
B. $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$
C. $P C l_{5} \rightarrow P C l_{3}+C l_{2}$
D. $2 \mathrm{FeCl}_{3}+\mathrm{SnCl}_{2} \rightarrow 2 \mathrm{FeCl}_{2}+\mathrm{SnCl}_{4}$

Answer: B

- Watch Video Solution

37. For an elementary reaction, $2 A+B \rightarrow C+D$ the molecularity is
A. 2
B. 1
C. 3
D. unpredictable

Answer: C

- Watch Video Solution

38. In the presence of acid, the initial concentration of cane sugar was reduced from 0.2 M to 0.1 M in 5 h and to 0.05 M in 10 h . The reaction must be of
A. zero order
B. first order
C. second order
D. fractional order

Answer: B

- Watch Video Solution

39. When the concentration of a reactant in reaction $A \rightarrow B$ is increased by 8 times but rate increases only 2 times, the order of the reaction would be
A. 2
B. $1 / 3$
C. 4
D. $1 / 2$

Answer: B

- Watch Video Solution

40. A zero order reaction is one whose rate is independent of
A. temperature of the reaction
B. presence of light
C. concentration of the reactants
D. the material of the vessel in which the reaction is carried out

- Watch Video Solution

41. The reactions of higher order are rare because
A. many body collisions involve very high activation energy
B. many body collisions have a very low probability
C. many body collisions are not energetically favoured
D. many body collisions can take place only in the gaseous phase

Answer: B

- Watch Video Solution

42. The rate constant of a reaction is 2.5×10^{-2} minutes $^{-1}$ The order of the reaction is
A. one
B. zero
C. two
D. three

Answer: A

- Watch Video Solution

43. The rate constant of a reaction has same dimensions as rate of reaction The reaction is of

A. zero order

B. 1st order
C. 2 nd order
D. None of these

Answer: A

- Watch Video Solution

44. The rate constant of a reaction is
$3.25 \times 10^{-3} \mathrm{~mol}^{-2}$ litre $^{2} \mathrm{~min}^{-1}$ The order of reaction is
A. zero
B. 1
C. 2
D. 3

- Watch Video Solution

45. The rate constant of $n^{\text {th }}$ order reaction has units :
A. litre ${ }^{1-n} \mathrm{~mol}^{1-n} \mathrm{sec}^{-1}$
B. mol^{1-n} litre $^{1-n} \mathrm{sec}$
C. $\mathrm{mol}^{1-n^{2}}$ litre $^{n^{2}} \mathrm{sec}^{-1}$
D. mol^{1-n} litre $^{n-1} \mathrm{sec}^{-1}$

Answer: D

- Watch Video Solution

46. Which of the following represent the expression for $\frac{3}{4}$ th life of first order reaction
A. $\frac{k}{2.303} \log 4 / 3$
B. $\frac{2.303}{k} \log 3 / 4$
C. $\frac{2.303}{k} \log 4$
D. $\frac{2.303}{k} \log 3$

Answer: C

- Watch Video Solution

47.99% at a first order reaction was completed in 32 min . When
will 99.9% of the reaction complete.
A. 50 min
B. 46 min
C. 49 min
D. 48 min

Answer: D

- Watch Video Solution

48. In a first order reaction, the concentration of the reactants is reduced to 25% in one hour. The half-life period of the reactions is
A. 2 hr
B. 4 hr
C. $1 / 2 h r$
D. $1 / 4 h r$

Answer: C

- Watch Video Solution

49. For a hypothetical reaction $A \rightarrow B$, the rate constant is
$0.25 s^{-1}$. If the concentration of A is reduced to half, then the value of rate constant is
A. $0.25 \mathrm{sec}^{-1}$
B. $0.30 \mathrm{sec}^{-1}$
C. $0.075 \mathrm{sec}^{-1}$
D. $2.25 \mathrm{sec}^{-1}$

Answer: A

- Watch Video Solution

50. If a is the initial concentration of reaction, then the half life period of a reaction of nth order is proportional to
A. a^{n}
B. a^{n-1}
C. a^{1-n}
D. a^{n+1}

Answer: C

- Watch Video Solution

51. If rate constant k for a hypothetical reaction $A \rightarrow B$ is $0.75 s^{-1}$ Which of the following statements (s) is (are) correct if $[A]_{0}$ is the initial concentration?
A. $t_{1 / 2}=\frac{[A]_{0}}{2 \times 0.75}$
B. $t_{1 / 2}=\frac{0.693}{0.75}$
C. $t_{1 / 2}=\frac{3}{2(0.75)[A]_{0}^{2}}$
D. None of these

Answer: B

- Watch Video Solution

52. For producing effective collisions, the colliding molecules must have
A. a certain minimum amount of energy
B. energy equal to or greater than threshold energy
C. proper orientation
D. threshold energy and proper orientation both

- Watch Video Solution

53. The rate of reaction increases by the increase of temperature because
A. collision frequency is increased
B. energy of products decreases
C. fraction of molecules possessing energy $\geq E_{T}$ (threshold energy) increases
D. mechanism of a reaction is changed

Answer: C

- Watch Video Solution

54. The Activation energy for a chemical reaction mainly depends upon
A. temperature
B. nature of reacting species
C. collision frequency
D. mechanism of a reaction is changed

Answer: B

- Watch Video Solution

55. The rate constant of the reaction increases by
A. increasing the temperature
B. increasing the concentration of reactants
C. carrying out the reaction for a longer period
D. None is correct

Answer: A

- Watch Video Solution

56. The rate of a certain reaction increases by 2.3 times when the temperature is raised form $300 K$ to $310 K$. If k is the rate constant at $300 K$, then the rate constant at $310 K$ will be equal to
A. 2 k
B. k
C. $2.3 k$
D. $3 k^{2}$

Answer: C

- Watch Video Solution

57. The activation energy for the forward reaction $X \rightarrow Y$ is $60 \mathrm{kJmol}^{-1}$ and ΔH is $-20 \mathrm{kJmol}^{-1}$. The activation energy for the reverse reaction is
A. $40 \mathrm{kJmol}^{-1}$
B. $60 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $80 \mathrm{kJmol}^{-1}$
D. $20 \mathrm{kJmol}^{-1}$

Answer: C

- Watch Video Solution

58. Which of the following expressions give the effect of temperature on the rate constant?
A. $\ln A=R T \ln E_{a}-\ln k$
B. $\ln k=\ln A-E_{a} / R T$
C. $k=A E_{a} / R T$
D. None of these

Answer: B

- Watch Video Solution

59. The effect of temperature on reaction rate is given by
A. Clausius Clapeyron equation
B. Arrhenius equation
C. Gibb's Helmholtz equation
D. Kirchoff's equation

Answer: B

- Watch Video Solution

60. In the accompanied diagram E_{R}, E_{P} and E_{X} represents the energy of the reactants products and activated complex respectively Which of the following is the activation energy for the
backward reaction?

A. A
B. B
C. C
D. D

Answer: A
61. If E_{f} and E_{r} are the activation energies of forward and backward reactions and the reaction is known to be exothermic, then
A. $E_{f}<E_{b}$
B. $E_{f}>E_{b}$
C. $E_{f}=E_{b}$
D. Data insufficient to predict

Answer: A

- Watch Video Solution

62. The large increase in the rate of the reaction due to rise in
temperature is due to
A. increase in collision frequency
B. lowering of activation energy
C. increase in the number of effective collisions
D. None is correct

Answer: C

- Watch Video Solution

63. The activation energy for a hypothetical reaction $A \rightarrow X$ is $12.49 \mathrm{kcalmol}^{-1}$. If temperature is raised to 305 form 295 K , the reaction rate increased by $0.002 \mathrm{kcalL}^{-1} \mathrm{~mol}^{-1}$ is almost equal to
A. $\approx 60 \%$
B. $\approx 50 \%$
C. $\approx 100 \%$
D. unpredictable

Answer: C

- Watch Video Solution

64. The plot of $\log k$ vs $1 / T$ helps to calculate
A. Energy of activation
B. Rate constant of the reaction
C. Order of the reaction
D. Energy of activation as well as the frequency factor

Answer: D

65. The correct expression for Arrhenius equation showing the effect of temperature on the rate constant is
A. $\frac{k_{2}}{k_{1}}=\frac{E_{a}}{2.303 R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$
B. $\ln \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$
C. $k=A e^{E_{a} / R T}$
D. $\log \frac{k_{2}}{k_{1}}=\frac{E_{a}}{2.303}\left(\frac{T_{1} T_{2}}{T_{2}-T_{1}}\right)$

Answer: B

- Watch Video Solution

66. The temperature coefficient of a reaction is:
A. ratio of the rate constants of the reaction at two different
B. ratio of the rate constants of the reaction at any two different temepratures
C. ratio of the rate constants at $308 \mathrm{~K} \& 298 \mathrm{~K}$
D. None of these

Answer: C

- Watch Video Solution

67. The activation energy for most of the reaction is approximately $50 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ The value of temperature coefficient for such reaction will be
A. ≈ 2
B. ≈ 3
C. 1
D. >4

Answer: A

- Watch Video Solution

68. Which of the following explains the increase of the reaction rate by catalyst?
A. Catalyst decrease the rate of backward reaction so that the rate of forward reaction increases
B. Catalyst provides extra energy to reacting molecules so that they may produce effective collisions
C. Catalyst provides an alternative path of lower activation energy to the reactants
D. catalyst increases the number of collisions between the reacting molecules

Answer: C

- Watch Video Solution

69. Point out the false statement
A. A catalyst does not differenctiate between the forward and backward reactions
B. Low activation energy is associated with fast
C. A catalyst changes the equilibrum point of the reaction
D. The activated state represents highly unstable state.

Answer: C

70. What specific name can be given to the following sequence of
steps:
$H g+h v \rightarrow H g^{*}$
$H g^{*}+H_{2} \rightarrow H_{2}^{*}+\mathrm{Hg}$
A. Fluorescence
B. Phoshorescence
C. Photosensitisation
D. Chemiluminescence

Answer: D

- Watch Video Solution

71. Which of the following is posing danger to the ozone atmosphere?
A. IR radiations
B. X-radiations
C. Chlorofluromethane
D. CO_{2}

Answer: C

- Watch Video Solution

72. The photochemical reactions are those which
A. take place at high temperatures
B. are involved in photography
C. are intiated by visible light only
D. requires photons to interact with chemical species.

Answer: D

- Watch Video Solution

73. In fire flies the flashes are profuced due to the slow combustion of a protein luciferin in air and moisture. The phenomenon is known as
A. photochemical change
B. photocombustion
C. chemiluminescence
D. None of the above

- Watch Video Solution

74. Which of the following does not apply to catalytic reactions?
A. Capability to initiate the non-feasible reaction
B. Specificity
C. Lowering the activation energies of forward as well as backward reaction
D. Constancy in value of ΔH

Answer: A

- Watch Video Solution

75. Phosphrous undergoes slow combustion and glows in dark.

The precess is called
A. photochemical change
B. Chemiluminiscence
C. Fluorescence
D. Phosphorescence

Answer: B

- Watch Video Solution

76. Among the following reactions, the fastest one is
A. burning of coal
B. rusting of iron in moist air
C. conversion of monoclinic sulphur to rhombic sulphur
D. precipitation of silver chloride by mixing silver naturee and sodium chloride solutions.

Answer: D

- Watch Video Solution

77. Burning of coal is represented as $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$.

The rate of this reaction is increased by
A. decrease in the concentration of oxygen
B. powdering the lumps of coal
C. decreasing the temperature of coal
D. providing inert atmosphere

Answer: B

- Watch Video Solution

78. For an exothermic chemical process occurring in two as
(i) $A+B \rightarrow X$ (slow)
(ii) $X \rightarrow A B$ (fast)

The process of the reaction can be best described by
(A)

A.
B.
(B)

(C)

C.
D. All are correct

Answer: B

79. In a hypothetical reaction $2 X+Y \rightarrow M+N$. If the concentration of Y is kept constant but that of X is tripled, the rate of reaction then will be
A. increased by 3 times
B. increased by 6 times
C. increased by 9 times
D. unpredictable

Answer: D

- Watch Video Solution

80. Which of the following do not affect the rate of reaction ?
A. Temperature
B. Concentration of reactants
C. ΔH of reaction
D. Catalyst

Answer: C

D Watch Video Solution

81. Consider a gaseous reaction, the rate of which is given by $k[A][B]$. The volume of the reaction vessel containing these gases is suddenly reduced to $1 / 4$ th of the initial volume. The rate of the reaction as compared with original rate is
A. 1/16 times
B. 16 times
C. 1/8 times
D. 8 times

Answer: B

- Watch Video Solution

82. When ethyl acetate was hydrolyzed in the presence of 0.1 MHCl , the constant was found to be $5.40 \times 10^{-5} \mathrm{~s}^{-1}$. But when $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ was used for hydrolyiss, the rate constant found to be $6.20 \times 10^{-5} s^{-1}$. form these we can say that
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is stronger than HCl
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCl are both of the same strength
C. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is weaker than HCl
D. The data is insufficient to compare that strength of HCl and

$$
\mathrm{H}_{2} \mathrm{SO}_{4} .
$$

Answer: D

- Watch Video Solution

83. How will the rate of reaction
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{SO}_{3}(g)$ change if the volume of the reaction vessel is halved?
A. It will be $1 / 6$ th of its initial value
B. It will be $1 / 4$ th of its initial value
C. It will be 8 times of its initial value
D. It will be 4 times of its initial value

Answer: C

- Watch Video Solution

84. The half-life periof for catalystic decompoistion of $A B_{3}$ at 50 mm is found to be 4 hr and at 100 mm it is 2.0 hr . The order of reaction is
A. 3
B. 1
C. 2
D. 0

Answer: C

- Watch Video Solution

85. $A \rightarrow$ Product, $[A]_{0}=2 M$. After 10 min reaction is 10% completed. If $\frac{d[A]}{d t}=k[A]$, then $t_{1 / 2}$ is approximately
B. 69.3 min
C. 66.0 min
D. 0.0693 min

Answer: C

- Watch Video Solution

86. For a zero order reaction, the plot of concentration, vs time is linear with
A. + ve slope and zero intercept
B. - ve slope and zero intercept
C. + ve slope and non-zero inertcept
D. $-v e$ slope and non-zero intercept

- Watch Video Solution

87. In a certain gaseous reaction between A and B,
$A+3 B \rightarrow A B_{3}$. The initial rate are reported as follows:
$[A] \quad[B] \quad$ Rate
$0.1 M \quad 0.1 M \quad 0.002 M s^{-1}$
$0.2 M \quad 0.1 M \quad 0.002 M s^{-1}$
$0.3 M \quad 0.2 M \quad 0.008 M s^{-1}$
$0.4 M \quad 0.3 M \quad 0.018 M s^{-1}$
The rate law is
A. $r=k[X][Y]^{3}$
B. $r=k[X]^{0}[Y]^{2}$
C. $r=k[X][Y]$
D. $r=k[X]^{0}[Y]^{3}$

Answer: B

- Watch Video Solution

88. For an elementary reaction , $X(g) \rightarrow Y(g)+Z(g)$
the half life period is 10 min . In what period of time would the concentration of X be reduced to 10% of original concentration?
A. 20 min
B. 33 min
C. 15 min
D. 25 min

Answer: B

- Watch Video Solution

89. For a reaction $2 A+B \rightarrow C+D$, the active mass of B is kept constant but tht of A is tripled. The rate of reaction will
A. decrease by 3 times
B. increase by 9 times
C. increase by 3 times
D. unpredictable

Answer: D

- Watch Video Solution

90. Which plots will give the value of activation energy?
A. $k v s T$
B. $1 / k v s T$
C. $\ln k v s \frac{1}{T}$
D. $C v s T$

Answer: C

- Watch Video Solution

91. The rate constant of forward and backward reactions for certain hypothetical reaction are 1.1×10^{-2} and 1.5×10^{-3}, respectively. The equilibrium constant of the reaction is
A. 7.33
B. 0.7333
C. 73.3
D. 733

- Watch Video Solution

92. Rate constant $k=1.2 \times 10^{3} \mathrm{~mol}^{-1} \mathrm{Ls}^{-1} \quad$ and $E_{a}=2.0 \times 10^{2} \mathrm{kJmol}^{-1}$. When $T \rightarrow \infty:$
A. $2.0 \times 10^{2} \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $1.2 \times 10^{3} \mathrm{~mol}^{-1} L s^{-1}$
C. $1.2 \times 10^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
D. $2.4 \times 10^{3} \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$

Answer: B

- Watch Video Solution

93. If initial concentration is doubled, the time for half-reaction is also doubled, the order of reaction is
A. zero
B. first
C. second
D. third

Answer: A

- Watch Video Solution

94. If the concentration of a reactant ' A ' is doubled and the rate of its reaction increase by a factor of 2 , the order of reaction with respect to ' A ' is
A. 1 st
B. zero
C. 2 nd
D. 3 rd

Answer: A

- Watch Video Solution

95. The rates of a certain reaction $(d c / d t)$ at different times are as follows

Time \quad Rate (mole litre ${ }^{-1} \mathrm{sec}^{-1}$)

0	2.8×10^{-2}
10	2.78×10^{-2}
20	2.81×10^{-2}
30	2.79×10^{-2}

The reaction is
A. First order
B. Second order
C. Zero order
D. Third order

Answer: C

- Watch Video Solution

96. The decomposition of $N_{2} O_{5}$ is a first order reaction represented by
$\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}+\frac{1}{2} \mathrm{O}_{2}$
After 15 minutes the volume of O_{2} produced is 9 cc and at the end of the reaction 35 cc The rate constant is equal to
A. $\frac{1}{15} \frac{\ln 35}{44}$
B. $\frac{1}{15} \frac{\ln 44}{55}$
C. $\frac{1}{15} \frac{\ln 44}{26}$
D. $\frac{1}{15} \frac{\ln 35}{26}$

- Watch Video Solution

97. 75% of a first-order reaction was completed in 32 minutes, when was 50% of the reaction completed?
A. 16 minutes
B. 24 minutes
C. 8 minutes
D. 4 minutes

Answer: A

- Watch Video Solution

98. The half life of a certain first order reaction is 60 minutes How long will it take for 80% reaction to occur?
A. 139.39 min
B. 19.9 min
C. 199.39 hrs
D. 40 min

Answer: A

- Watch Video Solution

99. 75% of a first-order reaction was completed in 32 minutes, when was 50% of the reaction completed?

A. 16 min

B. 32 min
C. 8 min
D. 4 min

Answer: A

- Watch Video Solution

100. A first order reaction is 50% complete in 10 minutes The rate constant of the reaction is
A. $0.347 \mathrm{~min}^{-1}$
B. $0.0693 \mathrm{~min}^{-1}$
C. $0.013 \mathrm{~min}^{-1}$
D. $0.5 \mathrm{~min}^{-1}$

Answer: B

- Watch Video Solution

101. The rate constant of a first order reaction is $2.0 \times 10^{-5} s^{-1}$ and the initial concentration is $0.10 \mathrm{~mol} L^{-1}$. The initial rate is
A. $2.0 \times 10^{-6} \mathrm{~mol} L^{-1} s^{-1}$
B. $1.0 \times 10^{-6} \mathrm{~mol} L^{-1} s^{-1}$
C. $1.5 \times 10^{-6} \mathrm{~mol} L^{-1} s^{-1}$
D. $0.5 \times 10^{-6} \mathrm{~mol} L^{-1} s^{-1}$

Answer: A

- Watch Video Solution

102. The initial rate of a second order reaction is $4 \times 10^{-4} \mathrm{~mol} L^{-1} s^{-1}$ and the initial concentration of the reaction substance is $0.20 \mathrm{~mol} L^{-1}$ the value of rate constant is
A. $0.02 \mathrm{Lmol}^{-1} s^{-1}$
B. $0.03 \mathrm{Lmol}^{-1} s^{-1}$
C. $0.01 \mathrm{Lmol}^{-1} s^{-1}$
D. $0.4 L \mathrm{~mol}^{-1} s^{-1}$

Answer: C

- Watch Video Solution

103. For the ozonolysis of pentene in $C C l_{4}$ at 300 K $C_{5} H_{10}+O_{3} \rightarrow C_{5} H_{10} O_{3}$ the following data is given
$\left[C_{5} H_{10}\right]$
$1.0 \times 10^{-2} \quad 2.8 \times 10^{-3} \quad 2.2$
$0.5 \times 10^{-2} \quad 2.8 \times 10^{-3}$
1.1
$1.0 \times 10^{-2} \quad 5.6 \times 10^{-3} \quad 4.4$

The over all order of reaction is
A. 2
B. 3
C. 1
D. zero

Answer: A

D Watch Video Solution

104. For a reaction $a A+b B \rightarrow$ products the following data were found
$[A] \quad[B]$ rate
$0.10 \quad 0.10 \quad 1 \times 10^{-2}$
$0.20 \quad 0.20 \quad 8 \times 10^{-2}$
$0.10 \quad 0.20 \quad 2 \times 10^{-2}$
The overall order of reaction is
A. 3
B. 1
C. zero
D. 2

Answer: A

(D) Watch Video Solution

105. In a first order reaction the concentration of the reactant is reduced from $0.6 \mathrm{~mol} L^{-1}$ to $0.2 \mathrm{~mol} L^{-1}$ in 5 minutes the rate constant of the reaction is
A. $0.11 \mathrm{~min}^{-1}$
B. $0.22 \mathrm{~min}^{-1}$
C. 0.33 min $^{-1}$
D. $0.44 \min ^{-1}$

Answer: B

- Watch Video Solution

106. The first order reaction has a specific rate $10^{-3} s^{-1}$ How much time will it take for 10 g of the reactant to reduce to 5 g ?
A. 360 s
B. 180 s
C. 90 s
D. 270 s

- Watch Video Solution

107. The rate constant for a reaction is $2 \times 10^{-2} s^{-1}$ at 300 K and $8 \times 10^{-2} s^{-1}$ at 340 K The energy of activation of the reaction is
A. $14.695 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $29.39 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $44 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $22 \mathrm{kJmol}^{-1}$

Answer: B

- Watch Video Solution

108. For the reaction, $2 A+B+C \rightarrow A_{2} B+C$

The rate $=k[A][B]^{2}$ with $K=2.0 \times 10^{-6} M^{-2} s^{-1}$. Calculate the initial rate of the reaction when $[A]=0.1 M,[B]=0.2 M$ and $[C]=0.8 M$. IF the rate of reverse reaction is negligible then calculate the rate of reaction after $[A]$ is reduced to $0.06 M$.
A. $2.59 \times 10^{-9} \mathrm{Ms}^{-1}$
B. $3.89 \times 10^{-9} \mathrm{Ms}^{-1}$
C. $1.3 \times 10^{-9} M^{-1}$
D. none of these

Answer: B

109. The decomposition of NH_{3} on platinum surface is zero order reaction the rate of production of H_{2} is $\left(k=2.5 \times 10^{-4} M s^{-1}\right)$
A. $2.5 \times 10^{-4} M s^{-1}$
B. $1.25 \times 10^{-4} \mathrm{Ms}^{-1}$
C. $3.75 \times 10^{-4} \mathrm{Ms}^{-1}$
D. $5.0 \times 10^{-4} M s^{-1}$

Answer: C

- Watch Video Solution

110. The decomposition of NH_{3} on finely divided platinum follows
the rate expression
Rate $=\frac{k_{1}\left[\mathrm{NH}_{3}\right]}{1+k_{2}\left[\mathrm{NH}_{3}\right]}$
it is a first order reaction when concentration of NH_{3} is
A. very low
B. very high
C. moderate
D. never

Answer: A

- Watch Video Solution

111. Consider the following hypothetical reactions
$A \underset{k_{2}}{\stackrel{k_{1}}{\Longrightarrow}} B, B \underset{\text { slow }}{\stackrel{k_{3}}{\longrightarrow}} C$
The overall rate constant k_{θ} of the reaction is
A. $\frac{k_{3} k_{1}}{k_{2}}$
B. $\frac{k_{1} k_{2}}{k_{3}}$
C. $\frac{k_{1}}{k_{2} k_{3}}$
D. $\frac{k_{1}-k_{2}}{k_{3}}$

Answer: A

- Watch Video Solution

112. If during the fermentation of sugar solution that is 0.12 M the concentration of sugar is reduced to 0.06 M in 10 h and to 0.03 M in 20 h the order of reaction is
A. 1
B. $3 / 2$
C. 2
D. None of these

Answer: A

113. The decomposition of $\mathrm{N}_{2} \mathrm{O}$ into N_{2} and O in the presence of gaseous argon follows second order kinetics with
$k=\left(5.0 \times 10^{11} L \mathrm{~mol}^{-1} s^{-1}\right) e^{-29000 K / T}$
The activation energy for the reaction E_{a} is
A. $5.0 \times 10^{11} \mathrm{k} \mathrm{cal}$
B. 29000 k cal
C. 58 k cal
D. -29000 cal

Answer: C

114. The formation of $\mathrm{H}_{2} \mathrm{O}_{2}$ in the upper atmosphere follows the mechanism

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{O} \rightarrow 2 \mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}
$$

$\Delta H=72 \mathrm{~kJ} \mathrm{~mol}^{-1}, E_{a}=77 \mathrm{~kJ} \mathrm{~mol}^{-1}$
E_{a} for the backward process is
A. $149 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $-149 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-5 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: C

- Watch Video Solution

115. Correct order for a first order reaction is
A. $T_{50}<T_{a v}<T_{75}$
B. $T_{50}<T_{75}<T_{a v}$
C. $T_{a v}<T_{50}<T_{75}$
D. $T_{a v}=T_{50}<T_{75}$

Answer: A

- Watch Video Solution

116. Half life period of a first order reaction is 10 minutes. Starting with 10 M , rate after 20 minutes is
A. $0.0693 \mathrm{M} \mathrm{min}^{-1}$
B. $0.0693 \times 2.5 \mathrm{M} \mathrm{min}^{-1}$
C. $0.0693 \times 5 \mathrm{M} \mathrm{min}^{-1}$
D. $0.0693 \times 10 \mathrm{Mmin}^{-1}$

- Watch Video Solution

117. The rate of formation of SO_{3} in the reaction
$2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$
is $100 \mathrm{~g} \mathrm{~min}^{-1}$ Hence rate of disappearance of O_{2} is
A. $50 \mathrm{~g} \mathrm{~min}^{-1}$
B. $100 \mathrm{~g} \mathrm{~min}^{-1}$
C. $20 \mathrm{~g} \mathrm{~min}^{-1}$
D. $40 \mathrm{~g} \mathrm{~min}^{-1}$

Answer: C

- Watch Video Solution

118. The rate constant of a reaction is $0.0693 \mathrm{~min}^{-1}$. Starting with 10 mol , the rate of the reaction after 10 min is
A. $0.693 M \mathrm{~min}^{-1}$
B. $0.0693 \times 2 \mathrm{Mmin}^{-1}$
C. $0.0693 \times 5 M_{m i n^{-1}}$
D. $0.693 \times(5)^{2} M \mathrm{~min}^{-1}$

Answer: C

- Watch Video Solution

119. For a given reaction, presence of catalyst reduces the energy of activation by 2 kcal at $27^{\wedge}(@) \mathrm{C}^{\prime}$. Thus rate of reaction will be increased by:

$$
\text { A. } 20 \text { times }
$$

B. 14 times
C. 28 times
D. 2 times

Answer: C

- Watch Video Solution

120. Number of natural life times $\left(T_{a v}\right)$ required for a first order reaction to achieve 99.9 \% level of comletion is
A. 2.3
B. 6.9
C. 9.2
D. 0.105

- Watch Video Solution

121. In the following simultaneous reaction

Cyclohexane formed is
A. 12%
B. 38%
C. 50%
D. 24%

Answer: D

122. When temperature of a reaction mixture is changed from T_{1} to T_{2} half life is found to decrease thus,
A. $T_{2}>T_{1}$ and the reaction is endothermic
B. $T_{2}>T_{1}$ and the reaction is exothermic
C. $T_{1}>T_{2}$ and the reaction is endothermic
D. $T_{2}>T_{1}$ and the reaction can be endothermic or exothermic

Answer: D

- Watch Video Solution

123. Half life period of a first order reaction is 100 min . After 144.3
min concentration of the reactant is reduced to of the original
A. $1 / e$
B. $1 / e^{2}$
C. 10%
D. 20%

Answer: A

- View Text Solution

124. $A \rightarrow B, k_{A}=10^{15} e^{-2000 / T}$
$C \rightarrow D, k_{c}=10^{14} e^{-1000 / T}$
Temperature at which $k_{A}=k_{c}$ is
A. 1000 K
B. 2000 K
C. $(2000 / 2.303) K$
D. $(1000 / 2.303) K$

Answer: D

- Watch Video Solution

125.
(A)

Half life id independent of the concentration of A. After 10 min volume of N_{2} gas is 10 L and after complete reaction is 50 L . Hence, the rate constant is
A. $\frac{2.303}{10} \log 1.25 \min ^{-1}$
B. $\frac{2.303}{10} \log 5 \mathrm{~min}^{-1}$
C. $\frac{2.303}{10} \log 5 \min ^{-1}$
D. $\frac{2.303}{10} \log 4 \min ^{-1}$

Answer: B

- Watch Video Solution

126. For a reation: $A \rightarrow$ Product,
rate law is $-\frac{d[A]}{d t}=K[A]_{0}$.
The concentration of A left after time t when $t=\frac{1}{K}$ is:
A. $\frac{[A]_{0}}{e}$
B. $[A]_{0} e$
C. $\frac{[A]_{0}}{e^{2}}$
D. $\frac{1}{[A]_{0}}$

Answer: A
127. If $\frac{d x}{d t}=k\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] n$
and rate becomes 100 times when pH changes from 2 to 1 Hence order of reactions is
A. 1
B. 2
C. 3
D. 0

Answer: B

- Watch Video Solution

Revision Question

1. The rate of reaction $A+B \rightarrow$ Product is given by the equation $r=k[A][B]$. If B is taken in large excess, the order of the reaction would be
A. 2
B. 1
C. 0
D. unpredictable

Answer: B

- Watch Video Solution

2. If the initial concentration of reactant in certain reaction is double, the half-life periof of the reaction doubles, the order of a reaction is
A. Zero
B. First
C. Second
D. Third

Answer: A

- Watch Video Solution

3. Which of the following statement about the catalyst is/are true?
A. A catalyst accelerates the rate of reaction by bringing down the energy of activation
B. A catalyst does not participate in reaction mechanism
C. A catalyst makes the reaction more feasible by making ΔG
more negative
D. A catalyst makes equilibrium constant more favourable for forward reaction

Answer: A

- Watch Video Solution

4. In a first order reaction, 75% of the reactants disappeared in $1.386 h r$. What is the rate constant ?
A. $3.6 \times 10^{-3} s^{-1}$
B. $2.7 \times 10^{-4} s^{-1}$
C. $72 \times 10^{-3} s^{-1}$
D. $1.8 \times 10^{-3} s^{-1}$

Answer: B

- Watch Video Solution

5. A substance ' ' A ' ' decomposes in solution following the first order kinetics. Flask I contains $1 L$ of $1 M$ solution of A and falsk II contains 100 mL of $0.6 M$ solution. After $8 h r$, the concentration, of A in flask I becomes $0.25 M$. What will be the time for concentration of A in flask $I I$ to become $0.3 M$?
A. 0.4 hr
B. 2.4 hr
C. 4.0 hr
D. unpredictable as rate constant is not given

Answer: C

6. Half life period of 2 nd order reaction is
A. proportional to initial concentration of reactants
B. independent of initial concentration of reactants
C. inversely proportional to initial concentration of reactants
D. inversely proportional to square of initial concentration of reactants

Answer: C

(Watch Video Solution

7. The oxidation of oxalic acid by acidified KMnO_{4} is an example of autocatalyiss. It is due to which of the following ?
A. $S O_{4}^{2-}$
B. MnO_{4}^{2-}
C. $M n^{2+}$
D. K^{+}

Answer: C

- Watch Video Solution

8. Diazonium salt decomposes as
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}^{+} \mathrm{Cl}^{-} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{N}_{2}$. At $0^{\circ} \mathrm{C}$, the evolution of N_{2} becomes two times faster when the initial concentration of the salt is doubled. Therefore, it is
A. a first order reaction
B. a second order reaction
C. Independent of initial concentration of reactant
D. a zero order reaction

Answer: A

- Watch Video Solution

9. The hydrolysis of ester in alkaline medium is a
A. 1 st order reaction with molecularity 1
B. 2nd order reaction with molecularity 2
C. 1 st order reaction with molecularity 2
D. 2 nd order reaction with molecularity 1

Answer: B

10. The conversion of $A \rightarrow B$ follows second-order kinetics. Doubling the concentration of A will increase the rate of formation of B by a factor
A. 2
B. $1 / 2$
C. 4
D. $1 / 4$

Answer: C

- Watch Video Solution

11. The rate constant for a first order reaction whose half life is 480 sec , is :
A. $1.44 \times 10^{-3} \mathrm{sec}^{-1}$
B. $1.44 \times \mathrm{sec}^{-1}$
C. $0.72 \times 10^{-3} \mathrm{sec}^{-1}$
D. $2.88 \times 10^{-3} \mathrm{sec}^{-1}$

Answer: A

(Watch Video Solution

12. Select the law that corresponds to data shown for the following reaction $A+B \rightarrow$ Products

Exp	$[A]$	$[B]$	Initial rate
1	0.012	0.035	0.1
2	0.024	0.070	0.8
3	0.024	0.035	0.1
4	0.012	0.070	0.8

A. rate $=k[B]^{3}$
B. rate $=k[B]^{4}$
C. rate $=k[A][B]^{3}$
D. rate $=k[A]^{2}[B]^{2}$

Answer: A

- Watch Video Solution

13. The reaction $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ is
$r=k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$
A. Zero order reaction
B. First order reaction
C. Second order reaction
D. Third order reaction

Answer: B
14. A chemical reaction has catalyst X. Hence X
A. does not affect equilibrium constant of the reaction
B. decreases rate constant of the reaction
C. reduces enthalpy of reaction
D. increases activation energy of the reaction

Answer: A

- Watch Video Solution

15. The raction $2 \mathrm{FeCl}_{3}+\mathrm{SnCl}_{2} \rightarrow 2 \mathrm{FeCl}_{2}+\mathrm{SnCl}_{4}$ is an example of
A. first order reaction
B. second order reaction
C. third order reaction
D. None of these

Answer: C

- Watch Video Solution

16. The phenomenon of emission of visible light as a result of chemical change is known as
A. Chemiluminescence
B. Fluorescence
C. Phosphorescence
D. Photosensitisation

- Watch Video Solution

17. Rate constant in case of first order reaction is
A. inversely proportional to the concentration units
B. Independent of concentration units
C. directly proportional to the concentration units
D. inversely proportional to the square of the concentration units

Answer: B

- Watch Video Solution

18. For a zero order reaction $A \rightarrow B, t_{1 / 2}$ is (k is rate constant)
A. $\frac{[A]_{0}}{2 k}$
B. $\frac{\ln 2}{k}$
C. $\frac{1}{k[A]_{0}}$
D. $\frac{\ln 2}{[A]_{0} k}$

Answer: A

- Watch Video Solution

19. For a chemical reaction $A \rightarrow B$, it is found that the rate of reaction doubles when the concentration of A is increased 4 times. What is the order of reaction ? Suggest the rate law also.
A. Two
B. One
C. Half
D. Zero

Answer: C

- Watch Video Solution

20. For the first order reaction with rate contant k, which expression gives the half life period ? (Initail conc. = a)
A. $\frac{\ln 2}{k a}$
B. $\frac{1}{k a}$
C. $\frac{0.693}{k}$
D. $\frac{3}{2 k a^{2}}$

Answer: C

- Watch Video Solution

21. The rate constant is given by the equation $k=P . Z e^{-E / R T}$.

Which factor should register a decrease for the reaction to proceed more rapidly ?
A. T
B. Z
C. E
D. P

Answer: C

- Watch Video Solution

22. For a reaction of type $A+B \rightarrow$ products it is observed that doubling concentration of A causes the reaction rate to be four times as great, but doubling amount of B does not affect the rate, The rate equation is
A. Rate $=k[A][B]$
B. Rate $=\frac{k}{4}[A]^{2}$
C. Rate $=k[A]^{2}[B]^{0}$
D. rate $=k[A]^{2}[B]^{2}$

Answer: C

- Watch Video Solution

23. For the reaction $A \rightarrow B$, the rate law expression is rate $=k[A]$. Which of the following statements is incorrect ?
A. The reaction follows first order kinetics
B. The $t_{1 / 2}$ of reaction depends on initial concentration of reactants
C. k is constant for the reaction at a constant temperature
D. The rate law provides a simple way of predicting the conc. Of reactants and products at any time after the start of the reaction.

Answer: B

- Watch Video Solution

24. The reaction
$\mathrm{N}_{2} \mathrm{O}_{5}$ (in CCl_{4} solution) $\rightarrow 2 \mathrm{NO}_{2}$ (solution) $+\frac{1}{2} \mathrm{O}_{2}(g)$ is of first order in $N_{2} O_{5}$ with rate constant $6.2 \times 10^{-1} \mathrm{~s}^{-1}$. What is the value of rate of reaction when $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=1.25$ mole ?
A. $7.75 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
B. $6.35 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$
C. $5.15 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
D. $3.85 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$

Answer: A

- Watch Video Solution

25. 75% of a first-order reaction was completed in 32 minutes, when was 50% of the reaction completed?
A. 16 minutes
B. 8 minutes
C. 4 minutes
D. 32 minutes

Answer: A

- Watch Video Solution

26. Th Arrhenius equation expressing the effect of temperature on the rate constant of the reaction is
A. $k=e^{-E_{a} / R T}$
B. $k=\frac{E_{a}}{R T}$
C. $k=\log _{e} \frac{E_{a}}{R T}$
D. $k=A \cdot e^{-E_{a} / R T}$

Answer: D

- Watch Video Solution

27. The first order rate constant for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ is $6.2 \times 10^{-4} \mathrm{sec}^{-1}$. The $t_{1 / 2}$ of decomposition is
A. 1117.2
B. 111.7
C. 223.4
D. 160.9

Answer: A

- Watch Video Solution

28. A reaction is 50 \% complete in 2 hours and 75 \% complete in 4 hours the order of reaction is
A. 0
B. 1
C. 2
D. 3

Answer: C

- Watch Video Solution

29. Velocity constant of a reactin at 290 K was found to be
3.2×10^{-3}. At 300 K it will be
A. 1.28×10^{-2}
B. 9.6×10^{-3}
C. 6.4×10^{-3}
D. 3.2×10^{-4}

Answer: C

- Watch Video Solution

30. If reaction between A and B to give C shows first order kinetics in A and second order in B, the rate equation can be written as
A. Rate $=k[A][B]^{1 / 2}$
B. Rate $=k[A]^{1 / 2}[B]$
C. Rate $=k[A][B]^{2}$
D. Rate $=k[A]^{2}[B]$

Answer: C

- Watch Video Solution

31. For a first order reaction, the half-life period is independent of
A. initial concentration
B. cube root of initial concentration
C. first power of final concentration
D. square root of final concentration

Answer: A

- Watch Video Solution

32. A catalyst increases rate of reaction by
A. decreasing enthalpy
B. decreasing interval energy
C. decreasing activation energy
D. increasing activation energy

Answer: C

- Watch Video Solution

33. For a first order reaction, obatin a positive slope, we need to plot $[A]$ in the concentration of reactant $A B$
A. $\log _{10}[A] v s t$
B. $-\log _{e}[A] v s t$
C. $\log _{10}[A] v s \log t$
D. $[A] v s t$

Answer: B

34. Given $t_{1 / 2}=3 \mathrm{hr}$. Then how many gram of a substance will remain after 18th hr from 300 gram of a substance
A. 4.6 g
B. 5.6 g
C. 9.2 g
D. 6.4 g

Answer: A

- Watch Video Solution

35. For the reaction $A+B \rightarrow C+D$, doubling the concentration of both the reactants increases the reaction rate by

8 times and doubling the initial concentration of only B ismply doubles the reaction rate. What is the rate law for the reaction?
A. $r=k[A][B]$
B. $r=k[A]^{2}[B]$
C. $r=k[A][B]^{2}$
D. $r=k[A]^{1 / 2}[B]^{1 / 2}$

Answer: B

- Watch Video Solution

36. The effect of temperature on reaction rate is given by
A. Clasisen-Clapeyron equation
B. Arrhenius equation
C. Gibbs-Helmholtz equation
D. Kirchoff's equation

Answer: B

- Watch Video Solution

37. The decomposition of a substance follows first order kinetics. If its conc. Is reduced to $1 / 8$ th of its initial value, in 24 minutes, the rate constant of decomposition process is
A. $1 / 24 \mathrm{~min}^{-1}$
B. $0.692 / 24 \mathrm{~min}^{-1}$
C. $2.303 / 24 \log (1 / 8) \min ^{-1}$
D. $\frac{2.303}{24} \log (8 / 1) \min ^{-1}$

Answer: D

- Watch Video Solution

38. For a first order reaction, the plot of $\log k$ against $1 / T$ is a straight line. The slope of the line is equal to
A. $\frac{E_{a}}{R}$
B. $\frac{2.303}{E_{a} \times R}$
C. $\frac{E_{a}}{2.303}$
D. $\frac{-E_{a}}{2.303 R}$

Answer: D

- Watch Video Solution

39. $1 \mathrm{dm}^{3}$ of $2 \mathrm{MCH}_{3} \mathrm{COOH}$ is mixed with $1 \mathrm{dm}^{3}$ of 3 M ethanol to form ester. The decrease in the initial rate if each solution is diluted with an equal volume of water would be
A. 2 times
B. 4 times
C. 0.25 times
D. 0.5 times

Answer: C

- Watch Video Solution

40. $\mathrm{ROOR}{ }^{\prime}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{HCl}} \mathrm{RCOOH}+\mathrm{R}^{\prime} \mathrm{OH}$ Itbtgt What type of reaction is this?
A. 2nd order
B. unimolecular
C. psedo unimolecular
D. 3rd order

Answer: C

- Watch Video Solution

$\mathbf{4 1 . 7 5}$ \% of first order reaction is complete in 30 minutes. What is the time required for 93.75% of the reaction (in minutes) ?
A. 45
B. 120
C. 90
D. 60

Answer: D

- Watch Video Solution

42. For a given reaction, $t_{1 / 2}=1 / k a$. The order of this reaction is
A. 1
B. 0
C. 3
D. 2

Answer: D

- Watch Video Solution

43. The conversion of $A \rightarrow B$ follows second-order kinetics.

Doubling the concentration of A will increase the rate of
formation of B by a factor
A. 4
B. 2
C. $1 / 4$
D. $1 / 2$

Answer: A

- Watch Video Solution

44. The activation energy of a reaction can be determined by
A. changing the concentration of reactants
B. evaluating rate constant at standard temperature
C. evaluating rate constant at two different temperatures
D. by doubling conc. Of reactants,

Answer: C

45. For the reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+O_{2}$ rate of reaction and rate constant are 1.02×10^{-4} and $3.4 \times 10^{-5} \mathrm{sec}^{-1}$ respectively.

The concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ at that time will be
A. $1.732 \mathrm{~mol} \mathrm{~L}^{-1}$
B. $3 \mathrm{~mol} \mathrm{~L}^{-1}$
C. $1.02 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
D. $3.2 \times 10^{5} \mathrm{~mol} \mathrm{~L}^{-1}$

Answer: B

46. The time taken for 90% of a first order reaction to be completed is approximately
A. 1.1 times that of half life
B. 2.2 times that of half life
C. 3.3 times that of half life
D. 4.4 times that of half life

Answer: C

- Watch Video Solution

47. The half-life period for the first order reaction is 693 seconds.

The rate constant of this reaction would be
A. $0.1 \mathrm{sec}^{-1}$
B. $0.01 \mathrm{sec}^{-1}$
C. $0.001 \mathrm{sec}^{-1}$
D. $0.0001 \mathrm{sec}^{-1}$

Answer: C

- Watch Video Solution

48. The reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5} \Leftrightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{4}+O_{2}$ is
A. Biomolecular and second order
B. Unimolecular and first order
C. Bimolecular and first order
D. Biomolecular and zero order

Answer: C

49. Collision theory is application to
A. First order reactions
B. Zero order reactions
C. Bimolecular reactions
D. Intramolecular reactions

Answer: C

- Watch Video Solution

50. A chemical reaction was carried out at 300 K and 280 K . The rate constants were found to be k_{1} and k_{2} respectively. Then
A. $k_{2}=4 k_{1}$
B. $k_{2}=2 k_{1}$
C. $k_{2}=0.25 k_{1}$
D. $k_{2}=0.5 k_{1}$

Answer: C

- Watch Video Solution

51. Half-life of a reaction is found to be inversely proportional to the cube of its initial concentration. The order of reaction is
A. 4
B. 3
C. 5
D. 2

- Watch Video Solution

52. The order of reaction is decided by
A. temperature
B. mechanism of reaction as well as relative concentration of reactants
C. molecularity
D. pressure

Answer: B

- Watch Video Solution

53. A graph plotted between $\log k$ versus $1 / T$ for calculating activation energy is shown by

(A)
A.

B.
(B)

C.
(C)

D Watch Video Solution

54. Units of rate constant of first and zero order reactions in terms of molarity M are respectively:
A. $\sec ^{-1}, M \sec ^{-1}$
B. $\sec ^{-1}, M$
C. $M \sec ^{-1}, \sec ^{-1}$
D. M, sec^{-1}

Answer: A

- Watch Video Solution

55. Which of the following is correct for a first order reaction?
A. $t_{1 / 2} \propto a$
B. $t_{1 / 2} \propto 1 / a$
C. $t_{1 / 2} \propto a^{0}$
D. $t_{1 / 2} \propto \frac{1}{a^{2}}$.

Answer: C

- Watch Video Solution

56. $2 A \rightarrow B+C$. It would be a zero-order reaction when
A. the rate of reaction is proportional to square of conc. A
B. the rate of reaction remains same at any concentration of A
C. the rate remains unchanged at any concentration of B and C
D. the rate of reaction doubles if conc. Of B is increased to double.

Answer: B

- Watch Video Solution

57. If $3 A \rightarrow 2 B$, then the rate of reaction of $+\frac{d B}{d t}$ is equal to
A. $-\frac{3}{2} \frac{d[A]}{d t}$
B. $-\frac{2}{3} \frac{d[A]}{d t}$
C. $-\frac{1}{3} \frac{d[A]}{d t}$
D. $+2 \frac{d[A]}{d t}$

Answer: B

- Watch Video Solution

58. When we increase the temperature, the rate of reaction increases because of
A. more number of collisions
B. decrease in mean free path
C. more number of energetic collisions
D. less number of energies collisions

Answer: C

- Watch Video Solution

59. In Arrhenius plot, intercept is equal to

$$
\text { A. }-E_{a} / R
$$

B. $\ln A$
C. $\ln K$
D. $\log _{10} a$

Answer: B

- Watch Video Solution

60. The rate of reaction is doubled for $10^{\circ} \mathrm{C}$ rise in temperature.

The increase in the reaction rate as a result of temperature rise from $10^{\circ} C$ to $100^{\circ} C$ is
A. 112
B. 512
C. 1400
D. 614

Answer: B

- Watch Video Solution

61. For the reaction:

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \xrightarrow[\text { Sunlight }]{ } 2 \mathrm{HCl}
$$

taking place on water. Find the order of reaction.
A. 0
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

62. The temperature dependence of rate constant (k) of a chemical reaction is written in terms of Arrhenius equation, $\left.k=A e^{-E_{a} / R T}\right)$ Activation energy $\left(E_{a}\right)$ of the reaction can be calculate by plotting
A. $\log k v s \frac{1}{\log T}$
B. $k v s T$
C. $k v s \frac{1}{\log T}$
D. $\log k v s \frac{1}{T}$

Answer: D

- Watch Video Solution

63. If the rate of the reaction is equal to the rate constant, the order of the reaction is
A. 3
B. 0
C. 1
D. 2

Answer: B

- Watch Video Solution

64. The rate law for a reaction between the substances A and B is given by rate $=K[A]^{n}[B]^{m}$. On doubling the concentration of A and having the concentration of B, the ratio of the new rate to the earlier rate of the reactio will be:
A. $\frac{1}{2^{(m+n)}}$
B. $(m+n)$
C. $(n-m)$
D. $2^{(n-m)}$

Answer: D

D Watch Video Solution

65. Temperature coefficient of a reaction is 2 . When temperature is increased from $30^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$, rate of the reaction increases by
A. 500 times
B. 250 times
C. 128 times
D. 100 times

Answer: C

66. For the reaction $A+B \rightarrow C+D$, if concentratiton of A is doubled without altering the concentration of B, the rate gets doubling, If the concentration of B is increased by nine times without altering the concentration of A , the rate gas tripled. The order of reaction is
A. $1 \frac{1}{2}$
B. $1 \frac{1}{3}$
C. 2
D. 1

Answer: A

67. The potential energy diagram for a reaction $R \rightarrow P$ is given by

ΔH° of the reaction compounds to the energy
A. a
B. b
C. c
D. $a+b$

Answer: C

68. Rate of 1st order depends upon
A. time
B. Concentration of reactants
C. temperature
D. All of these

Answer: D

- Watch Video Solution

69. For a first order reaction, units of rate constant are
A. time $^{-1}$
B. $\mathrm{L} \mathrm{mol}^{-1} s^{-1}$
C. $\mathrm{mol} \mathrm{L}^{-1} s^{-1}$
D. $\mathrm{mol} \mathrm{L}^{-1}$

Answer: A

- Watch Video Solution

70. The unit of second order reaction rate constant is
A. $\mathrm{lit}^{-1} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{sec}^{-1}$
B. $l i t^{2} . m o l^{2} . \mathrm{sec}^{-1}$
C. lit. mol $^{-1}$. sec^{-1}
D. $\sec ^{-1}$

Answer: C

71. The half-life of a reaction is halved as the initial concentration of the reaction is doubled. The order of the reaction is
A. 0.5
B. 1
C. 2
D. 0

Answer: C

- Watch Video Solution

72. The rate constant of a reaction at temperature 200 K is 10 times less than the rate constant at 400 K . What is the activation energy $\left(E_{a}\right)$ of the reaction ? ($\mathrm{R}=$ gas constant $)$
A. 1842.4 R
B. 921.2 R
C. 460.6 R
D. 230.3 R

Answer: B

- Watch Video Solution

73. Which one of the following equation is correct forr the reaction : $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$?
A. $\frac{3 d\left[H_{2}\right]}{d t}=\frac{2 d\left[N_{2}\right]}{d t}$
B. $\frac{2 d\left[N_{2}\right]}{d t}=\frac{1}{3} \frac{d\left[H_{2}\right]}{d t}$
C. $\frac{2 d\left[\mathrm{NH}_{3}\right]}{d t}=\frac{-3\left[\mathrm{H}_{2}\right]}{d t}$
D. $\frac{3 d\left[N H_{3}\right]}{d t}=\frac{-2 d\left[H_{2}\right]}{d t}$

- Watch Video Solution

74. For a chemical reaction Can never be a fraction
A. order
B. half-life
C. molecularity
D. rate constant

Answer: C

- Watch Video Solution

75. 75% of a first-order reaction was completed in 32 minutes, when was 50% of the reaction completed?
A. 16 minutes
B. 24 minutes
C. 8 minutes
D. 4 minutes

Answer: A

- Watch Video Solution

76. The time taken for the completion of $3 / 4$ of a first order reaction is

$$
\text { A. }(2.303 / k) \log 3 / 4
$$

B. $(2.303 / k) \log 4$
C. $(2.303 / k) \log 1 / 4$
D. $(2.303 / 0.75) \log k$

Answer: B

- Watch Video Solution

77. The rate constant k, for the reaction $\mathrm{N}_{2} \mathrm{O}_{5}(g) \rightarrow 2 \mathrm{NO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)$ is $2.3 \times 10^{-2} s^{-1}$. Which equation given below describes the change of $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ with time ? $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}$ and $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{t}$ correspond to concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ initially and at time, t ?
A. $\left[N_{2} O_{5}\right]_{1}=\left[N_{2} O_{5}\right]_{0}+k t$
B. $\left[N_{2} O_{5}\right]_{0}=\left[N_{2} O_{5}\right]_{t} e^{k t}$
C. $\log _{10}\left[N_{2} O_{5}\right]_{t}=\log _{10}\left[N_{2} O_{5}\right]_{0}-k t$
D. $\ln \frac{\left[N_{2} O_{5}\right]_{0}}{\left[N_{2} O_{5}\right]_{t}}=k t$

Answer: D

- Watch Video Solution

78. The rate of first-order reaction is $1.5 \times 10^{-2} \mathrm{Mmin}^{-1}$ at $0.5 M$ concentration of reactant. The half-life of reaction is
A. 7.53 min
B. 0.383 min
C. 23.1 min
D. 8.73 min

Answer: C

79. The velocity constant of a reaction at 290 K was found to be $3.2 \times 10^{-3} s^{-1}$. When the temperature is raised to 310 K , it will be about
A. 6.4×10^{-3}
B. 3.2×10^{-4}
C. 9.6×10^{-3}
D. 1.28×10^{-2}

Answer: D

- Watch Video Solution

80. The reaction, $2 \mathrm{SO}_{2(\mathrm{~g})}+O_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}$ is carried out in a $1 \mathrm{dm}^{3}$ and $2 \mathrm{dm}^{3}$ vessel separately. The ratio of the reaction
velocity will be
A. 1:8
B. 1: 4
C. $4: 1$
D. $8: 1$

Answer: D

- Watch Video Solution

81. The activation energy for most of the reactions is approximately $50 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The value of temperature coefficient
for such reactions is
A. approx. 2
B. approx. 3
C. <1
D. >4

Answer: A

- Watch Video Solution

82. Which is correct about zero order reaction ?
A. Rate of reaction depends on decay constant
B. Rate of reaction is independent of concentration
C. Unit of rate constant is conc ${ }^{-1}$
D. Unit of rate constant is conc ${ }^{-1}$ time $^{-1}$.

Answer: B

83. The half-life of 2 sample are 0.1 and 0.4 seconds. Their respctive concentration are 200 and 50 respectively. What is the order of the reaction
A. 0
B. 2
C. 1
D. 4

Answer: B

- Watch Video Solution

84. In a first order reaction, the concentration of the reactant decreases form $0.8 M$ to $0.4 M$ in 15 min . The time taken for the concentration to change form $0.1 M$ to $0.025 M$ is
A. 30 minutes
B. 60 minutes
C. 7.5 minutes
D. 15 minutes

Answer: A

- Watch Video Solution

85. The rate equation for the reaction $2 A+B \rightarrow C$ is found to be: rate $=k[A][B]$. The correct statement in relation of this reaction is that
A. Unit of k must be s^{-1}
B. Value of k is dependent of the initial concentration of A and
C. Rate of formation of c is twice the rate of disappearance of A
D. $t_{1 / 2}$ is a constant

Answer: B

- Watch Video Solution

86. For the reaction : $2 A+B \rightarrow C+D$, measurement of the rate of the reaction at varying concentrations are given below

Trial No.	$[\mathrm{A}]$	$[\mathrm{B}]$	$\operatorname{rate}\left(\mathrm{m} \mathrm{mole}^{-1} \mathrm{~S}^{-1}\right)$
1	0.010	0.010	2.5
2	0.010	0.020	5.0
3	0.030	0.020	45.0

The rate law is therefore
A. rate $=k[A]^{2}[B]$
B. rate $=k[A][B]^{2}$
C. rate $=k[A][B]$
D. rate $=k[A]^{2}[B]^{2}$

Answer: A

- Watch Video Solution

87. A first-order reaction was started with a decimolar solution of the reactant, 8 minutes and 20 seconds later its concentration was found to $M / 100$. So the rate constant of the reaction is
A. $2.303 \times 10^{-5} \mathrm{sec}^{-1}$
B. $2.303 \times 10^{-4} \mathrm{sec}^{-1}$
C. $2.606 \times 10^{-3} \mathrm{sec}^{-1}$
D. $2.606 \times 10^{-5} \mathrm{sec}^{-1}$

- Watch Video Solution

88. A substance undergoes first order decomposition. The decomposition follows two parallel first order reaction as:

and
$K P_{1}=1.26 \times 10^{-4} \mathrm{sec}^{-1}$
$K_{2}=3.80 \times 10^{-5} \mathrm{sec}^{-1}$

The percentage distribution of B and C are:

$$
\text { A. } 75 \text { \% B and } 25 \text { \% C }
$$

B. 80 \% B and 20 \% C
C. 60 \% B and 40 \% C
D. 76.83 \% B and 23.17 \% C

Answer: D

- Watch Video Solution

89. For reaction $a A \rightarrow x P$, when $[A]=2.2 m M$, the rate was found to be $2.4 m M s^{-1}$. On reducing concentration of A to half, the rate changes to $0.6 m M s^{-1}$. The order of reaction with respect to A is
A. 1.5
B. 2
C. 2.5
D. 3

Answer: B

D Watch Video Solution

90. An endothermic reaction with high activation energy for the forward reaction is given by the diagram
(A)

A.

(C)

Answer: C

- Watch Video Solution

91. The energy of activations for forward and backward change for an endothermic reaction, $X \rightarrow Y$ are E_{f} and E_{b} respectively. Which of the following is correct ?
A. $E_{b}<E_{f}$
B. $E_{b}>E_{f}$
C. $E_{b}=E_{f}$
D. there is no definite relation between E_{b} and E_{f}

- Watch Video Solution

92. A reaction involiving two different reactants can never be:
A. unimoleular reaction
B. First order reaction
C. Second order reaction
D. bimolecular reaction

Answer: A

- Watch Video Solution

93. According to law of mass action rate of a chemical reaction is proportional to
A. concentration of reactants
B. molar concentration of reactants
C. concentration of products
D. molar concentration of products

Answer: B

- Watch Video Solution

94. For a first-order reaction $A \rightarrow B$ the reaction rate at reactant concentration of $0.10 M$ is found to be $2.0 \times 10^{-5} \mathrm{~mol} L^{-1} s^{-1}$. The half-life period of the reaction is
A. 220 s
B. 30 s
C. 300 s
D. 347 s

Answer: D

- Watch Video Solution

95. The experimental rate law for a reaction
$2 A+2 B \rightarrow$ Product, is
$V \propto C_{A} C_{B}^{1 / 2}$. If the concentration of both A and B are doubled the rate of reaction increases by a factor of
A. $\sqrt{2}$
B. 2
C. 2. $\sqrt{2}$
D. 4

Answer: C

- Watch Video Solution

96. What is the time required for a first order reaction to be 99% complete, compared to the time taken for the reaction to be 90% complete?
A. There is no change
B. Time taken is dounble
C. Time taken is triple
D. The time required is half the initial value

- Watch Video Solution

97. During the decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ to give oxygen, $48 \mathrm{gO} \mathrm{O}_{2}$ is formed per minute at a certain point of time. The rate of formation of water at this point is
A. $0.75 \mathrm{~mol} \mathrm{~min}^{-1}$
B. $1.5 \mathrm{~mol} \mathrm{~min}^{-1}$
C. $2.25 \mathrm{~mol} \mathrm{~min}^{-1}$
D. $3.0 \mathrm{~mol} \mathrm{~min}^{-1}$

Answer: D

- Watch Video Solution

98. If a homogeneous catalytic reaction can take place through three alternative paths as depicted below, the catalytic efficiency of $P, Q R$ representing the relative case would be

A. $P>Q>R$
B. $Q>P>R$
C. $P>R>Q$
D. $R>Q>P$

- Watch Video Solution

99. Observe the following reaction

$$
2 A+B \rightarrow C
$$

The rate of formation of C is $2.2 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$. What is
the value of $-\frac{d[A]}{d t}\left(\right.$ in $\left.\mathrm{mol} \mathrm{L}^{-1} \min ^{-1}\right)$?
A. 2.2×10^{-3}
B. 1.1×10^{-3}
C. 4.4×10^{-3}
D. 5.5×10^{-3}

Answer: C

- Watch Video Solution

100. Half life of a radioactive substance is 6 minute. If its initial amount is 32 g , then amount present after 18 minute is
A. 4 g
B. 8 g
C. 16 g
D. 2 g

Answer: A

- Watch Video Solution

101. The rate law for a reaction between A and B is given by rate
$=k[A]^{n}[B]^{m}$. On doubling the concentration of A and halving
the concentration of B, the ratio of the new rate to the earlier rate of the reaction becomes

> A. $\frac{1}{2^{m+n}}$
> B. $(m+n)$
> C. $(n-m)$
> D. $2^{(n-m)}$

Answer: B

- Watch Video Solution

102. Unit of the constant of zero order reaction is
A. time ${ }^{-1}$
B. $\mathrm{mol} \mathrm{L}^{-1} s^{-1}$
C. $\mathrm{L} \mathrm{mol}^{-1} s^{-1}$
D. $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$

- Watch Video Solution

103. Arrhenius equation is
A. $\Delta H=\Delta E+\Delta n R T$
B. $\Delta G=\Delta H-T \Delta S$
C. $k=A e^{-E_{a} / R T}$
D. None of the above

Answer: C

- Watch Video Solution

104. $t_{1 / 4}$ can be taken as the time taken for concentration of reactant to drop to $.^{3} / 4$ of its initial value. If the rate constant for a first order reaction is K, then $t_{1 / 4}$ can be written as:
A. $0.10 / k$
B. $0.29 / k$
C. $0.69 / k$
D. $0.75 / k$

Answer: B

- Watch Video Solution

105. The rate of reaction between two A and B decreases by factor 4 if the concentration of reactant B is doubled. The order of this reaction with respect to B is
A. 2
B. -1
C. 1
D. -2

Answer: D

- Watch Video Solution

106. For a first-order reaction $A \rightarrow B$ the reaction rate at reactant concentration of $0.10 M$ is found to be $2.0 \times 10^{-5} \mathrm{~mol} L^{-1} s^{-1}$. The half-life period of the reaction is
A. 300 s
B. 30 s
C. 220 s
D. 347 s

Answer: D

- Watch Video Solution

107. The rate constant for a chemical reaction has unit litre $\mathrm{mol}^{-1} \mathrm{sec}^{-1}$. Find the order of the reaction.
A. 0 order
B. 1st order
C. 2nd order
D. 3rd order

Answer: C

108. Which of the following reaction ends in finite time ?
A. 0 order
B. 1st order
C. 2nd order
D. 2rd order

Answer: A

- Watch Video Solution

109. For the reaction $A+B \rightarrow C+D$, if concentratiton of A is doubled without altering the concentration of B, the rate gets doubling, If the concentration of B is increased by nine times without altering the concentration of A , the rate gas tripled. The order of reaction is
A. 2
B. 1
C. $3 / 2$
D. $4 / 3$

Answer: C

- Watch Video Solution

110. The following homogeneous gaseous reactions were experimentally found to be second order overall
(i) $2 \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{O}_{2}$
(ii) $3 \mathrm{O}_{2} \rightarrow 2 \mathrm{O}_{3}$
(iii) $\mathrm{N}_{2} \mathrm{O}_{3} \rightarrow \mathrm{NO}+\mathrm{NO}_{2}$
(iv) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}$

Which of these are most likely to be elementary reaction that occur in one step ?
A. (iii) only
B. (i) and (iii)
C. (i) and (iv)
D. (iii) and (iv)

Answer: C

- Watch Video Solution

111. An exothermic chemical reaction proceeds by two stages reactants $\xrightarrow{\text { Stage I }}$ intermdediate $\xrightarrow{\text { Stage II }}$ products, The activation energy of stage I is $50 \mathrm{kJmol}^{-1}$. The overall enthalpy change of the reaction is $-100 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Which diagram could represent the energy level diagram for the reaction ?

A.
(B) 100

Progress of
B.
reaction
(C) 150
C.

D.

Answer: C

Watch Video Solution

112. Reactant 'A' (initial concentration, a) reacts according to zero order kinetics, the time takews for the completion of the reaction is
A. k / a
B. $a / 2 k$
C. ka
D. $2 k / a$

Answer: C

- Watch Video Solution

113. The rate of reaction $A+2 B \rightarrow 3 C$ gets increased by 72 times when the concentration of A is tripled and that of B is
doubled. The order of the reaction with present to A and B are.....

And Respectively.
A. 1,2
B. 2,3
C. 3,2
D. 2,2

Answer: B

- Watch Video Solution

114. A reaction $P \rightarrow Q$ is completed 25% in $25 \mathrm{~min}, 50 \%$ completed in 25 min if $[\mathrm{P}]$ is halved, 25% completed in 50 min if $[P]$ is doubled. The order of reaction is
A. 1
B. 2
C. 0
D. 3

Answer: C

- Watch Video Solution

115. Rate constant of a reaction (k) is 175 litre $^{2} \mathrm{~mol}^{-2} \mathrm{sec}^{-1}$. What is the order of reaction?
A. First
B. Second
C. Third
D. Zero

Answer: C

- Watch Video Solution

116. One mole of $N_{2} O_{4}(g)$ at 300 K is kept in a closed container under one atmosphere. It is heated to 600 K when 20% by mass of
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ decomposes to $\mathrm{NO}_{2}(\mathrm{~g})$. The resultant pressure is:
A. 1.2 atm
B. 2.4 atm
C. 2.0 atm
D. 1.0 atm

Answer: B

- Watch Video Solution

117. The rate constant of a second order reactions

$2 A \rightarrow \quad$ Products, is $10^{-4} \mathrm{lit} \mathrm{mol}^{-1} \min ^{-1}$. The initial concentration of the reactant is $10^{-2} \mathrm{~mol} \mathrm{lit}^{-1}$. What is the half life (in min) ?
A. 10
B. 1000
C. 100
D. 10^{6}

Answer: D

- Watch Video Solution

118. For the reaction,$C l_{2}+2 I^{-} \rightarrow I_{2}+2 \mathrm{Cl}^{-}$, the initial concentration of I^{-}was $0.20 \mathrm{~mol} \mathrm{lit}^{-1}$ and the concentration
after 20 minutes was $0.80 \mathrm{~mol} \mathrm{lit}^{-1}$. Then the rate of formation of I_{2} in $\mathrm{mol} \mathrm{lit}^{-1} \mathrm{~min}^{-1}$ would be
A. 1×10^{-3}
B. 5×10^{-4}
C. 1×10^{-4}
D. 2×10^{-3}

Answer: B

- Watch Video Solution

119. Predict the rate law of the following reaction based on the data given below :
$2 A+B \rightarrow C+3 D$
[A]M [B]M Magnitude of initial rate Ms^{-1}

1	1	x
2	1	$2 x$
1	2	$4 x$
2	2	$8 x$

A. Rate $=k[A][B]^{2}$
B. Rate $=k[A]^{2}[B]$
C. Rate $=k[A][B]$
D. rate $=k[A]^{2}[B]^{2}$

Answer: A

- Watch Video Solution

120. In the acid hydrolysis of methyl acetate ester
A. acid is taken in excess
B. ester is taken in excess
C. water is taken in excess
D. both acid and water is taken in excess

Answer: C

- Watch Video Solution

121. Activation energy is
A. Threshold energy + Average kinetic energy
B. Threshold energy - Average internal energy
C. Threshold energy + Potential energy
D. Threshold energy + Average kinetic energy

Answer: B

122. At 500 K , the half-life period of a gaseous reaction at the initial pressure of 80 kPa is 350 sec . When the pressure is 40 kPa , the half life period is 175 sec . The order of reaction is
A. zero
B. one
C. two
D. three

Answer: A

- Watch Video Solution

123.1/[$A]$ versus time is a straight line, the order of reaction is
A. -1
B. 2
C. 3
D. 0

Answer: B

- Watch Video Solution

124. For a first order reaction half life is 14 sec . The time required for the initial concentration to reduce $1 / 8$ of the value is
A. $(14)^{3} \mathrm{sec}$
B. 28 sec
C. 42 sec
D. $(14)^{2} \mathrm{sec}$

Answer: C

- Watch Video Solution

125. For a zero order reaction, the plot of concentration of a reactant vs time is (intercept refers to concentration axis)
A. linear with positive slope and zero intercept
B. linear with negative slope and zero intercept
C. linear with negative and non-zero intercept
D. linear with positive and non-zero intercept

Answer: C

- Watch Video Solution

126. The rate of reaction increases with temperature due to
A. Decrease in activation energy
B. Increase in activation energy
C. Increase in collision frequency
D. Increase in conentration

Answer: C

- Watch Video Solution

127. The following graph shows how $t_{1 / 2}$ (half-life) of a reactant R changes with the initial reactant concentration a_{0}.

The order of reaction will be

A. zero
B. 1
C. 2
D. 3

Answer: C

128. For the reaction $S O_{2(g)}+\frac{1}{2} O_{2(g)} \Leftrightarrow S O_{3(g)}$, if $K_{c}=K_{p}(R T)^{X}$ then the value of X is
A. -1
B. $-1 / 2$
C. $1 / 2$
D. 1

Answer: B

- Watch Video Solution

129. The time taken for 10% completion of a first order reaction is

20 minutes. Then for 19% completion, the reaction will take

$$
\text { A. } 40 \mathrm{~min}
$$

B. 60 min
C. 30 min
D. 50 min

Answer: A

- Watch Video Solution

130. The half life period of a radioactive substance is 10 hours. How much will be left after 4 hours in 1 g atom sample ?
A. 45.6×10^{23} atom
B. 4.56×10^{23} atom
C. 4.56×10^{21} atom
D. 4.56×10^{20} atom

Answer: B

- Watch Video Solution

131. The rate law equation for a reaction $A \rightarrow B$ is,
$r=k[A]^{0}$
If the initial concentration is ' a ' $\mathrm{mol} \mathrm{dm}^{-3}$, the half of the reaction is
A. $\frac{2 k}{a}$
B. $\frac{0.693}{k}$
C. $\frac{k}{a}$
D. $\frac{a}{2 k}$

Answer: D

132. For a chemical reaction $A \rightarrow B$, the rate of the reaction is $2.0 \times 10^{-3} \mathrm{sec}^{-1}$, when the initial concentration is $0.05 \mathrm{moldm}^{-3}$. The rate of the same reaction is $1.6 \times 10^{-2} \mathrm{moldm}{ }^{-3} \mathrm{sec}^{-1}$. When the initial concentration is $0.1 \mathrm{~mol} \mathrm{dm}^{3}$, find the order of reaction.
A. 2
B. 0
C. 3
D. 1

Answer: C

- Watch Video Solution

133. For the decomposition of a compount $A B$ at 600 K , the following data were obtained.

$[A B] \mathrm{mol} \mathrm{dm}^{-3}$	Rate decomposition of $A B$ in mol dm -3 sec^{-1}
0.20	2.75×10^{-8}
0.40	11.0×10^{-8}
0.60	24.75×10^{-8}

Find the order for the decomposition of $A B$.
A. 1.5
B. 0
C. 1
D. 2

Answer: D

134. For a reaction between A and B, the initial rate of reaction is measured for various initial concentration of A and B. The data provided are
$[\mathrm{A}] \quad[\mathrm{B}] \quad$ Initial reaction rate
(a) $0.02 \mathrm{M} \quad 0.30 \mathrm{M} 5 \times 10^{-5}$
(b) $0.20 \mathrm{M} \quad 0.10 \mathrm{M} 5 \times 10^{-5}$
(c) $0.40 \mathrm{M} \quad 0.05 \mathrm{M} 1 \times 10^{-4}$

The overall order of the reaction is
A. One (1)
B. Two (2)
C. Two and a half (2.5)
D. Three (3)

Answer: A

135. For the first order reaction at $27^{\circ} C$, the ratio of time required for 75 \% completion to 25 \% completion of reaction is
A. 3.0
B. 2.303
C. 4.8
D. 0.47

Answer: C

- Watch Video Solution

136. For a first order reaction the rate constant is $6.909 \mathrm{~min}^{-1}$. The time taken for 75 \% conversion in minutes is
A. $3 / 2 \log 2$
B. $2 / 3 \log 3$
C. $2 / 3 \log 2$
D. $3 / 2 \log 3 / 4$

Answer: C

- Watch Video Solution

137. The unit $\mathrm{mol} \mathrm{L}^{-1} s^{-1}$ is meant for the rate constant of the reaction having the order
A. 0
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

138. The half life period of a reaction is inversely proportional to the square of the initial concentration of the reactant, then the order of reactions is
A. 0
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

139. For a first order reaction $A \rightarrow$ Products, the half life is 100 seconds. The rate constant of the reaction is
A. $6.9 \times 10^{-2} s^{-1}$
B. $6.93 \times 10^{-1} s^{-1}$
C. $6.93 \times 10^{3} s^{-1}$
D. $6.93 \times 10^{-1} s^{-1}$

Answer: C

- Watch Video Solution

140. The rate of a gaseous reaction triples when temperature is increased by $10^{\circ} \mathrm{C}$ from $25^{\circ} \mathrm{C}$. The energy of activation of the reaction in kJmol^{-1} will be
A. 410
B. 735
C. 514
D. 205

Answer: C

D View Text Solution

141. The reaction
$\mathrm{N}_{2} \mathrm{O}_{5}$ (in CCl_{4} solution) $\rightarrow 2 \mathrm{NO}_{2}$ (solution) $+\frac{1}{2} \mathrm{O}_{2}(g)$ is of first order in $N_{2} O_{5}$ with rate constant $6.2 \times 10^{-1} \mathrm{~s}^{-1}$. What is the value of rate of reaction when $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=1.25$ mole ?
A. $5.15 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
B. $6.35 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$
C. $7.75 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
D. $3.85 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$

Answer: C

- Watch Video Solution

142. The first order reaction $2 \mathrm{~N}_{2} \mathrm{O}(g) \rightarrow 2 \mathrm{~N}_{2}(g)+O_{2}(g)$ has a rate constant of $1.3 \times 10^{-11} s^{-1}$ at $270^{\circ} C$ and $4.5 \times 10^{-10} s^{-1}$ at $350^{\circ} \mathrm{C}$. What is the activation energy for this reaction?
A. 15 kJ
B. 30 kJ
C. 68 kJ
D. 120 kJ

Answer: D
143. In Arrhenius equation for activation energy, $k=A e^{-E_{a} / R T}, \mathrm{~A}$ represents the following :
(1) pre-exponential factor
(2) Frequency factor
(3) Arrhenius factor
(4) Collision factor and frequency

The correct anwer is :
A. 1 and 3
B. 1 and 2
C. 2,3 and 4
D. 1,2 and 3

Answer: D

144. In the reaction $A+2 B \rightarrow C+2 O$ the initial rate $\frac{-d[A]}{d t}$ at $t=0$ was found to the $2.6 \times 10^{-2} \mathrm{M} \mathrm{sec}^{-1}$. What is the value of $\frac{-d[B]}{d t}$ at $t=0$ in $m s^{-1}$?
A. 2.6×10^{-2}
B. 5.2×10^{-2}
C. 1.0×10^{-1}
D. 6.5×10^{-3}

Answer: B

- Watch Video Solution

145. Half life of a first order reaction and a zero order reaction are same. Then the ratio of the initial rate of the first order reaction
to that of zero order reaction is
A. $\frac{1}{0.693}$
B. 2×0.693
C. 0.693
D. $2 / 0.693$

Answer: B

- Watch Video Solution

146. If the activation enery for the forward reaction is $150 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and that of the reverse reaction is $260 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What is the ethalpy change for the reaction ?
A. $410 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $-110 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $110 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-410 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: B

- Watch Video Solution

147. The rate law for the reaction
$2 X+Y \rightarrow Z$ is Rate $=k[X][Y]$
The correct statement with regard to this relation is
A. The unit of k is s^{-1}
B. The rate of reaction is independent of $[\mathrm{X}]$ and $[\mathrm{Y}]$
C. For this reaction $t_{1 / 2}$ is independent of initial concentration
D. The rate of formation of Z is half the rate of disappearance of X.

Answer: D

- Watch Video Solution

148. Consider the following statements
(i) increase in the concentration of reactants increase the rate of
zero order reactions
(ii) rate constant, k is equal to collision frequency of A if $E_{a}=0$
(iii) rate constant, k is equal to the collision frequency if $E_{a}=\infty$
(iv) lnkvsT is straight line
(v) $\operatorname{lnkvs} 1 / T$ is a straight line
correct statements are
A. (i) and (v)
B. (ii) and (v)
C. (iii) and (iv)
D. (ii) and (iii)

Answer: B

- Watch Video Solution

149. The activation energy for a reaction at temperature T K was found to be or $2.303 \mathrm{RT}_{\mathrm{J} \mathrm{mol}}{ }^{-1}$. The ratio of the rate constant to Arrhenius factor is
A. 10^{-1}
B. 10^{-2}
C. 2×10^{-3}
D. 2×10^{-2}

Answer: A

- Watch Video Solution

150. The time required for 100% completion of a zero order reaction is
A. $2 \mathrm{k} / \mathrm{a}$
B. $\mathrm{a} / 2 \mathrm{k}$
C. a / k
D. ak

Answer: C

- Watch Video Solution

151. The following data is obtained during the first order thermal decomposition of
$2 A(g) \rightarrow B(g)+C(s)$ at constant volume and temperature
S.No. Time Total pressure
152. At the end of 10 minutes 300
153. After completion 200

The rate constant in min^{-1} is
A. 0.0693
B. 6.93
C. 0.00693
D. 69.3

Answer: A

152. Consider the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ as
$\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}$
The rate of reaction is given by
$-\frac{d\left[N_{2} O_{5}\right]}{d t}=\frac{1}{2} \frac{d\left[N O_{2}\right]}{d t}=2 \frac{d\left[O_{2}\right]}{d t}$
$=k_{1}\left[N_{2} O_{5}\right]$
Therefore $\frac{-d\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{d t}=k_{1}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]$
$\frac{+d\left[N O_{2}\right]}{d t}=2 k_{1}\left[N_{2} O_{5}\right]=k_{1}\left[N_{2} O_{5}\right]$
$\frac{+d\left[O_{2}\right]}{d t}=\frac{1}{2} k_{1}\left[N_{2} O_{5}\right]=k_{1}\left[N_{2} O_{5}\right]$
Choose the correct option
A. $k_{1}=k_{1}=k_{1}$
B. $k_{1}=2 k_{1}=k_{1}$
C. $2 k_{1}=k_{1}=4 k_{1}$
D. $4 k_{1}=2 k_{1}=k_{1}$
153. For the reaction $R \rightarrow P$, graph of [R] against time is found to be a striaght line with negative slope. What is the order of reaction?
A. Second order
B. Third order
C. First order
D. Zero order

Answer: D

154. In a catalyst experiment involving the Haber process $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$, the rate of reaction was measured as

Rate $=\frac{\Delta\left[\mathrm{NH}_{3}\right]}{\Delta t}=2.0 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
What is the rate of reaction expressed in terms of (a) N_{2} (b) H_{2} ?
A. $1 \times 10^{-4} M s^{-1}$
B. $4 \times 10^{-4} M s^{-1}$
C. $5 \times 10^{-3} M s^{-1}$
D. $1 \times 10^{-3} M s^{-1}$

Answer: A

- Watch Video Solution

155. 10 g of a radioactive isotope is reduced to 1.25 g in 12 years.

Therefore half-life period of the isotope is
A. 24 years
B. 4 years
C. 3 years
D. 8 years

Answer: B

- Watch Video Solution

156. Plots showing the variation of the rate constant (k) with temperature (T) are given below. The plot that follows the

Arrhenius equation is

A.

Answer: A

- Watch Video Solution

157. The rate of the reaction $A \rightarrow$ products, at the initial concentration of $3.24 \times 10^{-2} M$ is nine times its rate at another initial concentration of $1.2 \times 10^{-3} M$. The order of reaction is
A. $1 / 2$
B. $3 / 4$
C. $3 / 2$
D. $2 / 3$

Answer: D

- Watch Video Solution

158. For first order reaction, the time taken to reduce tha initial concentration by a factor of $\frac{1}{4}$ is 20 minutes. The time required to reduce initial concentration by a factor of $1 / 10$ is.
A. 20 min
B. 10 min
C. 80 min
D. 40 min

Answer: D

- Watch Video Solution

159. The initial rates of reaction $3 A+2 B+C \rightarrow$ products at different initial concentration are given below

Initial rate, MS^{-1}	$\left\|A_{0}\right\| M$	$\left\|B_{0}\right\| M$	$\left\|C_{0}\right\| M$
5.0×10^{-3}	0.010	0.005	0.010
5.0×10^{-3}	0.010	0.005	0.015
10×10^{-2}	0.010	0.010	0.010
1.25×10^{-2}	0.005	0.005	0.010

The order of reaction with respect to the reacts A, B and C are respectively.
A. 3,2,0
B. 3,2,1
C. 2,2,0
D. 2,1.0

Answer: D

(Watch Video Solution

160. The activation energy for a reaction at temperature T K was found to be or $2.303 \mathrm{RT} \mathrm{J} \mathrm{mol}^{-1}$. The ratio of the rate constant to Arrhenius factor is
A. 10^{-1}
B. 10^{-2}
C. 2×10^{-3}
D. 2×10^{-2}

Answer: A

161. Units of rate constant depend upon

A. rate of reaction
B. order of reaction
C. molecularity of reaction
D. all of the above

Answer: B

- Watch Video Solution

162. Which one of the following statements for the order of a reaction is incorrect ?
A. Order can be determined only experimentally
B. Order of reaction is the sum of powers of the concentration terms of reactants to express the rate of reaction
C. Order is not influenced by stoichiometric coefficients of the reactants
D. Order of reaction is always a whole number

Answer: D

- Watch Video Solution

163. The rate of law for the reaction $x A+y B=m P+n Q$ is Rate $k[A]^{c}[B]^{d}$. What is the total order of reaction ?
A. $(x+y)$
B. $(m+n)$
C. $(c+d)$
D. (x / y)

Answer: B

- Watch Video Solution

164. The rate of the reaction :
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ can be written in three ways.

$$
\frac{1}{4} \frac{-d\left[N_{2} O_{5}\right]}{d t}=k\left[N_{2} O_{5}\right], \frac{d\left[N O_{2}\right]}{d}=k^{\prime}\left[N_{2} O\right] \frac{d\left[N O_{2}\right]}{d}=k^{\prime}\left[N_{2} O_{5}\right]
$$

The relationship between K and K^{\prime} and between K^{\prime} and K^{\prime} becomes
A. $K^{\prime}=2 K, K^{\prime \prime}=K^{\prime}$
B. $K^{\prime}=2 K, K^{\prime \prime}=K / 2$
C. $K^{\prime}=2 K, K^{\prime \prime}=2 K^{\prime}$
D. $K^{\prime}=K, K^{\prime \prime}=K$

View Text Solution

165. Which one of the following is wrong about the molecularity of a reactions?
A. It may be whole number of fractional
B. It is calculated from reaction mechanism
C. It is the number of molecules of the reactions taking parts is a single step chemical reaction
D. It is always equal to the order of elementary reaction

Answer: A

166. A follows first order reaction.
(A) \rightarrow Product

The concentration of A changes form $0.1 M$ to $0.025 M$ in 40 min
. Find the rate of reaction of A when the concentration of A is $0.01 M$.
A. $1.73 \times 10^{-4} \mathrm{M} / \mathrm{min}$
B. $3.47 \times 10^{-5} \mathrm{M} / \mathrm{min}$
C. $3.47 \times 10^{-4} \mathrm{M} / \mathrm{min}$
D. $1.73 \times 10^{-5} \mathrm{M} / \mathrm{min}$

Answer: C

167. When a catalyst increases the rate of a chemical reaction, the rate constant
A. remains constant
B. increase
C. decrease
D. may increase or decrease depending on the order of fraction

Answer: B

- Watch Video Solution

168. The initial rate of hydrolysis of methyl acetate (1M) by a weak acid $(H A, 1 M)$ is $1 / 100 t h$ of that of a strong acid $(H X, 1 M)$, at $25^{\circ} C$. The $K_{a}(H A)$ is
A. 1×10^{-4}
B. 1×10^{-5}
C. 1×10^{-6}
D. 1×10^{-6}

Answer: A

- Watch Video Solution

Selected Straight

1. The reaction rate of the reaction $\mathrm{H}_{2}(g)+\mathrm{Br}_{2}(g) \rightarrow 2 \mathrm{HBr}(g)$ is given by $r=k\left[H_{2}\right]\left[B r_{2}\right]^{1 / 2}$

Which of the following statement/is/are true?
A. Order of reaction is 2
B. Molecularity of reaction is 2
C. Order of reaction is 1.5
D. Molecularity of reaction is 1.5

Answer: B::C

(Watch Video Solution

2. In acidic medium, the rate of reaction between $\left[\mathrm{BrO}_{3}^{-}\right]$and Br^{-}ions is given by the expression $-\frac{d\left[\mathrm{BrO}_{3}^{-}\right]}{d t}=k\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$ It means
A. Rate constant for the reaction depends upon the concentration of H^{+}ions
B. Rate of reaction is independent of the conc. Of acid added
C. The change in pH of the solution will affect the rate of reaction
D. doubling the conc. Of H^{+}ions will increase the reaction rate by 4 times

Answer: C::D

- Watch Video Solution

3. Which of the following is/are correct for reactions of first order ?
A. $A=\frac{1}{t} \ln \left(C_{0} / C_{t}\right)$
B. $t=\frac{2.303}{k} \log [a /(a-x)]$
C. $[A]_{0}=[A] e^{-k t}$
D. $t_{1 / 2}=(\ln 2) / k$

- Watch Video Solution

4. Which of the following theory is/are not related to the chemical

kinetics ?

A. Maxwell's theory
B. Transition theory
C. Absolute reaction rate theory
D. Ostwald's theory

Answer: A::D

- Watch Video Solution

5. For a first order reaction with rate constant ' k ' and initial concentration 'a', the half-life period is given by
A. $\frac{\ln 2}{k}$
B. $\frac{1}{k a}$
C. $\frac{0.693}{k}$
D. $\frac{3}{2 k a^{2}}$

Answer: A::C

- Watch Video Solution

6. For a zero order reaction
A. The time taken for half the reaction to complete is inversely proportional to its rate constant
B. The time taken for half-change is directly proportional to its initial concentration
C. The time taken independent of initial concentration
D. There is no effect on the rate of reaction if concentration of reactants is doubled.

Answer: A::B::D

- Watch Video Solution

7. Which of the following is/are wrong ?
A. A catalyst initiates a reaction
B. A catalyst lowers the activation energy of a reaction
C. A catalyst affects the enthalpy change of the reaction
D. A catalyst does not affect the speed of backward reaction

- Watch Video Solution

8. The rate constant of a reaction is given by $k=2.1 \times 10^{10} \exp (-2700 / R T)$. It means that
A. $\log k v s 1 / T$ will be a straight line with slope $=-\frac{2700}{2.303 R}$
B. \log vs $1 / T$ will be a straight line with intercept on $\log k$ axis

$$
=\log 2.1 \times 10^{10}
$$

C. The number of effective collisions are $2.1 \times 10^{10} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$
D. Half-life of the reaction increases with increase of temperature

Answer: A::B

- Watch Video Solution

9. Arrhenius equation may be represented as
A. $\ln \frac{A}{k}=\frac{E_{a}}{R T}$
B. $\frac{d \ln k}{d T}=\frac{E_{a}}{R T^{2}}$
C. $\log A=\log k+\frac{E_{a}}{2.303 R T}$
D. $\log \left(-\frac{E_{a}}{R T}\right)=\frac{k}{A}$.

Answer: A::B::C

- Watch Video Solution

10. In a pypothetical reaction $X \rightarrow Y$, the activation are 15 and $9 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The potential energy of X is $10 \mathrm{~kJ} \mathrm{~mol}^{-1}$
A. The threshold energy of the reaction is 25 kJ
B. The potential energy of Y is 16 kJ
C. Heat of reaction is 6 kJ
D. The reaction is endothermic

Answer: A::B::C::D

- Watch Video Solution

11. Taking the reaction, $A+2 B \rightarrow$ Products to be of second order, which of the following is/are the correct rate law expresisons (s)?
A. $\frac{d x}{d t}=k[A][B]$
B. $\frac{d x}{d t}=k[A][B]^{2}$
C. $\frac{d x}{d t}=k[A]^{2}$
D. $\frac{d x}{d t}=k[A]+k[B]^{2}$

- Watch Video Solution

12. Which of the following correctly represent/s the units of rate of reaction
A. $\mathrm{mol} \mathrm{L}^{-2} s^{-1}$
B. $\mathrm{L} \mathrm{mol} \mathrm{s}^{-1}$
C. $\mathrm{atm} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
D. $\operatorname{atm~s}{ }^{-1}$

Answer: A::D

- Watch Video Solution

13. Point out the correct statement/s
A. Rate law is an experimental fact whereas law of mass action is a theoretical proposal
B. Rate law is always different from the expression of law of mass action
C. Rate law is more informative than law of mass action for the development of mechanism
D. Order of a reaction is equal to the sum of powers of concentration terms in the rate law

Answer: A::C::D

- Watch Video Solution

14. A catalyst
A. increases the average kinetic energy of the reacting molecules
B. decreases the activation energy
C. alters the reaction mechanism
D. increases the frequency of collision of reacting species.

Answer: B::C

- Watch Video Solution

15. For a first order reaction,
A. the degree of dissociation is equal to $\left(1-e^{-k t}\right)$
B. a plot of reciproal concentration of the reactant vs time gives a straight line
C. the time taken for completion of 75% of reaction is thrice the $t_{1 / 2}$ of the reaction
D. the pre-exoponential factor in the Arrhenius equation has the dimension of time T^{-1}

Answer: A::D

- Watch Video Solution

16. The following statement (s) is/are correct
A. A plot of $\log k_{p}$ versus $1 / T$ is linear
B. A plot of log $[X]$ versus time in linear for a first order reaction, $X \rightarrow P$
C. A plot of $\log P$ versus $1 / T$ is linear at constant volume
D. A plot of P versus $1 / V$ is linear at constant pressure

Answer: A::B::D

- Watch Video Solution

17. The specific rate constant of a first order reaction depends on the
A. concentration of the reactant
B. Concentration of the products
C. time
D. temperature

Answer: D

18. A catalyst is a substance which
A. increases the equilibrium concentration of the product
B. changes the equilibrium constant of the reaction
C. shortens the time to reach equilibrium
D. supplies energy to the reaction

Answer: C

- Watch Video Solution

19. A catalyst
A. increases the average kinetic energy of the reacting molecules
B. increases the activation energy
C. alters the reaction mechanism
D. increases the frequency of collision of reacting species.

Answer: C

- Watch Video Solution

20. The rate law for the reaction
$\mathrm{RCl}+\mathrm{NaOH}(a q) \rightarrow \mathrm{ROH}+\mathrm{NaCl}$ is given by
Rate $=k[R C l]$. The rate of the reaction will be
A. doubled on doubling the concentration of sodium hydroxide
B. halved on reducing the concentration of ankyl halide to one
C. decreased on increaseing the temperature of reaction
D. unaffected by increasing the temperature of the reaction

Answer: B

(Watch Video Solution

21. The temperature coefficient of most of the reactions lies between
A. 1 and 3
B. 2 and 3
C. 1 and 4
D. 2 and 4

Answer: B

22. For an endothermic reaction, where ΔH represents the enthalpy of reaction in kJmol^{-1}, the minimum value for the energy of activation will be
A. less than ΔH
B. zero
C. more than ΔH
D. equal to ΔH

Answer: C

- Watch Video Solution

23. The rate constant, the activation energy, and the Arrhenius parameter of a chemical reaction at $25^{\circ} \mathrm{C}$ are

$3.0 \times 10^{-4} S^{-1}, 104.4 \mathrm{~K} \mathrm{Jmol}^{-1}, \quad$ and $6.0 \times$ respectively. The value of the rate constant as $T \rightarrow \infty$ is

A. $2.0 \times 10^{18} s^{-1}$
B. $6.0 \times 10^{14} s^{-1}$
C. infinity
D. $3.6 \times 10^{30} s^{-1}$

Answer: B

- Watch Video Solution

24. The rate constant for the reaction:
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+O_{2}$ is $3.0 \times 10^{-5} \mathrm{sec}^{-1}$. If the rate is
$2.40 \times 10^{-5} \mathrm{M} \mathrm{sec}^{-1}$, then the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ (in M) is:'
A. 1.4
B. 1.2
C. 0.04
D. 0.8

Answer: D

- Watch Video Solution

25. When two reactants, A and B are mixed to give products C and D, the reaction quotient Q, at the initial stages of the reaction.
A. is zero
B. decreases with time
C. is independent of time
D. increases with time

Answer: D

- Watch Video Solution

26. If I is the intenisty of an absorbed light and c is the concentration of $A B$ for the photochemical process.
$A B+h v \rightarrow A B^{*}$, the rate of formation of $A B^{*}$ is directly proportional to
A. C
B. I
C. I°
D. Cl

Answer: D

27. Conisder the chemical reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
The rate of this reaction can be expressed in terms of time derivatives of the concentration of $\mathrm{N}_{2}(\mathrm{~g}), \mathrm{H}_{2}(\mathrm{~g})$, or $\mathrm{NH}_{3}(\mathrm{~g})$. Identify the correct relationship among the rate expresisons.

$$
\begin{aligned}
& \text { A. Rate }=-d /\left[N_{2}\right] / d t=-1 / 3 d\left[H_{2}\right] / d t \\
& \qquad=1 / 2 d\left[N H_{3}\right] / d t \\
& \text { B. Rate }=-d\left[N_{2}\right] / d t=-3 d\left[H_{2}\right] / d t \\
& \qquad=2 d\left[N H_{3}\right] / d t \\
& \text { C. Rate }=d\left[N_{2}\right] / d t=1 / 4 d\left[H_{2}\right] / t \\
& \quad=1 / 2 d\left[N H_{3}\right] / d t \\
& \text { D. Rate }=-d\left[N_{2}\right] / d t=-d\left[H_{2}\right] / d t \\
& \quad=d\left[N H_{3} / d t\right.
\end{aligned}
$$

- Watch Video Solution

28. In a first order reaction, the concentration of the reactant decreases form $800 \mathrm{~mol} \mathrm{dm}^{-3}$ to $50 \mathrm{~mol} \mathrm{dm}^{-3}$ in $2 \times 10^{4} s$. The rate constant of the reaction (in s^{-1}) is
A. 2×10^{4}
B. 3.45×10^{-5}
C. 1.386×10^{-4}
D. 2×10^{-4}

Answer: C

- Watch Video Solution

29. A follows first order reaction.
$(A) \rightarrow$ Product
The concentration of A changes form $0.1 M$ to $0.025 M$ in 40 min
. Find the rate of reaction of A when the concentration of A is $0.01 M$.
A. $1.73 \times 10^{-4} \mathrm{M}$ min
B. $3.47 \times 10^{-5} \mathrm{M}$ min
C. $3.47 \times 10^{-4} \mathrm{M}$ min
D. $1.73 \times 10^{-5} \mathrm{M}$ min

Answer: C

30. Which of the following is incorrect about the order of reaction ?
A. It is calculated experimentally
B. It is sum of powers of concentrations in rate law expression
C. The order of reaction cannot be fractional
D. There is not necessarily a connection between order and stoichiometry of a reaction

Answer: C

- Watch Video Solution

31. Rate of a reaction can be expressed by Arrhenius equation as:
$k=A e^{-E_{a} / R T}$

In this equation, E_{a} represents:
A. the total energy of the reacting molecular at a temperature,

T

B. the fraction of molecules with energy greatere than the activation energy of the reaction
C. the energy above which all the colliding molecules will react
D. the energy below which colliding molecules will not react.

Answer: C

- Watch Video Solution

32. The following mechanism has been proposed for the reaction of NO with $B r_{2}$ to from NOBr.
$\mathrm{NO}(g)+\mathrm{Br}_{2} \Leftrightarrow \mathrm{NOBr}_{2}(g)$
$\mathrm{NOBr}_{2}(g)+\mathrm{NO}(g) \rightarrow 2 \mathrm{NOBr}(g)$

If the second step is the rate determining step, the order of the reaction with respect to $\mathrm{NO}(\mathrm{g})$ is
A. 3
B. 2
C. 1
D. 0

Answer: B

- Watch Video Solution

33. In a first-order reaction $A \rightarrow B$, if K is the rate constant and initial concentration of the reactant is $0.5 M$, then half-life is
A. $\frac{\ln 2}{k}$
B. $\frac{0.693}{0.5 k}$
C. $\frac{\log 2}{k}$
D. $\frac{\log 2}{k \sqrt{0.5}}$

Answer: A

- Watch Video Solution

34. The reaction obey I order with respect to H_{2} and ICl both.
$\mathrm{H}_{2}(g)+2 \mathrm{ICl}(g) \rightarrow 2 \mathrm{HCl}(g)+I_{2}(g)$
Which of the following mechanism is in consistent with the given fact ?

Mechanism A: $\mathrm{H}_{2}(g)+2 \mathrm{Cl} \rightarrow 2 \mathrm{HCl}(g)+\mathrm{I}_{2}(g)$
Mechanism B: (i) $H_{2}(g)+I C l(g) \xrightarrow{\text { slow }} \mathrm{HCl}(g)+\mathrm{HI}(g)$
(ii) $\mathrm{HI}(g)+I C l(g) \rightarrow \mathrm{HCl}(g)+I_{2}$
A. I only
B. II only
C. I and II both
D. neither I nor II

Answer: B

- Watch Video Solution

35. If 60% of a first order reaction was completed in 60 minutes,
50% of the same reaction would be completed in approximately
$[\log =4=0.60, \log 5=0.69]$.
A. 40 minutes
B. 50 minutes
C. 45 minutes
D. 60 minutes

D Watch Video Solution

36. The energies of activation for forward and reverse reaction for $A_{2}+B_{2} \Leftrightarrow 2 A B$ are $180 \mathrm{kJmol}^{-1}$ and $200 \mathrm{kJmol}^{-1}$ respectively. The presence of catalyst lowers the activation energy of both (forward and reverse) reactions by $100 \mathrm{kJmol}^{-1}$. The enthalpy change of the reaction $\left(A_{2}+B_{2} \rightarrow 2 A B\right)$ in the presence of catalyst will be (in $k J \mathrm{~mol}^{-1}$):
A. 20
B. 300
C. 120
D. 280

Answer: A

37. Consider a reaction, $2 A+B \rightarrow$ Products

When concentration of B alone was doubled, the half-life did not change. When the concentration of A alone was doubled, the rate increased by two times. The unit of rate constant for this reaction is :
A. s^{-1}
B. $\mathrm{L} \mathrm{mol}^{-1} s^{-1}$
C. no unit
D. $\mathrm{mol} \mathrm{L}^{-1} s^{-1}$

Answer: B

- Watch Video Solution

38. Conisder a reaction $a G+b H \rightarrow$ Products. When concentration of both the reactants G and H is doubled, the rate increases eight times. However, when the concentration of G is doubled, keeping the concentration of H fixed, the rate is doubled. The overall order of reaction is
A. 0
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

39. Under the same reaction conditions, the intial concentration of $1.386 \mathrm{moldm} \mathrm{m}^{-3}$ of a substance becomes half in 40 s and 20 s theough first order and zero order kinetics, respectively.

The ratio $\left(k_{1} / k_{0}\right)$ of the rate constants for first order $\left(k_{1}\right)$ and zero order $\left(k_{0}\right)$ of the reaction is
A. $0.5 \mathrm{~mol}^{-1} \mathrm{dm}^{3}$
B. $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$
C. $1.5 \mathrm{~mol} \mathrm{dm}^{-3}$
D. $2.0 \mathrm{~mol}^{-1} \mathrm{dm}^{-3}$

Answer: A

40. For the reaction $A+B$ products, it is observed that:
(1) on doubling the initial concentration of A only, the rate of reaction is also doubled and
(2) on doubling te initial concentration of both A and B, there is a charge by a factor of 8 in the rate of the reaction.

The rate of this reaction is given by
A. Rate $=k[A][B]$
B. rate $k[A]^{2}[B]$
C. rate $=k[A][B]^{2}$
D. rate $=k[A]^{2}[B]^{2}$

Answer: B

41. Half-life period of a first-order reaction is 1386 seconds. The specific rate constant of the reaction is
A. $5.0 \times 10^{-2} s^{-1}$
B. $5.0 \times 10^{-3} s^{-1}$
C. $0.5 \times 10^{-2} s^{-1}$
D. $0.5 \times 10^{-3} s^{-1}$

Answer: D

- Watch Video Solution

42. The half-life period of a first-order chemical reaction is 6.93 min . The time required for the completion of 99% of the chemical reaction will be $(\log 2=0.301)$
A. 230.3 min
B. 22.03 min
C. 46.06 min
D. 460.6 min

Answer: C

- Watch Video Solution

43. The time for half-life period of a certain reaction, $A \rightarrow$ products is $1 h$. When the initial concentration of the reactant ' A ' is $2.0 \mathrm{~mol} L^{-1}$, how much time does it take for its concentration to come from 0.50 to $0.25 \mathrm{~mol} L^{-1}$, if it is zero order reaction?
A. 11 h
B. 4 h
C. 0.5 h
D. 0.25 h

Answer: D

- Watch Video Solution

44. Consider the reaction,
$C l_{2}(a q)+H_{2} S(a q) \rightarrow S(s)+2 H^{+}(a q)+2 C l^{-}(a q)$
The rate equation for this reaction is,
Rate $=k\left[\mathrm{Cl}_{2}\right]\left[\mathrm{H}_{2} \mathrm{~S}\right]$
Which of these mechanisms is /are consistent with this rate equation ?
(I) $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{Cl}^{+}+\mathrm{HS}^{-}$(slow)
$C l^{+}+\mathrm{HS}^{-} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}+S$ (fast)
(II) $H_{2} S \Leftrightarrow H^{+}+H S^{-}$(fast equilibrium)
$\mathrm{Cl}^{+}+\mathrm{HS}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{H}^{+}+S$ (slow)
A. I only
B. II only
C. Both I and II
D. Neither I and II

Answer: A

- Watch Video Solution

45. For the reaction $N_{2} O_{5} \rightarrow 2 \mathrm{NO}_{2}+\frac{1}{2} O_{2}$, the rate of disappearance of $N_{2} O_{5}$ is $6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$. The rate of formation of NO_{2} and O_{2} will be respectively.
A. $1.25 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$ and $6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$
B. $6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ and $6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
C. $1.25 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$ and $3.125 \times 10^{-3} L^{-1} s^{-1}$
D. $6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ and $3.125 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$

Answer: C

- Watch Video Solution

46. During the kinetic study of the reaction $2 A+B \rightarrow C+D$ following results were obtained.

$$
\begin{array}{lllll}
& \text { Run }[A] & {[B] \text { inM }} & \text { Initial rate of fo rmation of } \mathrm{D} \text { in } & \mathrm{ms}^{-1} \\
I & 0.1 & 0.1 & 6.0 \times 10^{-3} \\
I I & 0.3 & 0.2 & 7.2 \times 10^{-2} \\
I I I & 0.3 & 0.4 & 2.88 \times 10^{-1} \\
I V & 0.4 & 0.1 & 2.40 \times 10^{-2} &
\end{array}
$$

On the basis of above data which one is correct ?
A. rate $=k[A][B]^{2}$
B. rate $=[A]^{2}[B]$
C. rate $=k[A][B]$
D. rate $=k[A]^{2}[B]^{2}$

- Watch Video Solution

47. Plots showing the variation of the rate constant (k) with temperature (T) are given below. The plot that follows the

Arrhenius equation is
A.

B.

D.

Answer: A

- Watch Video Solution

48. The rate of reaction:
$2 \mathrm{NO}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NOCl}$ is given by the rate, equation rate $=k[\mathrm{NO}]_{2}\left[\mathrm{Cl}_{2}\right]$. The value of the rate constant can be increased by
A. increasing the temperature
B. increasing the concentration of NO
C. increasing the concentration Cl_{2}
D. doing all three

Answer: A

- Watch Video Solution

49. The rate of a chemical reaction doubles for every $10^{\circ} \mathrm{C}$ rise of temperature. If the temperature is raised by $50^{\circ} \mathrm{C}$, the rate of the reaction increases by about
A. 24 times
B. 32 times
C. 64 times
D. 10 times

Answer: B

- Watch Video Solution

1. The energy profile diagrams are very important tool through which, we predict lot of things, like the amount of activation energy of the catalysed and uncatalysed reaction as well as for the backward reaction and forward reaction. Thershold energy of the catalysed and uncatalysed reaction. The graphs representing the energy profile diagram for catalysed and uncatalysed reactions are given below :

The graph of the lower energy barrier is the energy profile diagram for the catalysed reaction adn of the higher barrier is the energy profile diagram of uncatalysed reaction.

From the graph, it is clear that $E_{a f}$ and $E_{a b}$ are the activation
energy of the respectively. $E_{a f}$ and $E_{a b}$ are the activation energy
of the catalysed forward and backward reaction respectvely
The reaction which occurs by absorption of heat is known as endothermic reaction and by release of heat is known as exothermic reaction

For exothermic reaction, ΔH is negative and for endothermic reaction, ΔH is positive

From Arrhenius equation, we know that $k=A e^{-E_{a} / R T}$ where k
is rate constant which signifies effective number of collisions. A is
known as Arrehnius constant, or maximum rate constant of
frequency factor which signifies maximum number of collisions
with proper orientation of reacting species per mole per second.
The catalysed reaction occurs at 500 K and the uncatalysed reaction occurs at 800 K in such way so that the rate of catalysed reaction and uncatalysed reaction becomes equal as well as the catalyst lower down the energy barrier by 60 J .

Answer the following questions on the basis of above paragraph

What will be the value of activation energy with respect to the uncatalysed reaction?
A. 120 J
B. 100 J
C. 130 J
D. 160 J

Answer: D

D View Text Solution

2. The energy profile diagrams are very important tool through which, we predict lot of things, like the amount of activation energy of the catalysed and uncatalysed reaction as well as for the backward reaction and forward reaction. Thershold energy of the catalysed and uncatalysed reaction. The graphs representing the
energy profile diagram for catalysed and uncatalysed reactions are given below :

The graph of the lower energy barrier is the energy profile diagram for the catalysed reaction adn of the higher barrier is the energy profile diagram of uncatalysed reaction.

From the graph, it is clear that $E_{a f}$ and $E_{a b}$ are the activation energy of the respectively. $E_{a f}$ and $E_{a b}$ are the activation energy of the catalysed forward and backward reaction respectvely

The reaction which occurs by absorption of heat is known as endothermic reaction and by release of heat is known as exothermic reaction

For exothermic reaction, ΔH is negative and for endothermic reaction, ΔH is positive

From Arrhenius equation, we know that $k=A e^{-E_{a} / R T}$ where k is rate constant which signifies effective number of collisions. A is
known as Arrehnius constant, or maximum rate constant of frequency factor which signifies maximum number of collisions with proper orientation of reacting species per mole per second.

The catalysed reaction occurs at 500 K and the uncatalysed reaction occurs at 800 K in such way so that the rate of catalysed reaction and uncatalysed reaction becomes equal as well as the catalyst lower down the energy barrier by 60 J .

Answer the following questions on the basis of above paragraph

From the given above information what will be the threshold energy for the uncatalysed reaction, if the normal energy of the reactant is 40 J .
A. 90 J
B. 120 J
C. 170 J
D. 200 J

Answer: D

D View Text Solution

3. The energy profile diagrams are very important tool through which, we predict lot of things, like the amount of activation energy of the catalysed and uncatalysed reaction as well as for the backward reaction and forward reaction. Thershold energy of the catalysed and uncatalysed reaction. The graphs representing the energy profile diagram for catalysed and uncatalysed reactions are given below :

The graph of the lower energy barrier is the energy profile diagram for the catalysed reaction adn of the higher barrier is the energy profile diagram of uncatalysed reaction.

From the graph, it is clear that $E_{a f}$ and $E_{a b}$ are the activation energy of the respectively. $E_{a f}$ and $E_{a b}$ are the activation energy of the catalysed forward and backward reaction respectvely

The reaction which occurs by absorption of heat is known as endothermic reaction and by release of heat is known as exothermic reaction

For exothermic reaction, ΔH is negative and for endothermic reaction, ΔH is positive

From Arrhenius equation, we know that $k=A e^{-E_{a} / R T}$ where k is rate constant which signifies effective number of collisions. A is
known as Arrehnius constant, or maximum rate constant of frequency factor which signifies maximum number of collisions with proper orientation of reacting species per mole per second.

The catalysed reaction occurs at 500 K and the uncatalysed
reaction occurs at 800 K in such way so that the rate of catalysed reaction and uncatalysed reaction becomes equal as well as the catalyst lower down the energy barrier by 60 J .

Answer the following questions on the basis of above paragraph From the given above information, what will be threshold energy for the catalysed reaction. If the normal energy of the reactant is 40 J
A. 170 J
B. 200 J
C. 140 J
D. 180 J

Answer: C

- View Text Solution

4. The energy profile diagrams are very important tool through which, we predict lot of things, like the amount of activation energy of the catalysed and uncatalysed reaction as well as for the backward reaction and forward reaction. Thershold energy of the catalysed and uncatalysed reaction. The graphs representing the energy profile diagram for catalysed and uncatalysed reactions are given below :

The graph of the lower energy barrier is the energy profile diagram for the catalysed reaction adn of the higher barrier is the energy profile diagram of uncatalysed reaction.

From the graph, it is clear that $E_{a f}$ and $E_{a b}$ are the activation energy of the respectively. $E_{a f}$ and $E_{a b}$ are the activation energy
of the catalysed forward and backward reaction respectvely

The reaction which occurs by absorption of heat is known as endothermic reaction and by release of heat is known as exothermic reaction

For exothermic reaction, ΔH is negative and for endothermic reaction, ΔH is positive

From Arrhenius equation, we know that $k=A e^{-E_{a} / R T}$ where k
is rate constant which signifies effective number of collisions. A is
known as Arrehnius constant, or maximum rate constant of
frequency factor which signifies maximum number of collisions
with proper orientation of reacting species per mole per second.

The catalysed reaction occurs at 500 K and the uncatalysed reaction occurs at 800 K in such way so that the rate of catalysed reaction and uncatalysed reaction becomes equal as well as the catalyst lower down the energy barrier by 60 J .

Answer the following questions on the basis of above paragraph
From the above information given inthe compreshension, if the
normal energy of the reactant is 50 J and that of the product is 20
J. then what will be the activation energy of the uncatalysed backward reaction ?
A. 170 J
B. 180 J
C. 160 J
D. 190 J

Answer: D

D View Text Solution

5. The energy profile diagrams are very important tool through which, we predict lot of things, like the amount of activation energy of the catalysed and uncatalysed reaction as well as for the backward reaction and forward reaction. Thershold energy of the
catalysed and uncatalysed reaction. The graphs representing the energy profile diagram for catalysed and uncatalysed reactions are given below :

The graph of the lower energy barrier is the energy profile diagram for the catalysed reaction adn of the higher barrier is the energy profile diagram of uncatalysed reaction.

From the graph, it is clear that $E_{a f}$ and $E_{a b}$ are the activation energy of the respectively. $E_{a f}$ and $E_{a b}$ are the activation energy of the catalysed forward and backward reaction respectvely

The reaction which occurs by absorption of heat is known as endothermic reaction and by release of heat is known as exothermic reaction

For exothermic reaction, ΔH is negative and for endothermic
reaction, ΔH is positive
From Arrhenius equation, we know that $k=A e^{-E_{a} / R T}$ where k is rate constant which signifies effective number of collisions. A is known as Arrehnius constant, or maximum rate constant of frequency factor which signifies maximum number of collisions with proper orientation of reacting species per mole per second.

The catalysed reaction occurs at 500 K and the uncatalysed reaction occurs at 800 K in such way so that the rate of catalysed reaction and uncatalysed reaction becomes equal as well as the catalyst lower down the energy barrier by 60 J .

Answer the following questions on the basis of above paragraph
From the above information givenin comprehension as well as
from question no. 4 , what will be the value of activation energy of
the calalysed backward reaction ?
A. 150 J
B. 130 J
C. 160 J
D. 190 J

Answer: B

D View Text Solution

6. The energy profile diagrams are very important tool through which, we predict lot of things, like the amount of activation energy of the catalysed and uncatalysed reaction as well as for the backward reaction and forward reaction. Thershold energy of the catalysed and uncatalysed reaction. The graphs representing the energy profile diagram for catalysed and uncatalysed reactions are given below :

The graph of the lower energy barrier is the energy profile diagram for the catalysed reaction adn of the higher barrier is the energy profile diagram of uncatalysed reaction.

From the graph, it is clear that $E_{a f}$ and $E_{a b}$ are the activation energy of the respectively. $E_{a f}$ and $E_{a b}$ are the activation energy of the catalysed forward and backward reaction respectvely The reaction which occurs by absorption of heat is known as endothermic reaction and by release of heat is known as exothermic reaction

For exothermic reaction, ΔH is negative and for endothermic reaction, ΔH is positive

From Arrhenius equation, we know that $k=A e^{-E_{a} / R T}$ where k is rate constant which signifies effective number of collisions. A is
known as Arrehnius constant, or maximum rate constant of frequency factor which signifies maximum number of collisions with proper orientation of reacting species per mole per second. The catalysed reaction occurs at 500 K and the uncatalysed reaction occurs at 800 K in such way so that the rate of catalysed reaction and uncatalysed reaction becomes equal as well as the catalyst lower down the energy barrier by 60 J .

Answer the following questions on the basis of above paragraph On the basis of question no. 4 , what will be the value of threshold energy of the uncatalysed reaction ?
A. 180 J
B. 210 J
C. 170 J
D. 190 J

Answer: B

7. The energy profile diagrams are very important tool through which, we predict lot of things, like the amount of activation energy of the catalysed and uncatalysed reaction as well as for the backward reaction and forward reaction. Thershold energy of the catalysed and uncatalysed reaction. The graphs representing the energy profile diagram for catalysed and uncatalysed reactions are given below :

The graph of the lower energy barrier is the energy profile diagram for the catalysed reaction adn of the higher barrier is the energy profile diagram of uncatalysed reaction.

From the graph, it is clear that $E_{a f}$ and $E_{a b}$ are the activation
energy of the respectively. $E_{a f}$ and $E_{a b}$ are the activation energy
of the catalysed forward and backward reaction respectvely
The reaction which occurs by absorption of heat is known as endothermic reaction and by release of heat is known as exothermic reaction

For exothermic reaction, ΔH is negative and for endothermic reaction, ΔH is positive

From Arrhenius equation, we know that $k=A e^{-E_{a} / R T}$ where k
is rate constant which signifies effective number of collisions. A is
known as Arrehnius constant, or maximum rate constant of
frequency factor which signifies maximum number of collisions
with proper orientation of reacting species per mole per second.
The catalysed reaction occurs at 500 K and the uncatalysed reaction occurs at 800 K in such way so that the rate of catalysed reaction and uncatalysed reaction becomes equal as well as the catalyst lower down the energy barrier by 60 J .

Answer the following questions on the basis of above paragraph

On the basis of question no. 4 what will be the value of threshold energy of the catalysed reactions ?
A. 150 J
B. 190 J
C. 170 J
D. 200 J

Answer: A

D View Text Solution

8. The energy profile diagrams are very important tool through which, we predict lot of things, like the amount of activation energy of the catalysed and uncatalysed reaction as well as for the backward reaction and forward reaction. Thershold energy of the catalysed and uncatalysed reaction. The graphs representing the
energy profile diagram for catalysed and uncatalysed reactions are given below :

The graph of the lower energy barrier is the energy profile diagram for the catalysed reaction adn of the higher barrier is the energy profile diagram of uncatalysed reaction.

From the graph, it is clear that $E_{a f}$ and $E_{a b}$ are the activation energy of the respectively. $E_{a f}$ and $E_{a b}$ are the activation energy of the catalysed forward and backward reaction respectvely

The reaction which occurs by absorption of heat is known as endothermic reaction and by release of heat is known as exothermic reaction

For exothermic reaction, ΔH is negative and for endothermic reaction, ΔH is positive

From Arrhenius equation, we know that $k=A e^{-E_{a} / R T}$ where k is rate constant which signifies effective number of collisions. A is
known as Arrehnius constant, or maximum rate constant of frequency factor which signifies maximum number of collisions with proper orientation of reacting species per mole per second.

The catalysed reaction occurs at 500 K and the uncatalysed reaction occurs at 800 K in such way so that the rate of catalysed reaction and uncatalysed reaction becomes equal as well as the catalyst lower down the energy barrier by 60 J .

Answer the following questions on the basis of above paragraph

Which of the following statement(s) is/are correct about the catalysed and uncatalysed reaction?
A. For catalysed and uncatalysed reaction, ΔH of the reaction becomes same
B. At constant temperature, equilibrium for catalysed reaction
C. Even at constant temperatures the equilibrium constant of the catalysed and uncatalysed reactions are not same
D. Both (A) and (B)

Answer: D

- View Text Solution

9. The energy profile diagrams are very important tool through which, we predict lot of things, like the amount of activation energy of the catalysed and uncatalysed reaction as well as for the backward reaction and forward reaction. Thershold energy of the catalysed and uncatalysed reaction. The graphs representing the energy profile diagram for catalysed and uncatalysed reactions are given below :

The graph of the lower energy barrier is the energy profile diagram for the catalysed reaction adn of the higher barrier is the energy profile diagram of uncatalysed reaction.

From the graph, it is clear that $E_{a f}$ and $E_{a b}$ are the activation energy of the respectively. $E_{a f}$ and $E_{a b}$ are the activation energy of the catalysed forward and backward reaction respectvely The reaction which occurs by absorption of heat is known as endothermic reaction and by release of heat is known as exothermic reaction

For exothermic reaction, ΔH is negative and for endothermic reaction, ΔH is positive

From Arrhenius equation, we know that $k=A e^{-E_{a} / R T}$ where k is rate constant which signifies effective number of collisions. A is
known as Arrehnius constant, or maximum rate constant of frequency factor which signifies maximum number of collisions with proper orientation of reacting species per mole per second. The catalysed reaction occurs at 500 K and the uncatalysed reaction occurs at 800 K in such way so that the rate of catalysed reaction and uncatalysed reaction becomes equal as well as the catalyst lower down the energy barrier by 60 J .

Answer the following questions on the basis of above paragraph
Which of the following statement(s) is/are correct for the catalysed and uncatalysed reactions ?
A. At constant temperature, the ΔG° of the catalysed and uncatalysed reactions are same
B. Even at constant temperature the ΔG^{2} of the catalysed and uncatalysed and uncatalysed reaction are different
C.At constant temperature ΔG° of the catalysed and uncatalysed reaction ΔS (entropy change) are same
D. Both (A) and (B)

Answer: D

D View Text Solution

10. The energy profile diagrams are very important tool through which, we predict lot of things, like the amount of activation energy of the catalysed and uncatalysed reaction as well as for the backward reaction and forward reaction. Thershold energy of the catalysed and uncatalysed reaction. The graphs representing the energy profile diagram for catalysed and uncatalysed reactions are given below :

The graph of the lower energy barrier is the energy profile diagram for the catalysed reaction adn of the higher barrier is the energy profile diagram of uncatalysed reaction.

From the graph, it is clear that $E_{a f}$ and $E_{a b}$ are the activation energy of the respectively. $E_{a f}$ and $E_{a b}$ are the activation energy of the catalysed forward and backward reaction respectvely

The reaction which occurs by absorption of heat is known as endothermic reaction and by release of heat is known as exothermic reaction

For exothermic reaction, ΔH is negative and for endothermic reaction, ΔH is positive

From Arrhenius equation, we know that $k=A e^{-E_{a} / R T}$ where k is rate constant which signifies effective number of collisions. A is
known as Arrehnius constant, or maximum rate constant of frequency factor which signifies maximum number of collisions with proper orientation of reacting species per mole per second.

The catalysed reaction occurs at 500 K and the uncatalysed
reaction occurs at 800 K in such way so that the rate of catalysed reaction and uncatalysed reaction becomes equal as well as the catalyst lower down the energy barrier by 60 J .

Answer the following questions on the basis of above paragraph What percentage fraction of the molecule will cross over the energy barrier at 2000 K temperature for 36.848 kJ activation energy? (Given $\mathrm{R}=8 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$)
A. 10%
B. 20%
C. 90%
D. 80%

Answer: A

- View Text Solution

11. The process of the reaction $A \Leftrightarrow n B$ with time is represented in the fig, given below

The value of n is
A. 1
B. 2
C. 3
D. 1.5

Answer: B

- Watch Video Solution

12. The progress of the reaction $A \Leftrightarrow n B$ with time is presented in the figure given below:

Determine

a. The value of n.
b. The equilibrium constant K.
c. The initial rate of concentration of A.
A. 2
B. 1.2
C. 0.5
D. 6.67

Answer: B

- Watch Video Solution

13. The progress of reaction
$A \Leftrightarrow n B$
with time, is represented in fig use given below.

Time/h

Determine:
(i) the value of n
(ii) the equilibrium constant, K and
(iii) the initial rate of conversion of A
A. $0.1 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{hr}^{-1}$
B. $0.2 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{hr}^{-1}$
C. $0.4 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{hr}^{-1}$
D. $0.8 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{hr}^{-1}$

- Watch Video Solution

Matrix Match

1. Here each question contains statements are given in two columns which have to be matched. Statements in Column I are labelled as A, B, C and D whereas statements in Column II are labelled as p,q,r and s. The answer to these questions are to ne appropriately bubbled as illustrated below in the following example.

If	the	matreches
are		

$p \quad q \quad r \quad s$

Column-I
(A) Rate of reaction
(B) First order reaction
(C) Zero order reaction $\quad \mathrm{r} \mathrm{mol}^{-1} \mathrm{~L} \mathrm{~s}^{-1}$
(D) second order reaction s Decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$

- Watch Video Solution

2. Here each question contains statements are given in two columns which have to be matched. Statements in Column I are
labelled as A, B, C and D whereas statements in Column II are labelled as p,q,r and s. The answer to these questions are to ne appropriately bubbled as illustrated below in the following example.

| If | the correct | matches |
| :---: | :--- | :--- | are correctly labelled 4×4 matrix should look like

Column-I
(A) Activation energy
(B) Threshold energy
(C) Heat of reaction r Negative for exothermic reaction
(D) Role of catalyst s Activated complex

- View Text Solution

1. The concentration of R in the reaction $R \rightarrow P$ was measured as a function of time and the following data were obtained. What is the order of the reaction?
$[R](\mathrm{mol})$
$\begin{array}{ll}1.0 & 0.75\end{array}$
0.40
0.10
$T(\min)$
$0.0 \quad 0.05$
0.12
0.18

(Watch Video Solution

2. An organic compound undergoes first decompoistion. The time taken for its decompoistion to $1 / 8$ and $1 / 10$ of its initial concentration are $t_{1 / 8}$ and $t_{1 / 10}$, respectively. What is the value of

$$
\frac{\left[t_{1 / 8}\right]}{\left[t_{1 / 10}\right]} \times 10 ?\left(\log _{10} 2=0.3\right)
$$

- Watch Video Solution

3. The answer to each of the following questions is a single digit integer, ranging from 0 to 9 . If the correct answer to the question numbers A, B, C and D (say) are $4,0,9$, and 2 respectively. Then the correct darkening of bubbles should be as shown on the slide.

If the temperature of a reaction is increased from $20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ the rate of reaction will become.....times.

- Watch Video Solution

4. The answer to each of the following questions is a single digit
integer, ranging from 0 to 9 . If the correct answer to the question numbers A, B, C and D (say) are $4,0,9$, and 2 respectively. Then the correct darkening of bubbles should be as shown on the slide.

For a first order reaction, the number of half lives required for the initial concentration of the reactant to fall to 3.125% if its initial concentration.....

Assertion or Reason

1. Assertion (A) : The molecularity of the reaction
$\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}$ is 2.
Reason (R): The order of the reaction is $3 / 2$.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

- Watch Video Solution

2. Assertion (A) : In a reaction $A \rightarrow$ Products, the concentratiton of the reactant is reduced to zero after a finite time

Reason (R) : The order of reaction is zero.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

(Watch Video Solution

3. Assertion (A) : The order a reaction can have a fractional value Reason (R) : The molecularity of a reaction can have a fractional value.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

- Watch Video Solution

4. Assertion (A) : Acid catalysed hydrolysis of ethyl acetate is a first order reaction

Reason (R) : Water does not take part in the reaction.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: C

- Watch Video Solution

5. Assertion (A) : Rate of reaction increases with temperature.

Reason (R) : Number of collisions increases with temperature.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: B

- Watch Video Solution

6. Assertion (A) : Catalyst increases the rate of a reaction

Reason (R) : It lowers the threshold energy of the reaction.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

- Watch Video Solution

7. Assertion (A) : Molecularity of inversion of sugar is one The order of this reaction is one.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: D

- Watch Video Solution

8. Assertion (A) : Reaction of CO with O_{2} is slower than that between NO and O_{2}

Reason (R) : $E_{\text {act }}$ for the first reaction is higher than that of the second reaction.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

- Watch Video Solution

9. Assertion (A) : In a reversible endothermic reaction, $E_{\text {act }}$ of the forward reaction is higher than that of the backward reaction

Reason (R) : The threshold energy of the forward reaction is more than that of the backward reaction.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

- Watch Video Solution

10. Assertion (A) : The order of a reaction can have fractional value Reason (R) : The order of a reaction cannot be written from balanced equation of a reaction.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: B

11. Assertion (A) : In zero order reaction, the concenration of reactants is reduced to zero after its half life.

Reason (R) : The concentration-time graph for zero order reactions is a straight line.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: D

- Watch Video Solution

12. Assertion (A) : Many of photochemical changes have positive
sign of ΔG, yet they are spontaneous

Reason (R) : The activation energy in photochemical reaction is provided by light energy.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: B

- Watch Video Solution

13. Assertion(A): A catalyst speed up a reaction but does not participate in its mechanism.

Reason(R): A catalyst provides an alternative path of lower activation energy to the reactants.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: D

- Watch Video Solution

14. Assertion (A) : The molecularity of a reaction may be a fraction

Reason (R) : The molecularity of a reaction is the number of molecules whether of the same or different species that must contact simultaneously in a single step for the reaction to occur.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: D

- Watch Video Solution

15. Assertion (A) : The multi molecular reactions are quite rare in comparision with biomolecular reactions

Reason (R) : At normal pressure, triple collisions are much less frequent than double ones.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

- Watch Video Solution

16. Assertion (A) : The order of a reaction may be defined as the sum of the powers to which the concentration terms are raised in order to determine the rate of reaction gives the total order of reactions.

Reason (R) : The number of molecules whose concentrations determine the ratio of reaction at a given temperature is called order to the reaction.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

- Watch Video Solution

17. Assertion (A) : The order of the reaction
$2 \mathrm{NO}(g)+2 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)+\mathrm{N}_{2}(g)$ is 3.
Reason (R) : Order of reaction with respect to a given reactant the power of the reactant's concentration in the rate equation.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

18. Assertion (A) : A catalyst provides an alternative path to the reaction in which conversion of reactants into products takes place quickly

Reason (R) : The catalyst forms an activated complex of lower potential energy with the reactants.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

- Watch Video Solution

19. Assertion (A) : Catalyst alters the individual energies of the reactants and products

Reason (R) : As such more number of molecules are able to cross the barrier per unit time.
ΔH or ΔU of the reaction remains unaltered.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: D

20. Assertion (A) : Photochemical reactions always occur in the presence of light.

Reason (R) : Photochemical reactions do not require activation energy.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: C

- Watch Video Solution

Ultimate Preparatory Package

1. The general expression for half life period of an nth order reaction
$t_{1 / 2}=\frac{2^{n-1}-1}{k(n-1) a^{n-1}}$ is
A. valid for all reactions
B. not valid for fractional or negative order reactions
C. not valid for first order reactions
D. not valid for zero order reaction

Answer: C

- Watch Video Solution

2. The general expression for rate constant k for an nth order reaction

$$
k=\frac{1}{(n-1) t}\left[\frac{1}{[A]^{n-1}}-\frac{1}{[A]_{0}^{n-1}}\right] \text { is }
$$

A. valid for zero order reaction
B. not valid for first order reaction
C. not valid for zero order reaction
D. not valid for negative/fractional order reaction

Answer: B

- Watch Video Solution

3. Which of the following will react faster (i.e., produce more product more product in a given time) and will react at the highest rate?
(i) 1 mol of A and 1 mol of B in a 1 L flask
(ii) 2 mol of A and 2 mol of B in a $2 L$ flask
(iii) 0.2 mol of A and 0.2 mol of B in a 0.1 L flask
A. Fastest and highest rate (iii)
B. Fastest (iii) and highest rate (ii)
C. Fastest (ii) and highest rate (iii)
D. Fastest and highest rate (ii)

Answer: C

- Watch Video Solution

4. The hydrolysis of methyl acetate in alkaline solution
$\mathrm{CH}_{3} \mathrm{COOH}_{3}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{CH}_{3} \mathrm{OH}$ followed rate $=k\left[\mathrm{CH}_{3} \mathrm{COOCH}_{3}\right]\left[\mathrm{OH}^{-}\right]$where $k=0.137 \mathrm{~L} \mathrm{~mol}^{-1} s^{-1}$ at 298 K A reaction mixture was prepared to have initial concentrations of methyl acetate and OH^{-}of 0.050 M each The time taken for 5.0% of the methyl acetate to be hydrolysed at 298 K is (assume that there is no change in the rate during this interval)
A. $7.4 s$
B. 4.7 s
C. 4.7 min
D. 0.47 min

Answer: A

- Watch Video Solution

5. A viral preparation was inactivated in a chemical bath. The inactivated in a chemical bath. The inactivation process was found to the first order in virus concentration and at the beginning of the experiment 2.0% of the virus was found to be inactivated per minute The k for the inactivated per minute The k for the inactivated process is (assume that there is no change in rate in the interval)
A. $2.00 \times 10^{-2} s^{-1}$
B. $3.3 \times 10^{-4} s^{-1}$
C. $3.0 \times 10^{-4} s^{-1}$
D. $3.0 \times 10^{-1} s^{-1}$

Answer: B

- Watch Video Solution

6. If initial concentration of ethyl acetate is 0.50 M it is hydrolysed with dilute mineral acid in such a way that the reaction is almost (90%) complete at equilibriu The final concentration of water in the reaction mixture is
A. 0.45 M
B. 45 M
C. 55.05 M
D. Cannot be determined

Answer: C

- Watch Video Solution

7. The hypothetical reaction $A+B \rightarrow C$ is first order with respect to each reactant with $k=1.0 \times 10^{-2} \mathrm{~L} \mathrm{~mol}^{-1} s^{-1}$ if initial concentration of each reactant is 0.100 M the concentration of A after 100 s is
A. 0.091 M
B. $1.0 \times 10^{-3} \mathrm{M}$
C. $1.9 \times 10^{-3} \mathrm{M}$
D. $9.1 \times 10^{-3} \mathrm{M}$

Answer: A

- Watch Video Solution

8. A certain reaction $A+B \rightarrow C$ is first order with respect to each reactant with $k=1.0 \times 10^{-3} \mathrm{~L} s^{-1}$ If initial concentrations of A and B are 0.100 M and 0.200 M the concentration of A after 100 s is
A. 0.098 M
B. 0.199 M
C. 0.019 M
D. None of these

Answer: A

9. The decomposition of $\mathrm{N}_{2} \mathrm{O}$ into N_{2} and O in the presence of gaseous argon follows second kinetics with
$k=\left(5.0 \times 10^{11} \mathrm{~L} \mathrm{~mol}^{-1} s^{-1}\right) e^{-29000 K / T}$
The energy of activation is
A. $2.9 \times 10^{4} k J \mathrm{~mol}^{-1}$
B. $2.41 \times 10^{2} k J \mathrm{~mol}^{-1}$
C. $1.45 \times 10^{4} k J \mathrm{~mol}^{-1}$
D. None of these

Answer: B

- Watch Video Solution

10. The rate constant for the first order decomposition of ethylene oxide into CH_{4} and CO ,

may be describe by
$\log k\left(\mathrm{ins}^{-1}\right)=14.34-\frac{1.25 \times 10^{4} K}{T}$
The activation energy of the reaction is
A. $4.8 \times 10^{-5} \mathrm{kJmol}^{-1}$
B. $4.8 \times 10^{5} \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $2.39 \times 10^{2} k J \mathrm{~mol}^{-1}$
D. $2.39 \times 10^{5} \mathrm{kJmol}^{-1}$

Answer: C

- Watch Video Solution

11. A substance X decomposes in solution following the first order
kinetics Flask (I) contains 500 mL of 1 M solution of X and flask (II)
contains 1.5 L of 0.8 M solution of X After 5 hours concentration of X in flask (I) becomes 0.25 M what will be the time for concentration of X in flask (II) to become 0.4 M
A. 2.5 hours
B. 1.5 hours
C. 1.75 hours
D. unpredictable as rate constant is not given

Answer: A

- Watch Video Solution

12. In a second order reaction, first order in each reactant A and B , which one of the following reactant mixtures will provide the highest initial rate?
A. 0.1 mol of X and 0.1 mol of Y in 0.2 L of solvent
B. 0.2 mol of X and 0.2 mol of Y in 0.1 L of solvent
C. 1.0 mol of X and 1.0 mol of Y in 1.0 L of solvent
D. 0.1 mol of X and 0.1 mol of Y in 0.1 L of solvent

Answer: B

- Watch Video Solution

13. For a first order reaction, the ratio of time for the completion of 99.9% and half of the reaction is
A. 2
B. 4
C. 10
D. 8

Answer: C

- Watch Video Solution

14. For the reaction $R \rightarrow P$ when concentration of R is made double the rate of reaction becomes 2.828 times the order of reaction is
A. 2.5
B. 1.5
C. 1.0
D. 2.0

Answer: B

- Watch Video Solution

15. The chemical reaction $2 O_{3} \xrightarrow{k_{1}} 3 O_{2}$ proceeds as follows:
$O_{3} \stackrel{k_{\text {eq }}}{\Longleftrightarrow} O_{2}+O$ (fast)
$\mathrm{O}+\mathrm{O}_{3} \xrightarrow{k} 2 \mathrm{O}_{2}$ (slow)

What should be the rate law expresison ?
A. $r=k\left[O_{3}\right]^{2}\left[O_{2}\right]^{-1}$
B. $r=k\left[O_{3}\right]^{2}$
C. $r=k\left[O_{3}\right]\left[O_{2}\right]$
D. None of these

Answer: A

- Watch Video Solution

16. The concentration of a reactant in solution falls from (i) 0.5 M to 0.25 M in 5 hourse and from (ii) 1.0 M to 0.25 M in 10 hours The order of reaction is
A. two
B. one
C. zero
D. $3 / 2$

Answer: B

- Watch Video Solution

17. In a particular reaction $t_{1 / 2}$ was found to increase 16 times when initial concentration of the reactant was reduced to one fourth What is the order of the reaction?
A. Zero
B. One
C. Two
D. Three

Answer: D

- Watch Video Solution

18. For a zero order reaction a graph of conc. (along Y axis) and time (along X-axis) is linear with
A. a $+v e$ slope and a non-zero Y - intercept
B. a - ve slope with a non - zero Y-intercept
C. a + ve slope with a zero Y - interpt
D. a $-v e$ slopw with a zero Y-intercept

Answer: B

- Watch Video Solution

19. The rate constant of a zero order reaction is 0.2 mol $d m^{-3} \min ^{-1}$ if the concentration of reactants after 30 minutes in $0.5 \mathrm{~mol} d m^{-3}$ then the initial concentration would be
A. $0.65 \mathrm{~mol} \mathrm{dm}^{-3}$
B. $65 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
C. $3.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
D. $6.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$

Answer: D

- Watch Video Solution

20. For a hypothetical reaction $R \rightarrow P$ the rate constant is $2944.06 s^{-1}$ if the concentration of R is reduced to half then the value of rate constant is
A. $1472.03 s^{-1}$
B. $2944.06 s^{-1}$
C. $294.406 s^{-1}$
D. $29.4406 s^{-1}$

Answer: B

- Watch Video Solution

21. For a zero order reaction a plot of rate (along Y-axis) and concentration (along X-axis) is
A. a rectangular parabola
B. a line with $-v e$ slope and zero Y - intercept
C. a line with $+v e$ slope and a non-zero Y - intercept
D. a line with zero slope and a positive Y-intercept

Answer: D

- Watch Video Solution

22. At 373 k , the following reaction $A(g) \rightarrow 2 B(g)+C(g)$ is
found to be of first order. Starting with pure A, the total pressure at the end of 10 minutes was 176 mm Hg and after a long time when A was completely dissociated, it was 270 mm Hf. The pressure of A at the end of 10 minutes was
A. 94 mm Hg
B. 47 mm Hg
C. 43 mm Hg
D. 90 mm Hg

Answer: B

23. A reaction has a rate constant of $0.25 \mathrm{~mol}^{-1} \mathrm{~L} s^{-1}$ if the initial concentration of the reactant is $0.2 \mathrm{~mol} L^{-1}$ half life of the reaction is
A. 15 s
B. 10 s
C. 20 s
D. 50 s

Answer: C

- Watch Video Solution

24. In a reversible reaction the rate of the backward reaction is
A. negative
B. positive
C. can be positive or negative
D. None of these

Answer: B

- Watch Video Solution

25. Hydrolysis of amyl acetate was carried out separately in the presence of 0.02 M HCl and $0.02 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ The rate constants were found to be k_{1} and k_{2} then
A. $k_{1}=k_{2}$
B. $k_{1}=2 k_{2}$
C. $k_{2}=2 k_{1}$
D. $k_{1}=4 k_{2}$

Answer: A

- Watch Video Solution

26. When number of reactants are very large the method used to find the order of a reaction is
A. Half life method
B. Integrated rate equation method
C. Initial rate method
D. Ostwald isolation method

Answer: D

27. Which of the following is not used to find the order of reaction ?
A. Graphical method
B. Ostwald dilution law method
C. Isolation method
D. Integrated method

Answer: B

- Watch Video Solution

28. The branch of chemistry which deals with the study of very fast reaction is
A. kinetic chemistry
B. dynamic chemistry
C. high speed
D. femto chemistry

Answer: D

- Watch Video Solution

29. For the two step reaction in which both the steps are first order

$R \xrightarrow{k_{1}} I$
$I \xrightarrow{k_{2}} P$
the rate of change of concentration of I is given by the plot
A. I
B. II
C. III
D. None
