©"doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - S DINESH \& CO CHEMISTRY (HINGLISH)

CHEMICAL BONDING AND MOLECULAR STRUCTURE

1. The compound which does not contain ionic bond is
A. NaOH
B. HCl
C. $K_{2} S$
D. LiH

Answer: B

- Watch Video Solution

2. In an ionic compound $A^{+} X^{-}$the degree of covalent bonding is greatest when
A. A^{+}and X^{-}ions are small
B. A^{+}is small and X^{-}is large
C. A^{+}and X^{-}ions are approximately of the
same size
D. X^{-}is small and A^{+}is large.

Answer: B
3. Which of the following has highest ionic character?
A. MgCl_{2}
B. CaCl_{2}
C. BaCl_{2}
D. BeCl_{2}

Answer: C

D Watch Video Solution
4. The stability of ionic crystal depends principally on
A. High electron affinity of anion forming
species
B. The lattice energy of crystal
C. Low I.E. of cation forming species
D. Low heat of sublimation of cation
forming solid.

Answer: B

5. Ionic compounds in general possess both

A. high melting points and non-directional bonds
B. high melting points and low boiling points
C. directional bonds and low boiling points
D. high solubilities in polar and non-polar

Answer: A

D Watch Video Solution

6. The electronic configuration of four elements L, P, Q and R are given in brackets
$L\left(1 s^{2}, 2 s^{2}, 2 p^{4}\right), P\left(1 s^{2}, 2 p^{6}, 3 s^{1}\right)$
$Q\left(1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{5}\right), R\left(1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2}\right)$
The formula of ionic compounds that can be formed between elements are
A. $L_{2} P, R L, P Q, R_{2} Q$

B. $L P, R L, P Q, R Q$

C. $P_{2} L, R L, P Q, R Q_{2}$
D. $L P, R_{2} L, P_{2} Q, R Q$

Answer: C

- Watch Video Solution

7. Most favourable conditions for inoic bonding are .
A. Low charge on ions, large cation, small anion
B. Low charge on ions, large cation, large anion
C. High charge on ions, small cation, large anion
D. High charge on ions, large cation, small anion

Answer: D

8. The maximum number of covalent bonds by

 which the two atoms can be bonded to each other isA. Four

B. Two

C. Three

D. No fixed number

Answer: C

9. The number of π bonds in the structure

 given below are : $(\mathrm{NC})_{2} \mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}$A. 1
B. 9
C. 5
D. unpredictable.

Answer: B
10. A sigma bonded molecule $M X_{3}$ is T-shaped

The number of non-bonding pairs of electrons
is .
A. 0
B. 2
C. 1
D. can be predicted only if atomic number
of M is known.
11. The molecule $A B_{n}$ is planar with six pairs of electrons around A in the valence shell. The value of n is
A. 6
B. 2
C. 4
D. 3
12. Which atomic orbital is always involved in sigma bonding only ?
A. p
B. d
C. s
D. none

Answer: C

D Watch Video Solution
13. The strength of bonds by $2 s-2 s, 2 p-2 p$ and $2 p-2 s$ overlap has the order

$$
\begin{aligned}
& \text { A. } s-s>p-p>p-s \\
& \text { B. } s-s>p-s>p-p \\
& \text { C. } p-p>p-s>s-s \\
& \text { D. } p-p>s-s>p-s
\end{aligned}
$$

Answer: C
14. The correct order of increasing covalent character of the following is
A. $\mathrm{SiCl}_{4}<\mathrm{AlCl}_{3}<\mathrm{CaCl}_{3}<\mathrm{KCl}$
B. $\mathrm{KCl}<\mathrm{CaCl}_{2}<\mathrm{AlCl}_{3}<\mathrm{SiCl}_{4}$
C. $\mathrm{AlCl}_{3}<\mathrm{CaCl}_{2}<\mathrm{KCl}<\mathrm{SiCl}_{4}$
D. none of these

Answer: B

- Watch Video Solution

15. Which of the followingwill provide the most efficient overiap?
A. $\mathrm{s}-\mathrm{s}$
B. $s-p$
C. $s p^{2}-s p^{2}$
D. $s p-s p$

Answer: D

D Watch Video Solution
16. The number of $s p^{2}-s$ sigma bonds in benzene are
A. 3
B. 6
C. 12
D. none

Answer: B
17. Which of the following bonds is the strongest?.
A. F-F
B. I-I
C. $\mathrm{Cl}-\mathrm{Cl}$
D. $\mathrm{Br}-\mathrm{Br}$

Answer: C

- Watch Video Solution

18. Propyne molecule contains
A. 6 sigma and 3 pi bonds
B. 4 sigma and 1 pi bond
C. 3 sigma and 2 pi bonds
D. 6 sigma and 2 pi bonds.

Answer: D

- Watch Video Solution

19. The number of σ and π-bonds in but-1-en-3yne are
A. 5 sigma and 5 pi
B. 7 sigma and 3 pi
C. 8 sigma and 2 pi
D. 5 sigma and 4 pi.

Answer: B

D Watch Video Solution
20. Indicate the nature of bonding in diamond

A. Ionic

B. Covalent
C. Molecular
D. Metallic

Answer: B

- Watch Video Solution

21. The formal charge on P atom in orthophosphoric acid molecule is
A. +1
B. +3
C. +5
D. 0

Answer: A

- Watch Video Solution

22. In a covalent solid the lattice points are occupied by
A. atoms
B. ions
C. molecules
D. electrons.

Answer: A
23. Which of the following chloride has considerable covalent character?
A. LiCl
B. NaCl
C. KCl
D. CsCl .

Answer: A

- Watch Video Solution

24. The hybrid state of C in CS_{2} should be
A. $s p^{2}$
B. $s p$
C. $s p^{3}$
D. no specific

Answer: B
(D) Watch Video Solution
25. The hybrid state of S in SO_{3} is similar to
that of
A. C in $\mathrm{C}_{2} \mathrm{H}_{2}$
B. C in $\mathrm{C}_{2} \mathrm{H}_{4}$
C. C in CH_{4}
D. C in CO_{2}

Answer: B

- Watch Video Solution

26. Which of the following molecule containsan $s p^{2}$ hybrid carbon atom?
A. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}$
B. $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH}$
C. CO_{2}
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$

Answer: A
27. In OF_{2} the hybridisation of oxygen atom in the molecule is
A. $s p$
B. $s p^{2}$
C. $s p^{3}$
D. none of these

Answer: C

D Watch Video Solution
28. A hybrid orbital formed from s and p orbital can contribute to
A. a σ bond only
B. π-bond only
C. either σ or π bond
D. cannot be predicted

Answer: A
29. Compound in which central atom assumes
$s p^{3} d$ hybridisation is
A. SO_{3}
B. PCl_{5}
C. SO_{2}
D. PCl_{3}

Answer: B

D Watch Video Solution
30. The hybrid state of C atom in $\mathrm{C}_{2} \mathrm{H}_{2}$ is same as that of carbon in
A. $\mathrm{C}_{2} \mathrm{H}_{6}$
B. CO_{2}
C. Benzene

D. C (Diamond)

Answer: B

31. The hybrid state of C in charcoal is

A. $s p^{3}$
B. $s p^{2}$
C. sp
D. no specific state.

Answer: D
(Watch Video Solution
32. Hybridisation involves
A. separation of atomic orbitals
B. overlapping of atomic orbitals
C. mixing of atomic orbitals of atom

D. all of these.

Answer: C

- Watch Video Solution

33. The equilateral shape has

A. sp-hybridisation
B. $s p^{2}$ - hybridisation
C. $s p^{3}$-hybridisation

D. $s p^{3} d$-hybridisation

Answer: B

- Watch Video Solution

34. $s p^{3} d^{2}$ hybrid orbitals are

A. linear
B. pentagonal bipyramidal
C. trigonal bipyramidal
D. octahedral

Answer: D
(Watch Video Solution
35. In the following molecule, the hybrid state of 1 and 3 carbon atoms is $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}$
A. $s p^{3}$
B. $s p^{2}$
C. sp
D. $s p^{3} d$

Answer: B

D Watch Video Solution
36. Type of hybridisation of central carbon in propadiene is
A. $s p^{3}$
B. $s p^{2}$
C. sp
D. none of these

Answer: C
37. The compound 1, 2 - butadiene has:
A. only $s p$ hybridized carbon atoms
B. only $s p^{2}$ hybridized carbon atoms
C. both sp and $s p^{2}$ hybridized carbon
atoms
D. $s p, s p^{2}$ and $s p^{3}$ hybridized carbon atoms

Answer: D

- Watch Video Solution

38. The carbon atoms in graphite are
A. $s p^{3}$ hybridised
B. sp hybridised
C. $s p^{2}$ hybridised
D. none of these

Answer: C

- Watch Video Solution

39. The state of hybridisation of S in SO_{2} is same to that of
A. C in $\mathrm{C}_{2} \mathrm{H}_{2}$
B. C in $\mathrm{C}_{2} \mathrm{H}_{4}$
C. C in CH_{4}
D. C in CO_{2}

Answer: B

- Watch Video Solution

40. The nature of hybridisation in the NH_{3}

molecule is

A. $s p$
B. $s p^{2}$
C. $s p^{3}$
D. $s p^{2} d$

Answer: C
41. Which of the following types of hybridisation leads to two dimensional geometry of bonds around the atoms?
A. $s p$
B. $s p^{2}$
C. $s p^{3}$
D. none of the above.

Answer: B
42. Which orbital is used by oxygen atom to
form a sigma bond with other oxygen atom in
O_{2} molecule ?
A. pure p-orbital
B. $s p^{2}$ hybrid orbital
C. $s p^{3}$-hybrid orbital
D. sp-hybrid orbital

Answer: B

43. The d-orbital involved in $s p^{3} d$ hybridisation
is
A. $d_{x^{2}-y^{2}}$
B. $d_{x y}$
C. d_{z}^{2}
D. $d_{z x}$

Answer: C

- Watch Video Solution

44. In which of the molecule S atom does not assume $s p^{3}$ hybridisation

$$
\text { A. } \mathrm{SO}_{4}^{2-}
$$

B. $S F_{4}$
C. $S F_{2}$
D. S_{8}

Answer: B

45. The hybrid state of B in $B F_{4}^{-}$is

A. $s p^{2}$
B. $s p$
C. $s p^{3}$
D. no specific

Answer: C

- Watch Video Solution

46. In a chemical change from $\mathrm{PCl}_{3} \rightarrow \mathrm{PCl}_{5}$ the hybrid state of P changes from
A. $s p^{2}$ to $s p^{3}$
B. $s p^{3}$ to $s p^{2}$
C. $s p^{3}$ to $s p^{3} d$
D. $s p^{3}$ to $d s p^{2}$

Answer: C

D Watch Video Solution
47. $\mathrm{C}_{2} \mathrm{H}_{2}$ is isostructural with
A. $\mathrm{H}_{2} \mathrm{O}_{2}$
B. NO_{2}
C. SnCl_{2}
D. CO_{2}

Answer: D

- Watch Video Solution

48. The shape of covalent molecule $A X_{3}$ is
A. Triangular

B. T-shape

C. Pyramidal
D. Any of the above three depending upon
the number of lone pairs present in A.

Answer: D

- Watch Video Solution

49. Which of the following is correct order of repulsive interactions ?
A. Ip-lp gt Ip-bp gt bp-bp
B. Ip-bpgt lp-lp gt bp-bp
C. bp-bp gt Ip-bp gt Ip-Ip
D. Any of the three depending upon the type of molecule.

Answer: A

D Watch Video Solution

50. The shape of CO_{2} molecule is similar to
A. $\mathrm{H}_{2} \mathrm{O}$
B. $B e F_{2}$
C. SO_{2}
D. none of these.

Answer: B

- Watch Video Solution

51. The pair with similar geometry is
A. $B F_{3}, \mathrm{NH}_{3}$
B. $\mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{2} \mathrm{H}_{2}$
C. $\mathrm{CO}_{2}, \mathrm{SO}_{2}$
D. NH_{3} and PH_{3}

Answer: D

- Watch Video Solution

52. Out of $\mathrm{CHCl}_{3}, \mathrm{CH}_{4}$ and SF_{4} the molecules
having regular geometry are
A. CHCl_{3} only
B. CHCl_{3} and SF_{4}
C. CH_{4} only
D. CH_{4} and SF_{4}

Answer: C

D Watch Video Solution
53. A molecule $X Y_{2}$ contains two σ, two π and one lone pair of electron in valence shell of X.

The arrangement of lone pair as well as bond pairs is
A. square pyramidal
B. linear
C. trigonal planar
D. unpredictable

Answer: C

54. The atomic number of Sn is 50 . The shape of gaseous SnCl_{2} molecule is
A. $\mathrm{Cl}-\mathrm{Sn}-\mathrm{C}$
(B)
B.

(C)

(D)

55. Which among the following molecules is not flat?
A. $C_{6} H_{6}$
B. $\mathrm{C}_{2} \mathrm{H}_{4}$
C. SO_{3}
D. $\mathrm{C}_{2} \mathrm{H}_{6}$

Answer: A

D Watch Video Solution
56. If the central atom in certain molecule has
two lone pairs and three bond pairs, the shape of the molecule could be
A. T-shaped
B. trigonal planar
C. trigonal bipyramidal

D. distorted tetrahedral.

Answer: B

Watch Video Solution

57. Of the three molecules $\mathrm{XeF}_{4}, \mathrm{SF}_{4}, \mathrm{SiF}_{4}$ one which have tetrahedral structures is
A. All the three
B. Only SiF_{4}
C. Both SF_{4} and XeF_{4}
D. Only SF_{4} and XeF_{4}

Answer: B
58. The structure of $I F_{5}$ can be best described

(B)
C.
(C)
D. None of these

Answer: C
59. Which of the following will be planar trigonal ?
A. PCl_{3}
B. NH_{3}
C. ClF_{3}
D. AlCl_{3}

Answer: D
60. The shape of SO_{4}^{2-} ion is
A. square planar
B. square pyramid
C. tetrahedral

D. none of these

Answer: A

D Watch Video Solution
61. The geometrical arrangement and shape of
I_{3}^{-}are respectively
A. Trigonal bipyramidal geometry, linear shape
B. Hexagonal structure, linear shape
C. Triangular planar geometry, triangular
shape
D. Tetrahedral geometry, pyramidal shape

Answer: A
62. The correct order of decreasing polarity is
A. $\mathrm{HF}>\mathrm{SO}_{2}>\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}$
B. $\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}>\mathrm{SO}_{2}>\mathrm{NH}_{3}$
C. $\mathrm{HF}>\mathrm{NH}_{3}>\mathrm{SO}_{2}>\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}>\mathrm{SO}_{2}>\mathrm{HF}$

Answer: B

D Watch Video Solution
63. Which out of the following structures is
expected to have three bond pairs and one lone pair?
A. Tetrahedral
B. Octahedral
C. Trigonal planar
D. Pyramidal.

Answer: D

64. Which of the following structure is most expected for the molecule XeOF_{4} ?
A. Tetrahedral
B. Square pyramid
C. Square planar
D. Octahedral.

Answer: B

D Watch Video Solution
65. CO_{2} is iso-structural with
A. SO_{2}
B. SnCl_{2}
C. $\mathrm{C}_{2} \mathrm{H}_{2}$
D. NO_{2}

Answer: C

- Watch Video Solution

66. A molecule has seven bond pairs around
the central atom, the shape associated with
the molecule is
A. heptagonal
B. octahedral
C. pentagonal pyramidal
D. pentagonal bipyramidal

Answer: D

67. The pair of species with similar shape is

A. $\mathrm{PCl}_{3}, \mathrm{NH}_{3}$
B. $C F_{4}, S F_{4}$
C. $\mathrm{PbCl}_{2}, \mathrm{CO}_{2}$
D. $P F_{5}, I F_{5}$

Answer: A
(Watch Video Solution
68. Consider the dipole moments of
NH_{3} and NF_{3}. Which of the following is correct?
A. Dipole moment of NF_{3} is equal to that of
NH_{3}
B. Dipole moment of NH_{3} is equal in
magnitude but opposite in sign to that of NH_{3}
C. Dipole moment of NF_{3} is more than that of NH_{3}

D. Dipole moment of NH_{3} is more than that

of NF_{3}

Answer: D

D Watch Video Solution

69. Which of the following molecules will have polar bonds but zero dipole moment?
A. $N F_{3}$
B. $S F_{4}$
C. $C F_{4}$
D. F_{2}

Answer: C

- Watch Video Solution

70. Which of the following molecule has highest dipole moment?
A. $H_{2} S$
B. CO_{2}
C. CCl_{4}
D. $B F_{3}$

Answer: A

D Watch Video Solution

71. Which of the following molecule is polar ?
A. SO_{3}
B. SO_{2}
C. $S F_{6}$
D. All are polar

Answer: B

- Watch Video Solution

72. Which of the following molecule has highest dipole moment?
A. $B F_{3}$
B. NH_{3}
C. $N F_{3}$

D. $B_{2} H_{6}$

Answer: B

D Watch Video Solution

73. Which bond angle, θ would result in the maximum dipole moment for the triatomic molecule $X Y_{2}$?
A. 120°
B. 90°

C. 180°

D. 150°

Answer: B

D Watch Video Solution

74. One DEBYE (D) is equal to
A. 1×10^{-4} esu-cm
B. 1×10^{-18} esu-cm
C. $1 \times 10^{-10} \mathrm{esu}-\mathrm{cm}$

D. $1 \times 10^{-16} \mathrm{esu}-\mathrm{cm}$

Answer: B

D Watch Video Solution

75. Which of the following has zero value of dipole moment?
A. Benzene
B. Naphthalene
C. p-dichlorobenzene

D. All the three

Answer: D

- Watch Video Solution

76. The molecule which has the largest dipole moment amongst the following is
A. CH_{4}
B. CHCl_{3}
C. CCl_{4}
D. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Answer: D

D Watch Video Solution

77. Which one of the following is a compound most likely to have a dipole moment
A. $C S_{2}$
B. $\mathrm{H}_{2} \mathrm{~S}$
C. SO_{3}
D. SnCl_{4}

Answer: B

D Watch Video Solution

78. The unit of dipole moment is
A. Einstein
B. Debye
C. Dalton
D. Curie

Answer: B

D Watch Video Solution

79. The smallest bond angle around the central atom will be there in
A. $\mathrm{H}_{2} \mathrm{O}$
B. $B e F_{2}$
C. CH_{4}
D. NH_{3}

D Watch Video Solution

80. Which of the following set contains species
having same angle around the central atom?
A. $\mathrm{SF}_{4}, \mathrm{CH}_{4}, \mathrm{NH}_{3}$
B. $\mathrm{NH}_{3}, \mathrm{NCl}_{3}, \mathrm{NH}_{3}$
C. $B F_{3}, N F_{3}, A l C l_{3}$
D. $B F_{3}, B C l_{3}, B B r_{3}$

Answer: D

D Watch Video Solution

81. The bond angle around the central atom is
highest in
A. BBr_{3}
B. $C S_{2}$
C. SO_{2}
D. $S F_{4}$

Answer: B

- Watch Video Solution

82. The bond angle around the O atom in
ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is
A. $\approx 90^{\circ}$
B. $\approx 120^{\circ}$
C. $\approx 109^{\circ}$
D. $\approx 180^{\circ}$

D Watch Video Solution

83. In which of the following species the angle around the central atom is exactly equal to
$109^{\circ} .28^{\prime}$
A. $S F_{4}$
B. NH_{3}
C. NH_{4}^{+}
D. none of above.

- Watch Video Solution

84. In ethene, the bond angles are exactly
A. $109^{\circ} 28^{\prime}$
B. 120°
C. 180°
D. different than the above values.

Answer: D
85. Which one of the following compounds has
bond angle close to 90° ?
A. NH_{3}
B. $\mathrm{H}_{2} \mathrm{~S}$
C. CCl_{4}
D. CH_{4}

Answer: B

D Watch Video Solution
86. Which of the following molecules contains
the shortest $C-H$ bonds?
A. ethene
B. ethane
C. ethyne
D. methane.

Answer: C
87. In which of the following molecule, the bond lengths are not equal
A. SiF_{4}
B. $P F_{5}$
C. $S F_{6}$
D. $C F_{4}$

Answer: B

D Watch Video Solution

88. The bond angle in $\mathrm{H}_{2} \mathrm{~S}$ is

A. $>\mathrm{NH}_{3}$
B. Same as in BeCl_{2}
C. $>\mathrm{H}_{2} \mathrm{Se},<\mathrm{H}_{2} \mathrm{O}$
D. Same as in CH_{4}

Answer: C

D Watch Video Solution
89. Which has the lowest boiling point?
A. NH_{3}
B. PH_{3}
C. AsH_{3}
D. SbH_{3}

Answer: B
(Watch Video Solution
90. Which of the following is not different for two atoms in $\mathrm{N}-\mathrm{Cl}$ bond
A. Electronegativity
B. Valency
C. Atomic size
D. Ionisation potential

Answer: A

D Watch Video Solution
91. The boiling points of methanol, water and dimethyl ether are respectively $65^{\circ} \mathrm{C}, 100^{\circ} \mathrm{C}$ and $34.5^{\circ} \mathrm{C}$. Which of the following best explains these wide variations in b.p.?
A. The molecular mass increases from
water (18) to methanol (32) to diethyl
ether (74)
B. The extent of H -bonding decreases from
water to methanol while it is absent in
ether
C. The extent of intramolecular H-bonding
decreases from ether to methanol to
water
D. The density of water is $1.00 \mathrm{~g} \mathrm{ml}^{-1}$ methanol $0.7914 \mathrm{gml}^{-1}$ - and that of diethyl ether is $0.7137 \mathrm{gml}^{-1}$

Answer: B

D Watch Video Solution

92. Which carbon is more electronegative?

A. $s p^{3}$ hybridised carbon
B. sp hybridised carbon
C. $s p^{2}$ hybridised carbon
D. The electron attracting power of C is
always same irrespective of its hybrid
state.

Answer: B
93. For the two compounds, the vapour pressure of (i) at a particular temperature is expected to be

A. higher than (i)
B. lower than that of (i)
C. same as that of (i)

D. can be higher or lower depending upon

 the size of the vessel.
Answer: A

D Watch Video Solution

94. Which of the following solvent will have highest solubility of KCl ?
A. $C_{6} H_{6}(D=0)$
B. $\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{CO}(\mathrm{D}=2)$

C. $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{D}=32)$

D. $\mathrm{CCl}_{4}(\mathrm{D}=0)$.

Answer: C

D View Text Solution

95. Which one of them has the highest melting point?
A. NaCl
B. NaF

C. NaBr

D. Nal

Answer: B

D Watch Video Solution

96. Explain why HCl is a gas and HF is a liquid ?

A. H-F bond is strong
B. H-F bond is weak

C. Molecules of HF form aggregate because

 of hydrogen bondingD. HF is a weak acid

Answer: C

- Watch Video Solution

97. Out of o-nitrophenol and p-nitrophenol, which is more volatile ? Explain?
A. Hydrogen bonding

B. Covalent bonding

C. Resonance
D. Conjugation.

Answer: A

D Watch Video Solution

98. Which one is appreciably soluble in water
A. $C S_{2}$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
C. CCl_{4}
D. CHCl_{3}

Answer: B

D Watch Video Solution

99. Which of the crystals should be the softest and have the lowest boiling point?
A. Covalent crystals
B. Ionic crystals

C. Metallic crystals

D. Molecular crystals.

Answer: D

D Watch Video Solution

100. Which of the following is solid with highest m.p. ?
A. $\mathrm{CO}_{2}(\mathrm{~s})$
B. $\mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
C. SiO_{2}
D. $\mathrm{He}(\mathrm{s})$.

Answer: C

D Watch Video Solution

101. Which of the following resonating form is not correct for CO_{2} ?
A. (A) $: \ddot{O}=C=\ddot{O}$:
B. ${ }^{(\mathrm{B})} \stackrel{\stackrel{\rightharpoonup}{\mathrm{O}}}{ }-\mathrm{C} \equiv \stackrel{+}{\mathrm{O}}$:
C. $(\mathrm{C}):+{ }_{0}^{\mathrm{O}} \equiv \mathrm{C}-\overline{\mathrm{O}}:$
D. (D) $: \stackrel{+}{-}-\mathrm{C} \equiv \bar{o}$:

Answer: D

D Watch Video Solution

102. The carbon monoxide molecule may be represented by the following structures except
A. $(\mathrm{A}): \overline{\mathrm{C}} \equiv \mathrm{O}:^{+}$
B.
(B) $\stackrel{+}{\mathrm{C}} \equiv \overline{\mathrm{O}}$:
C. $(\mathrm{C}): \stackrel{+}{\mathrm{C}}-\mathrm{O} \cdot:^{-}$
D.
(D) $: \mathrm{C}=\ddot{\mathrm{O}}$:

Answer: B

D Watch Video Solution

103. CO_{3}^{2-} ion exists as resonance hybrid of
three equivalent structures. In each of these
structures the carbon atom contains
A. three single bonds
B. two single and a double bond
C. three single bonds and one lone pair of electrons
D. three single bonds and two lone pair of electrons

Answer: B

- Watch Video Solution

104. Consider $\mathrm{H}_{2} \mathrm{CO}_{3}$ and CO_{3}^{2-} ion. Which of the following is correct?
A. There is no resonance in $\mathrm{H}_{2} \mathrm{CO}_{3}$
B. Resonance stabilization energy of CO_{3}^{2-}
is more than $\mathrm{H}_{2} \mathrm{CO}_{3}$
C. Resonance stabilization energy of
$\mathrm{H}_{2} \mathrm{CO}_{3}$ is more than CO_{3}^{2-}
D. There is no resonance in CO_{3}^{2-}

Answer: B
105. Which of the following is not a preferred resonating structure for azide ion N_{3}^{-}?
A. $\left.{ }^{\text {(A) }} \mathfrak{l} \mathfrak{N}-\mathrm{N} \equiv \mathrm{N}:\right]^{-}$
B. $\left.{ }^{(B)}: \mathbb{N} \equiv \mathrm{N}-\underset{\mathrm{N}}{1}\right]^{-}$
C. ${ }^{\text {(C) }}: \ddot{\mathrm{N}}=\mathrm{N}=\stackrel{\mathrm{N}}{\mathrm{N}} \mathrm{I}^{-}$
D. (D) $: \stackrel{\ddot{\mathrm{N}}}{\dot{\mathrm{N}}}=\dot{\mathrm{N}} \mathrm{l}^{-}$

Answer: D
106. Which of the following is not true about resonance?
A. The resonating structures are
hypothetical.
B. The unpaired electrons in various
resonating structures are same
C. Hybrid structure is most stable.
D. Hybrid structure has maximum energy.

Answer: D

D Watch Video Solution

107. Which of the following is not correct about a coordinate bond?
A. A co-ordinate bond once formed cannot
be distinguished from a covalent bond

B. A co-ordinate bond is also called a semi

polar bond

C. A co-ordinate bond is non-directional in

nature.
D. Due to co-ordinate bond the formal
charges on donor and acceptor atoms
are + and - respectively,

Answer: C

D Watch Video Solution
108. Which of the following does not have a coordinate bond?
A. $\mathrm{H}_{3} \mathrm{O}^{+}$
B. PCl_{5}
C. O_{3}
D. HNO_{3}

Answer: B

D Watch Video Solution
109. Which of the following has no co-ordinate bond?
A. HNO_{3}
B. CO
C. CO_{3}^{2-}

D. $\mathrm{CH}_{3} \mathrm{NC}$

Answer: C
110. Which of the following species have intramolecular H -bonds?
A. Phenol
B. o-Nitrophenol
C. p-Nitrophenol
D. Nitroethane

Answer: B

D Watch Video Solution
111. Which of the following H -bonds is expected to have maximum strength ?
A. H-O.. .H
B. H-N.. .H
C. H-S......H
D. All have same strength

Answer: A
112. The H-Bonds in solid HF can be best represented as:
A. H-F---H-F---H-F
B. ${ }^{(B)} \mathrm{H}_{\mathrm{H}^{\prime}}, \mathrm{H}_{\mathrm{C}_{\mathrm{F}}}, \mathrm{H}_{\mathrm{H}^{\prime}}, \mathrm{H}$

Answer: C

- Watch Video Solution

113. The crystal lattice of ice is mostly formed by
A. ionic forces
B. covalent bonds
C. intramolecular H -bonds
D. covalent as well as H -bonds.

Answer: D
114. Highest viscosity is exhibited by
A. Glycerol
B. Ethylene glycol
C. Ethanol
D. Water.

Answer: A
(Watch Video Solution
115. Acetic acids exists in dimer state in benzene due to
A. condensation reaction
B. hydrogen bonding
C. presence of carboxyl group
D. presence of hydrogen atom at α-carbon

Answer: B

D Watch Video Solution
116. Which one among the following does not have the hydrogen bond?
A. Phenol
B. Liquid NH_{3}
C. Water

D. Liquid HCl

Answer: D
117. Intramolecular H -bonding is present in
A. meta nitrophenol
B. salicylaldehyde
C. hydrogen chloride

D. benzophenone.

Answer: B

118. In the metallic crystal
A. the valence electrons remain within the
field of influence of their own kernels
B. the valence electrons constitute a sea of
mobile electrons
C. the valence electrons are localised between the two kernels
D. both kernels as well as electrons move
rapidly

Answer: B

D Watch Video Solution

119. The element out of L. M, Q. R showing maximum metallic character is
A. $Q:[N e] 3 s^{2}$
B. $M:[H e] 2 s^{2} 2 p^{5}$
C. $R:[N e] 3 s^{2} 3 p^{2}$
D. $L:[H e] 2 s^{2} 2 p^{3}$

D Watch Video Solution

120. What structural units occupy the lattice sites in the metallic crystals?
A. Atoms
B. Electrons
C. Negative ions
D. Metal kernels

Answer: D

D Watch Video Solution

121. Which forces are strongest amongst the following ?
A. Ion-ion interaction
B. ion-dipole forces
C. Dipole-dipole forces
D. Dipole induced dipole forces

Answer: A

D Watch Video Solution

122. The interparticles forces in liquid
hydrogen are
A. H-bonds
B. van der Waals forces
C. Covalent bonds
D. None of these

Answer: B

D Watch Video Solution

123. In solid argon the atoms are held by
A. ionic bonds
B. hydrogen bonds
C. van der Waals forces
D. co-ordinate bonds.

Answer: C
124. In which of the following molecules the
van der Waals forces are likely to be the most important in determining the mpt. and b.pt.?
A. CO
B. $\mathrm{H}_{2} \mathrm{~S}$
C. $B r_{2}$
D. HCl
125. What is true about $P F_{5}$?
A. The molecule does not exist
B. P-F bonds are co-ordinate covalent
C. All O-F bonds are not equal
D. Molecule has pentagonal planar
geometry.

Answer: C

Watch Video Solution

126. Which of the following statements about LiC and NaCl is wrong?
A. LICl has lower melting point than NaCl
B. LiCl dissolves more in organic solvents
whereas NaCl does not
C. LiCl would ionise in water more than NaCl

D. Fused LiCl would be less conducting

 than fused NaCl
Answer: C

D Watch Video Solution

127. Hydrogen fluoride is a liquid unlike other hydrogen halides because
A. HF molecules associate due to hydrogen
B. F_{2} is highly reactive
C. HF is the weakest acid of all hydrogen
halides
D. Fluorine atom is the smallest of all
halogen

Answer: A

- Watch Video Solution

128. Polarisation involves the distortion of the shape of an anion by an adjacently placed
cation In this context, which of the following statements is correct?.
A. Maximum polarisation is brought about by a cation of high charge
B. Minimum polarisation is brought about
by a cation of low radius
C. A large cation is likely to bring about a
large degree of polarisation

D. Polarisation power of cation is less than

 that of anion
Answer: A

D Watch Video Solution

129. Point out the false statement
A. molecule represents a more stable state as compared to individual atoms
B. Carbon tetrachloride is a non-polar molecule
C. Ionic compounds generally have low m.p
and b.p

D. Anhydrous AlCl_{3} is a covalent substance

Answer: C

- Watch Video Solution

130. AlCl_{3} anhydrous is covalent but $\mathrm{AlCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ is ionic because
A. AlCl_{3} dissolves in CS_{2}
B. AlCl_{3} has planar structure
C. IE of Al is low
D. Hydration energy compensates the high

IE of Al.

Answer: D

D Watch Video Solution
131. $A I C I_{3}$ is covalent while $A I F_{3}$ is ionic This can be justified on the basic of .
A. Valence bond theory
B. Crystal structure
C. Lattice energy
D. Fajan's Rule.

Answer: D
132. The element having 18 electrons in its outer most shell is:
A. $A_{2} X_{3}$
B. $A X_{3}$
C. $A_{3} X_{2}$
D. $A_{2} X$

Answer: C

D Watch Video Solution
133. The chemical inertness of N_{2} is attributed to
A. the presence of large no. of bonding
electrons in comparison to antibonding
electron
B. its high heat of dissociation
C. the presence of triple bonds between
nitrogen atoms which make the
molecule quite stable
D. all the statements are correct

D Watch Video Solution

134. Which element out of L, M, Q. R will most readily form a diatomic molecule?
A. $L:[H e] 2 s^{2} 2 p^{3}$
B. $M:[H e] 2 s^{2} 2 p^{5}$
C. $Q:[N e] 3 s^{1}$
D. $R:[N e] 3 s^{2} 3 p^{2}$

Answer: B

D Watch Video Solution

135. Which of the following best defines a crystal ?
A. A coloured substance soluble in water
B. A simple lattice containing ions, atoms
or molecules

C. A clear or coloured substance which can

transmit light
D. A salt which has been grown from its
saturated solution.

Answer: B

- Watch Video Solution

136. What is the valency of carbon in CO_{3}^{2-} ?
A. 2
B. 3
C. 4
D. -3

Answer: C

D Watch Video Solution

137. Solid NaCl is a bad conductor of electricity
because
A. in solid NaCl there are no ions

B. solid NaCl is covalent

C. in solid NaCl there is no mobility of ions
D. in solid NaCl there are no electrons.

Answer: C

D Watch Video Solution

138. If ammonia is added to pure water, the concentration of a chemical species already present will decrease. The species is
A. O^{2-}
B. OH^{-}
C. $\mathrm{H}_{3} \mathrm{O}^{+}$
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: C

D Watch Video Solution

139. Which of the following bonds have lowest bond energy?
A. C-C

B. $\mathrm{N}-\mathrm{N}$

C. $\mathrm{H}-\mathrm{H}$
D. O-O

Answer: D
(Watch Video Solution
140. The bonds between P atoms and Cl atoms
in PCl_{5} are likely to be
A. Ionic with no covalent character
B. Covalent with no ionic character
C. Covalent with some ionic character
D. Ionic with some metallic character.

Answer: C

- Watch Video Solution

141. The pairs of bases in DNA are held together by
A. hydrogen bonds
B. ionic bonds
C. phosphate groups
D. deoxyribose groups.

Answer: A

D Watch Video Solution

142. The combination of atoms takes place so
that
A. They can gain two electrons in the
outermost orbit
B. They get eight electrons in the outermost orbit
C. They acquire stability by lowering of
energy
D. They get eighteen electrons in the outermost orbit.

Answer: C
143. In the electronic structure of $\mathrm{H}_{2} \mathrm{SO}_{4}$, the total number of unshared electrons is
A. 20
B. 16
C. 12
D. 8

Answer: A
144. The bonds present in $\mathrm{N}_{2} \mathrm{O}_{5}$, are

A. only ionic

B. covalent and coordinate

C. only covalent

D. covalent and ionic

Answer: B

145. Silicon carbide is a

A. Molecular solid
B. Covalent solid
C. Ionic solid
D. None of the above

Answer: B
(Watch Video Solution
146. When an element of very low ionisation potential reacts with an element with very high electron affinity, the bond formed will be predominantly:
A. ionic
B. covalent
C. co-ordinate
D. hydrogen.

Answer: A
147. Which of the following molecular orbital
has the lowest energy ?
A. $\sigma 2 p_{z}$
B. $\sigma^{*} 2 p_{z}$
C. $\pi^{*} 2 p_{X}$
D. $\pi^{*} 2 p_{y}$

Answer: A

D Watch Video Solution
148. For a homonuclear diatomic molecule the energy of $\sigma_{2 s}$ orbital is
A. $>\sigma_{2 s}^{*}$ orbital
B. $<\sigma_{2 s}^{*}$ orbital
C. $>\sigma_{1 s}^{*}$ orbital
D. Both (B) and (C) are correct.

Answer: D
149. Which of the following overlap is correct?
A. ${ }^{(3)}-(2)$
B. $\oplus \cdot \infty \rightarrow$
C. ${ }^{108} 8 \rightarrow 8$
D. None of the above.

Answer: C

- Watch Video Solution

150. Which sequence correctly describes a relative bond strength, of oxygen molecule, superoxide ion and peroxide ion?

$$
\text { A. } O_{2}<O_{2}^{-}<O_{2}^{2-}
$$

B. $\mathrm{O}_{2}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{2-}$
C. $\mathrm{O}_{2}<\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{2-}$
D. $\mathrm{O}_{2}^{-}>\mathrm{O}_{2}>\mathrm{O}_{2}^{2-}$

Answer: B
151. The molecular orbital shown in the diagram can be described as

A. σ
B. σ^{*}
C. π^{*}
D. π
152. In the molecular orbital diagram for O_{2}^{+}
ion the highest occupied orbital is
A. $\sigma M O$ orbital

B. $\pi M O$ orbital

C. π^{*} MO orbital
D. σ^{*} MO orbital

Answer: C

Datch Video Solution
153. In the formation of N_{2} molecule, according to M.O.T. the outermost electron goes to
A. $\pi \mathrm{MO}$ orbital

B. $s p$ hybrid orbital

C. $\sigma \mathrm{MO}$ orbital

D. $2 p$ orbital

Answer: C

154. Which of the following theory provides
good explanation about the paramagnetic behaviour of oxygen ?
A. Resonance theory
B. V.S.E.P.R. theory
C. Molecular orbital theory
D. Valence bond energy

Answer: C

155. Which of the following has unpaired electron in antibonding MO?
A. C_{2}
B. N_{2}
C. O_{2}
D. Both C_{2} and N_{2}

Answer: C

- Watch Video Solution

156. During change of $\mathrm{NO}^{+} \rightarrow \mathrm{NO}$, the electron is added to
A. σ-orbital
B. π-orbital
C. σ^{*}-orbital
D. π^{*}-orbital.

Answer: D

D Watch Video Solution
157. Which is paramagnetic and has bond order Y_{2} ?
A. O_{2}
B. N_{2}
C. F_{2}
D. H_{2}^{+}

Answer: D

- Watch Video Solution

158. Bond order of $\mathrm{N}-\mathrm{O}$ bonds in nitrate ion is

A. 1.0
B. 1.25
C. 1.33
D. 1.50

Answer: C

- Watch Video Solution

159. The bond order of super oxide ion O_{2}^{2-} is
A. 2.5
B. 1.5
C. 2
D. 1

Answer: D
(Watch Video Solution
160. For a stable molecule the value of bond order should be
A. negative
B. positive
C. zero
D. no relationship of stability and bond order.

Answer: B

D Watch Video Solution
161. Find the bond order of B_{2}
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

162. Which of the following is paramagnetic ?
A. O_{2}
B. N_{2}
C. O_{2}^{-2}
D. H_{2}

Answer: A
(Watch Video Solution
163. Which of the species is diamagnetic?

A. O_{2}^{+}
B. O_{2}
C. O_{2}^{-}
D. O_{2}^{2-}

Answer: D
(Watch Video Solution
164. Which of the following is paramagnetic and also has a bond order equal to 0.5 ?
A. O_{2}
B. N_{2}
C. He_{2}
D. H_{2}^{+}

Answer: D

- Watch Video Solution

165. Among the following isostructural compounds which one has highest lattice energy?
A. LiCl
B. MgO
C. NaCl
D. LiF

Answer: B

- Watch Video Solution

166. Which of the following molecule is associated with permanent dipole moment?
A. $C F_{4}$
B. XeF_{4}
C. $S F_{4}$
D. $B F_{4}^{-}$

Answer: C

167.

Among
$\mathrm{NO}_{4}^{-}(\mathrm{I}), \mathrm{AsO}_{3}^{3-}(\mathrm{II}), \mathrm{CO}_{3}^{2-}(\mathrm{III}) \mathrm{ClO}_{3}^{-}(\mathrm{IV})$ and $\mathrm{SO}_{3}^{2-}(\mathrm{V})$
. The multiplanar species are
A. II, IV, V
B. III, IV
C. I, II, V
D. II, III, IV

Answer: A
168. Among the species given below which one
is isostere of N_{2} ?
A. CO
B. O_{2}
C. O_{2}^{-}
D. CO^{+}

Answer: A

- Watch Video Solution

169. What is true about $C N^{-}$and N_{2} ?
A. Both are isoelectronic
B. Both are chemically inert
C. Both are highly reactive
D. Both have same polarity of bonds.

Answer: A

- Watch Video Solution

170. Which statements among the following is true?
A. SO_{3} molecule contain $\mathrm{sp} \pi$-d π bond
B. SO_{2} molecule does not contain π bond
C. BH_{3} and PH_{3} do not exist
D. HCl dissolve in water because of H bonding

Answer: A
171. The covalent nature of AlCl_{3} can be justified on the basis of
A. Resonance
B. Fajan's Rule
C. Hund's Rule
D. MO theory.

Answer: B
172. Which of the following provides explanation for the ionic nature of
$\mathrm{AlCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ although we know that AlCl_{3} is

covalent?

A. Resonance
B. Concept of hydration energy
C. Concept of molecular orbitals
D. ionisation energy

Answer: B
173. The electronic configuration of four elements is as follows
$\mathrm{X}: 1 s^{2} 2 s^{2} 2 p^{4}, \mathrm{Z}[\mathrm{Ne}] 3 s^{1} \mathrm{Y}:[\mathrm{Ne}] 3 s^{2} 3 p^{5}, \mathrm{~W}:[\mathrm{Ne}]$
$3 s^{2}$

Which of the following set containscorrect formulae of X. Y, Z. W
A. $X_{2} Z, W X, W Y, Z Y$
B. $Z_{2} X, W X, Z Y, W Y_{2}$
C. $W_{2} Y, W X . Z Y, Z X$

D. XY. YZ, ZX $W_{2} X$

Answer: B

D Watch Video Solution

174. Among the following diatomic molecules,
the shortest bond length is associated with
A. F_{2}
B. C_{2}
C. O_{2}

Answer: D

D Watch Video Solution

175. Which of the following diatomic species gets stabilised by losing an electron
A. O_{2}
B. N_{2}
C. O_{2}
D. $C N^{-}$

Answer: A

D Watch Video Solution

176. The nature of π-bonds in perchlorate ion

$$
\begin{aligned}
& \text { A. } O-C l\left(d_{\pi}-p_{\pi}\right) \\
& \text { B. } O-C l\left(p_{\pi}-d_{\pi}\right) \\
& \text { C. } O-C l\left(d_{\pi}-d_{\pi}\right)
\end{aligned}
$$

D. None of these.

Answer: B

D Watch Video Solution

177. Which of the following has a trigonal bipyramidal shape?
A. $B r F_{5}$
B. $I F_{5}$
C. $\left(S b F_{5}\right)^{2-}$
D. $\mathrm{PF}_{3} \mathrm{Cl}_{2}$

D Watch Video Solution

178. A bond formed between two similar atoms cannot be
A. ionic
B. co-ordinate
C. covalent
D. π-bond

D Watch Video Solution

179. Which pair does not contain species with
similar shape?
A. $\mathrm{CH}_{4}, \mathrm{BF}_{4}^{-}$
B. I_{3}^{+}, I_{3}^{-}
C. $\mathrm{HCN}, \mathrm{C}_{2} \mathrm{H}_{2}$
D. Both A and B

Answer: B

- Watch Video Solution

180. Which of the following conditions apply to resonating structures ?
A. Identical arrangement of atoms
B. Nearly same energy content
C. Identical number of bonds
D. Same number of unpaired electrons

D Watch Video Solution

181. Which among the following have regular geometry?
A. $B F_{3}$
B. $N F_{3}$
C. $P F_{3}$
D. $B F_{4}^{-}$

Answer: A,D

D Watch Video Solution

182. Which of the following species is
hypervalent?
A. ClO_{4}^{-}
B. $B F_{3}$
C. SO_{4}^{2-}
D. CO_{3}^{2-}

Answer: A,C

D Watch Video Solution

183. Which among the following species have bond order zero?
A. F_{2}^{2-}
B. $A r_{2}$
C. He_{2}^{+}
D. H_{2}^{+}

D Watch Video Solution

184. Which among the following have bond order 2.5?
A. O_{2}
B. N_{2}^{2-}
C. N_{2}^{+}
D. O_{2}^{+}

D Watch Video Solution

185. In which of the following the hybrid orbitals of the central atom have the same scharacter
A. CH_{4}
B. $\mathrm{Ni}(\mathrm{CO})_{4}$
C. XeO_{3}
D. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$

D Watch Video Solution

186. CO_{2} is isostructural with

A. HgCl_{2}
B. SnCl_{2}
C. $\mathrm{C}_{2} \mathrm{H}_{2}$
D. NO_{2}

Answer: A,C

A. SnCl_{2}

B. NCO^{-}
C. NO_{2}^{+}
D. $C S_{2}$

Answer: B,C,D
188. Which of the following have identical bond order?
A. $C N^{-}$
B. O_{2}^{-}
C. NO^{+}
D. CN^{+}

Answer: A,C

- Watch Video Solution

189. Pick out the isoelectronic structures from the following .

$$
\mathrm{ICH}_{3}^{+}(\mathrm{II}) \mathrm{H}_{3} \mathrm{O}^{+},(\mathrm{III}) \mathrm{NH}_{3},(\mathrm{IV}) \mathrm{CH}_{3}^{-}:
$$

A. CH_{3}^{+}
B. $\mathrm{H}_{3} \mathrm{O}^{+}$
C. NH_{3}
D. CH_{3}^{-}

Answer: B,C,D

D Watch Video Solution
190. On hybridization of one s and one p orbital we get
A. two mutually perpendicular orbitals
B. two orbitals at 180°
C. four orbitals directed tetrahedrally
D. three orbitals in a plane.

Answer: B

191. The octer rule is not valid for the molecule

A. CO_{2}
B. $\mathrm{H}_{2} \mathrm{O}$
C. O_{2}
D. CO

Answer: D

D Watch Video Solution
192. The compound which contains both ionic and covalent bonds is
A. CH_{4}
B. H_{2}
C. $K C N$
D. KCl

Answer: C
193. Which of the following is soluble in water?
A. $C S_{2}$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
C. CCl_{4}

D. CHCl_{3}

Answer: B
(Watch Video Solution
194. Element X is strongly electropositive and element Y is strongly electronegative. Both are univalent. The compound formed would be
A. $X^{+} Y^{-}$
B. $X^{-} Y^{+}$
C. $X-Y$
D. $X \rightarrow Y$

Answer: A

195. Which of the following compound is covalent
A. H_{2}
B. CaS
C. KCl
D. $\mathrm{Na}_{2} \mathrm{~S}$

Answer: A

- Watch Video Solution

196. The total number of electrons that take part in forming the bond in N_{2} is
A. 2
B. 4
C. 6
D. 10

Answer: C

- Watch Video Solution

197. How many unpaired electrons are there in
$N i^{2+}$?
A. 0
B. 2
C. 4
D. 8

Answer: B

- Watch Video Solution

198. If molecule $M X_{3}$ has zero dipole moment, the sigma bonding orbitals used by M (atomic number < 21) are
A. pure p
B. sp hybrid
C. $s p^{2}$ hybrid
D. $s p^{3}$

Answer: C

- Watch Video Solution

199. The compound in which the distance between the two adjacent carbon atoms is largest is :

A. Ethane

B. Ethene

C. Ethyne
D. Benzene

Answer: A
200. The pair of molecules forming strongest hydrogen bonds are
A. SiH_{6} and SiF_{6}
B. $\mathrm{CH}_{3}-\mathrm{C}| | \mathrm{o}-\mathrm{CH}_{3}$ and CHCl_{3}
C. $\mathrm{H}-\mathrm{C}| | \mathrm{o}-\mathrm{OH}$ and $\mathrm{CH}_{3}-\mathrm{C}| | \mathrm{o}-\mathrm{OH}$
D. $\mathrm{H}_{2} \mathrm{O}$ and H_{2}

Answer: C

- Watch Video Solution

201. The ion that is isoelectronic with $C O$ is

A. $C N^{-}$
B. O_{2}^{+}
C. N_{2}^{+}
D. O_{2}^{-}

Answer: A

D Watch Video Solution
202. The species isoelectronic with $\mathrm{C}_{2} \mathrm{H}_{4}$ is
A. $C N^{-}$
B. O_{2}^{+}
C. O_{2}
D. N_{2}^{+}

Answer: C

D Watch Video Solution

203. The types of bonds present in
$\mathrm{CuSO} 4.5 \mathrm{H}_{2} \mathrm{O}$ are only
A. Electrovalent and covalent only
B. Electrovalent and co-ordinate covalent only
C. Electrovalent, covalent, co-ordinate covalent and hydrogen bonds

D. Covalent and co-ordinate covalent only

Answer: C

D Watch Video Solution

204. The hydrogen bond is strongest in

A. O-Hâ€ $€^{\prime} O$

B. S-Hâ $€_{1}^{\prime} . S$
C. F-Hâ $€_{1}^{\prime} . F$

D. F-Hâ $€_{1}^{\prime} .0$

Answer: C
(Watch Video Solution

205. Oxygen molecule is paramagnetic because

A. Bonding electrons are more than antibonding electrons
B. It contains unpaired electrons
C. Bonding electrons are less than
antibonding electrons
D. Bonding electrons are equal to
antibonding electron

D Watch Video Solution

206. CO_{2} is not isostructural with
A. HgCl_{2}
B. SnCl_{2}
C. $\mathrm{C}_{2} \mathrm{H}_{2}$
D. ZnCl_{2}

Answer: B

D Watch Video Solution
207. The molecule having one unpaired electron is
A. NO
B. CO_{2}
C. $C N^{-}$
D. O_{2}

Answer: A

- Watch Video Solution

208. Dipole moment is shown by:
A. 1, 4-dichlorobenzene
B. Cls 1,2-dichloroethene
C. trans 1, 2-dichloroethene
D. trans 2, 3-dichloro-2-butene

Answer: B
209. Which of the following has a linear structure?
A. CCl_{4}
B. SO_{2}
C. $\mathrm{C}_{2} \mathrm{H}_{2}$
D. $\mathrm{C}_{2} \mathrm{H}_{4}$

Answer: C

- Watch Video Solution

210. The hydrogen bond is the strongest in

A. F-Hâ€ ${ }_{l}^{\prime} \mathrm{O}$

B. F-Hâ $€_{\mid}^{\prime} F$

C. O-Hâ€ $€^{\prime} \mathrm{S}$
D. O-Hâ $€_{1}^{\prime} N$

Answer: B
(Watch Video Solution

211. The metallic lustre exhibited by sodium is

 explained byA. Diffusion of sodium ion
B. Excitation of free protons
C. Oscillation of loose electrons
D. Existence of body centred cubic lattice

Answer: A

- Watch Video Solution

212. Hydrogen bonding is maximum in:

A. Ethanol

B. Diethyl ether

C. Ethyl chloride
D. Triethyl amine.

Answer: A

- Watch Video Solution

213. Which one of the following halogens has
the highest bond energy ?
A. F_{2}
B. Cl_{2}
C. $B r_{2}$
D. I_{2}

Answer: B

D Watch Video Solution
214. Among the following, the linear molecule is
A. CO_{2}
B. NO_{2}
C. SO_{2}
D. ClO_{2} or SiO_{2}

Answer: A
215. The geometric form of crystals is the result of orderly arrangement of
A. molecules only
B. ions only
C. atoms only
D. molecules, atoms or ions

Answer: D

D Watch Video Solution
216. The molecule which has zero dipole moment is
A. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
B. $B F_{3}$
C. $N F_{3}$
D. ClO_{2}

Answer: B
217. The species which has pyramidal shape is
A. PCl_{3}
B. SO_{3}
C. CO_{3}^{2-}
D. NO_{3}^{-}

Answer: A

D Watch Video Solution
218. Which of the following species is para magnetic ?
A. O_{2}^{-}
B. CN^{-}
C. CO
D. NO^{+}

Answer: A

- Watch Video Solution

219. The compound with C uses in the $s p^{3}$ hybrid orbitals for bond formation is .
A. HCOOH
B. $\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{CO}$
C. HCOH

D. $\mathrm{CH}_{3} \mathrm{CHO}$

Answer: D

220. The enolic form of acetone contains

A. 9 sigma bonds, 1 pi bond and 2 lone pairs
B. 8 sigma bonds, 2 pi bonds and 2 lone
pairs
C. 10 sigma bonds, 1 pi bond and 1 lone
pair
D. 9 sigma bonds, 2 pi bonds and 1 lone
pair

Answer: A

D Watch Video Solution

221. The compound with C uses in the $s p^{3}$ hybrid orbitals for bond formation is .
A. HCOOH
B. $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
C. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
D. $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{O}$

Answer: C

D Watch Video Solution

222. Combination of two AO's lead to the formation of
A. Two MO's
B. Three MO's
C. One MO
D. Four MO's

- Watch Video Solution

223. The hybridisation of carbons involved in C-

C single bond in $\mathrm{CH} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$ is
A. $s p^{3}-s p^{2}$
B. $s p^{3}-s p^{3}$
C. $s p-s p^{2}$
D. $s p-s p^{3}$

D Watch Video Solution

224. Which type of bond is not present in HNO_{2} molecule?
A. Covalent
B. Co-ordinate
C. lonic
D. lonic as well as co-ordinate.

Answer: D

D Watch Video Solution

225. The maximum possible number of hydrogen bonds a water molecule can form is
A. 4
B. 3
C. 2
D. 1

Answer: A

D Watch Video Solution

226. The Type of hybrid orbitals used by the chlorine atom in $\mathrm{CIO}_{2}^{\Theta}$ is .
A. $s p^{3}$
B. $s p^{2}$
C. $s p$
D. None

Answer: A

D Watch Video Solution

227. Homolytic fission of carbon-carbon bond
of ethane produces an intermediate in which
the carbon atom is in
A. $s p^{3}$ hybridised
B. $s p^{2}$ hybridised
C. sp hybridised
D. $s p^{2} d$ hybridised

Answer: B

D Watch Video Solution

228. Which of the following has zero dipole moment?
A. CIF
B. PCl_{3}
C. SiF_{4}
D. CFCl_{3}

D Watch Video Solution

229. Which one is most ionic ?

A. $\mathrm{P}_{2} \mathrm{O}_{5}$
B. MnO
C. CrO_{3}
D. $\mathrm{Mn}_{2} \mathrm{O}_{7}$

Answer: B
230. Among the following species, identify the isostructural pairs .
$\mathrm{NF}_{3}, \mathrm{NO}_{3}^{-}, \mathrm{BF}_{3}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{HN}_{3}$
A. $\left[\mathrm{NF}_{3}, \mathrm{NO}_{3}^{-}\right]$and $\left[\mathrm{BF}_{3}, \mathrm{H}_{3}^{+} \mathrm{O}\right]$
B. $\left[\mathrm{NF}_{3}, \mathrm{HN}_{3}\right]$ and $\left[\mathrm{NO}_{3}^{-}, \mathrm{BF}_{3}\right]$
C. $\left[\mathrm{NF}_{3}, \mathrm{H}_{3}^{+} \mathrm{O}\right]$ and $\left[\mathrm{NO}_{3}^{-}, \mathrm{BF}_{3}\right]$
D. $\left[\mathrm{NF}_{3}, \mathrm{H}_{3}^{+} \mathrm{O}\right]$ and $\left[\mathrm{HN}_{3}, \mathrm{BF}_{3}\right]$
231. KF combines with to form KHF_{2}. The compound contains the species:
A. K^{+}, F^{-}and H^{+}
B. K^{+}, F^{-}and HF
C. K^{+}and $\left[H F_{2}\right]^{-}$
D. $[K H F]^{+}$and F_{2}

Answer: C

D Watch Video Solution
232. Among the following the compounds, the one that is polar and has central atom with $s p^{2}$ hydridisation is
A. $\mathrm{H}_{2} \mathrm{CO}_{3}$
B. SiF_{4}
C. $B F_{3}$
D. HClO_{2}

Answer: C
233. Which contains both polar and non-polar bonds?
A. $\mathrm{NH}_{4} \mathrm{Cl}$
B. HCN
C. $\mathrm{H}_{2} \mathrm{O}_{2}$
D. CH_{4}

Answer: C
234. Which of the following involves $s p^{2}$ hybridisation?
A. CO_{2}
B. SO_{2}
C. $\mathrm{N}_{2} \mathrm{O}$
D. CO

Answer: B
235. NH_{3} and BF_{3} from adduct readily because they from
A. ionic bond between BF_{3} and NH_{3}
B. co-ordinate bond between B and N
C. covalent bond between B and N
D. H-bonds between F atoms of BF_{3} and H -
atoms of NH_{3}

Answer: B
236. The correct order of increasing $C-O$ bond lengths in $\mathrm{CO}, \mathrm{CO}_{3}^{2-}$ and CO_{2} is :

$$
\begin{aligned}
& \text { A. } \mathrm{CO}_{3}^{2-}>\mathrm{CO}_{2}>\mathrm{CO} \\
& \text { B. } \mathrm{CO}_{2}>\mathrm{CO}_{3}^{2-}>\mathrm{CO} \\
& \text { C. } \mathrm{CO}>\mathrm{CO}_{3}^{2-}>\mathrm{CO}_{2} \\
& \text { D. } \mathrm{CO}>\mathrm{CO}_{2}>\mathrm{CO}_{3}^{2-}
\end{aligned}
$$

Answer: D
237. The hybridisation of atomic orbitals of nitrogen in $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{3}^{-}$and NH_{4}^{+}are :
A. $s p^{2}, s p^{3}$ and $s p^{2}$ respectively
B. $s p, s p^{2}$ and $s p^{3}$ respectively
C. $s p^{2}, s p$ and $s p^{3}$ respectively
D. $s p^{2}, s p^{3}$ and $s p$ respectively

Answer: B

- Watch Video Solution

238. The correct order of hybridisation of the central atom in the following species
$\mathrm{NH}_{3},\left[\mathrm{PtCl}_{4}\right]^{2-}, \mathrm{PCl}_{5}$ and BCl_{3} is :
A. $d s p^{2}, d s p^{3}, s p^{2}, s p^{3}$
B. $s p^{3}, d s p^{2}, d s p^{3}, s p^{2}$
C. $d s p^{2}, s p^{2}, s p^{3}, d s p^{3}$
D. $d s p^{2}, s p^{3}, s p^{2}, d s p^{3}$

Answer: B

239. The common features among the species
$\mathrm{CN}^{-}, \mathrm{CO}$ and NO^{+}are :
A. Bond order three and isoelectronic
B. Bond order three and weak field ligands
C. Bond order three and π-acceptors
D. Isoelectronic and weak field ligands.

Answer: A

D Watch Video Solution
240. The nodal plane in the π-bond of ethene is located in:
A. the molecular plane

B. a plane parallel to the molecular plane

C. a plane perpendicular to the molecular plane which bisects the carbon-carbon sigma bond at right angles
D. a plane perpendicular to the molecular
plane which containsthe carbon-carbon
σ bond.

D Watch Video Solution

241. Which of the following hydrocarbons has
the lowest dipole moment?

B. $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}$
D. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$

Answer: B

D Watch Video Solution

242. Which of the following molecular species
has unpaired electrons(s) ?.
A. N_{2}
B. F_{2}
C. O_{2}^{-}
D. O_{2}^{2-}

Answer: C

D Watch Video Solution

243. Which of the following represents the given mole of hybridization $s p^{2}-s p^{2}-s p-s p$ from left to right?
A. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{C}=\mathrm{N}$
B. $\mathrm{HC} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CH}$
C. $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$
D. $\mathrm{H}_{2} \mathrm{C} \sim \mathrm{CH}_{2}$

D Watch Video Solution

244. Among the following, the molecule with
the highest dipole moment is :
A. $\mathrm{CH}_{3} \mathrm{Cl}$
B. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
C. CHCl_{3}
D. CCl_{4}

Answer: A

D Watch Video Solution

245. Which of the following are isoelectronic and isostructural ?
$\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}, \mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}$
A. $\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
B. $\mathrm{SO}_{3}, \mathrm{NO}_{3}^{-}$
C. $\mathrm{ClO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
D. $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}$

Answer: A

D Watch Video Solution

246. According to MOT whch of the following
statement about magnetic character and bond order is corrent regarding O_{2}^{\oplus}.
A. Paramagnetic and Bond order It O_{2}
B. Paramagnetic and Bond order gt O_{2}
C. Diamagnetic and Bond order It O_{2}
D. Diamagnetic and Bond order gt O_{2}

Answer: B

D Watch Video Solution

247. Total number of lone pair of electrons in
XeOF_{4} is :
A. 0
B. 1
C. 2
D. 3

Answer: B

D Watch Video Solution

248. Which species has the maximum number
of lone pair of electrons on the central atom?
A. $\left[\mathrm{ClO}_{3}\right]^{-}$
B. XeF_{4}
C. $A F F_{4}$
D. $\left[I_{3}\right]^{-}$

Answer: D

D Watch Video Solution

249. Among the following mixiture dipole-
dipole as the mojor interaction is present is
A. KCl and water
B. benzene and carbon tetrachloride
C. benzene and ethanol
D. acetonitrile and acetone

- Watch Video Solution

250. In which of the following molecules/ions, are all the bonds not equal ?
A. XeF_{4}
B. $B F_{4}^{-}$
C. $S F_{4}$
D. SiF_{4}

Answer: C

D Watch Video Solution

251. The decreasing values of bond angles
from $\mathrm{NH}_{3}\left(106^{\circ}\right)$ to $\mathrm{SbH}_{3}\left(101^{\circ}\right)$ down the group 15 of the periodic table is due to :
A. decreasing lp-bp repulsion
B. decreasing electronegativity
C. increasing Ip-bp repulsion
D. increasing p-orbital character in $s p^{3}$

Answer: B

D Watch Video Solution

252. The correct order regarding the electronegativity of hybrid orbitals of carbon is?
A. $s p$ It $s p^{2}>s p^{3}$
B. $\mathrm{sp} \mathrm{It} s p^{2} \mathrm{It} s p^{3}$
C. spgt $s p^{2} \operatorname{Itsp} p^{3}$
D. $\operatorname{spgt} s p^{2} \mathrm{gt} s p^{3}$

Answer: D

D Watch Video Solution

253. The electronegaivity difference between N and F is greater than that between N and H
yet the dipole moment of $\mathrm{NH}_{2}(1.5 \mathrm{D})$ is larger
than that of $N F_{3}(0.2 D)$. This is because :
A. in NH_{3} as well as NF_{3} the atomic dipole
and bond dipole are in opposite directions
B. in NH_{3} the atomic dipole and bond
dipole are in opposite directions
whereas in $N F_{3}$ these are in the same
direction
C. in NH_{3} as well as in NF_{3} the atomic
dipole and bond dipole are in the same
direction
D. in NH_{3} the atomic dipole and bond dipole are in the same direction whereas in $N F_{3}$ these are in opposite directions

Answer: D

D Watch Video Solution

254. In which of the following molecules are all
the bonds not equal ?
A. $A l F_{3}$
B. $N F_{3}$
C. ClF_{3}
D. $B F_{3}$

Answer: C

D Watch Video Solution

255. Which of the following species has a linear shape?
A. NO_{2}^{+}
B. O_{3}
C. NO_{2}^{-}
D. SO_{2}

Answer: A

D Watch Video Solution
256. Which of the following is not isostructural
with SiCI_{4} ?
A. PO_{4}^{3-}
B. NH_{4}^{+}
C. SCl_{4}
D. SO_{4}^{2-}

Answer: C

D Watch Video Solution

257. The number of unpaired electrons in a parmamagnetic diatomic molecule of an element with atomic number 16 is :
A. 4
B. 1
C. 2
D. 3

Answer: C

D Watch Video Solution

258. In $\left[A g(C N)_{2}\right]^{-}$, the number of π bonds is
A. 2
B. 3
C. 4
D. 6

Answer: C

- Watch Video Solution

259. In which of the following pairs, the two species are iso-structural ?
(a) SO_{4}^{2-} and $\mathrm{NO}_{3}^{-} \quad$ (b) BF_{3} and NF_{3}
(c) BrO_{3}^{-}and XeO_{3}
(d) SF_{4} and XeF_{4}
A. BrO_{3}^{-}and XeO_{3}
B. SF_{4} and XeF_{4}
C. SO_{3}^{2-} and NO_{3}^{-}
D. $B F_{3}$ and $N F_{3}$

Answer: A

D Watch Video Solution

260. In which of the following ionixation processes, the bond order has increased and the magnetic behaviour has changed ?
A. $N_{2} \rightarrow N_{2}^{+}$
B. $C_{2} \rightarrow C_{2}^{+}$
C. $\mathrm{NO} \rightarrow \mathrm{NO}^{+}$
D. $O_{2} \rightarrow \mathrm{O}_{2}^{+}$

Answer: C

D Watch Video Solution

261. Among the following, the paramagnetic

compound is :

A. $\mathrm{Na}_{2} \mathrm{O}_{2}$
B. O_{3}
C. $\mathrm{N}_{2} \mathrm{O}$
D. KO_{2}

Answer: D

D Watch Video Solution

262. The species having bond order different from that in CO is
A. NO^{-}

B. NO^{+}

C. $C N^{-}$
D. N_{2}

Answer: A

D Watch Video Solution

263. The percentage of p-character in the orbitals forming $p-p$ bonds in P_{4} is
A. 25
B. 33
C. 50
D. 75

Answer: D

D Watch Video Solution

264. Angular shape of ozone molecule consists
of
A. 1 sigma and 2 pie bonds
B. 2 sigma and 2 pie bonds
C. 1 sigma and 1 pie bonds
D. 2 sigma and 1 pie bonds

Answer: D

D Watch Video Solution

265. Four diatomic species are listed in different sequence .Which of these represent
the correct order of their increasing bond order?
A. $\mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}^{2-}<\mathrm{He}_{2}^{+}$
B. $\mathrm{NO}<\mathrm{C}_{2}^{2-}<\mathrm{O}_{2}^{-}<\mathrm{He}_{2}^{+}$
C. $\mathrm{C}_{2}^{2-}<\mathrm{He}_{2}^{+}<\mathrm{NO}<\mathrm{O}_{2}^{-}$
D. $\mathrm{He}_{2}^{+}<\mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}^{2-}$

Answer: D

D Watch Video Solution
266. Which one of the following pairs of species have the same bond order?
A. O_{2}^{-}and CN^{-}
B. $\mathrm{NO}^{+}, \mathrm{CN}^{+}$
C. CN^{-}and NO^{+}
D. $C N^{-}$and $C N^{+}$

Answer: C

D Watch Video Solution
267. Which one of the following constitutes a group of the isoelectronic species?

$$
\text { A. } C N^{-}, N_{2}, O_{2}^{2-}, C_{2}^{2-}
$$

B. $\mathrm{N}_{2}, \mathrm{O}_{2}^{2-}, \mathrm{NO}^{+}, \mathrm{CO}$
C. $\mathrm{C}_{2}^{2-}, \mathrm{O}_{2}^{-}, \mathrm{CO}, \mathrm{NO}$
D. $\mathrm{NO}^{+}, \mathrm{C}_{2}^{2-}, C N^{-}, N_{2}$

Answer: D

268. According to MO theory which of thhe following lists makes the nitrogen species in terms of increasing bond order?

$$
\begin{aligned}
& \text { A. } N_{2}^{-}<N_{2}^{2-}<N_{2} \\
& \text { B. } N_{2}^{-}<N_{2}<N_{2}^{2-} \\
& \text { C. } N_{2}^{2-}<N_{2}^{-}<N_{2} \\
& \text { D. } N_{2}<N_{2}^{2-}<N_{2}^{-}
\end{aligned}
$$

Answer: C

269. What is the dominant intermolecular forces or bond that must be overcome in converting liquid $\mathrm{CH}_{3} \mathrm{OH}$ to gas ?
A. London dispersion bond
B. Hydrogen bonding
C. Dipole-Dipole interaction
D. Covalent bonds

Answer: B

270. Using $M O$ theory predict which of the
following sepcies has the shortest bond length ?
A. O_{2}^{2+}
B. O_{2}^{+}
C. O_{2}^{-}
D. O_{2}^{+}

Answer: A
271. The correct order of increasing bond angle in the following species is
A. $\mathrm{ClO}_{2}<\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}^{-}$
B. $\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}^{-}<\mathrm{ClO}_{2}$
C. $\mathrm{ClO}_{2}^{-}<\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}$
D. $\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}<\mathrm{ClO}_{2}^{-}$

Answer: C

- Watch Video Solution

272. Which of the following species does not exist under normal condition ?
A. $B e_{2}$
B. B_{2}
C. $L i_{2}$
D. $B e_{2}^{+}$

Answer: A
273. In which of the following pairs of molecules/ ions, the central atoms have $s p^{2}$ hybridization?
A. BF_{3} and NO_{2}^{-}
B. NH_{2}^{-}and $\mathrm{H}_{2} \mathrm{O}$
C. BF_{3} and NH_{2}^{-}
D. NO_{2}^{-}and NH_{3}

Answer: A

274. Assuming that Hund's rule is violated the
bond order and magnetic nature of the diatomic molecle B_{2} is
A. 1 and diamagnetic
B. 0 and diamagnetic
C. 1 and paramagnetic
D. 0 and paramagnetic

Answer: A

275. The species having pyramidal shape is

A. SO_{3}
B. BeF_{3}
C. SiO_{3}^{2-}
D. $O S F_{2}$

Answer: D
(Watch Video Solution

276. Which of the following has the minimum

 bond length ?A. O_{2}^{2-}
B. O_{2}
C. O_{2}^{+}
D. O_{2}^{-}

Answer: C

- Watch Video Solution

1. The correct order of decreasing polarisability of ion is
A. $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, I^{-}, F^{-}$
B. $\mathrm{F}^{-}, \mathrm{I}^{-}, \mathrm{Br}^{-}, \mathrm{Cl}^{-}$
C. $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$
D. $\mathrm{I}^{-}, \mathrm{Br}^{-}, \mathrm{Cl}^{-}, \mathrm{F}^{-}$

Answer: D

2. Inter molecular forces in solid hydrogen are

A. Covalent forces
B. van der Waal forces or London dispersion forces
C. Hydrogen bonds
D. All of these.

Answer: B
3. A molecule is square planar with no lone pair. What type of hybridisation is associated with it?
A. $s p^{3} \mathrm{~d}$
B. $s p^{3} d^{2}$
C. $d s p^{3}$
D. $d s p^{2}$

Answer: D

4. Octrahedral shape is associated with

A. $P F_{5}$
B. $S F_{4}$
C. TeF_{6}
D. ClF_{3}

Answer: C
5. An ionic solid is poor conductor of electricity because
A. lons do not conduct electricity
B. Charge on the ions is uniformly distributed
C. Ions occupy fixed positions in solids
D. lons have uniform field of influence around it.

Answer: C
6. The molecule having three fold axis of symmetry is :
A. NH_{3}
B. $\mathrm{C}_{2} \mathrm{H}_{4}$
C. CO_{2}
D. SO_{2}

Answer: A

7. Which overlap is involved in HCl molecule ?

A. s - s overlap
B. $p-p$ overlap
C. $s-d$ overlap

D. s - p overlap

Answer: D

- Watch Video Solution

8. In a homonuclear molecule which of the
following set of orbitals are degenerate ?
A. $\sigma_{2 s}$ and $\sigma_{1 s}$
B. $\pi_{2_{p_{x}}}$ and $\sigma_{2_{p_{y}}}$
C. $\pi_{2_{p_{x}}}$ and $\sigma_{2_{p_{z}}}$
D. $\sigma_{2_{p_{z}}}$ and $\sigma_{2_{p_{x}}}^{*}$

Answer: B

D Watch Video Solution
9. The bond angle in PH_{3} is close to
A. 90°
B. 105°
C. 109°
D. 120°

Answer: A

- Watch Video Solution

10. Other factors being constant which bond order is expected to correspond to shortest bond length

> A. $2 \frac{1}{2}$
> B. $1 \frac{1}{2}$
C. 2
D. 0.5

Answer: A
11. Which bond is most polar?
A. Cl-F
B. $\mathrm{Br}-\mathrm{F}$
C. I-F
D. F-F

Answer: C
(Watch Video Solution
12. The hybridisation of carbon in diamond, graphite and acetylene are respectively

> A. $s p^{2}, s p, s p^{3}$
> B. $s p, s p^{2}, s p^{3}$
> C. $s p^{3}, s p^{2}, s p$
> D. $s p^{2}, s p^{3}, s p$

Answer: C

D Watch Video Solution
13. XeF_{4} has a shape of
A. Sphere
B. Trigonal bipyramidal
C. Tetrahedral
D. Square planar.

Answer: D

- Watch Video Solution

14. The lustre of the metal is on account of
A. high density of metals
B. high polish of metals
C. reflection of light due to the presence of
free electrons
D. chemical inertness of metals.

Answer: C

D Watch Video Solution
15. Which one of them is the weakest?
A. ionic bond
B. covalent bond
C. metallic bond
D. van der Waals forces

Answer: D

D Watch Video Solution

16. Which of the following is non existent according to molecular orbital theory?
A. H_{2}^{-}
B. O_{2}^{-}
C. He_{2}
D. O_{2}^{+}

Answer: C

- Watch Video Solution

17. Which of the following compound has $\mu=0$
?
A. CCl_{4}
B. CHCl_{3}
C. HF
D. NH_{3}

Answer: A

- Watch Video Solution

18. Which of the following does not conduct electricity?
A. Molten NaOH

B. Molten KOH

C. Solid NaCl

D. Aqueous NaCl

Answer: C

D Watch Video Solution

19. Which of the following is polar ?
A. $B F_{3}$
B. $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{F}$
C. CO_{2}
D. CH_{4}

Answer: B

- Watch Video Solution

20. BCl_{3} is a planar molecular because in this molecule boron is
A. $s p^{3}$ hybridised
B. $s p^{2}$ hybridised

C. sp hybridised

D. unhybridised

Answer: B

D Watch Video Solution

21. Which of the following phenomena will occur when two atoms of the elements having same spin of electron approach for bonding ?
A. Orbital overlap will not occur
B. Bonding will not occur
C. Both (A) and (B) are correct
D. None of the above are correct

Answer: C

D Watch Video Solution

22. Which of the following is electron deficient?
A. BCl_{3}
B. PCl_{3}
C. PCl_{5}
D. NH_{3}

Answer: A
(Watch Video Solution
23. Which of the following has unchanged
valency?
A. H
B. Na
C. Fe
D. Oxygen

Answer: B

- Watch Video Solution

24. Which of the following molecules is linear ?

A. $\mathrm{C}_{2} \mathrm{H}_{2}$
B. CH_{4}
C. $\mathrm{H}_{2} \mathrm{O}$
D. NH_{3}

Answer: A
(Watch Video Solution
25. Which of the following is not paramagnetic

?

A. NO
B. S^{-2}
C. O_{2}^{-1}
D. N_{2}^{-}

Answer: B

D Watch Video Solution

26. NH_{3} and BF_{3} from adduct readily because
they from
A. ionic bond

B. covalent bond

C. co-ordinate bond

D. hydrogen bond.

Answer: C

D Watch Video Solution

27. A molecule in which $s p^{2}$ hybrid orbitals are used by the central atom in forming covalent bonds is
A. He_{2}
B. SO_{2}
C. PCl_{5}
D. N_{2}

Answer: B

D Watch Video Solution

28. The molecular species having highest bond order is
A. O_{2}
B. O_{2}^{-}
C. O_{2}^{+}
D. O_{2}^{2-}

Answer: C

D Watch Video Solution

29. The $A s F_{5}$ molecule is trigonal bipyramidal.

The orbitals used by As for hybridisation are
A. $d_{z} 2, s, p x, p y, p z$

> B. $d_{x^{2}-y^{2}}, s, p x, p y, p z^{2}$
> C. $s, p_{x}, p_{y}, p_{z}, d_{x z}$
D. None.

Answer: A

- Watch Video Solution

30. Which of the following molecule/ions has triangular pyramidal shape?
A. $B F_{3}$
B. NO_{3}^{-}
C. $\mathrm{H}_{3} \mathrm{O}^{+}$
D. CO_{3}^{2-}

Answer: C
(Watch Video Solution
31. The nature of interparticle forces in benzene is
A. Dipole-dipole interaction

B. Dispersion force

C. Ion-dipole interaction

D. H-bonding

Answer: B
(D) Watch Video Solution
32. The angle between the covalent bonds is
A. CH_{4}
B. $B F_{3}$
C. $P F_{3}$
D. NH_{3}

Answer: B

D Watch Video Solution

33. One of the following is having square planar structure
A. NH_{4}^{+}
B. $B F_{4}^{-}$
C. XeF_{4}
D. CCl_{4}

Answer: C

- Watch Video Solution

34. The carbon-carbon link in acetylene

contains

A. One sigma and two pi bonds
B. Two sigma and three pi bonds
C. Two sigma and two pi bonds
D. Three sigma bonds.

Answer: A

D Watch Video Solution

35. Paramagnetism is exhibited by molecules which
A. are not attracted by magnetic field
B. contain only paired electrons
C. contain unpaired electrons
D. carry positive charge.

Answer: C

D Watch Video Solution

36. The bond angle around central atom which
uses $s p^{2}$ hybridisation is :
A. 120°
B. 180°
C. 105°
D. 109.5°

Answer: A

D Watch Video Solution

37. In the resonating structures of benzene,
the number of σ and π bonds are:
A. 3π and 12σ
B. 3σ and 12π
C. 6π and 6σ
D. 12π and 12σ

Answer: A

D Watch Video Solution

38. The high density of water compared to ice
is due to
A. dipole-dipole interactions
B. hydrogen bonding interaction
C. dipole induced dipole interaction
D. none of the above.

Answer: B

D Watch Video Solution

39. Which one has covalent as well as ionic valency?
A. NaCl

B. NaOH

C. $\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{HCl}(\mathrm{g})$.

Answer: B

D Watch Video Solution

40. How many σ and π bonds are present in tetracyanoethylene?
A. Nine σ and nine π
B. Five π and nine σ
C. Nine σ and seven π
D. Eight σ and eight π

Answer: A

D Watch Video Solution

41. Carbon dioxide is isostructural with which of the following ?
A. HgCl_{2}
B. $\mathrm{H}_{2} \mathrm{O}$
C. SnCl_{2}
D. NO_{2}^{-}

Answer: A

D Watch Video Solution

42. The molecule of which of the following
substance has ($\mu>0$)
A. Water

B. Methane

C. Carbon dioxide
D. Nitrogen

Answer: A

D Watch Video Solution

43. Given electronic configuration of four elements as (I) $1 s^{2}$ (II) $1 s^{2} 2 s^{2} 2 p^{2}$, (III) $1 s^{2} 2 s^{2} 2 p^{5}$
and (IV) $1 s^{2} 2 s^{2} 2 p^{6}$. The one which is capable of
forming ionic as well as covalent bonds is
A. I
B. II
C. III
D. IV.

Answer: C

D Watch Video Solution
44. The ion that is isoelectronic with $C O$ is
A. $C N^{-}$
B. O_{2}^{-}
C. N_{2}^{+}
D. O_{2}^{+}

Answer: A
(Watch Video Solution
45. The ground state electron configuration of
N_{2} molecule is written as
$\operatorname{KK}\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s}^{*}\right)^{2}\left(\pi_{2 p}\right)^{4}\left(2_{p z}\right)^{2}$ The bond order is
A. 3
B. 2
C. 0
D. 1

Answer: A
46. The correct order of $O-O$ bond length in
$\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}$ and O_{3}.
A. $\mathrm{O}_{2}>\mathrm{O}_{3}>\mathrm{H}_{2} \mathrm{O}_{2}$
B. $\mathrm{O}_{3}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{2}$
C. $\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{3}>\mathrm{O}_{2}$
D. $\mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{3}$

Answer: C
47. Which of the following species is para magnetic?
A. CO
B. NO
C. O_{2}^{2-}
D. $C N^{-}$

Answer: B

D Watch Video Solution
48. BCl_{3} molecule is planar while NCl_{3} is pyramidal because
A. $B C l_{3}$ does not have lone pair on B but
NCl_{3} has on N
B. $\mathrm{B}-\mathrm{Cl}$ bond is more polar than $\mathrm{N}-\mathrm{Cl}$ bond
C. N atom is smaller than B
D. $\mathrm{N}-\mathrm{Cl}$ bond is more covalent than $\mathrm{B}-\mathrm{Cl}$
bond

Answer: A

Watch Video Solution

49. N_{2} and O_{2} are converted to mono cations
N_{2}^{+}and O_{2}^{+}respectively, which statement is wrong ?
A. $\ln N_{2}^{+}$, the N-N bond weakens
B. In O_{2}^{+}, the O-O bond order increases
C. In O_{2}^{+}, paramagnetism decreases
D. N_{2}^{+}becomes diamagnetic.
50. Which of the following pair contains isostructural species?
A. CH_{3}^{-}and CH_{3}^{+}
B. NH_{4}^{+}and NH_{3}
C. SO_{4}^{2-} and BF_{4}^{-}
D. NH_{2}^{-}and BeF_{2}.

Answer: C

D Watch Video Solution
51. What is the correct sequence of bond order
?
A. $\mathrm{O}_{2}^{+}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}$
B. $\mathrm{O}_{2}>\mathrm{O}_{2}^{-1}>\mathrm{O}_{2}^{+1}$
C. $\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}$
D. $O_{2}^{-1}>O_{2}^{+1}>O_{2}$

Answer: C
52. The structure of ICl_{2}^{-}is
A. Trigonal
B. Trigonal bipyramidal
C. Octahedral
D. Square planar.

Answer: B

- Watch Video Solution

53. In piperidine
A. $s p$
B. $s p^{2}$
C. $s p^{3}$
D. $d s p^{2}$

Answer: C
54. The calculated bond order in H_{2}^{-}ion is
A. 0
B. $\frac{1}{2}$
C. $-\frac{1}{2}$
D. 1

Answer: B
(Watch Video Solution
55. The electronic configuration of metal M is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$. The formula of its oxide will be :
A. MO
B. $M_{2} O$
C. $\mathrm{M}_{2} \mathrm{O}_{3}$
D. MO_{2}

Answer: B

D Watch Video Solution
56. Directed bond in water form an angle of
A. 90°
B. 120°
C. 105°
D. 60°

Answer: C

D Watch Video Solution
57. H -bonding is not present in
A. Glycerine

B. Water

C. Hydrogen sulphide
D. Hydrogen fluoride.

Answer: C

D Watch Video Solution

58. The ion that is isoelectronic with $C O$ is
A. O_{2}^{-}
B. O_{2}^{+}
C. CN^{-}
D. N_{2}^{+}

Answer: C

D Watch Video Solution

59. The number of electrons shared by each N
atom in N_{2} is
A. 2
B. 1
C. 3

$$
\text { D. } 4
$$

Answer: C

- Watch Video Solution

60. The shape of ClO_{3}^{-}according to valence
shell electron pair repulsion theory will be
A. Planar triangle

B. Pyramidal

C. Tetrahedral

D. Square planar.

Answer: B

D Watch Video Solution

61. The number of antibonding electron pairs
in O_{2}^{2-} molecular ion on the basic of molecular orbital theory is
A.) 4
B. 3
C. 2
D. 5

Answer: A
(Watch Video Solution
62. The species which is not paramagnetic among the following is
A. $B e^{-}$
B. $N e^{2+}$
C. Cl^{-}
D. $A s^{+}$

Answer: C

D Watch Video Solution

63. Which of the following hydrides of the oxygen family shows the lowest boiling point?
A. $\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{H}_{2} \mathrm{~S}$
C. $\mathrm{H}_{2} \mathrm{Se}$
D. $\mathrm{H}_{2} \mathrm{Te}$

Answer: B

- Watch Video Solution

64. The molecule having bond order 3 is
A. H_{2}
B. N_{2}
C. O_{2}
D. He_{2}^{+}

Answer: B

- Watch Video Solution

65. The hydrogen bond is strongest in
A. O-H...S
B. S-H...O

C. F-H...F

D. F-H...O.

Answer: C

D Watch Video Solution

66. According to Fajans rule, the covalent bond
is favoured by:
A. Large cation and small anion
B. Large cation and large anion
C. Small cation and small anion
D. Small cation and large anion

Answer: D

D Watch Video Solution

67. According to VSEPR theory, the shape of the water molecule is
A. Octahedral
B. Distorted tetrahedral

C. Planar triangle

D. Linear.

Answer: B

D Watch Video Solution

68. In a double bond connecting two atoms
there is a sharing of
A. 2 electrons
B. 4 electrons

C. 1 electron

D. All electrons.

Answer: B

D Watch Video Solution

69. Which chloride should exhibit the most covalent type of bond ?
A. KCl
B. CaCl_{2}
C. BeCl_{2}
D. BaCl_{2}

Answer: C

D Watch Video Solution

70. Which of the following will be octahedral ?
A. $S F_{6}$
B. $B F_{4}^{-}$
C. PCl_{5}
D. BO_{3}^{3-}

Answer: A

D Watch Video Solution

71. The bond order in O_{2}^{+}is
A. 2
B. 2.5
C. 1.5
D. 3

Answer: B
(Watch Video Solution
72. Which of the following is paramagnetic ?
A. O_{2}
B. $C N^{-}$
C. CO
D. NO^{+}

Answer: A

73. The most suitable method of separation of

a mixture of ortho and para nitrophenol in the ratio $1: 1$ is :
A. distillation
B. crystallisation
C. vapourisation
D. colour spectrum

74. O_{2} molecule is

A. paramagnetic
B. diamagnetic
C. ferromagnetic

D. none of these.

Answer: A

(

75. Which of the following bonds is most polar

?

A. $\mathrm{C}-\mathrm{O}$
B. C-F
C. O-F
D. N-F.

Answer: B

- Watch Video Solution

76. The relationship between the dissociation energy of N_{2} and N_{2}^{+}is
A. dissociation energy of $N_{2}=$ dissociation
energy of N_{2}^{+}
B. dissociation energy of N_{2} can either be
lower or higher than the dissociation
energy of N_{2}^{+}
C. dissociation energy of $N_{2} g t$ dissociation
energy of N_{2}^{+}

D. association energy of N_{2}^{+}gt dissociation

energy of N_{2}

Answer: C

- Watch Video Solution

77. Among the following ions the $\mathrm{p} \pi^{-} \mathrm{d} \pi$ overlap could be present in
A. NO_{3}^{-}
B. PO_{4}^{3-}
C. CO_{3}^{2-}
D. NO_{2}^{-1}

Answer: B

D Watch Video Solution

78. Among the following the electron deficient compound is
A. CCl_{4}
B. PCl_{5}
C. BeCl_{2}
D. BCl_{3}

Answer: D

D Watch Video Solution

79. Which of the following is planar?
A. XeO_{4}
B. $\mathrm{XeO}_{3} \mathrm{~F}$
C. $\mathrm{XeO}_{2} \mathrm{~F}_{2}$

D. XeF_{4}

Answer: D

D Watch Video Solution

80. Polarisation of electrons in acrolein may be
written as:

$$
\delta-\quad \delta+
$$

A. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{O}$
$+\delta \quad-\delta$
B. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{O}$
C. $\stackrel{-\delta}{\mathrm{CH}_{2}}=\stackrel{\delta+}{\mathrm{CH}}-\stackrel{+}{\mathrm{C}} \mathrm{H}=\mathrm{O}$

$$
\text { D. } \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{O}
$$

Answer: B

- Watch Video Solution

81. Which of the following is not paramagnetic
?
A. N_{2}^{+}
B. CO
C. O_{2}^{-}
D. NO.

Answer: B

D Watch Video Solution

82. Which of the following molecule forms
linear polymeric structure due to H -bonding ?
A. HCl
B. $H F$
C. $\mathrm{H}_{2} \mathrm{O}$
D. NH_{3}.

Answer: B

D Watch Video Solution

83. Carbon atoms in benzene molecule are inclined at an angle of
A. 120°
B. 180°
C. $109^{\circ}-28^{\prime}$
D. 60°

Answer: A

- Watch Video Solution

84. The bond length between C-C bonds in $s p^{2}$
hybridised molecule is
A. $1.2 \tilde{A}_{\text {... }}$
B. 1.32 Ã...
C. 1.54 Ã...
D. $1.4 \tilde{A}_{\text {A... }}$

Answer: B

D Watch Video Solution

85. The molecule having non-zero dipole moment is
A. $\mathrm{H}_{2} \mathrm{O}_{2}$
B. CH_{4}
C. $\mathrm{C}_{2} \mathrm{H}_{6}$

D. $B F_{3}$

Answer: A

D Watch Video Solution

86. The shape of the molecule $\mathrm{SF}_{2} \mathrm{Cl}_{2}$ is
A. trigonal bipyramidal
B. cubic
C. octahedral
D. tetrahedral

D Watch Video Solution

87. The hybridization of sulphur in SO_{2} is

A. $s p^{2}$
B. $s p^{3}$
C. $s p$
D. $s d^{3}$

Answer: A
88. Two ice cubes are pressed over each other until they unite to form one block. The force mainly responsible for holding them together is
A. Dipole-dipole
B. Van der Waal forces
C. Hydrogen bond formation
D. Covalent attraction

D Watch Video Solution

89. The number of electrons that are paired in
oxygen molecule is
A. 16
B. 12
C. 7
D. 14

- Watch Video Solution

90. The structure of $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}$ is

A. linear
B. planar
C. non-planar
D. has several resonance structures

Answer: B
91. The hybridisation of xenon in XeF_{2} is
A. $s p^{3}$
B. $s p^{2}$
C. $s p^{3} d$
D. $s p^{2} d$

Answer: C

92. The shape of gaseous SnCl_{2} is

A. Tetrahedral

B. Linear

C. Angular

D. T-shaped

Answer: C

D Watch Video Solution
93. Which of the following substances has the least ionic character?
A. FeCl_{2}
B. ZnCl_{2}
C. CdCl_{2}
D. MgCl_{2}

Answer: B

- Watch Video Solution

94. Which one of the following molecules will have unequal bond lengths ?
A. $N F_{3}$
B. $B F_{3}$
C. $P F_{5}$
D. $S F_{6}$

Answer: C

95. The bond order of individual carbon-carbon

 bond in benzene isA. one
B. two
C. between one and two
D. one and two alternately.

Answer: C

D Watch Video Solution
96. In which of the following molecules, is the covalent bond most polar ?
A. HI
B. HBr
C. HCl
D. H_{2}

Answer: C
97. Among the following compounds, which
has a dipole moment
A. CCl_{4}
B. $\mathrm{C}_{6} \mathrm{H}_{6}$
C. $B F_{3}$
D. $H F$

Answer: D

- Watch Video Solution

98. Which of the following is least ionic ?
A. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
B. KCl
C. BaCl_{2}
$+$
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{Cl}^{-}$

Answer: A

- Watch Video Solution

99. The number of antibonding electron pairs
in O_{2}^{2-} molecular ion on the basic of molecular orbital theory is
A. 4
B. 3
C. 2
D. 5

Answer: A

100. Most efficient overlapping is

$$
\begin{aligned}
& \text { A. } s p^{2}-s p^{2} \\
& \text { B. } s-s \\
& \text { C. } s p^{3}-s p^{3} \\
& \text { D. } s p-s p
\end{aligned}
$$

Answer: C
101. $I F_{5}$ has the following hybridisation
A. $s p^{3} d^{2}$
B. $s p^{3} d^{3}$
C. $s p^{3} d$

D. None of these

Answer: A
(Watch Video Solution

102. Antibonding MO is formed by

A. Addition of atomic orbitals
B. Subtraction of atomic orbitals
C. Multiplication of atomic orbitals
D. None of these.

Answer: B

- Watch Video Solution

103. The calculated bond order of superoxide
ion $\left(O_{2}^{-}\right)$is
A. 0.5
B. 1.5
C. 3.5
D. 2.5

Answer: A

- Watch Video Solution

104. In O_{3}, there are
A. $2 \sigma, 1 \pi$ bond
B. $1 \sigma, 2 \pi$ bonds
C. $2 \sigma, 2 \pi$ bonds
D. $2 \sigma, 1 \pi$ one lone pair

Answer: D

- Watch Video Solution

105. Which is most viscous?
A. $\mathrm{CH}_{3} \mathrm{OH}$

B. $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{OH}$
$\mathrm{CH}_{2} \mathrm{OH}$ |
C. $\mathrm{CH}_{2} \mathrm{OH}$

D. None

Answer: C

D Watch Video Solution

106. The boiling point of heavy water is
A. $108^{\circ} \mathrm{C}$
B. $101.4^{\circ} \mathrm{C}$
C. $99^{\circ} \mathrm{C}$
D. $110^{\circ} \mathrm{C}$

Answer: C

(Watch Video Solution

107. Fluorine molecule is formed by
A. The axial p-p overlap
B. The sidewise p-p overlap
C. The axial s-p overlap
D. The overlap of two $s p^{2}$ hybrid orbitals.

Answer: A

D Watch Video Solution

108. The correct order of bond angles in the molecules, $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CH}_{4}$, and CO_{2} is
A. $\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}>\mathrm{CH}_{4}>\mathrm{CO}_{2}$

$$
\begin{aligned}
& \text { B. } \mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{CO}_{2}<\mathrm{CH}_{4} \\
& \text { C. } \mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}>\mathrm{CO}_{2}>\mathrm{CH}_{4} \\
& \text { D. } \mathrm{CO}_{2}>\mathrm{CH}_{4}>\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Answer: D

D Watch Video Solution

109. Which is the correct arrangement of the molecules basexd on dipole moments ?
A. $\mathrm{BF}_{3} \mathrm{gt} \mathrm{NF}_{3}$ gt NH_{3}
B. $N F_{3} g t B F_{3}$ gt $N H_{3}$
C. $\mathrm{NH}_{3} \mathrm{gt} \mathrm{BF}_{3} \mathrm{gt} \mathrm{NF}_{3}$
D. $\mathrm{NH}_{3} \mathrm{gt} \mathrm{NF}_{3}$ gt BF_{3}

Answer: D

- Watch Video Solution

110. The boiling point of para nitrophenol is greater than that of ortho nitrophenol, because
A. there is intermolecular hydrogen
bonding in para nitrophenol and
intramolecular hydrogen bonding in
ortho nitrophenol

B. there is intramolecular hydrogen

bonding in para nitrophenol and
intermolecular hydrogen bonding in
ortho nitrophenol
C. both have the same kind of hydrogen

D. para nitrophenol is polar, while ortho

nitrophenol is non-polar

Answer: A

D Watch Video Solution

111. Which of the following compounds shows
ionic, covalent and co-ordinate bonds as well ?
A. $\mathrm{CaSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

C. HCl

D. NaCl

Answer: B

D Watch Video Solution

112. Which of the following has $s p^{3}$ hybridisation of central atom ?
A. XeO_{3}
B. BCl_{3}
C. XeF_{4}
D. BBr_{3}

Answer: A

D Watch Video Solution

113. The shape of ClO_{3}^{-}is
A. Triangular pyramidal
B. Tetrahedral
C. Triangular planar

D. Triangular bipyramidal.

Answer: A

- Watch Video Solution

114. Sideways overlap of $p-p$ orbitals forms
A. Sigma bond

B. Pi bond

C. Coordinate bond
D. H-bond.

D Watch Video Solution

115. The main axis of diatomic molecule is z.

The orbitals p_{x} and p_{y} overlap to form
A. π molecular orbital
B. σ molecular orbital
C. δ molecular orbital
D. no bond will be formed

Answer: D

- Watch Video Solution

116. Which of the following pairs are isostructural ?
A. $X e F_{2}, I F_{2}^{-}$
B. $\mathrm{NH}_{3}, B F_{3}$
C. $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}^{2-}$
D. $P C l_{5}, I C l_{5}$

D Watch Video Solution

117. Number of π-bonds in naphthalene is
A. 6
B. 3
C. 4
D. 5
118. Which of the following is soluble in water?
A. $C S_{2}$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
C. CCl_{4}
D. CHCl_{3}

Answer: B
119. Dipole moment is shown by
A. 1,4-Dichlorobenzene
B. Cls 1,2-Dichlorobenzene
C. trans 1,2-Dichlorobenzene
D. trans 2, 3-Dichloro-2-butene.

Answer: B

D Watch Video Solution

120. The electronegativities of $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, and I
are $4.0,3.0,2.8$, and 2.5 , respectively. The
hydrogen halide with a high percentage of ionic character is
A. HF
B. HCl
C. HBr
D. HI

Answer: A

121. Which of the following does not contain

 coordinate bond?A. BH_{4}^{-}
B. NH_{2}^{-}
C. CO_{3}^{2-}
D. $\mathrm{H}_{3}^{+} \mathrm{O}$

Answer: C
122. A square planar complex is formed by hybridisation of which atomic orbitals?
A. s, p_{x}, p_{y}, p_{z}
B. $s, p_{x}, p_{y}, d_{x^{2}-y^{2}}$
C. $s, p_{x}, p_{y}, d_{z}^{2}$
D. $s, p_{x}, p_{z}, d_{x y}$

Answer: B
123. Which of the following statement is true?
A. HF is less polar than HBr
B. Absolutely pure water does not contain any ions
C. Chemical bond formation takes place
when forces of attraction overcome the
forces of repulsion
D. In covalency, the transference of
electrons takes place.

D Watch Video Solution

124. Number of sigma bonds in $P_{4} O_{10}$ is
A. 6
B. 7
C. 17
D. 16

Answer: D
125. In which of the following sepcies, is the underlined carbon has $s p^{3}$-hybridisation?
A. $\mathrm{CH}_{3} \mathrm{COOH}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
C. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
D. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{3}$

Answer: B

Watch Video Solution
126. In $\mathrm{XeF}_{2}, \mathrm{XeF}_{4}$, and XeF_{6}, the number of lone pairs on $X e$ is, respectively,
A. $2,3,1$
B. 1,2,3
C. $4,1,2$
D. 3,2,1

Answer: D
127. The bond order in O_{2}^{+}is
A. 1
B. 1.5
C. 2.5
D. 3

Answer: C

- Watch Video Solution

128. Which of the following has zero dipole moment?
A. CIF
B. PCl_{3}
C. SiF_{4}
D. CFCl_{3}

Answer: C

- Watch Video Solution

129. The correct sequence of decrease in the bond angles of the following hydrides is
A. NH_{3} gt $\mathrm{PH}_{3} \mathrm{gt} \mathrm{AsH}_{3} \mathrm{gt} \mathrm{SbH}_{3}$
B. $\mathrm{NH}_{3} \mathrm{gt} \mathrm{AsH}_{3}$ gt $\mathrm{PH}_{3} \mathrm{gt} \mathrm{SbH}_{3}$
C. SbH_{3} gt AsH_{3} gt PH_{3} gt NH_{3}
D. $\mathrm{PH}_{3} \mathrm{gt} \mathrm{NH}_{3}$ gt $\mathrm{AsH}_{3} \mathrm{gt} \mathrm{SbH}_{3}$

Answer: A

- Watch Video Solution

130. In $O F_{2}$, the number of bond pairs and lone pairs of electrons are respectively,
A. 2,6
B. 2,8
C. 2,10
D. 2,9

Answer: B

- Watch Video Solution

131. In NO_{3}^{+}ion, number of bond pairs and lone pairs of electrons are respectively
A. 2,2
B. 3,1
C. 1,3
D. 4,8

Answer: D
132. In which of the following $p \pi-d \pi$ bonding
is observed?
A. NO_{3}^{-}
B. SO_{3}^{2-}
C. BO_{3}^{3-}
D. CO_{3}^{2-}

Answer: B

- Watch Video Solution

133. Sulphuric acid provides a simple example of
A. coordinate bonds
B. non covalent compound
C. covalent ion
D. non-covalent ion

Answer: A
134. A lone pair of electrons in an atom implies
A. A pair of valence electrons
B. A pair of electrons
C. A pair of electrons involved in bonding

D. A pair of valence electrons not involved in bonding

Answer: D

135. Chemical bond implies

A. repulsion

B. attraction

C. attraction and repulsion balanced at particular distance

D. attraction and repulsion.

Answer: C

- Watch Video Solution

136. Sodium chloride is an ionic compound whereas hydrogen chloride is Mainly covalent because
A. Sodium is less reactive
B. Hydrogen is a non-metal
C. Hydrogen chloride is a gas
D. Electronegativity difference in the case
of hydrogen and chlorine is less than 2.1

Answer: B
137. Covalent compounds have low melting points because
A. covalent molecules have definite shape
B. covalent bond is weaker than ionic bond
C. covalent bond is less exothermic
D. covalent molecules are held by weak van der Waals forces of attraction.
138. The number of σ - and π bonds present in pent-4en-1-yne is :
A. 3,10
B. 9,4
C. 4,9
D. 10, 3

Answer: D
139. Which of the following statement is not correct for sigma and pi- bonds formed between two carbon atoms ?
A. Sigma-bond determines the direction
between carbon atoms but a pi-bond has
no primary effect in this regard.
B. Sigma-bond is stronger than a pi-bond.
C. Bond energies of sigma and pi-bonds are
respectively.
D. Free rotation of atoms about a sigma-
bond is allowed but not in case of a pibond.

Answer: C

D Watch Video Solution

140. In an anion HCOO^{-}the two carbonoxygen bonds are found to be equal length. What is the reason for it?
A. Electronic orbitals of carbon atom are
hybridised
B. The $\mathrm{C}=\mathrm{O}$ bond is weaker than the $\mathrm{C}-\mathrm{O}$
bond
C. The anion HCOO^{-}has two resonating

Structures
D. The anion is obtained by removal of a proton from the acid molecule

Answer: C
141. The pair of species having identical shapes
for molecules of both species is
A. $C F_{4}, S F_{4}$
B. $\mathrm{XeF}_{2}, \mathrm{CO}_{2}$
C. $\mathrm{BF}_{3}, \mathrm{PCl}_{3}$
D. $P F_{5}, I F_{5}$

Answer: B
142. The ion which is not tetrahedral in shape is
A. $B F_{4}^{-}$
B. NH_{4}^{+}
C. $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}$
D. NiCl_{4}^{-}

Answer: C

- Watch Video Solution

143. Which of the following compounds prossesses the $C-H$ bonds with the lowest bond dissociation energy?
A. Toluene
B. Benzene
C. n-Pentane
D. 2, 2-Dimethylpropane

Answer: A
144. Maximum hydrogen bonds in water are,
A. 4
B. 3
C. 2
D. 8

Answer: A

D Watch Video Solution
145. $s p^{3}$ has s-character
A. $1 / 2$
B. $1 / 4$
C. $1 / 8$
D. 1

Answer: B

D Watch Video Solution

146. Which one is configuration of most metallic metal ?
A. 2,8,8,1
B. 2, 8, 2
C. $2,8,18,1$
D. $2,8,1$

Answer: A

D Watch Video Solution

147. The nature of hybridisation in the NH_{3} molecule is
A. $s p^{2}$
B. $s p^{3}$
C. $d s p^{2}$
D. sp

Answer: B

D Watch Video Solution

148. Which of the following bonds require the
largest amount of bond energy to dissociate
the atoms concerned?
A. $\mathrm{H}-\mathrm{H}$ bond in H_{2}
B. C-H bond in CH_{4}
C. $N \equiv N$ bond in N_{2}
D. $O=O$ bond in O_{2}

Answer: C

D Watch Video Solution

149. From elementary molecular orbital theory we can deduce the electronic configuration of
the singly positive nitrogen molecular ion N_{2}^{+}
as

> A. $\sigma_{1 s^{2}} \sigma_{1 s^{2}}^{*} \sigma_{2 s^{2} \sigma_{2 s}^{*}}^{*} 2 \pi_{2 p^{4} \sigma_{2 p}{ }^{1}}$
> B. $\sigma_{1 s^{2}} \sigma_{1 s_{2}}^{*}, \sigma_{2 s^{2} \sigma_{2 s}} * 2 \sigma_{2 p^{1 /}} 2 p^{3}$
> C. $\sigma_{1 s^{2}} \sigma_{1 s^{2}}^{*}, \sigma_{2 s^{2} \sigma_{2 s^{2}} \sigma_{2 p}{ }^{2 \pi} 2 p^{4}}$
> D. $\sigma_{1 s^{2}} \sigma_{1 s^{2}}^{*}, \sigma_{2 s^{2} \sigma_{2 s^{2}} \sigma_{2 p} 2 \pi}^{2 p^{2}}$

Answer: A

D Watch Video Solution
150. Which one of the following has the smallest bond angle?
A. NH_{3}
B. $B e F_{2}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. CH_{4}

Answer: C

- Watch Video Solution

151. Identify the correct statement from below concerning the structure of $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}$
A. The molecule is planar
B. One of the three carbon atoms is in an
$s p^{3}$ - hybridized state
C. The molecule is non-planar with the two
CH_{2} groups being in planes
perpendicular to each other
D. All the carbon atoms are sp-hybridised
152. Which carbon is more electronegative?
A. $s p^{3}$-hybridized carbon
B. sp-hybridized carbon
C. $s p^{2}$-hybridized carbon
D. Always same irrespective of its hybrid
state

Answer: B

Watch Video Solution

153. Molecular shape of $\mathrm{SF}_{4}, \mathrm{CF}_{4}$ and XeF_{4} are
A. The same with 2,0 and 1 lone pair of
electrons respectively
B. The same with 1,1 and 1 lone pair of electrons respectively
C. Different with 0,1 and 2 lone pair of
electrons respectively

D. Different with 1,0 and 2 lone pair of

 electrons respectively
Answer: D

- Watch Video Solution

154. The correct order of bond angles (smallest
first) in $\mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{BF}_{3}$ and SiH_{4} is
A. $\mathrm{H}_{2} \mathrm{~S}$ It SiH_{4} It NH_{3} It BF_{3}
B. $\mathrm{H}_{2} \mathrm{~S}$ It NH_{3} It BF_{3} It SiH_{4}

C. $\mathrm{H}_{2} \mathrm{It} \mathrm{NH}_{3} \mathrm{It} \mathrm{SiH}_{4} \mathrm{ItBF} 3$

D. NH_{3} It $\mathrm{H}_{2} \mathrm{~S}$ It SiH_{4} It BF_{3}

Answer: C

D Watch Video Solution

155. The states of hybridisation of boron and oxygen atoms in boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$ are respecitivelty :
A. $s p^{2}$ and $s p^{2}$
B. $s p^{3}$ and $s p^{3}$
C. $s p^{3}$ and $s p^{2}$
D. $s p^{2}$ and $s p^{3}$

Answer: D

- Watch Video Solution

156. Which of the following has the regular tetrahedral structure?
A. XeF_{4}
B. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
C. $B F_{4}^{-}$
D. $S F_{4}$

Answer: C

D Watch Video Solution
157. The bond order in NO is 2.5 while that in
NO^{+}is 3 . Which of the following statements is
true for these two species?
A. Bond length in NO^{+}is greater than in NO
B. Bond length is unpredictable
C. Bond length in NO^{+}is equal to that in

NO
D. Bond length in NO is greater than in
NO^{+}

Answer: D

D Watch Video Solution
158. The maximum number of 90° angles between bond pair-bond pair of electrons is observed in
A. $d s p^{3}$-hybridisation
B. $s p^{3}-d^{2}$ hybridisation
C. $d s p^{2}$-hybridisation
D. $s p^{3} \mathrm{~d}$-hybridisation

Answer: B
159. Among the species $\mathrm{CO}_{2}, \mathrm{CO}_{3}^{2-}, \mathrm{CH}_{3} \mathrm{COO}^{-}$,

CO, HCHO which has longest carbon-oxygen bond
A. CO_{2}
B. $\mathrm{CH}_{3} \mathrm{COO}^{-}$
C. CO
D. CO_{3}^{2-}

Answer: D

160. The boiling point of methanol is greater than methyl thiol because

A. There is intramolecular hydrogen

bonding in methanol and intermolecular
hydrogen bonding in methyl thiol

B. There is intermolecular hydrogen

bonding in methanol and no hydrogen
bonding in methyl thiol.
C. There is no hydrogen bonding in methanol and intermolecular hydrogen
bonding in methyl thiol
D. There is no hydrogen bonding in methanol and intramolecular hydrogen bonding in methyl thiol.

Answer: B

D Watch Video Solution

161. Two nodal planes are present in
A. $\pi_{2 p x}^{*}$
B. $\sigma_{2 p_{z}}$
C. $\pi 2 p_{x}$
D. $\pi_{2 p_{y}}$

Answer: A

- Watch Video Solution

162. In acetylene molecule, the carbon atoms
are linked by:
A. one sigma bond and two pi-bonds

B. two sigma bonds and one pi-bond

C. three sigma bonds
D. three pi-bonds.

Answer: A

D Watch Video Solution
163. Shape of $\mathrm{O}_{2} \mathrm{~F}_{2}$ is similar to that of
A. $C_{2} F_{2}$
B. $\mathrm{H}_{2} \mathrm{O}_{2}$
C. $H_{2} F_{2}$
D. $\mathrm{C}_{2} \mathrm{H}_{2}$

Answer: B

D Watch Video Solution

164. The $O N O$ bond angle is maximum in
A. NO_{3}^{-}
B. NO_{2}
C. NO_{2}^{-}
D. NO_{2}^{+}

Answer: D

- Watch Video Solution

165. The dipole moment is the highest for
A. Trans-2-butene
B. 1, 3-Dimethylbenzene
C. Acetophenone
D. Ethanol.

- Watch Video Solution

166. The decreasing order of bond angle is

$$
\begin{aligned}
& \text { A. } \mathrm{NO}_{2}>\mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}^{-} \\
& \text {B. } \mathrm{NO}_{2}^{-}>\mathrm{NO}_{2}>\mathrm{NO}_{2}^{+} \\
& \text {C. } \mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}>\mathrm{NO}_{2}^{-} \\
& \text {D. } \mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}^{-}>\mathrm{NO}_{2}
\end{aligned}
$$

Answer: C
167. $\mathrm{H}_{2} \mathrm{O}$ is dipolar, whereas BeF_{2} is not. It is because
A. $\mathrm{H}_{2} \mathrm{O}$ is angular and BeF_{2} is linear
B. the electronegativity of F is greater than
that of O .
C. $\mathrm{H}_{2} \mathrm{O}$ involves hydrogen bonding whereas
BeF_{2} is a discrete molecule
D. $\mathrm{H}_{2} \mathrm{O}$ is linear and BeF_{2} angular.

- Watch Video Solution

168. In an octahedral structure, the pair of d orbitals involved in $d^{2} s p^{2}$ hybridization is
A. $d_{x y}, d_{y z}$
B. $d_{x^{2}-y^{2}}, d_{z}^{2}$
C. $d x_{z}, d_{x^{2}-y^{2}}$
D. $d_{z}^{2}, d_{x z}$

Answer: B

D Watch Video Solution

169. In BrF_{3} molecule, the lone pair occupies
equatorial position minimize
A. lone pair-lone pair repulsion only
B. Ione pair-bond pair repulsion only
C. bond pair-bond pair repulsion only

D. lone pair-lone pair repulsion and lone

 pair-bond pair repulsion.
Answer: D

D Watch Video Solution

170. Among the following the pair in which the two species are not isostructural is
A. $P F_{6}^{-}$and $S F_{6}$
B. SiF_{4} and SF_{4}
C. IO_{3}^{-}and XeO_{3}
D. BH_{4}^{-}and NH_{4}^{+}

Answer: B

- Watch Video Solution

171. Decreasing order of C-C bond length is (I)
$\mathrm{C}_{2} \mathrm{H}_{4}$ (II) $\mathrm{C}_{2} \mathrm{H}_{2}$ (III) $\mathrm{C}_{6} \mathrm{H}_{6}$ (IV) $\mathrm{C}_{2} \mathrm{H}_{6}$
A. IVgt IIgt I gt II
B. I gt II gt IV gt III

C. II gt I gt IV gt III

D. IV gt I gt III gt II.

Answer: A

D Watch Video Solution

172. How many sigma and pi bonds are present in toluene ?
A. $3 \pi+8 \sigma$
B. $3 \pi+6 \sigma$
C. $3 \pi+15 \sigma$

D. $6 \pi+6 \sigma$

Answer: C

- Watch Video Solution

173. If the molecule of HCl were totally polar,
the expected value of dipole moment is 6-12 D
(debye) but the experimental value of dipole moment was 1.03 D . Calculate the percentage ionic character.
A. 17
B. 83
C. 50
D. Zero

Answer: A
(Watch Video Solution
174. Which one of the following molecules has
the smallest bond angle ?
A. NH_{3}
B. PH_{3}
C. $\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{2} \mathrm{Se}$

Answer: D
(Watch Video Solution
175. Which one of the following sepcies is diamagnetic in nature ?
A. He_{2}^{+}
B. H_{2}
C. H_{2}^{+}
D. H_{2}^{-}

Answer: B

D Watch Video Solution

176. Lattice energy of an ionic compound depedns upon:
A. Charge on the ion only
B. Size of the ion only
C. Packing of ions only
D. Charge on the ion and size of the ion.

Answer: D

D Watch Video Solution

177. Molecular shape of $\mathrm{SF}_{4}, \mathrm{CF}_{4}$ and XeF_{4} are
A. The same with 2,0 and 1 lone pairs of electrons on the central atom respectively.
B. The same with 1,1 and 1 lone pair of
electrons on the central atoms
respectively
C. different with 0,1 and 2 lone pairs of
electrons on the central atom
respectively

D. different with 1.0 and 2 lone pairs of

 electrons on the central atom respectively
Answer: D

D Watch Video Solution

178. The number and type of bonds between
carbon atoms in calcium carbide are
A. two sigma, one pi
B. two sigma, two pi
C. one sigma, one pi
D. one sigma, two pi.

Answer: D

D Watch Video Solution

179. Of the following sets, which one does not contain isoeletronic species ?
A. $\mathrm{PO}_{4}^{3-}, \mathrm{SO}_{4}^{2-}, \mathrm{ClO}_{4}^{-}$
B. $C N^{-}, N_{2}, C_{2}^{2-}$
C. $\mathrm{SO}_{3}^{2-}, \mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
D. $\mathrm{BO}_{3}^{3-}, \mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$

Answer: C

D Watch Video Solution

180. The correct order in which the O-O bond
length increases in the following is
A. $\mathrm{H}_{2} \mathrm{O}_{2}$ It O_{2} It O_{3}

$$
\begin{aligned}
& \text { B. } \mathrm{O}_{3} \text { It } \mathrm{H}_{2} \mathrm{O}_{2} \text { It } \mathrm{O}_{2} \\
& \text { C. } \mathrm{O}_{2} \text { It } \mathrm{O}_{3} \text { It } \mathrm{H}_{2} \mathrm{O}_{2} \\
& \text { D. } \mathrm{O}_{2} \text { It } \mathrm{H}_{2} \mathrm{O}_{2} \text { It } \mathrm{O}_{3}
\end{aligned}
$$

Answer: C

D Watch Video Solution

181. The correct sequence of increasing covalent character is represented by
A. $\mathrm{LiCl}, \mathrm{NaCL}, \mathrm{BeCl}_{2}$
B. $\mathrm{BeCl}_{2}, \mathrm{NaCl}, \mathrm{LiCl}$
C. $\mathrm{NaCl}, \mathrm{LiCl}, \mathrm{BeCl}_{2}$
D. $\mathrm{BeCl}_{2}, \mathrm{LICl}, \mathrm{NaCl}$

Answer: C

- Watch Video Solution

182. Which of the following is electron deficient molecule?
A. $B_{2} H_{6}$
B. $\mathrm{C}_{2} \mathrm{H}_{6}$
C. PH_{3}
D. SiH_{4}

Answer: A

D Watch Video Solution
183. Which of the following would have permanent dipple moment ?
A. $B F_{3}$
B. SiF_{4}
C. SF_{4}
D. XeF_{4}

Answer: C

D Watch Video Solution
184. In which of the following molecules the central atom does not follow the octet rule?
A. CO_{2}
B. $B F_{3}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{2} \mathrm{~S}$

Answer: B

D Watch Video Solution

185. Which one of the following statements is true?
A. The dipole moment of NF_{3} is zero
B. The dipole moment of $N F_{3}$ is less than
NH_{3}
C. The dipole moment of $N F_{3}$ is more than
NH_{3}
D. The dipole moment of $N F_{3}$ is equal to
NH_{3}

Answer: B

D Watch Video Solution
186. The correct order of the lattice energies of
the following ionic compounds is

$$
\begin{aligned}
& \text { A. } \mathrm{NaCl}>\mathrm{MgBr}_{2}>\mathrm{CaO}>\mathrm{Al}_{2} \mathrm{O}_{3} \\
& \text { B. } \mathrm{NaCl}>\mathrm{CaO}>\mathrm{MgBr}_{2}>\mathrm{Al}_{2} \mathrm{O}_{3} \\
& \text { C. } \mathrm{Al}_{2} \mathrm{O}_{3}>\mathrm{MgBr}_{2}>\mathrm{CaO}>\mathrm{NaCl} \\
& \text { D. } \mathrm{Al}_{2} \mathrm{O}_{3}>\mathrm{CaO}>\mathrm{MgBr}_{2}>\mathrm{NaCl}
\end{aligned}
$$

Answer: D

D Watch Video Solution
187. The $H-O-H$ bond angle in water is
A. 120°
B. 109.5°
C. 107°
D. 104.5°

Answer: D

- Watch Video Solution

188. Which of the following molecule is linear?
A. BeCl_{2}

B. $\mathrm{H}_{2} \mathrm{O}$

C. SO_{2}
D. CH_{4}

Answer: A

- Watch Video Solution

189. Which of the following is correct?
A. The number of electrons present in the
valence shell of S in SF_{6} is 12
B. The rate of ionic reactions are very slow.
C. According to VSEPR theory SnCl_{2} is a
linear molecule
D. The correct order of stability to form ionic
compounds
among
$\mathrm{Na}^{+}, \mathrm{Mg}^{2+}$, and $\mathrm{Al}^{3+}{ }_{\mathrm{Si}} \mathrm{Al}^{3+}>\mathrm{Mg}^{2+}>\mathrm{Na}^{+}$

Answer: A
190. The hydrogen bond is strongest in
A. S-H.. O
B. O-H... S
C. F-H...F
D. O-H.N

Answer: C

D Watch Video Solution
191. Match list and list II and pick out correct matching from the given choices.

List I (Compound) List II (Structure)
(a) $\mathrm{ClF}_{3} \quad$ 1. Square planar
(b) PCl_{5}
2. tetrahedral
(c) $I F_{5}$
3. trigonal bipyramidal
(d) CCl_{4}
4.square bipyramidal
(e) XeF_{4}
5. T-shaped
A. $a-5, b-4, c-3, d-2, e-1$
B. $a-5, b-3, c-4, d-2, e-1$
C. $a-4, b-3, c-4, d-1, e-2$
D. $a-4, b-3, c-5, d-2, e-1$

Answer: A

D Watch Video Solution

192. The sequence that correctly describes the relative bond strengths pertaining to oxygen molecule and its cation or anion is

$$
\text { A. } O_{2}^{2-}>O_{2}^{-}>O_{2}>O_{2}^{+}
$$

B. $\mathrm{O}_{2}>\mathrm{O}_{2}^{+}>\mathrm{O}_{2}^{2-}>\mathrm{O}_{2}^{2+}$
C. $\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{2-}>\mathrm{O}_{2}^{-}$
D. $\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{2-}$

Answer: D

- Watch Video Solution

193. Consider the following molecules or ions
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ii) NH_{4}^{+}(iii) SO_{4}^{2-} (iv) ClO_{4}^{-}(v) NH_{3}
$s p^{3}$-hybridization is involved in the formation of
A. (i), (ii), (v) only
B. (i). (ii) only
C. (i),(ii),(iv) only

D. (i),(ii),(iii),(iv) and (v)

Answer: D

D Watch Video Solution

194. The decreasing order of the boiling points of the following hydrides
(i) NH_{3} (ii) PH_{3}
(iii) AsH_{3} (iv) SbH_{3}
(v) $\mathrm{H}_{2} \mathrm{O}$ is
A. (v) gt (iv) gt (i) gt (iii) gt (ii)

> B. (v) gt (i) gt (ii) gt (iii) gt (iv)
C. (ii) gt (iv) gt (iii) gt (i) gt (v)
D. (iv)gt (iii) gt (i) gt (ii) gt (v)

Answer: A

D Watch Video Solution

195. Match list and list II and pick out correct matching from the given choices.

List I (Compound) List II (Structure)
(a) ClF_{3}

1. Square planar
(b) PCl_{5}
2. tetrahedral
(c) $I F_{5}$
3. trigonal bipyramidal
(d) CCl_{4}
4.square bipyramidal
(e) XeF_{4}
4. T-shaped
A. $a-2, b-1, c-3, d-5, e-4$
B. $a-1, b-5, c-2, d-3, e-4$
C. $a-5, b-1, c-2, d-3, e-4$
D. $a-3, b-1, c-4, d-5, e-2$

Answer: C

196. The energy of hydrogen bond is of the order of
A. $2 \mathrm{kJmol}^{-1}$
B. $20 \mathrm{kJmol}^{-1}$
C. $200 \mathrm{kJmol}^{-1}$
D. $2000 \mathrm{kJmol}^{-1}$

Answer: B

D Watch Video Solution
197. The number of lone pairs of electrons present on the central atom of CIF_{3} is
A. 0
B. 1
C. 2
D. 3

Answer: C

- Watch Video Solution

198. Bond order of nitric oxide is
A. 1
B. 2.5
C. 2
D. 1.5

Answer: B

- Watch Video Solution

199. How many types of $F-S-F$ bonds are present in SF_{4} ?
A. 2
B. 3
C. 4
D. 5

Answer: A

D Watch Video Solution
200. The number of σ and π - bonds in allyl isocyanide are
A. $9 \sigma, 3 \pi$
B. $9 \sigma, 9 \pi$
C. $3 \sigma, 4 \pi$
D. $5 \sigma, 7 \pi$

Answer: A
201. In TeCl_{4}, the central tellurium involves the
hybridization
A. $s p^{3}$
B. $s p^{3} d$
C. $s p^{3} d^{2}$
D. $d s p^{2}$

Answer: B

- Watch Video Solution

202. Match the compounds in the List with
that in List II
List I List II
(a) $\mathrm{XeO}_{3} \quad$ 1.Planar triangular
(b) XeOF_{4} 2. T-shape
(c) $\mathrm{BO}_{3}^{3-} \quad$ 3. Trigonal pyramid
(d) $\mathrm{ClF}_{3} \quad$ 4. Square pyramid
(e) $I_{3}^{-}(a q) \quad$ 5. Linear
6.Bent
A. $a-1, b-4, c-3, d-2, e-5$
B. $a-2, b-4, c-1, d-3, e-6$
C. $a-3, b-4, c-1, d-2, e-6$
D. $a-3, b-4, c-1, d-2, e-5$

Answer: D

D Watch Video Solution

203. The correct order of bond order values
among the following
(i) NO^{-}
(ii) NO^{+}
(iii) NO
(iv) NO^{2+}
(v) NO^{2-}
A. $a<d<c<b<e$
B. $d=b<a<e<c$
C. $e<a<d=c<b$
D. $b<c<d<a<e$

Answer: C

D Watch Video Solution

204. The bond lengths and bond angles in the
molecules of methane, ammonia, and water are given below:

This variation in bond angle is a result of
(i) the increasing repulsion between H atoms
as the bond length decreases
(ii) the number of nonbonding electron pairs in the molecule
(iii) a nonbonding electron pair having a greater repulsive force than a bonding electron pair
A. 1, 2 and 3 are correct
B. 1 and 2 only are correct

C. 2 and 3 only are correct

D. 1 only is correct

Answer: C

D Watch Video Solution

205. Which one of the following pairs consists of only paramagnetic species
A. $\mathrm{O}_{2}, \mathrm{NO}$
B. $\mathrm{O}_{2}^{+}, \mathrm{O}_{2}^{2-}$
C. CO, NO
D. $\mathrm{NO}, \mathrm{NO}^{+}$

Answer: A

D Watch Video Solution

206. The hybridization of oxygen atom in $\mathrm{H}_{2} \mathrm{O}_{2}$ is
A. $s p^{3} d$
B. $s p$
C. $s p^{2}$
D. $s p^{3}$

Answer: D

D Watch Video Solution

207. Which of the following is paramagnetic with bond order 0.5?
A. F_{2}
B. H_{2}^{+}
C. N_{2}
D. O_{2}^{-}

Answer: B

- Watch Video Solution

208. Which of the following is correctly based
on molecular orbital theory for peroxide ion?
A. Its bond order is two and it is
diamagnetic
B. Its bond order is one and is
paramagnetic
C. Its bond order is two and it is
paramagnetic
D. Its bond order is one and it is
diamagnetic

Answer: D

D Watch Video Solution

209. Which has the highest dipole moment?

(A) ${ }_{\mathrm{H}}^{\mathrm{H}}>\mathrm{C}=\mathrm{O}$
A.
$\left.{ }^{\text {(B) }}{ }_{\mathrm{H}_{3} \mathrm{C}}^{\mathrm{H}_{3} \mathrm{C}} \mathrm{C}_{\mathrm{C}=\mathrm{C}^{\prime}}\right\rangle_{\mathrm{H}}^{\mathrm{H}}$
C. ${ }_{\mathrm{H}_{3} \mathrm{C}}^{(\mathrm{C}} \stackrel{\mathrm{H}}{\mathrm{C}=\mathrm{C}^{\prime}}{ }_{\mathrm{H}}^{\mathrm{CH}}$
D. ${ }^{\text {(D) }}{ }^{\mathrm{CH}}{ }^{\mathrm{Cl}} \mathrm{C}_{\mathrm{C}=\mathrm{C}}{ }^{\prime} \mathrm{Cl}_{\mathrm{Cl}}$

Answer: A

- Watch Video Solution

210. The magnetic moment of KO_{2} at room temperature is --------- BM.
A. 1.41
B. 1.73
C. 2.23
D. 2.64

Answer: B

D Watch Video Solution
211. Shape of ClF_{3} is
A. Equilateral triangle
B. Pyramidal
C. V-shaped
D. T-shaped

Answer: D

D Watch Video Solution
212. Which of the following is the structure of
$\mathrm{N}_{2} \mathrm{O}$ which is isoelectronic with CO_{2} and N_{3}^{-}?
(A)
A.

B. $\mathrm{N}-\mathrm{O}-\mathrm{N}$

$$
{ }_{c}^{(C)}{ }_{N}^{N}{ }^{N}
$$

D. $\mathrm{N}-\mathrm{N}-\mathrm{O}$

Answer: D

- Watch Video Solution

213. Which of the following has transient existence?
A. H
B. H_{2}^{+}
C. H^{+}
D. He

Answer: B

- Watch Video Solution

214. The number of nodal planes present in a

σ^{*} antibonding orbital is

A. 0
B. 3
C. 1
D. 2

Answer: C
215. The calculated bond order of superoxide
ion $\left(O_{2}^{-}\right)$is
A. 1.5
B. 1
C. 2.5
D. 2

Answer: A
216. The bond angle and dipole moment of water respectively are :
A. $105.5^{\circ}, 1.84 \mathrm{D}$
B. $107.5^{\circ}, 1.56 \mathrm{D}$
C. $104.5^{\circ}, 1.84 \mathrm{D}$
D. $102.5^{\circ}, 1.56 \mathrm{D}$

Answer: C

D Watch Video Solution
217. Match list (Molecules) with list II (Boiling
points) and select the correct answer
List I List II
(a) $\mathrm{NH}_{3} \quad$ (1)290 K
(b) $\mathrm{PH}_{3} \quad$ (2) 211 K
(c) $\mathrm{AsH}_{3} \quad$ (3) 186 K
(d) SbH_{3} (4) 264 K
(e) BiH_{3} (5) 240 K
A. $a-3, b-2, c-5, d-4, e-1$
B. $a-5, b-3, c-2, d-4, e-1$
C. $a-1, b-4, c-5, d-2, e-3$
D. $a-1, b-2, c-3, d-4, e-5$

Answer: B

D Watch Video Solution

218. Shape and hybridization of $I F_{5}$, respectively, are
A. Trigonal bipyramidal, $s p^{3} d$
B. Seesaw, $s p^{3} d$
C. Square pyramidal, $s p^{3} d^{2}$
D. Pentagonal pyramidal, $s p^{3} d^{3}$

D Watch Video Solution

219. $R b O_{2}$ is
A. Peroxide and paramagnetic
B. Peroxide and magnetic
C. Super oxide and paramagnetic
D. Super oxide and diamagnetic.
220. Arrange the following ions in the order of decreasing $X-O$ bond length where X is the central atom:

> A. $\mathrm{ClO}_{4}^{-}, \mathrm{SO}_{4}^{2-}, \mathrm{PO}_{4}^{3-}, \mathrm{SiO}_{4}^{4-}$
> B. $\mathrm{SiO}_{4}^{4-}, \mathrm{PO}_{4}^{3-}, \mathrm{SO}_{4}^{2-}, \mathrm{ClO}_{4}^{-}$
C. $\mathrm{SiO}_{4}^{4-}, \mathrm{PO}_{4}^{3-}, \mathrm{ClO}_{4}^{-}, \mathrm{SO}_{4}^{2-}$
D. $\mathrm{SiO}_{4}^{2-}, \mathrm{SO}_{4}^{2-}, \mathrm{PO}_{4}^{3-}, \mathrm{ClO}_{4}^{-}$
221. The molecule which has highest bond order is
A. C_{2}
B. N_{2}
C. B_{2}
D. O_{2}

Answer: B

D Watch Video Solution

222. The molecular geometry of $B F_{3}$ is

A. tetrahedral
B. pyramidal
C. square planar
D. trigonal planar

Answer: D
223. The types of hybridisation on the five carbon atoms from left to right in the molecule $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{C}=\mathrm{CH}-\mathrm{CH}_{3}$ are
A. $s p^{3}, s p^{2}, s p^{2}, s p^{2}, s p^{3}$
B. $s p^{3}, s p, s p^{2}, s p^{2}, s p^{3}$
C. $s p^{3}, s p^{2}, s p, s p^{2}, s p^{3}$
D. $s p^{3}, s p^{2}, s p^{2}, s p, s p^{3}$

Answer: C

D Watch Video Solution
224. In which pair of species, both species do
have similar geometry
A. $\mathrm{CO}_{2}, \mathrm{SO}_{2}$
B. $\mathrm{NH}_{3}, \mathrm{BH}_{3}$
C. $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}^{2-}$
D. $\mathrm{SO}_{4}^{2-}, \mathrm{ClO}_{4}^{-}$

Answer: D

D Watch Video Solution
225. In forming $C_{2} \rightarrow C_{2}^{+}$and (ii) $O_{2} \rightarrow O_{2}^{+}$, the electrons respectively are removed from
A. $\left(\begin{array}{cc}\pi_{2 p z}^{*} & \text { or } \pi_{2 p x}^{*}\end{array}\right)$ and $\left(\pi_{2 p y}^{*}\right.$ or $\left.\pi_{2 p x}^{*}\right)$
B. $\left(\begin{array}{cc}\pi_{2 p y}^{*} & \text { or } \pi_{2 p x}^{*}\end{array}\right)$ and $\left(\pi_{2 p y}^{*}\right.$ or $\left.\pi_{2 p x}\right)$
C. $\left(\pi_{2 p y}\right.$ or $\left.\pi_{2 p x}\right)$ and $\left(\pi_{2 p y}^{*}\right.$ or $\left.\pi_{2 p x}^{*}\right)$
D. $\left(\begin{array}{rl}* & \pi_{2 p y}^{*} \\ \text { or } & \pi_{2 p x}\end{array}\right)$ and $\left(\pi_{2 p y}\right.$ or $\left.\pi_{2 p x}\right)$

Answer: C

226. The common features among the species
$\mathrm{CN}^{-}, \mathrm{CO}$ and NO^{+}are :
A. Bond order three and isoelectronic
B. Bond order three and weak field ligands
C. Bond order two and π acceptor
D. Iso-electronic and weak fields.

Answer: A

D Watch Video Solution
227. It is believed that atoms combine with
each other such that the outermost shell acquires a stable configuration of 8 electrons.

If stability were attained with 6 electrons
rather than 8 . What would be the formula of the stable fluoride ion.
A. F^{-}
B. F^{+}
C. F^{2+}
D. F^{3+}

Answer: B

D Watch Video Solution

228. The correct statement with regard to H_{2}^{+}
and H_{2}^{-}is
A. Both H_{2}^{+}and H_{2}^{-}are equally stable
B. Both H_{2}^{+}and H_{2}^{-}do not exist
C. H_{2}^{-}is more stable than H_{2}^{+}
D. H_{2}^{+}is more stable than H_{2}^{-}

D Watch Video Solution

229. Arrange the following in the increasing order of their bond order:
A. $\mathrm{O}_{2}, \mathrm{O}_{2}^{+}, \mathrm{O}_{2}^{-}$and O_{2}^{2-}
B. $O_{2}^{2-}, O_{2}^{-}, O_{2}, O_{2}^{+}$
C. $O_{2}^{+}, O_{2}, O_{2}^{-}, O_{2}^{2-}$
D. $O_{2}, O_{2}^{+}, O_{2}^{-}, O_{2}^{2-}$

Answer: B

D Watch Video Solution

230. $\mathrm{Pi}(\pi)$ bond is formed by the overlap of
A. $p-p$ orbitals
B. $s-s$ orbitals
C. s-p orbitals
D. s-d orbitals.

Answer: A
231. The bond angle formed by different hybrid orbitals are in the order

$$
\text { A. } s p^{2}>s p^{3}>s p
$$

B. $s p^{3}>s p>s p^{2}$
C. $s p^{3}>s p^{2}>s p$
D. $s p>s p^{2}>s p^{3}$

Answer: D

D Watch Video Solution

232. The s and p characters in bond formed by

 central atom are equal in :A. CH_{4}
B. $\mathrm{CH} \equiv \mathrm{CH}$
C. CH_{3}^{+}
D. CH_{3}^{-}

Answer: B

233. The maximum bond strengths is in:

A. O_{2}
B. O_{2}^{+}
C. O_{2}^{-}
D. O_{2}^{2-}

Answer: B
(Watch Video Solution

234. The number of bonding and anti-bonding

 electrons respectively in CO molecule is :A. 8,2
B. 2,8
C. 4,2
D. 10,4

Answer: D

D Watch Video Solution
235. The bond order in He_{2}^{+}ions is:
A. 0.5
B. 1.0
C. 1.5
D. 2.0

Answer: A

D Watch Video Solution
236. The total number of electrons that take part in forming bond in O_{2} is
A. 2
B. 4
C. 6
D. 8

Answer: B

D Watch Video Solution
237. How many $\sigma($ sigma $)$ bonds are there in

$$
\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2} ?
$$

A. 3
B. 6
C. 9
D. 12

Answer: C
238. How many σ and π bonds are present in
the given compound $\mathrm{Ph}-\mathrm{CH}=\mathrm{C} \mid \mathrm{CH}_{3}-\mathrm{C}_{2} \mathrm{H}_{5}$
A. 19σ and 4π bonds
B. 22σ and 4π bonds
C. 25σ and 4π bonds
D. 26σ and 4π bonds

Answer: C

D Watch Video Solution
239. The species having pyramidal shape is
A. SO_{3}
B. BrF_{3}
C. SiO_{3}^{2-}
D. $O s F_{2}$

Answer: D
(Watch Video Solution

240. Peroxide ionâ $€_{\mid}^{\prime} \hat{a} €_{\mid}^{\prime}$

(i) has five completely filled antibonding molecular orbitals
(ii) is diamagnetic
(iii) has bond order one.
(iv) is isoelectronic with neon

Which of the following are correct
A. (iii) and (iv)
B. (i), (ii) and (iv)
C. (i) and (ii)
D. (iv) and (iv)

D Watch Video Solution

241. In which of the following molecules, the central atom does not have $s p^{3}$ hybridization ?
A. CH_{4}
B. $S F_{4}$
C. SiF_{4}
D. CH_{4}

Answer: B

D Watch Video Solution

242. Some of the properties of the two species
NO_{2}^{-}and $\mathrm{H}_{3} \mathrm{O}^{+}$are described below which one of them is correct ?
A. Dissimilar in hybridization for the central
atom with different structures
B. Isostructural with same hybridization for
the central atom
C. Isostructural with different hybridization

for the central atom

D. Similar in hybridization for the central
atom with different structures.

Answer: A

D Watch Video Solution
243. Find the bond order of $C O$
A. 2
B. 2.5
C. 3
D. 3.5

Answer: C

- Watch Video Solution

244. Which of the following has a regular geometry
A. CHCl_{3}
B. PCl_{3}
C. XeF_{6}
D. $S F_{4}$

Answer: A

- Watch Video Solution

245. A neutral molecule XF has a zero dipole moment. The X is most likely
A. chlorine
B. boron
C. nitrogen
D. carbon

Answer: B

- Watch Video Solution

246. N_{2} and O_{2} are converted into mono positive cations N_{2}^{+}and O_{2}^{+}respectively. Which is in correct
A. In N_{2}^{+}, the N-N bond is weakened
B. In O_{2}^{+}, the O-O bond is weakened
C. In O_{2}^{+}para magnetism increases
D. N_{2}^{+}becomes diamagnetic

Answer: D

D Watch Video Solution

247. Which of the following statement is false
A. H_{2} molecule has one sigma bond
B. HCl molecule has one sigma bond
C. Water molecule has two sigma bonds
and two lone pairs
D. Acetylene molecule has three sigma bond and three sigma bonds.

Answer: D

- Watch Video Solution

248. The bond angle formed by different hybrid orbitals are in the order

$$
\begin{aligned}
& \text { A. } s p^{2}>s p^{3}>s p \\
& \text { B. } s p^{3}>s p^{2}>s p \\
& \text { C. } s p^{3}>s p>s p^{2} \\
& \text { D. } s p>s p^{2}>s p^{3}
\end{aligned}
$$

Answer: D

D Watch Video Solution
249. Assuming that Hund's rule is violated the bond order and magnetic nature of the diatomic molecle B_{2} is
A. 1 and diamagnetic
B. 0 and diamagnetic
C. 1 and paramagnetic
D. 0 and paramagnetic

Answer: A

- Watch Video Solution

250. In which of the following molecules is hydrogen bridge bond present?
A. Water
B. Inorganic benzene
C. Diborane
D. Methanol

Answer: C

251. Complete the following reaction

The dipole moment of

dipole moment of

A. 1.5 D
B. 2.25 D
C. 1 D
D. 3 D

Answer: A

D Watch Video Solution

252. In which one of the following species, the central atom has the tuype of hybdridiztion which is not the same as that present in other three?
A. PCl_{5}
B. $S F_{4}$
C. I_{3}^{-}
D. $\mathrm{SbCl}{ }_{5}^{2-}$

Answer: D

D Watch Video Solution

253. Which of the following conversion involves change in both hybridization and shape?
A. $\mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$
B. $\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}$
C. $B F_{3}$ to $B F_{4}^{-}$
D. $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$

Answer: C

- Watch Video Solution

254. The correct order of increasing bond angle in the following species is
A. $\mathrm{ClO}_{2}^{-}<\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}$
B. $\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}<\mathrm{ClO}_{2}^{-}$

$$
\begin{aligned}
& \text { C. } \mathrm{ClO}_{2}<\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}^{-} \\
& \text {D. } \mathrm{Cl}_{2} \mathrm{O}<\mathrm{Cl}^{-} \mathrm{O}_{2}<\mathrm{ClO}_{2}
\end{aligned}
$$

Answer: A

D Watch Video Solution

255. Which of the following is a the most preferred and hence of the lower energy for SO_{3} ?
A.

Answer: D
256. In which of the following, the central atoms has two lone pairs of electrons
A. $S F_{4}$
B. $B_{2} H_{6}$
C. SO_{2}
D. XeF_{4}

Answer: D
257. Which of the two lons from the list given
have the geometry that is explained by the
same hybridization of orbitals
$\mathrm{NO}_{2}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{NH}_{2}^{-} \mathrm{NH}_{4}^{+} \mathrm{SCN}^{-}$?
A. NO_{2}^{-}and NH_{2}^{-}
B. NO_{2}^{-}and NO_{3}^{-}
C. NH_{4}^{+}and NO_{3}^{-}
D. SCN^{-}and NH_{2}^{-}

Answer: B

- Watch Video Solution

258. Which of the following is a the most preferred and hence of the lower energy for SO_{3} ?

Answer: D

D Watch Video Solution

259. The pairs of species of oxygen and their magnetic behaviour are noted below. Which of
the following presents the correct description
?
A. $\mathrm{O}_{2}^{-}, \mathrm{O}_{2}^{2-}$ Both diamagnetic
B. O_{2}^{+}, O_{2}^{2-} Both paramagnetic
C. O_{2}^{+}, O_{2} Both paramagnetic
D. O, O_{2}^{2-} Both paramagnetic

Answer: C

- Watch Video Solution

260. The covalent bond length is the shortest
in which of the following bonds
A. C-O
B. C-C
C. $C \equiv N$
D. $\mathrm{O}-\mathrm{H}$

Answer: D

- Watch Video Solution

261. Among the molecules, $\mathrm{SO}_{2}, \mathrm{SF}_{4}, \mathrm{ClF}_{3}$. BrF_{5} and XeF_{4} which of the following shape does not describe any of these molecules
A. Bent

B. Trigonal molecules

C. See saw
D. T shape

Answer: B
(D) Watch Video Solution
262. The hydrogen bond is shortest in
A. S-H---S
B. $\mathrm{N}-\mathrm{H}-\mathrm{-} \mathrm{O}$
C. S-H---O
D. F-H---F

Answer: D

- Watch Video Solution

263. Which one of the following is not correct
with respect to bond length of the species?
A. $C_{2}>C_{2}^{-}$

> B. $\mathrm{B}_{2}^{+}>\mathrm{B}_{2}$
> C. $\mathrm{Li}_{2}^{+}>\mathrm{Li}$
> D. $\mathrm{O}_{2}>\mathrm{O}^{-}$

Answer: D

D Watch Video Solution

264. Which of the following species contains
three bond pair and one lone pair around the central atom ?
A. $\mathrm{H}_{2} \mathrm{O}$
B. $B F_{3}$
C. NH_{2}^{-}
D. PCl_{3}

Answer: D

D Watch Video Solution

265. The percentage of p character of hybrid orbitals in graphite and diamond are respectively
A. 33 and 25
B. 50 and 75
C. 67 and 75
D. 33 and 75

Answer: C

D Watch Video Solution

266. Which one of the following is the correct
statement
A. O_{2} molecule has bond order 2 and is
diamagnetic
B. N_{2} molecule has bond order 3 and is
paramagnetic
C. H_{2} molecule has bond order zero and is
diamagnetic
D. C_{2} molecule has bond order 2 and is
diamagnetic

Answer: D
267. Which of the following pairs is isostractural (i.e having the same shape and hybridization ?
A. BCl 3 and BrCl_{3}
B. NH_{3} and NO_{3}^{-}
C. $N F_{3}$ and $B F_{3}$
D. BF_{4}^{-}and NH_{4}^{3+}

Answer: D
268. Bond order of 1.5 is shown by:
A. O_{2}^{+}
B. O_{2}^{-}
C. O_{2}^{2-}
D. O_{2}

Answer: B

- Watch Video Solution

269. During change of O_{2} to O_{2}^{2-} ion, the electrons add on which of the following orbitals?
A. π^{*} orbital
B. π orbital
C. σ^{*} orbital

D. σ orbital

Answer: A
270. In which of the following pairs, the two species are not isostructural?
A. PCl_{4}^{+}and SiCl_{4}
B. PF_{5} and BrF_{5}
C. $A I F_{6}^{3-}$ and $S F_{6}$
D. CO_{3}^{2-} and NO_{3}^{-}

Answer: B

- Watch Video Solution

271. Ortho -nitrophenol is less soluble in water than p-and m - nitrophenols because
A. ortho nitrophenol shows intramolecular H -bonding
B. Ortho Nitrophenol shows intramolecular

H -bonding
C. melting point of o-nitrophenol is lower
than those of m-and p-isomers
D. o-nitro phenol is more volatile in steam
than those of m - and p -isomers.

Answer: A

D Watch Video Solution

272. The electronegativity of an element is low.

The bond formed between two identical atoms of the above element is most likely to be
A. covalent
B. metallic
C. ionic
D. coordinate covalent.

Answer: B

D Watch Video Solution

273. Which of the following pairs form a stable coordinate bond?
A. $\mathrm{NaOH} . \mathrm{HCl}$
B. $\mathrm{NH}_{3} \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{NH}_{3} B F_{3}$
D. $B F_{3} B C l_{3}$

- Watch Video Solution

274. The paramagnetic behaviour of B_{2} is due to the presence of
A. 2 unpaired electron in $\pi_{b} \mathrm{MO}$
B. 2 unpaired electrons in π^{*} MO
C. 2 unpaired electrons in σ^{*} MO
D. 2 unpaired electrons in $\sigma_{b} \mathrm{MO}$.

D Watch Video Solution

275. Which of the following is a polar molecule
A. $B F_{3}$
B. $S F_{4}$
C. SiF_{4}
D. XeF_{4}

Answer: B
276. XeF_{2} is iso-structural with :
A. TeF_{2}
B. ICl_{2}^{-}
C. SbCl_{3}
D. BaCl_{2}

Answer: B
277. In the of the following pairs of molecules /
ions both the species are not likely to exist ?

$$
\begin{aligned}
& \text { A. } \mathrm{H}_{2}^{-}, \mathrm{H}_{2}^{2+} \\
& \text { B. } \mathrm{H}_{2}^{+}, \mathrm{He}_{2}^{2-} \\
& \text { C. } \mathrm{H}_{2}^{-}, \mathrm{He}_{2}^{2-} \\
& \text { D. } \mathrm{H}_{2}^{2+}, \mathrm{He} e_{2}
\end{aligned}
$$

Answer: D

- Watch Video Solution

278. Stability of the species $L i_{2}, L i_{2}^{-}, L i_{2}^{+}$ increases in the order of

$$
\begin{aligned}
& \text { A. } L i_{2}^{-}<L i_{2}<L i_{2}^{+} \\
& \text {B. } L i_{2}<L i_{2}^{+}<L i_{2}^{-} \\
& \text {C. } H_{2}^{-}, H e_{2}^{2-} \\
& \text { D. } H_{2}^{2+}, H e_{2}
\end{aligned}
$$

Answer: C

279. Which of the following is paramagnetic ?

A. CO
B. O_{2}^{-}
C. $C N^{-}$
D. NO^{+}

Answer: B

D Watch Video Solution

Comprehension M.C.Q

1. It is a common observation that many compounds containing hydrogen attached to highly electronegative elements such as oxygen, nitrogen, or fluorine, often exhibit unexpected properties, such as relatively high melting points, boiling points, viscosity, solubility in water etc Such an unexpected
behaviour can be explained on the basis of hydrogen bonding. When a hydrogen atom is attached to a highly electronegative element of small size such as F. N, 0 . etc. the electronegative atoms strongly attracts the
shared pair of electrons towards it self. As a
result, the hydrogen atom becomes slightly
positive and the electronegative element becomes slightly negative when two molecules
of such a substance say HF come close to each
other, the negatively charged fluorine atom of one molecule attracts the positively charged hydrogen atom of the other molecule. A hydrogen atom, thus links to highly electronegative atoms, one by a strong covalent bond and the other by weak electrostatic attraction as shown ahead $\delta+\quad \delta-\quad \delta+\quad \delta-$
$H-F \ldots H-F$, the dotted line represents a
hydrogen bond.
NH_{3} has much higher boiling point than PH_{3} because
A. NH_{3} has larger molecular mass
B. NH_{3} undergoes umbrella mass
C. NH_{3} forms hydrogen bond

D. NH_{3} contains ionic bonds whereas PH_{3}

contain covalent bonds

Answer: C
2. It is a common observation that many compounds containing hydrogen attached to highly electronegative elements such as oxygen, nitrogen, or fluorine, often exhibit unexpected properties, such as relatively high melting points, boiling points, viscosity, solubility in water etc Such an unexpected behaviour can be explained on the basis of hydrogen bonding. When a hydrogen atom is attached to a highly electronegative element of small size such as F. $N, 0$. etc. the
electronegative atoms strongly attracts the
shared pair of electrons towards it self. As a
result, the hydrogen atom becomes slightly positive and the electronegative element becomes slightly negative when two molecules of such a substance say HF come close to each other, the negatively charged fluorine atom of one molecule attracts the positively charged hydrogen atom of the other molecule. A hydrogen atom, thus links to highly electronegative atoms, one by a strong
covalent bond and the other by weak electrostatic attraction as shown ahead
$\delta+\quad \delta-\quad \delta+\quad \delta-$
$H-F \ldots H-F$, the dotted line represents a
hydrogen bond.

Hydrgen bonding is not present in
A. glycerine
B. water
C. hydrogen sulphide
D. ammonia

Answer: C

D Watch Video Solution
3. It is a common observation that many compounds containing hydrogen attached to highly electronegative elements such as oxygen, nitrogen, or fluorine, often exhibit unexpected properties, such as relatively high melting points, boiling points, viscosity, solubility in water etc Such an unexpected behaviour can be explained on the basis of hydrogen bonding. When a hydrogen atom is attached to a highly electronegative element of small size such as F. $N, 0$. etc. the electronegative atoms strongly attracts the
shared pair of electrons towards it self. As a
result, the hydrogen atom becomes slightly
positive and the electronegative element becomes slightly negative when two molecules
of such a substance say HF come close to each
other, the negatively charged fluorine atom of one molecule attracts the positively charged hydrogen atom of the other molecule. A hydrogen atom, thus links to highly electronegative atoms, one by a strong covalent bond and the other by weak electrostatic attraction as shown ahead $\delta+\quad \delta-\quad \delta+\quad \delta-$
$H-F \ldots H-F$, the dotted line represents a
hydrogen bond.

The molecular containing hydrogen bond is
A. HI
B. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
C. HF
D. All of these

Answer: C

- Watch Video Solution

4. It is a common observation that many compounds containing hydrogen attached to highly electronegative elements such as oxygen, nitrogen, or fluorine, often exhibit unexpected properties, such as relatively high melting points, boiling points, viscosity, solubility in water etc Such an unexpected
behaviour can be explained on the basis of hydrogen bonding. When a hydrogen atom is attached to a highly electronegative element of small size such as F. N, O. etc. the electronegative atoms strongly attracts the
shared pair of electrons towards it self. As a
result, the hydrogen atom becomes slightly
positive and the electronegative element becomes slightly negative when two molecules
of such a substance say HF come close to each
other, the negatively charged fluorine atom of one molecule attracts the positively charged hydrogen atom of the other molecule. A hydrogen atom, thus links to highly electronegative atoms, one by a strong covalent bond and the other by weak electrostatic attraction as shown ahead $\delta+\quad \delta-\quad \delta+\quad \delta-$
$H-F \ldots H-F$, the dotted line represents a
hydrogen bond.

Hydrogen bond is strongest in
A. F-HO
B. F-HF
C. O-HS
D. O-HN

Answer: B

- Watch Video Solution

5. It is a common observation that many
compounds containing hydrogen attached to
highly electronegative elements such as oxygen, nitrogen, or fluorine, often exhibit unexpected properties, such as relatively high melting points, boiling points, viscosity, solubility in water etc Such an unexpected behaviour can be explained on the basis of hydrogen bonding. When a hydrogen atom is attached to a highly electronegative element of small size such as F. N, O. etc. the electronegative atoms strongly attracts the
shared pair of electrons towards it self. As a
result, the hydrogen atom becomes slightly
positive and the electronegative element becomes slightly negative when two molecules
of such a substance say HF come close to each
other, the negatively charged fluorine atom of one molecule attracts the positively charged hydrogen atom of the other molecule. A hydrogen atom, thus links to highly electronegative atoms, one by a strong covalent bond and the other by weak electrostatic attraction as shown ahead $\delta+\quad \delta-\quad \delta+\quad \delta-$
$H-F \ldots H-F$, the dotted line represents a
hydrogen bond.

Hydrogen bonding is maximum in
A. ethyl chloride
B. triethylamine
C. ethanol
D. diethyl ether.

Answer: C

D Watch Video Solution
6. It is a common observation that many compounds containing hydrogen attached to highly electronegative elements such as oxygen, nitrogen, or fluorine, often exhibit unexpected properties, such as relatively high melting points, boiling points, viscosity, solubility in water etc Such an unexpected
behaviour can be explained on the basis of hydrogen bonding. When a hydrogen atom is attached to a highly electronegative element of small size such as F. $N, 0$. etc. the electronegative atoms strongly attracts the
shared pair of electrons towards it self. As a
result, the hydrogen atom becomes slightly
positive and the electronegative element becomes slightly negative when two molecules
of such a substance say HF come close to each
other, the negatively charged fluorine atom of one molecule attracts the positively charged hydrogen atom of the other molecule. A hydrogen atom, thus links to highly electronegative atoms, one by a strong covalent bond and the other by weak electrostatic attraction as shown ahead $\delta+\quad \delta-\quad \delta+\quad \delta-$
$H-F \ldots H-F$, the dotted line represents a
hydrogen bond.

The boiling point of p -nitrophenol is higher than that of o-nitrophenol because
A. NO_{2} group at p-position behaves in a different way from that at o-position
B. intramolecular hydrogen bonding exists
in p-nitrophenol
C. there is intermolecular bonding p -
nitrophenol
D. p-nitrophenol has a higher molecular mass than o-nitrophenol

Answer: C

D Watch Video Solution

7. It is a common observation that many compounds containing hydrogen attached to
highly electronegative elements such as oxygen, nitrogen, or fluorine, often exhibit unexpected properties, such as relatively high
melting points, boiling points, viscosity,
solubility in water etc Such an unexpected
behaviour can be explained on the basis of hydrogen bonding. When a hydrogen atom is
attached to a highly electronegative element of small size such as F. $N, 0$. etc. the electronegative atoms strongly attracts the shared pair of electrons towards it self. As a result, the hydrogen atom becomes slightly positive and the electronegative element becomes slightly negative when two molecules of such a substance say HF come close to each other, the negatively charged fluorine atom of
one molecule attracts the positively charged
hydrogen atom of the other molecule. A
hydrogen atom, thus links to highly
electronegative atoms, one by a strong
covalent bond and the other by weak electrostatic attraction as shown ahead $\delta+\quad \delta-\quad \delta+\quad \delta-$
$H-F \ldots . H-F$, the dotted line represents a hydrogen bond.

Hydrogen chloride gas dissolves in water due to
A. H-bonding
B. hydration
C. Van der Waals' forces
D. None of the above.

Answer: D

D View Text Solution

8. It is a common observation that many compounds containing hydrogen attached to
highly electronegative elements such as oxygen, nitrogen, or fluorine, often exhibit unexpected properties, such as relatively high
melting points, boiling points, viscosity,
solubility in water etc Such an unexpected
behaviour can be explained on the basis of hydrogen bonding. When a hydrogen atom is
attached to a highly electronegative element of small size such as F. $N, 0$. etc. the electronegative atoms strongly attracts the shared pair of electrons towards it self. As a result, the hydrogen atom becomes slightly positive and the electronegative element becomes slightly negative when two molecules of such a substance say HF come close to each other, the negatively charged fluorine atom of
one molecule attracts the positively charged
hydrogen atom of the other molecule. A
hydrogen atom, thus links to highly
electronegative atoms, one by a strong
covalent bond and the other by weak electrostatic attraction as shown ahead $\delta+\quad \delta-\quad \delta+\quad \delta-$
$H-F \ldots . H-F$, the dotted line represents a hydrogen bond.

High density of water as compared to ice is due to
A. dipole-dipole interaction
B. hydrogen bonding
C. dipole induced dipole interaction
D. None of the above.

Answer: B

D Watch Video Solution

9. It is a common observation that many compounds containing hydrogen attached to
highly electronegative elements such as oxygen, nitrogen, or fluorine, often exhibit unexpected properties, such as relatively high
melting points, boiling points, viscosity,
solubility in water etc Such an unexpected
behaviour can be explained on the basis of hydrogen bonding. When a hydrogen atom is
attached to a highly electronegative element of small size such as F. $N, 0$. etc. the electronegative atoms strongly attracts the shared pair of electrons towards it self. As a result, the hydrogen atom becomes slightly positive and the electronegative element becomes slightly negative when two molecules of such a substance say HF come close to each other, the negatively charged fluorine atom of
one molecule attracts the positively charged
hydrogen atom of the other molecule. A
hydrogen atom, thus links to highly
electronegative atoms, one by a strong
covalent bond and the other by weak electrostatic attraction as shown ahead $\delta+\quad \delta-\quad \delta+\quad \delta-$
$H-F \ldots . H-F$, the dotted line represents a hydrogen bond.

Which is most viscous ?
A. $\mathrm{CH}_{3} \mathrm{OH}$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

C. $\mathrm{C} \mid \mathrm{CH}_{2} \mathrm{OH} \mathrm{H}_{2} \mathrm{OH}$

D. None

Answer: C

D View Text Solution

10. Atomic orbitals of bonded atoms combine
to form molecular orbitals. The number of molecular orbitals formed is equal to the number of atomic orbitals taking part in the bond formation. When two atomic orbitals
combine, two molecular orbitals are formed one of which has lower energy than the combining orbitals and is called bonding

Molecular Orbital (MO). Whereas the other
having higher energy than the two combining atomic orbitals is called Anti Bonding

Molecular orbitals (ABMO) The two combining
atomic orbitals must have comparable
energies and should be properly oriented to
allow considerable overlapping. If the overlapping is end to end along internuclear axis, the molecular orbital is called sigma and if the overlapping is lateral 1.e., sidewise the
molecular orbital is called pie. Just like atomic orbitals, the molecular orbitals also have
varying energy levels. Filling of electrons in molecular orbitals takes place following the same rules as followed for filing of atomic orbitals. The order of filling may not be same for all the molecules or their ions. Bond order is a useful parameter for comparing the various characteristics of molecules.

Ground state electron configuration of valence shell electrons in nitrogen molecule $\left(N_{2}\right)$ is $\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s}^{*}\right)^{2}\left(\pi_{2 p x}\right)^{2}\left(\pi_{2 p y}\right)^{2}\left(\pi_{2 p z}\right)^{2}$. Hence
the bond order of nitrogen molecule is
A. 2
B. 3
C. 1
D. 2

Answer: B

- Watch Video Solution

11. Atomic orbitals of bonded atoms combine
to form molecular orbitals. The number of molecular orbitals formed is equal to the
number of atomic orbitals taking part in the
bond formation. When two atomic orbitals
combine, two molecular orbitals are formed one of which has lower energy than the combining orbitals and is called bonding

Molecular Orbital (MO). Whereas the other having higher energy than the two combining atomic orbitals is called Anti Bonding Molecular orbitals (ABMO) The two combining atomic orbitals must have comparable energies and should be properly oriented to allow considerable overlapping. If the overlapping is end to end along internuclear
axis, the molecular orbital is called sigma and
if the overlapping is lateral 1.e., sidewise the molecular orbital is called pie. Just like atomic orbitals, the molecular orbitals also have
varying energy levels. Filling of electrons in molecular orbitals takes place following the same rules as followed for filing of atomic orbitals. The order of filling may not be same
for all the molecules or their ions. Bond order is a useful parameter for comparing the various characteristics of molecules.

Which of the following combinations is not
allowed (assume z-axis as the internuclear axis
)?
A. 2 s and 2 s
B. $2 p_{x}$ and $2 p_{x}$
C. $2 p_{z}$ and $2 p_{z}$
D. $2 p_{x}$ and $2 p_{y}$

Answer: D

D View Text Solution
12. Atomic orbitals of bonded atoms combine
to form molecular orbitals. The number of molecular orbitals formed is equal to the number of atomic orbitals taking part in the bond formation. When two atomic orbitals combine, two molecular orbitals are formed one of which has lower energy than the combining orbitals and is called bonding

Molecular Orbital (MO). Whereas the other having higher energy than the two combining atomic orbitals is called Anti Bonding

Molecular orbitals (ABMO) The two combining
atomic orbitals must have comparable
energies and should be properly oriented to allow considerable overlapping. If the overlapping is end to end along internuclear axis, the molecular orbital is called sigma and
if the overlapping is lateral 1.e., sidewise the molecular orbital is called pie. Just like atomic orbitals, the molecular orbitals also have
varying energy levels. Filling of electrons in molecular orbitals takes place following the
same rules as followed for filing of atomic
orbitals. The order of filling may not be same for all the molecules or their ions. Bond order
is a useful parameter for comparing the various characteristics of molecules.

In the homonuclear diatomic molecule which of the following sets of M.O. orbitals are grade or un-grade
A. $\sigma_{2 s}, \pi_{2 p_{x}}$
B. $\sigma_{2 s}^{*}, \pi_{2 p_{x}}^{*}$
C. $\sigma_{2 s}^{*}, \pi_{2 p_{x}}$
D. $\sigma_{2 p_{x}}, \pi_{2 p_{x}}^{*}$

Answer: D
13. Atomic orbitals of bonded atoms combine
to form molecular orbitals. The number of molecular orbitals formed is equal to the number of atomic orbitals taking part in the bond formation. When two atomic orbitals combine, two molecular orbitals are formed one of which has lower energy than the combining orbitals and is called bonding

Molecular Orbital (MO). Whereas the other having higher energy than the two combining
atomic orbitals is called Anti Bonding
Molecular orbitals (ABMO) The two combining
atomic orbitals must have comparable energies and should be properly oriented to allow considerable overlapping. If the overlapping is end to end along internuclear axis, the molecular orbital is called sigma and
if the overlapping is lateral 1.e., sidewise the molecular orbital is called pie. Just like atomic orbitals, the molecular orbitals also have
varying energy levels. Filling of electrons in molecular orbitals takes place following the same rules as followed for filing of atomic
orbitals. The order of filling may not be same
for all the molecules or their ions. Bond order
is a useful parameter for comparing the various characteristics of molecules.

Which of the following pair is expected to have the same bond order ?
A. $\mathrm{O}_{2}, \mathrm{~N}_{2}$
B. O_{2}^{+}, N_{2}^{-}
C. O_{2}^{-}, N_{2}^{+}
D. $\mathrm{O}_{2}^{-}, \mathrm{N}_{2}^{-}$

- Watch Video Solution

14. Atomic orbitals of bonded atoms combine to form molecular orbitals. The number of molecular orbitals formed is equal to the number of atomic orbitals taking part in the bond formation. When two atomic orbitals combine, two molecular orbitals are formed one of which has lower energy than the combining orbitals and is called bonding

Molecular Orbital (MO). Whereas the other having higher energy than the two combining
atomic orbitals is called Anti Bonding
Molecular orbitals (ABMO) The two combining
atomic orbitals must have comparable energies and should be properly oriented to allow considerable overlapping. If the overlapping is end to end along internuclear axis, the molecular orbital is called sigma and
if the overlapping is lateral 1.e., sidewise the molecular orbital is called pie. Just like atomic orbitals, the molecular orbitals also have
varying energy levels. Filling of electrons in molecular orbitals takes place following the same rules as followed for filing of atomic
orbitals. The order of filling may not be same
for all the molecules or their ions. Bond order
is a useful parameter for comparing the
various characteristics of molecules.

In which of the following ionization processes,
the bond order has increased and the magnetic behaviour has changed ?
A. $N_{2} \rightarrow N_{2}^{+}$
B. $C_{2} \rightarrow C_{2}^{+}$
C. $\mathrm{NO} \rightarrow \mathrm{NO}^{+}$
D. $\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{-}$

Answer: C

D Watch Video Solution

15. Atomic orbitals of bonded atoms combine
to form molecular orbitals. The number of molecular orbitals formed is equal to the number of atomic orbitals taking part in the bond formation. When two atomic orbitals combine, two molecular orbitals are formed one of which has lower energy than the combining orbitals and is called bonding

Molecular Orbital (MO). Whereas the other having higher energy than the two combining atomic orbitals is called Anti Bonding

Molecular orbitals (ABMO) The two combining
atomic orbitals must have comparable
energies and should be properly oriented to
allow considerable overlapping. If the
overlapping is end to end along internuclear
axis, the molecular orbital is called sigma and
if the overlapping is lateral 1.e., sidewise the molecular orbital is called pie. Just like atomic orbitals, the molecular orbitals also have varying energy levels. Filling of electrons in
molecular orbitals takes place following the same rules as followed for filing of atomic orbitals. The order of filling may not be same for all the molecules or their ions. Bond order is a useful parameter for comparing the various characteristics of molecules.

The bond order (BO) in B_{2} molecule is
A. 0
B. 1
C. 3
D. 2

Answer: B

- Watch Video Solution

16. Atomic orbitals of bonded atoms combine
to form molecular orbitals. The number of molecular orbitals formed is equal to the number of atomic orbitals taking part in the bond formation. When two atomic orbitals combine, two molecular orbitals are formed one of which has lower energy than the combining orbitals and is called bonding

Molecular Orbital (MO). Whereas the other having higher energy than the two combining atomic orbitals is called Anti Bonding

Molecular orbitals (ABMO) The two combining
atomic orbitals must have comparable
energies and should be properly oriented to
allow considerable overlapping. If the
overlapping is end to end along internuclear
axis, the molecular orbital is called sigma and
if the overlapping is lateral 1.e., sidewise the molecular orbital is called pie. Just like atomic orbitals, the molecular orbitals also have varying energy levels. Filling of electrons in
molecular orbitals takes place following the same rules as followed for filing of atomic orbitals. The order of filling may not be same for all the molecules or their ions. Bond order is a useful parameter for comparing the various characteristics of molecules.

In the formation of N_{2}^{+}from N_{2}, the electron is removed from
A. σ orbital
B. π orbital
C. σ^{*} orbital

D. π^{*} orbital

Answer: A

D Watch Video Solution

17. A polar covalent bond with positive and negative charge centres at its ends is called a dipole. The polarity of a dipole is measured by its dipole moment. Mathematically it is expressed as dipole moment, $\mu=q \times d$ where q and d are the net charge and the distance
between the two charges respectively. Dipole moment is a vector quantity. The net dipole moment of a polyatomic molecule is the resultant of the various bond moments present in the molecule. The values of dipole moment are expressed in Debye (D) or in SI units in terms of coulomb- metre (Cm). One of the most important applications of dipole moment is in the determination of geometry and shape of molecules besides prediction of a number of properties of the molecules.

Which of the following has net dipole moment?
A. CCl_{4}
B. $B F_{3}$
C. NH_{3}
D. CO_{2}

Answer: C

D Watch Video Solution

18. A polar covalent bond with positive and negative charge centres at its ends is called a dipole. The polarity of a dipole is measured by
its dipole moment. Mathematically it is
expressed as dipole moment, $\mu=q \times d$ where
q and d are the net charge and the distance between the two charges respectively. Dipole moment is a vector quantity. The net dipole moment of a polyatomic molecule is the resultant of the various bond moments present in the molecule. The values of dipole moment are expressed in Debye (D) or in SI units in terms of coulomb- metre (Cm). One of the most important applications of dipole moment is in the determination of geometry and shape of molecules besides prediction of a
number of properties of the molecules.
$\mathrm{H}_{2} \mathrm{O}$ has a dipole moment while BeF, has zero
dipole moment because
A. $\mathrm{H}_{2} \mathrm{O}$ molecule is linear while BeF_{2} is
bent
B. BeF_{2}, molecule is linear while $\mathrm{H}_{2} \mathrm{O}$ is
bent oxygen
C. Fluorine has more electronegativity than
oxygen

D. Beryllium has more electronegativity

 than oxygen.
Answer: B

D Watch Video Solution

19. A polar covalent bond with positive and negative charge centres at its ends is called a dipole. The polarity of a dipole is measured by its dipole moment. Mathematically it is expressed as dipole moment, $\mu=q \times d$ where
q and d are the net charge and the distance between the two charges respectively. Dipole moment is a vector quantity. The net dipole moment of a polyatomic molecule is the resultant of the various bond moments present in the molecule. The values of dipole moment are expressed in Debye (D) or in SI units in terms of coulomb- metre (Cm). One of
the most important applications of dipole moment is in the determination of geometry and shape of molecules besides prediction of a number of properties of the molecules.
NH_{3} has a net dipole moment, while $B F_{3}$ has zero dipole moment because
A. NH_{3} is not a planar molecule while BF_{3}
is planar
B. NH_{3} is a planar, while BF_{3} is non-planar
C. Fluorine is more electropositive than
nitrogen
D. Boron is more electronegative than
oxygen.

Answer: A

- Watch Video Solution

20. A polar covalent bond with positive and negative charge centres at its ends is called a dipole. The polarity of a dipole is measured by its dipole moment. Mathematically it is expressed as dipole moment, $\mu=q \times d$ where
q and d are the net charge and the distance between the two charges respectively. Dipole moment is a vector quantity. The net dipole moment of a polyatomic molecule is the resultant of the various bond moments
present in the molecule. The values of dipole moment are expressed in Debye (D) or in SI
units in terms of coulomb- metre (Cm). One of
the most important applications of dipole moment is in the determination of geometry
and shape of molecules besides prediction of a number of properties of the molecules.

The molecules BF_{3} and NH_{3} both are covalent compounds but $B F_{3}$ is non-polar while $N F_{3}$ is polar. The reason is that
A. boron is a non-metal and nitrogen is a gas in uncombined state
B. B-F bonds have no dipole moment whereas N-F bonds have dipole moment
C. Atomic size of boron is smaller than that of nitrogen
D. $B F_{3}$ is planar but NF3 is pyramidal.

Answer: D

- Watch Video Solution

21. A polar covalent bond with positive and negative charge centres at its ends is called a dipole. The polarity of a dipole is measured by its dipole moment. Mathematically it is expressed as dipole moment, $\mu=q \times d$ where
q and d are the net charge and the distance between the two charges respectively. Dipole moment is a vector quantity. The net dipole moment of a polyatomic molecule is the resultant of the various bond moments present in the molecule. The values of dipole moment are expressed in Debye (D) or in SI
units in terms of coulomb- metre (Cm). One of
the most important applications of dipole moment is in the determination of geometry and shape of molecules besides prediction of a number of properties of the molecules.

The dipole moment of HBr is 0.78×10^{-18} esu
cm . The bond length of HBr is $1.41 \tilde{A}_{\mathrm{A}}^{\mathrm{I} . .}$. The percentage ionic character of HBr is
A. 7.54
B. 11.52
C. 15.7

```
D. 27.3
```


Answer: B

D View Text Solution

22. A polar covalent bond with positive and negative charge centres at its ends is called a dipole. The polarity of a dipole is measured by its dipole moment. Mathematically it is expressed as dipole moment, $\mu=q \times d$ where q and d are the net charge and the distance
between the two charges respectively. Dipole moment is a vector quantity. The net dipole moment of a polyatomic molecule is the resultant of the various bond moments present in the molecule. The values of dipole moment are expressed in Debye (D) or in SI units in terms of coulomb- metre (Cm). One of the most important applications of dipole moment is in the determination of geometry and shape of molecules besides prediction of a number of properties of the molecules.

Maximum dipole moment is shown by
A. 1, 4-dichlorobenzene
B. Cls 1, 2-dichlorobenzene
C. trans 1, 3-dichlorobenzene
D. trans 2. 3-dichloro-2-butene.

Answer: B

D Watch Video Solution

23. A polar covalent bond with positive and negative charge centres at its ends is called a dipole. The polarity of a dipole is measured by
its dipole moment. Mathematically it is
expressed as dipole moment, $\mu=q \times d$ where
q and d are the net charge and the distance between the two charges respectively. Dipole moment is a vector quantity. The net dipole moment of a polyatomic molecule is the resultant of the various bond moments present in the molecule. The values of dipole moment are expressed in Debye (D) or in SI units in terms of coulomb- metre (Cm). One of the most important applications of dipole moment is in the determination of geometry and shape of molecules besides prediction of a
number of properties of the molecules.

A diatomic molecule has a dipole of 1.2 D, if the bond distance is $1 \tilde{A}_{\ldots} .$. , what percentage of electronic charge exists on each atom.
A. 25% of e
B. 29% of e
C. 19% of e
D. 20% of e .

Answer: A

- View Text Solution

24. A polar covalent bond with positive and negative charge centres at its ends is called a dipole. The polarity of a dipole is measured by its dipole moment. Mathematically it is expressed as dipole moment, $\mu=q \times d$ where
q and d are the net charge and the distance between the two charges respectively. Dipole moment is a vector quantity. The net dipole moment of a polyatomic molecule is the resultant of the various bond moments present in the molecule. The values of dipole moment are expressed in Debye (D) or in SI
units in terms of coulomb- metre (Cm). One of
the most important applications of dipole moment is in the determination of geometry and shape of molecules besides prediction of a number of properties of the molecules.

Debye is equivalent to

$$
\begin{aligned}
& \text { A. } 3.33 \times 10^{-30} \text { e.s.u. cm } \\
& \text { B. } 1.662 \times 10^{-27} \text { e.s.u.cm } \\
& \text { C. } 1 \times 10^{-18} \text { e.s.u. } \mathrm{cm} \\
& \text { D. } 3.33 \times 10^{-12} \text { e.s.u.cm. }
\end{aligned}
$$

- View Text Solution

Matrix Match

1.

Column-I
(A)Molecular solid p good conductor
(B)Graphite
(C)Carbon dioxide r van der Waals' interactions
(D)Metallic lusture s zero dipole moment

- Watch Video Solution

Column-I Column-II

(A) $\sigma_{2 \mathrm{~s}} \quad \mathrm{p} 0$
2.
(B) $\sigma_{2 p_{x}}^{*} \quad \mathrm{q} 1$
(C) $\pi_{2 p_{x}}^{*} \quad$ r 2
(D) $\pi_{2 p_{y}}^{*} \quad$ s gerade

D View Text Solution

Column-I Column-II
(A) $\mathrm{NH}_{3} \quad \mathrm{p}$ linear
3. ${ }^{(B) B e F_{2}} \quad$ q polar
(C) $\mathrm{H}_{2} \mathrm{O} \quad \mathrm{r} \mu=0 \mathrm{D}$
(D) CO_{2} s Angular

- Watch Video Solution

Column-I Column-II
$(A) \mathrm{CH}_{4} \quad$ p sigma bond
4. ${ }^{(B)} C_{2} H_{4} \quad$ q pi bond
(C) $C_{6} H_{6} \quad$ rsp ${ }^{3}$ hybridized
$(D) \mathrm{CO}_{2} \quad \mathrm{ssp}{ }^{2}$ hybridized

D Watch Video Solution

Integer

1. The number of unpaired electrons in O_{2} is $\hat{a} €_{\mid}^{\prime} \hat{a} €_{\mid}^{\prime}$

D Watch Video Solution
2. In $A l_{2} C l_{6}$ each Al atoms is linked to how many Cl atoms ?

- Watch Video Solution

3. The number of water molecule(s) derectly bonded to the metal centre in $\mathrm{CuSO}_{4.5} \mathrm{H}_{2} \mathrm{O}$ is

D Watch Video Solution

4. Based on VSEPR theory, the number of 90 degree $\mathrm{F}-\mathrm{B}-\mathrm{F}$ angles in BrF_{5} is $\hat{a} €_{\mid} \hat{a}_{1}^{\prime} €_{1}^{\prime}$

(Watch Video Solution

1. Assertion(A) - In case the central atom in a molecule is surrounded only by shared pairs of electrons, the molecule has a regular geometry.

Reason(R) -The shared pair of electrons repel each other with equal force so all bonds are equidistant from each other.
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: A

D Watch Video Solution

2. Assertion(A) - The bond order in a molecule can have any value, positive or negative, integral or fractional or zero.

Reason(R) - The bond order of a molecule
depends upon the number of electrons in the bonding and antibonding molecular orbitals.
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct
explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: D
3. Assertion(A) - Water is speClally effective in screening the electrostatic interactions between the dissolved ions.

Reason(R)-The force of ionic interactions depends upon the dielectric constant (\in) of the solvent.
A. Both A and R true and R is the correct
explanation of A
B. Both A and R true and R is not a correct
explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: A

D View Text Solution

4. Assertion(A) - When two uncharged similar
atoms are brought very close together, their surrounding electron clouds influence each other, and a force of attraction is always built up between them.

Reason(R)-The random variation in the positions of electrons around one nucleus may create a transient electric dipole, which induces a transient opposite electric dipole in the nearby atoms.
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct
explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: D

D View Text Solution

5. Assertion(A) - The nearly tetrahedral arrangement of the orbitals about the oxygen atom allows each water molecule to form hydrogen bonds with as many as four neighbouring water molecules.

Reason(R)-In ice each water molecule forms
four hydrogen bonds as each molecule is fixed in the space.
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

D View Text Solution
6. Assertion(A) - There are ten valence electrons on the sulphur atom in $S F_{4}$ molecule.

Reason(R)-The structure of $S F_{4}$ molecule is based on a distorted trigonal bipyramid.
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A
C. A is true but R is false

D. A is false but R is true

Answer: B

D Watch Video Solution

7. Assertion(A) - Fluorine molecule has bond order one.

Reason(R)-The number of electrons in
antibonding molecular orbital is two less than
that of bonding molecular orbitals.
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

D Watch Video Solution
8. Assertion(A) - The geometry of formaldehyde molecule is trigonal planar.

Reason(R) - In $\mathrm{H}_{2} \mathrm{CO}$ molecule, the carbon atom is surrounded by 3 sigma bonding electron pairs.
A. Both A and R true and R is the correct
explanation of A
B. Both A and R true and R is not a correct
explanation of A
C. A is true but R is false

D. A is false but R is true

Answer: A

D Watch Video Solution

9. Assertion(A) - Silicon tetrafluoride. SiF_{4} is non polar even though fluorine is much more electronegative than silicon.

Reason(R)-The four bond dipoles cancel one another in SiF_{4}.
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

D Watch Video Solution
10. Assertion(A) $-H_{2}$ molecule is more stable than He molecule.

Reason(R)-The occupation of antibonding orbitals stabilises the molecules.
A. Both A and R true and R is the correct
explanation of A
B. Both A and R true and R is not a correct
explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: C

- Watch Video Solution

11. Assertion : The atoms in a covalent molecule are said to share electrons, yet some covalent molecule are polar.

Reason :In a polar covalent molecule, the shared electron spend more time on the average near one of the atoms .
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

D Watch Video Solution
12. Assertion : Water is a good solvent for ionic compounds but poor one for covalent compounds.

Reason :Hydrogen energy of ions realeases
sufficient energy to overcome lattice energy
and break hydrogen bonds in water, white covalent bonded compound interact so weakly
that even van der walls force between molecule of convalent compounds cannot be broken .
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

D Watch Video Solution
13. Assertion (A): Lithium chloride is predominantly covalent compound.

Reason (R): electronegativity difference between Li and Cl is small.
A. Both A and R true and R is the correct
explanation of A
B. Both A and R true and R is not a correct
explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: C

D Watch Video Solution

14. Assertion(A) $-B F_{3}$ molecule is planar but
$N F_{3}$ is pyramidal
Reason(R)-N atom is smaller than B
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: B

D Watch Video Solution

15. Assertion(A) $-\mathrm{FeCl}_{3}$ undergoes sublimation
at a lower temperature.
Reason(R) $-\mathrm{Fe}^{3+}$ has low polarising power and
hence FeCl_{3} has high covalent character.
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: C

D View Text Solution
16. Assertion(A) - The bond order of NO molecule is 2.5 .

Reason(R)-NO molecule is paramagnetic in nature.
A. Both A and R true and R is the correct
explanation of A
B. Both A and R true and R is not a correct
explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: B

D Watch Video Solution

17. Assertion(A) $-\mathrm{CO}_{3}^{2-}$ ion is relatively more stable than $\mathrm{H}_{2} \mathrm{CO}_{3}$.

Reason(R)-The negative charge of carbonate ion is delocalised on all the three oxygen atoms.
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: D

D View Text Solution

18. Assertion(A) - Magnetic moment of super
oxide ion is much larger than that of peroxide ion.

Reason(R)-Peroxide ion has no unpaired electrons but superoxide ion has unpaired electrons.
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

- View Text Solution

19. Assertion(A) - OF molecule is theoretically
more stable than F_{2}
Reason(R) : Bond order in OF molecule is
higher than in F_{2} molecule
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: A

D View Text Solution

20. Assertion(A) - In N_{2} molecule, the N atoms
are bonded by one sigma and two π-bonds.
Reason(R):N atoms assume $s p^{2}$ hybrid state to
constitute N_{2} molecule.
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: C

D Watch Video Solution
21. Assertion(A) - In calcium carbide, the two
carbon atoms are held by sigma bond as well
as ionic bond
Reason (R) : calcium carbide can be considered to be an acetylene salt.
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A
C. A is true but R is false

D. A is false but R is true

Answer: D

- Watch Video Solution

22. Assertion(A) - KCl is a heteroatomic as well as diatomic molecule

Reason(R): Aqueous solution of KCl conducts
electricity and at the same time it undergoes
decomposition.
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: D

D View Text Solution
23. Assetion Both N_{2} and $N O^{\oplus}$ are diamagnetic

Reasoning NO^{\oplus} is isoelectronic with N_{2}.
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: B

D Watch Video Solution

24. Assertion(A) - The bond angle around PBr_{3}
is larger than that in PH_{3} but bond angle of
$\mathrm{NB} r_{3}$ is less than that of NH_{3}
Reason(R) : Atomic size of Br is smaller than
that P atom because of larger nuclear charge
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: C

D View Text Solution

25. Assertion(A) $-\mathrm{NO}_{3}^{-}$ion has same geometry
as NH_{3}.

Reason(R) : The hybrid states of N in NO_{3}^{-}ion and $\mathrm{NH}_{3} s p^{2}$ and $s p^{3}$ respectively
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct
explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: D
26. Assertion(A) $-\mathrm{PCl}_{5}$ exists but BiCl_{5} does not.

Reason(R): Bi does not contain d orbitals to expand its octet.
A. Both A and R true and R is the correct
explanation of A
B. Both A and R true and R is not a correct
explanation of A
C. A is true but R is false

D. A is false but R is true

Answer: C

D Watch Video Solution

27. Assertion(A) $-S F_{4}$ and $B F_{4}^{-}$have similar
geometries.
Reason(R): Hybrid states assumed by S in $S F_{4}$ and B in BF_{4}^{-}are different.
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: D

D Watch Video Solution
28. Asseration: The elctronic structure of O_{3} is:

Reason: structure is not allowed because octet around O cannot be expanded

A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: B

D Watch Video Solution
29. Assertion : σ-bond is strong white π-bond is a weak bond.

Reason :Atomic rotate freely about π-bond.
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: C

D Watch Video Solution

30. Assertion : All F-S - F angle in $S F_{4}$ are greater than 90° but less than 180°.

Reason :The lone pair -bond pair repulsion is weaker than bond pair -bond pair repulsion
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: C

D Watch Video Solution

31. Assertion(A) $-H_{2}$ molecule is stabler than HCH molecule.

Reason (R) :The antibonding electron in the molecules stabilises it.
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct
explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A
32. Assertion Bond order in a molecule can assume any value positive integral or fractional value including zero

Reasoning It depends on number of electrons
in the bonding and antibonding orbitals .
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: C

D Watch Video Solution

33. Assertion : The atoms in a covalent molecule are said to share electrons, yet some covalent molecule are polar.

Reason :In a polar covalent molecule, the
shared electron spend more time on the average near one of the atoms .
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct
explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A
34. Assertion:- NO_{3}^{-}is planar while NH_{3} is
pyramidal
Reason:- N in NO_{3}^{-}is $s p^{2}$ and in NH_{3} it is $s p^{3}$
hybridised with one ione pair.
A. Both A and R true and R is the correct
explanation of A
B. Both A and R true and R is not a correct
explanation of A
C. A is true but R is false

D. A is false but R is true

Answer: C

D Watch Video Solution

35. Asseration: SeCl_{4}, does not havea tetrahedral structure.

Reason: Se in SeCl_{4} has two lone pairs.
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: C

D Watch Video Solution

36. Assertion B_{2} molecule is diamagnetic Reasoning The highest occupied molecular orbital is of sigma type .
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A
C. A is true but R is false
D. Both A and R are false

Answer: D

D Watch Video Solution
37. (A) Molecular nitrogen is less reactive than molecular oxygen.
(R) The bond length of N_{2} is shorter than that of oxygen.
A. Both A and R true and R is the correct explanation of A
B. Both A and R true and R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

(D) Watch Video Solution

Ultimate Preparatory Package

1. Consider the b.pr. of Br_{2} and ICI. The b.pt. of
$B r_{2}$
A. is equal to the b.pt. of IC I
B. is less than the b.pt. of IC I
C. is more than the b.pt.of IC I

D. none of these

Answer: B

- Watch Video Solution

2. The decreasing order of polarity of the bonds in $\mathrm{NH}_{3}, \mathrm{PH}_{3}, \mathrm{AsH}_{3}$ and SbH_{3} is in the order
A. $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}$
B. $\mathrm{SbH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}>\mathrm{NH}_{3}$
C. $\mathrm{NH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}>\mathrm{SbH}_{3}$
D. $\mathrm{NH}_{3}>\mathrm{SbH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}$

Answer: D

- Watch Video Solution

3. The substance with highest boiling point out of the following $\mathrm{H}_{2}, \mathrm{He}, \mathrm{Ne}, \mathrm{Xe}, \mathrm{CH}_{4}$ is
A. Xe
B. CH_{4}
C. Ne

D. H_{2}

Answer: A

D Watch Video Solution

4. At 300 K and 1.00 atm. pressure, the density
of gaseous HF is $3.17 \mathrm{gL}^{-1}$. Which of the
following facts, is supported by the given data
?
A. Gaseous HF under these conditions is
lighter than Alr
B. There is no hydrogen bonding in
gaseous HF under these conditions
C. There is extensive hydrogen bonding in
gaseous HF under these conditions
D. None of these

Answer: C

- Watch Video Solution

5. The suggested molecular orbital electronic configuration of Co is
$K K\left(\sigma_{2} s\right)^{2}\left(\sigma_{2 s}\right)^{2},\left(\pi_{2 p x}\right)^{2}\left(\pi_{2 p y}\right)^{2}\left(\sigma_{2 p z}\right)^{2}$.
Experimentally determined bond length in CO
and CO^{+}are 112.8 pm and 111.5 pm . This
suggest that
A. the given molecular orbital electronic configuration is correct
B. the energy of $\sigma_{2 p z}$, is less than the energies of $\pi_{2 p_{x}}$, and $\pi_{2 p_{y}}$ which are
equal in energy
C. the energies of $\pi_{2 p_{x}}$ and $\pi_{2 p_{y}}$ are not equal
D. none of these

Answer: D

D Watch Video Solution

6. In $N_{2} H_{4}$ (hydrazine) both the nitrogen
atoms are
A. trigonal and the molecule is planar
B. trigonal but the molecule is non planar
C. pyramidal and the molecule is non
planar
D. none of these

Answer: C

D Watch Video Solution
7. The expected shape of Br_{3}^{-}ion is
A. linear

B. trigonal planar

C. pyramidal
D. angular

Answer: A

D Watch Video Solution

8. The shapes of molecules of
$\mathrm{CCl}_{4}, \mathrm{XeF}_{4}$ and SF_{4} are
A. all tetrahedral
B. tetrahedral. square planar, seesaw res pectively
C. tetrahedral, seesaw, square planar respectively

D. tetrahedral, square planar and tetrahedral respectively

Answer: B

D Watch Video Solution
9. The shapes of molecules of $\mathrm{BF}_{3}, \mathrm{NH}_{3}$ and
ClF_{3} are
A. all trigonal planar
B. trigonal planar, trigonal pyramidal and
pyramidal
C. trigonal planar. trigonal pyramidal and
trigonal planar
D. trigonal planar, trigonal pyramidal and T
shaped

Answer: D

D Watch Video Solution

10. Non-bonding orbitals have
A. same energy as the atomic orbitals from
which they are formed
B. more energy than the atomic orbitals of
the highest energy from which they are
formed
C. less energy than the atomic orbitals of the lowest energy from which they are
formed
D. none of these.

Answer: A

D Watch Video Solution

11. Suppose energy level diagram used for
$\mathrm{O}_{2} \mathrm{~F}_{2}$ etc. is used for all homonuclear diatomic molecules of second period elements. The
number of elements) whose predicted
magnetic properties will differ from its (their) actual magnetic properties is (are)
A. only one
B. two
C. three
D. four

Answer: B
12. Arrange the following in the increasing order of melting points
(a) NH_{3}, (b) $\mathrm{CH}_{3} \mathrm{NH}_{2}$, (c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$,
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
A. $a<b<c<d$
B. $d<c<b<a$
C. $a<d<c<b$
D. None of these.

Answer: B
13. The number of lobes in δ and δ^{*} formed by
the overlap of two $d_{x y}$ A.O.s, are (Z-axis is internuclear axis)
A. 4 and 8 respectively
B. 3 and 6 respectively
C. 4 and 10 respectively
D. 6 and 8 respectively.

Answer: A
14. Ground state He_{2} does not exist. An electronic excited state of He_{2}
A. is more unstable than ground state He_{2}
B. is equally unstable as ground state He_{2}
C. is more stable towards dissociation than
ground state He_{2}
D. is less reactive than ground state He_{2}
orbital

Answer: C

D Watch Video Solution

15. The energy of $\sigma_{2 s}$, is greater than that of $\sigma_{1 s}^{*}$ orbital because
A. $\sigma_{2 s}$ is planar while $\sigma_{1 s}^{*}$ is is non-planar etrical
B. $\sigma_{2 s}$ is symmetrical while $\sigma_{1 s}^{*}$ is
unsymmetrical
C. $\sigma_{2 s}$ is nearer to the nuclei than $\sigma_{1 s}^{*}$
D. none of these.

Answer: D

D Watch Video Solution

16. A molecule of chloral hydrate contains two -

OH groups attached to a single carbon atom
as shown below

$\mathrm{Cl}-\mathrm{Cl} \mathrm{Cl}-\mathrm{C} \mid \mathrm{OH}-\mathrm{H}$

Its extra stability is due to the presence of
A. hydrogen bonding between H atoms of -

OH groups and Cl atoms
B. its planar structure
C. its symmetrical structure
D. none of these

Answer: A

- Watch Video Solution

17. The bond length in $O_{2}^{+}, O_{2}, O_{2}^{-}$and O_{2}^{2-} follows the order :
A. $\mathrm{O}_{2}^{+}<\mathrm{O}_{2}<\mathrm{O}_{2}^{-}<\mathrm{O}_{2}^{+}$
B. $\mathrm{O}_{2}^{2-}<\mathrm{O}_{2}^{-}<\mathrm{O}_{2}<\mathrm{O}_{2}^{2+}$
C. $\mathrm{O}_{2}^{+}<\mathrm{O}_{2}^{-}<\mathrm{O}_{2}<\mathrm{O}_{2}^{2-}$
D. $O_{2}^{+}<O_{2}^{2-}<O_{2}<O_{2}^{-}$

Answer: B

D Watch Video Solution
18. The order of energies of following combination
(a) 2 HHe (b) $\mathrm{H}_{2}+\mathrm{He}_{2}$ (c $) \mathrm{He}_{2}+2 \mathrm{H}$ and
$\mathrm{H}_{2}+2 \mathrm{He}$ is
A. $d<a<b<c$
B. $d<b<a<c$
C. $c<a<b<d$
D. $c<b<a<d$

Answer: A
19. Which of the following is paramagnetic O_{2}^{2-} and BN ?

A. Both

B. None

C. O_{2}^{2-}
D. BN

Answer: B

D Watch Video Solution

20. Pick out the incorrect statement

A. N_{2} has greater dissociation energy than

$$
N_{2}^{+}
$$

B. O_{2} has lower dissociation energy than
O_{2}^{+}
C. Bond length in N_{2}^{+}is less than in N_{2}
D. Bond length in NO^{+}is less than in NO.

Answer: C

Brain Teaser-1

1. 13.5 gmof aluminium when changes to Al^{+3}
ion in solution, will lose:
$\left[A i=27, N_{A}=6 \times 10^{23}\right]$
A. 18.0×10^{23} electrons
B. 6.023×10^{23} electrons
C. 3.01×10^{23} electrons
D. 9.1×10^{23} electrons

Answer: D

D Watch Video Solution

2. Which orbital is represented by the complete wave function Ψ_{410} ?
A. 4 s
B. $3 p$
C. 3d
D. $4 p$

- Watch Video Solution

3. The percentage of sodium in a breakfast careal labelled as 110 mg of sodium per 100 g of cereal is:
A. 11%
B. 1.10%
C. 0.110 \%
D. 110 \%

Answer: C

D Watch Video Solution

4. If I_{0} is the threshold wavelength for photoelectric emission, 1 the wavelength of light falling on the surface of a metal and m is the mass of the electron, then the velocity of ejected electron is given by

$$
\begin{aligned}
& \text { A. }\left[\frac{2 h}{m}\left(\lambda_{0}-\lambda\right)\right]^{1 / 2} \\
& \text { B. }\left[\frac{2 h c}{m}\left(\lambda_{0}-\lambda\right)\right]^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. }\left[\frac{2 h c}{m}\left(\frac{\lambda_{0}-\lambda}{\lambda_{0} \lambda}\right)\right]^{1 / 2} \\
& \text { D. }\left[\frac{2 h}{m}\left(\frac{1}{\lambda_{0}}-\frac{1}{\lambda}\right)\right]^{1 / 2}
\end{aligned}
$$

Answer: C

- Watch Video Solution

5. Which of the following transitions of electrons in the hydrogen atom will emit maximum energy
A. $n_{5} \rightarrow n_{4}$
B. $n_{4} \rightarrow n_{3}$
C. $n_{3} \rightarrow n_{2}$
D. energy is same in all A, B and C

Answer: C
(Watch Video Solution
6. Which of the following weighs the least?
A. 14 g atoms of nitrogen
B. 0.6 moles of S_{8}
C. 4 g equivalents of sulphate ions
D. 1.2×10^{24} chloride ions.

Answer: D

D Watch Video Solution

7. One among the following set of quantum numbers defines the highest energy electron in scandium (I)ion
A. $n=3, l=1, m=0, s=-1 / 2$

$$
\text { B. } n=3, l=0, m=0, s=-1 / 2
$$

C. $n=4, \mathrm{l}=0, \mathrm{~m}=0, \mathrm{~s}=+1 / 2$
D. $n=3, l=2, m=2, s=+1 / 2$

Answer: C

D Watch Video Solution

8. Which among the following graphs explains
the photoelectric effect?

Answer: B

- Watch Video Solution

9. The threshold frequency of metals $4 \times 10^{14} s^{-1}$

The minimum energy which photons must possess to produce photoelectric effect with
the metal is $\left(h=6.6 \times 10^{-34} \mathrm{Js}\right)$

$$
\begin{aligned}
& \text { A. } 3.06 \times 10^{-12} \mathrm{~J} \\
& \text { B. } 1.4 \times 10^{-48} \mathrm{~J} \\
& \text { C. } 3.4 \times 10^{-19} \mathrm{~J} \\
& \text { D. } 2.64 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

Answer: D

10. A weight lifter, after weight lifting exercises.
drinks 500 mL of 9% glucose (mol. Mass 180)
solution. The number of glucose molecules
consumed by him are
A. 1.5×10^{23}
B. 3.0×10^{23}
C. 4.5×10^{23}
D. 6.023×10^{23}

Answer: A

- Watch Video Solution

11. The threshold wavelength for the ejection of electrons from the metal X is 330 nm . The work function for the photoelectric emission for metal X is $\left(h=66 \times 10^{-34} J s\right)$
A. $1.2 \times 10^{-18} J$
B. $6.0 \times 10^{-19} J$
C. $1.2 \times 10^{-20} J$
D. $6.0 \times 10^{-22} J$

Answer: B

- Watch Video Solution

12. A 3d electron having $s=+1 / 2$ can have a magnetic quantum number
A. +2
B. +3
C. -3
D. +4

D Watch Video Solution

13. The total energy of the electron in atom is
A. Zero under normal conditions of
temperature and pressure because
electron is very small and of negligible
mass
B. greater than zero and is insignificant
C. may be less or more than zero depending upon the nature of orbital involved
D. less than zero.

Answer: D

D Watch Video Solution
14. All elements in the third period have
A. three complete shells
B. three complete subshells
C. three valence electrons
D. three electrons less than octet.

Answer: B

D Watch Video Solution

15. Each coinage metal has
A. two electrons in the valence shell
B. eight electrons in the penultimate shell

C. eight electrons in the outermost shell

D. eighteen electrons in their penultimate

shell.

Answer: D

D Watch Video Solution

16. Bond angle between two hybrid orbitals is
105° Percentage of s-orbital character of hybrid orbital is between
A. $50-51 \%$
B. $9-12 \%$
C. $22-23 \%$
D. $11-12 \%$

Answer: C

D Watch Video Solution

17. The incorrect statement out of the following is
A. Iso electronic ions may be obtained from
elements belonging to different periods
of the periodic table
B. Electron affinity of noble gases is zero
C. van der Waal's radii of iodine is more
than its covalent radius
D. X^{-}ion is formed with more ease in

fluorine than in chlorine

Answer: D
18. Atomic volume is the
A. volume occupied by one atom
B. volume occupied by 1 g atom of an
element in gaseous state
C. volume occupied by 1 g mole of atoms in
solid state
D. volume occupied by one g mole of atoms
in any state

Answer: C

D Watch Video Solution

19. The dye acriflavine when dissolved in water
has its maximum light absorption at 4530 Ã...
and has maximum fluorescence emission at

5080 Ã.... The number of fluorescence quantum
is, on the average, 53% of the number of
quanta absorbed. What percentage of
absorbed light energy is emitted as
fluorescence?
A. 41%
B. 47%
C. 74 \%
D. 63 \%

Answer: B

D Watch Video Solution

20. The bond between atoms of two elements with atomic number 37 and 53 respectively is:
A. Metallic
B. Ionic
C. Covalent
D. Coordinate

Answer: B
(Watch Video Solution
21. Born-Haber cycle is used to determine
A. Electronegativity

B. Lattice energy

C. Both

D. None

Answer: B

D Watch Video Solution
22. Which of the following gaseous molecules
is polar?
A. $C S_{2}$
B. $B F_{3}$
C. SnCl_{2}
D. PbCl_{4}

Answer: C

- Watch Video Solution

23. The incorrect order of decreasing boiling point is
A. $\mathrm{HF}>\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}$

$$
\text { B. } \mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{~S}
$$

C. $B r_{2}>\mathrm{Cl}_{2}>\mathrm{F}_{2}$
D. $\mathrm{CH}_{4}>\mathrm{GeH}_{4}>\mathrm{SiH}_{4}$

Answer: D

- Watch Video Solution

24. Which of the following statements is not regarding bonding molecular orbitals
A. Bonding molecular orbitals possess less
energy than combining atomic orbitals
B. Bonding molecular orbitals have low
electron density between the two nuclei
C. Every electron in bonding molecular
electron density between the two nuclei
orbitals contributes to attraction
between atoms
D. They are formed when the lobes of the
combining atomic orbitals have same

sign.

Answer: B

D Watch Video Solution

25. In the formation of N_{2}^{+}from N_{2}, the electron is removed from
A. a σ-orbital
B. $a \pi-$ orbital
C. a σ^{*}-orbital
D. $\mathrm{a} \pi^{*}$ - orbital

Answer: A

D Watch Video Solution

26. The magnitude of lattice energy of a solid increases if
A. the ions are large
B. the ions are small
C. the ions are of equal size
D. charges on the ions are small

Answer: B

D Watch Video Solution

27. The electronegativities of $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, and I are
4.0, 3.0, 2.8, and 2.5, respectively. The hydrogen halide with a high percentage of ionic character is
A. HF
B. HCl

C. HBr

D. HI

Answer: A

- Watch Video Solution

28. In which of the following pairs does the
first compound not have a higher boiling point
than the second ?
A. Kr, Ne

B. $\mathrm{HBr}, \mathrm{HCl}$

C. $\mathrm{NH}_{3}, \mathrm{PH}_{3}$
D. $\mathrm{Cl}_{2}, \mathrm{KCl}$

Answer: D

D Watch Video Solution

29. Which of the following compounds has the
least tendency to form hydrogen bonds between molecules?
A. NH_{3}

B. $\mathrm{NH}_{2} \mathrm{OH}$

C. HF
D. $\mathrm{CH}_{3} \mathrm{~F}$

Answer: D

D Watch Video Solution

30. In which of the following set of molecules
is the order of boiling point incorrect?
A. $\mathrm{Xe}>\mathrm{Ar}>\mathrm{He}$

$$
\text { B. } \mathrm{HCl}>\mathrm{HF}>\mathrm{HBr}
$$

C. $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{~S}$
D. $\mathrm{C}_{3} \mathrm{H}_{8}>\mathrm{C}_{2} \mathrm{H}_{6}>\mathrm{CH}_{4}$

Answer: B

D Watch Video Solution

31. Which of the following statement is correct?
A. Polarisation of an anion is maximum by
high charged cation
B. Small sized cation minimises the
polarisation
C. A small anion brings about a large degree of polarisation
D. A small anion undergoes a high degree of polarisation

Answer: A
32. Which among the following molecules is diamagnetic?
A. Superoxide ion
B. Oxygen molecule
C. Carbon molecule
D. Unipositive ion of nitrogen molecule.

Answer: C

33. The energy of $\sigma_{2 s}$, is greater than that of $\sigma_{1 s}^{*}$ orbital because
A. $\sigma_{2 s}$ orbital is bigger than $\sigma_{1 s}$ orbital
B. $\sigma_{2 s}$ orbital is a bonding orbital whereas 6
is an antibonding orbital
C. $\sigma_{2 s}$ orbital has a greater value of n than
$\sigma_{1 s}^{*}$ orbital
D. $\sigma_{2 s}$-orbital is formed only after $\sigma_{1 s}^{*}$ orbital is formed

Answer: C

D Watch Video Solution

34. A wedding ring presented to a bride contains 788 mg of gold and the rest is diamond. If the ring weighs \lg the bride receives (At. mass $A u=197, C=12$)
A. more number of gold atoms
B. more number of carbon atoms
C. equal numbers of gold and carbon atoms
D. gold and carbon atoms in ratio of 4:1
approximately.

Answer: B

D Watch Video Solution

35. The bond that stabilizes the secondary structure of proteins is
A. Covalent bond
B. lonic bond
C. Coordinate bond
D. Hydrogen bond.

Answer: D

- Watch Video Solution

36. Which of the following does not contain a coordinate bond?
A. $\mathrm{H}_{3} \mathrm{O}^{+}$
B. $B F_{4}^{-}$
C. $H F_{2}^{-}$
D. NH_{4}^{+}

Answer: C

- Watch Video Solution

37. Hybridisation of central atom in ICl_{2}^{+}is
A. $d s p^{2}$
B. $s p$
C. $s p^{2}$
D. $s p^{3}$

Answer: D

D Watch Video Solution

38. The transition of an electron from a 4s orbital to ls orbital in hydrogen atom causes
A. photoelectric effect
B. a Lyman line
C. increase in kinetic energy of electron
D. conversion of H^{+}to H atom

Answer: B

- Watch Video Solution

39. The chemical species having same number
of electrons in the outermost and penultimate
shell is
A. O^{2-}
B. Na^{+}
C. Cl^{-}
D. $A l^{3+}$

Answer: C

D Watch Video Solution

40. From among the following triatomic species the least angle around the central atom is in
A. O_{3}
B. I_{3}^{-}
C. NO_{2}^{-}
D. $\mathrm{H}_{2} \mathrm{~S}$

Answer: D

D Watch Video Solution

Brain Teaser-2

1. 26.8 g of $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$ gave 12.6 g of water on heating. The value of in the compound is
(M. mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}=142$)
A. 10
B. 7
C. 5
D. 6

Answer: B

2. For the reaction

$\mathrm{M}^{\chi+}+\mathrm{MnO}_{4}^{\ominus} \rightarrow \mathrm{MO}_{3}^{\ominus}+\mathrm{Mn}^{2+}+(1 / 2) \mathrm{O}_{2}$
if $1 \mathrm{~mol} \mathrm{of}_{\mathrm{MnO}}^{4}{ }^{\ominus}$ oxidises
$1.67 \mathrm{~mol} \mathrm{of} M^{x+}$ to $M O_{3}^{\ominus}$, then the value of x in the reaction is
A. 5
B. 3
C. 2
D. 1
3. The continuum in an atomic spectrum is due to
A. instability in excited state
B. interaction of ion with an atom
C. uncertainty principle
D. ionisation of atom.

Answer: D

D View Text Solution
4. The ionisation energy of gaseous Na atoms
is $495.8 \mathrm{KJmol}^{-1}$. The lowest possible frequency
of light that can ionise a Na atom is
A. $1.24 \times 10^{15} S^{-1}$
B. $4.76 \times 10^{14} S^{-1}$
C. $1.24 \times 10^{12} S^{-1}$
D. $3.15 \times 10^{14} S^{-1}$

Answer: A
5. The first orbital of H or H like atom is represented by
$\psi=\frac{1}{\sqrt{\pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-z e / a_{0}}$
where $a_{0}=$ Bohr's orbit . The actual
probability of finding the electon at a distance r form the nucleus is:
A. $\Psi=\Psi^{2} d r$
B. $\int \Psi^{2} 4 \pi r^{2} d r$
C. $\Psi^{2} 4 \pi r^{2} d r$
D. $\Psi . d V$.

Answer: C

- Watch Video Solution

6. If e is the charge of an electron in esu m is
the mass in grams and v the voltage ' h ' is the planck constant in erg sec then the wavelength of the electron in cm is
A. $h / \sqrt{V e}$
B. $h \sqrt{V m e}$
C. $h \sqrt{V e}$
D. $h \sqrt{2 m V e}$

Answer: D
(D) Watch Video Solution
7. The limiting line Balmer series will have a frequency of

$$
\text { A. } 3.29 \times 10^{15} S^{-1}
$$

$$
\begin{aligned}
& \text { B. }-3.65 \times 10^{14} s^{-1} \\
& \text { C. } 8.22 \times 10^{14} s^{-1} \\
& \text { D. }-8.22 \times 10^{14} s^{-1}
\end{aligned}
$$

Answer: C

D Watch Video Solution

8. According to Planck's equation, $\Delta E=h \nu$. The energy ΔE corresponding to intense yellow line of sodium at 589 mm is
A. 2.11 eV
B. 43.37 eV
C. 47.12 kJ
D. 2.11 kcal

Answer: A

D Watch Video Solution

9. The threshold wavelength for the ejection of electrons from the metal X is 330 nm . The work
function for the photoelectric emission for metal X is $\left(h=66 \times 10^{-34} \mathrm{Js}\right)$
A. $1.2 \times 10^{-20} J$
B. $6 \times 10^{-19} J$
C. $1.2 \times 10^{-20} J$
D. $6 \times 10^{-12} J$

Answer: B
10. An atom emits energy equal to 4×10^{-12} erg. In which part of the electromagnetic spectrum does the corresponding line lie?
A. UV region
B. Infrared region
C. Visible region
D. Microwave region.

Answer: C

11. Which of the following resonating form is not correct for CO_{2} ?

$$
\begin{aligned}
& \text { A. }: \ddot{O}=C=\ddot{O}: \\
& \text { B. }(\mathrm{B}): \mathrm{O}^{-}-\mathrm{C}={ }^{+}{ }^{\mathrm{O}} \text { : } \\
& + \\
& \text { C. : O.. - C } \equiv O . .:+ \\
& + \\
& \text { D. }: O \equiv C-O . .:-
\end{aligned}
$$

Answer: C

12. The bond order in O_{2}^{+}is the same as in :
A. N_{2}^{+}
B. $C N^{-}$
C. CO
D. NO^{+}

Answer: A
13. The hybridisation of phosphorus in POCl_{3}
is the same as
A. P in PCl_{3}
B. S in $S F_{4}$
C. Cl in ClF_{3}
D. B in BCl_{3}

Answer: A

- Watch Video Solution

14. If the energy of first Bohr's orbit is
-2.17×10^{-11} ergs, then the energy of fifth Bohr orbit is

$$
\begin{aligned}
& \text { A. }-2.17 \times 10^{-11} \mathrm{ergs} \\
& \text { B. }-8.68 \times 10^{-13} \mathrm{ergs} \\
& \text { C. }-5.42 \times 10^{-10} \mathrm{ergs} \\
& \text { D. }-2.08 \times 10^{-11} \mathrm{ergs}
\end{aligned}
$$

Answer: B
15. What transition in $H e^{\oplus}$ ion shall have the same wave number as the first line in Balmer series of H atom ?
A. $3 \rightarrow 2$
B. $6 \rightarrow 4$
C. $5 \rightarrow 3$
D. $7 \rightarrow 5$

Answer: B
16. An equimolar mixture of Nitrogen gas and water vapours is taken in a 2 litre flask at $27^{\circ} \mathrm{C}$ and 1.23×10^{-2} atm. pressure. What is the mass of the gas at $-27^{\circ} \mathrm{C}$?
A. $2.8 \times 10^{-4} g$
B. $5.2 \times 10^{-3} g$
C. $1.4 \times 10^{-2} g$
D. 0.07 g

Answer: C
17. A solid element has a specific heat of $1 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$. The atomic mass of the element is
A. 9
B. 18
C. 27
D. 36

Answer: C
18. A compound possesses 8% sulphur by mass. The least molecular mass is
A. 32
B. 64
C. 128
D. 400

Answer: D

D Watch Video Solution
19. Which among the given molecules has a linear structure?
A. NO_{2}^{+}
B. SnCl_{2}
C. SCl_{2}
D. HOCl

Answer: A
20. In which of the following molecules the central atom does not use $s p^{3}$ hybrid orbitals in its bonding?
A. NH_{2}^{-}
B. BeF_{3}^{-}
C. $\mathrm{SO}_{2} \mathrm{Cl}_{2}$
D. SO_{4}^{2-}

Answer: B
21. The correct increasing bond angle among $B F_{3}, P F_{3}$ and ClF_{3} follows the order

$$
\text { A. } B F_{3}<P F_{3}<C l F_{3}
$$

B. $P F_{3}<B F_{3}<C l F_{3}$
C. $\mathrm{ClF}_{3}<\mathrm{PF}_{3}<B F_{3}$
D. $B F_{2} \approx P F_{3} \approx \mathrm{ClF}_{3}$

Answer: C

- Watch Video Solution

22. The correct order of increasing
electropositive character among Cu, Fe and $M g$ is :
A. $\mathrm{Cu} \approx \mathrm{Fe}<\mathrm{Mg}$
B. $\mathrm{Fe}<\mathrm{Cu}<\mathrm{Mg}$
C. $\mathrm{Fe}<\mathrm{Mg}<\mathrm{Cu}$
D. Cu It Fe It Mg

Answer: D
23. The size of ionic species is correctly given
in the order

> A. $\mathrm{Cl}^{7+}>\mathrm{Si}^{4+}>\mathrm{Mg}^{2+}>\mathrm{Na}^{+}$
> B. $\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Si}^{4+}>\mathrm{Cl}^{7+}$
> C. $\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Cl}^{7+}>\mathrm{Si}^{4+}$
> D. $\mathrm{Cl}^{7+}>\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Si}^{4+}$

Answer: B

D Watch Video Solution
24. The electronegativity difference between two atoms A and B is 2 , then percentage of covalent character in the molecule is
A. 54%
B. 46%
C. 23 \%
D. 72 \%

Answer: A

- Watch Video Solution

25. There are two nodes in the radial probability distribution curve for the orbital with
A. $n=2, n=0$
B. $n=3, l=1$
C. $n=4, l=3$
D. $n=3, l=0$

Answer: D
26. The bond angle in $\mathrm{H}_{2} \mathrm{O}$ (for $\mathrm{H}-\mathrm{S}-\mathrm{H}$) is
A. same as that of $\mathrm{Cl}-\mathrm{Be}-\mathrm{Cl}$ in BeCl_{2}
B. greater than H-N-H bond angle in NH_{3}
C. greater than $\mathrm{H}-\mathrm{Se}-\mathrm{H}$ and less than $\mathrm{H}-\mathrm{O}-\mathrm{H}$
D. same as $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ in SnCl_{2}

Answer: C

D View Text Solution
27. If the ionic radii of each K^{+}and F^{-}are $1.34 \AA$, then tha atomic radii of K and F will be respectively:
A. 1.34 and $1.34 \tilde{A} . .$.
B. 2.31 and 0.64 Ã...
C. 0.64 and $2.31 \tilde{A}_{\text {.... }}$
D. 2.31 and $1.34 \tilde{A}_{\text {.... }}$

Answer: B
28. One among the following is the incrorrect order of increasing ionisation energy :
A. Cl^{-}It Arlt K^{+}
B. Klt Ca It Sc
C. Au It Ag It Cu
D. Cslt Rblt K

Answer: C

- Watch Video Solution

29. Which of the following is false ?
A. 3s orbital is spherically symmetrical with
two nodes
B. $d_{x^{2}-y^{2}}$ orbitals has lobes of electron
density in $X Y$ plane along X and Y axis
C. The radial probability curve of 1 s .3 p and

5d have one, two and three regions of
maximum probability
D. $3 d_{z}^{2}$ has zero electron density in $X Y$
plane.

Answer: D

D View Text Solution

30. The d-orbitals involved in $d s p^{2}$
hybridisation is
A. $d_{x y}$
B. d_{z}^{2}
C. $d_{x^{2}-y^{2}}$
D. $d_{x z}$

Answer: C

D Watch Video Solution

31. A 5.82 g silver coin is dissolved in nitric acid.

When sodium chloride is added to the solution, all the silver gets precipitated as

AgCl . The mass of the precipitated silver chloride is 7.2 g . The percentage of silver in the coin is :
A. 98%

$$
\text { B. } 93.1 \text { \% }
$$

C. 86 \%
D. 82 \%

Answer: B

- Watch Video Solution

32. Which of the following linear combinations
of atomic orbitals is incorrectly depicted?
A. $\infty \infty \infty \rightarrow \infty$
B. $\infty-\infty \rightarrow \infty$
C. $\infty \infty \rightarrow \infty$
D. ${ }^{0088} \rightarrow-8$

Answer: B

D Watch Video Solution

33. In one among the following molecules the
state of hybridisation of the central atom is
not the same as the others
A. B in $B F_{3}$
B. O in $\mathrm{H}_{3} \mathrm{O}^{+}$
C. N in NH_{3}
D. P in PCl_{3}

Answer: B

D Watch Video Solution

34. The state of hybridisation of sulphur in
SO_{2} is same as that of sulphur in
A. SCl_{2}
B. SO_{3}
C. SO_{4}^{3-}
D. $S F_{4}$

Answer: B

D Watch Video Solution

35. The magnetic character of oxygen molecule
is he same as that of one of the following
A. Nitrogen

B. Carbon

C. Peroxide ion

D. Boron.

Answer: B

D Watch Video Solution

36. The density of the nucleus is
A. $10^{4} \mathrm{~g} / \mathrm{c} \mathrm{c}$

$$
\text { B. } 10^{14} \mathrm{~g} / \mathrm{c} \mathrm{c}
$$

C. $10^{-4} \mathrm{~g} / \mathrm{c} \mathrm{c}$
D. $10^{-14} \mathrm{~g} / \mathrm{c} \mathrm{c}$

Answer: B

- Watch Video Solution

37. Azimuthal Quantum number was given by

A. Lande
B. Bohr

C. Zeemann

D. Sommer field

Answer: B

D Watch Video Solution

38. Diatomic molecule has a dipole moment of
$1.2 D$ If its bond $1.0 \AA$ what fraction of an electronic charge exists on each atom?.
A. 12% of e

B. 18% of e

C. 25% of e
D. 29% of e

Answer: B

D Watch Video Solution

39. How many electrons are used in bonding
the Lewis structure of $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ (oxalate) ion ?
A. 22
B. 20
C. 18
D. 14

Answer: B

- Watch Video Solution

40. The energy required to stop ejection of electrons from a Cu plate is 0.24 eV .Calculate the work function Cu when a radiation of wavelength $\lambda=250 \mathrm{~nm}$ strikes the plate.
A. 24.3 eV
B. 24 eV
C. 4.65 eV
D. 4.95 eV

Answer: B

D Watch Video Solution

Unit Test - 1

1. In multiplication and division the significant
figures of answer must be same as that in the quantity with $\left.\hat{a} \epsilon_{\mid}^{\mid} \hat{\hat{a}}\right|_{\mid} ^{\prime}$. number of significant figures
A. maximum
B. 3
C. 2
D. minimum

Answer: D
2. How many significant figures are there in (respectively)
(1) $73.000 \mathrm{~g}(2) 0.0503 \mathrm{~g}$ and (3) 2.001 s
A. $3,3,4$
B. $3,4,5$
C. 2,5,4
D. 5,3,4

Answer: D
3. The sample with largest number of atoms is
A. 1 g of $\mathrm{O}_{2}(\mathrm{~g})$
B. 1 g of $\mathrm{Ni}(\mathrm{g})$
C. 1 g of $\mathrm{B}(\mathrm{s})$
D. 1 g of $N_{2}(\mathrm{~g})$

Answer: C
4. Number of atoms in 560 gm of Fe (atomic mass $56 \mathrm{gm} \mathrm{mol}^{-1}$) is:
A. twice that of 70 g of nitrogen
B. half that of 20 g of hydrogen
C. Both (A) and (C) are correct
D. None of the above is correct

Answer: C

5. About a gaseous reaction
$x X+y Y \rightarrow l L+m M$
which statement is wrong?
A. x litres of X combines with y litre of Y to
give L and M
B. x moles of X combines with y moles of Y
to give L and M
C. x number of molecules of X combine y
molecules of Y to form L and M

D. $x g$ of X combines with $y g$ of Y to give M

and L

Answer: D

D View Text Solution

6. Pick out the isoelectronic structures from
the following
$\mathrm{CIH}_{3}^{+} \mathrm{H}_{3} \mathrm{IIO}^{+} \mathrm{NIIIH}_{3} \mathrm{CIVH}_{3}^{-}$.
A. I and II

B. I and III

C. I and IV

D. II, III and IV.

Answer: D

(Watch Video Solution

7. The radius of which of the following orbit is
same as that of the first Bohr's orbit of

Hydrogen atom?
(a). $\mathrm{He}^{+}(n=2)$
(b) $L i^{2+}(n=2)$
(c). $L i^{2+}(n=3)$
(d). $B e^{3+}(n=2)$
A. $\mathrm{Li}^{2+}(\mathrm{n}=2)$
B. $L i^{3+} \quad(\mathrm{n}=3)$
C. $B e^{3+}(\mathrm{n}=2)$
D. $\mathrm{He}^{+}(n=2)$

Answer: C

D Watch Video Solution

8. Which of the following sets of quantum numbers represents an impossible arrangement ?

$$
\begin{array}{llll}
n & l & m & s \\
\text { A. } & \begin{array}{lll}
n & 2 & -2
\end{array} & +1 / 2 \\
n & l & m & s \\
3 & 2 & -3 & +1 / 2 \\
n & l & m & s \\
4 & 0 & 0 & -1 / 2 \\
n & l & m & s \\
5 & 3 & 0 & -1 / 2
\end{array}
$$

Answer: B
9. The electrons present in K-shell of the atom will differ in
A. prinClpal quantum number
B. azimuthal quantum number
C. magnetic quantum number
D. spin quantum number

Answer: D

D Watch Video Solution
10. The increasing order (lowest first) for the values of e / m (charge//mass) for electron (e), proton (p), neutron (n), and alpha particle (α) is
A. $\mathrm{n}, \alpha, \mathrm{p}, \mathrm{e}$
B. e,p,n, α
C. n,p,e, α
D. $\mathrm{n}, \mathrm{p}, \alpha, \mathrm{e}$

Answer: A
11. The incorrect statement Among the following is A)The first ionisation potential of

Al is less than the first ionisation potential of

Mg . B)The first ionisation potential of Na is less than the first ionisation potential of Mg .
C)The second ionisation potential of Mg greater than the second ionisation potential of Na D)The third ionisation potential of Mg greater than the third ionisation potential of Al
A. The first ionization potential of Al is less
than the first ionization potential of Mg
B. The second ionization potential of Mg is
greater than the second ionization
potential of Na^{+}
C. The first ionization potential of Na is less
than the first ionization potential of Mg
D. The third ionization potential of Mg is
greater than that of Al
12. The screening effect of inner electrons of an atom can cause
A. an increase in the ionization potential
B. a decrease in the ionization potential
C. no effect on the ionization potential
D. None of the above.

Answer: A

D Watch Video Solution
13. Which of the following transitions involves maximum amount of energy?
A. $M^{-}(g) \rightarrow M(g)$
B. $M(g) \rightarrow M^{+}(g)$
C. $M^{+}(g) \rightarrow M^{2+}(g)$
D. $M^{2+}(g) \rightarrow M g^{3+}(g)$

Answer: D
14. The set representing the correct order of the first ionisation potential is
A. K gt Na gt Li
B. Be gt Mg gt Ca
C. Ge gt Si gt C
D. Bgt C gt N.

Answer: B

- Watch Video Solution

15. Which one of the following elements has
the highest ionisation energy?
A. $[N e] 3 s^{2} 3 p^{1}$
B. $[N e] 3 s^{2} 3 p^{2}$
C. $[N e] 3 s^{2} 3 p^{3}$
D. $[A r] 3 d^{10} 4 s^{2} 4 p^{2}$

Answer: C

D Watch Video Solution
16. Number of electrons in the valence orbit of nitrogen in an ammonia molecule are
A. 5
B. 6
C. 7
D. 8

Answer: D

17. The dipole moment of HBr is $1.6 \times 10^{-30} \mathrm{~cm}$ and interatomic spacing is $1 \AA$. The \% ionic character of HBr is
A. 7
B. 10
C. 15
D. 27

Answer: B
18. When two atoms of chlorine combine to
form one molecule of chlorine gas, the energy of the molecule is
A. equal to that of separate atoms
B. lower than that of separate atom
C. greater than that of the separate atoms
D. None of the above.

Answer: B

19. In which of the following the central atom does not use $s p^{3}$ hybrid orbitals in its bonding
A. NH_{2}^{-}
B. $\mathrm{H}_{3} \mathrm{O}^{+}$
C. BeF_{3}^{-}
D. NF_{3}

Answer: C

- Watch Video Solution

20. What is the effect of more electronegative atoms on the strength of an ionic bond ?
A. increases

B. decreases

C. remains same
D. None of these.

Answer: A

- Watch Video Solution

