©゙’ doubtnut India's Number 1 Education App

CHEMISTRY

BOOKS - S DINESH \& CO CHEMISTRY (HINGLISH)

CHEMICAL THERMODYNAMICS AND CHEMICAL

ENERGETICS

Exercise

1. Which of the following does not come under the preview of thermodynamics?
A. Predicting the feasibility of chemical change
B. Predicting the extent of the chemical change
C. Rate at which chemical change occurs at particular set of
D. Effect of temperature on the extent of reaction.

Answer: C

- Watch Video Solution

2. Energy changes accompanying the chemical reactions can take place :
A. in the form of heat only
B. in the form of heat as well as light only
C. in the form of light only
D. in any form depending upon the nature of the system.

Answer: D

3. A cup of tea placed in the room eventually acquires a room temperature by losing heat. The process may be considered close to
A. Cyclic process
B. Reversible process
C. Isothermal process
D. None of these

Answer: B

- View Text Solution

4. A gaseous system changes from state $A\left(P_{1}, V_{1}, T_{1}\right)$ to $B\left(P_{2}, V_{2}, T_{2}\right)$, B to $C\left(P_{3}, V_{3}, T_{3}\right)$ and finally from C to A. The whole process may be called
A. Reversible process
B. Cyclic process
C. Isobaric process
D. Spontaneous process.

Answer: B

- Watch Video Solution

5. A well stoppered thermo flask containing some ice cubes is an example of
A. closed system
B. open system
C. isolated system
D. non-thermodynamic system.

Answer: C

6. Which among the following state functions is an extensive property of the system?
A. Temperature
B. Volume
C. Refractive index
D. Viscosity

Answer: B

(D) Watch Video Solution

7. Which of the following is an intensive property?
A. Volume
B. Mass
C. Density
D. Energy

Answer: C

- Watch Video Solution

8. Which among the following is not a state function?
A. Internal energy
B. Free energy
C. Work
D. Enthalpy

Answer: C

- Watch Video Solution

9. Enerrgy can transfter from syetm to surroundings as work if
A. there if thermal equilibrium between system and surroundings
B. there if mechanical equilibrium between system and surroundings
C. if pressure of system gt atmospheric pressure
D. if pressure of system It atmospheric pressure

Answer: C

- Watch Video Solution

10. For the process to occur under adiabatic conditions, the correct condition is
A. $\Delta T=0$
B. $\delta q=0$
C. $\Delta P=0$
D. $\delta W=0$

Answer: B

- Watch Video Solution

11. A chemical process is carried out in a thermostat maintained at $25^{\circ} C$.The process may be termed as
A. isobaric process
B. isoentropic process
C. adiabatic process
D. isothermal process.

Answer: D

- View Text Solution

12. A thermodynamic state function is
A. One which obeys all the laws of thermodynamics
B. A quantity which is used to measure thermal changes
C. A quantity whose value is independent of the path
D. A quantity which is used to express pressure-volume work.

Answer: C

- Watch Video Solution

13. The efficiency of a heat engine is maximum when
A. temperature of source is greater than that of sink
B. temperature of sink is greater than that of source
C. temperature difference of source and sink is minimum.
D. temperature difference of source and sink is maximum.

Answer: D

14. During isothermal expansion of an ideal gas its
A. Enthalpy remains constant
B. Enthalpy decreases
C. Internal energy increases.
D. Internal energy decreases.

Answer: A

- Watch Video Solution

15. A gas expands isothermally and reversibly. The work done by the gas
is
A. Zero
B. Maximum
C. Minimum
D. Cannot be determined

Answer: B

- Watch Video Solution

16. A thermally isolated gaseous system can exchange energy with the surroundings. The mode of transference of energy can be
A. heat
B. work
C. heat and radiation
D. only radiations.

Answer: B

17. Which among the following gives the expression for the reversible isothermal expansion of ideal gas ?
A. $-P \Delta V$
B. $-n R T \frac{\ln \left(V_{2}\right)}{V_{1}}$
C. Both A and B
D. Neither A nor B

Answer: B

- Watch Video Solution

18. What is correct about isothermal expansion of the ideal gas?
A. $W_{\text {rev }}=W_{i r r}$
B. $W_{r e v}+W_{i r r}=0$
C. $W_{\text {rev }}>W_{i r r}$
D. $q_{r e v}=q_{i r r}$

Answer: C

- Watch Video Solution

19. Which of the following is correct for adiabatic expansion ideal gas?
A. $P V=$ constant
B. $P V^{\gamma}=$ constant
C. $P T^{\gamma}=$ constant
D. $T V^{\gamma}=$ constant

Answer: B

20. Which of the following expression expressions is true for an ideal gas?
A. $\left(\frac{\delta V}{\delta T}\right)_{P}=0$
B. $\left(\frac{\delta P}{\delta T}\right)_{V}=0$
C. $\left(\frac{\delta E}{\delta V}\right)_{T}=0$
D. $\left(\frac{\delta E}{\delta T}\right)_{V}=0$

Answer: C

- Watch Video Solution

21. The expression $[\delta H / \delta T]_{V}$ represents
A. Heat capacity at constant volume
B. Heat capacity at constant pressure
C. Enthalpy change
D. Entropy change

Answer: A

- Watch Video Solution

22. The internal energy of one mole of a gas is
A. $\frac{3}{2} R T$
B. $\frac{1}{2} k T$
C. $\frac{1}{2} R T$
D. $\frac{3}{2} k T$

Answer: A

23. Internal energy does not include
A. vibrational energy
B. rotational energy
C. energy arising by gravitational pull
D. nuclear energy.

Answer: C

- Watch Video Solution

24. The formation of water from $H_{2}(g)$ and $O_{2}(g)$ is an exothermic process because :
A. $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ have a higher chemical energy than water
B. $H_{2}(g)$ and $O_{2}(g)$ have a lower chemical energy than water
C. $H_{2}(g)$ and $O_{2}(g)$ have a higher temperature than water
D. Energy consideration do no arise.
25. In a change from state A to state B
A. q depends only on the initial and final state
B. w depends only on the initial and final state
C. ΔE depends only on the initial and final state
D. ΔE depends upon the path adopted by A to change into B.

Answer: C

(D) Watch Video Solution

26. According to the diagram given below, the value of ΔH for conversation of A to B is

A. -40
B. +40
C. -120
D. +120

Answer: A

(D) Watch Video Solution

27. When ammonium chloride is dissolved in water, the solution becomes cold. The change is
A. Endothermic
B. Exothermic
C. Supercooling
D. None of the above

Answer: A

- Watch Video Solution

28. The enthalpies of formation of all the elements in their standard
states are
A. Unity
B. Zero
C. > Zero
D. <1 but >0
29. A monoatomic neon molecule possesses
A. only potential energy
B. potential as well as vibrational energy
C. vibrational as well as translational energy
D. translational as well as potential energy

Answer: A

- Watch Video Solution

30. The heat of combusion of benzne determined in a bomb calorimeter is $-870 \mathrm{Kcalmol}^{-1}$ at 298 K . The value of ΔE for the reaction is

$$
\text { A. }-1740 \mathrm{kcalmol}^{-1}
$$

B. $+870 \mathrm{kcalmol}^{-1}$
C. $-870 \mathrm{kcalmol}^{-1}$
D. $+1740 \mathrm{kcalmol}^{-1}$

Answer: C

- Watch Video Solution

31. An endothermic reaction is allowed to take place very rapidly in the air. The temperature of the surrounding air
A. remains constant
B. increases
C. decreases
D. cannot be answered as sufficient information is not available.

Answer: A

32. The heat absorbed in a reaction at constant temperature and constant volume is
A. ΔE
B. ΔH
C. $-\Delta A$
D. $-\Delta G$

Answer: A

- Watch Video Solution

33. In endothermic reactions
A. the heat is given to surroundings
B. $\Delta H=-v e$
C. $\Delta H=+v e$
D. $H_{R}>H_{P}$

Answer: C

- Watch Video Solution

34. For the reaction,
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$, which of the following statement is correct ?
A. $\Delta H=\Delta E$
B. $\Delta H \geq \Delta E$
C. $\Delta H>\Delta E$
D. $\Delta H=0$

Answer: C

35. The heat of reaction at constant volume (ΔE) and that at constant pressure (ΔH) are related as
A. $\Delta E=\Delta H+\Delta n R T$
B. $\Delta H=\Delta E-\Delta n R T$
C. $\Delta H=\Delta E+\Delta n R T$
D. $\Delta H=\Delta E+n R T$

Answer: C

(D) Watch Video Solution

36. Under which of the following condition is the relation
$\Delta H=\Delta U+P \Delta V$ valid for a closed system at
A. Constant pressure
B. Constant temperature
C. Constant temperature and pressure
D. Constant temperature, pressure and composition.

Answer: C

- Watch Video Solution

37. For the gaseous reaction: $\mathrm{N}_{2} \mathrm{O}_{4} \rightarrow 2 \mathrm{NO}_{2}$
A. $\Delta H>\Delta E$
B. $\Delta H<\Delta E$
C. $\Delta H=\Delta E$
D. $\Delta H=0$, but ΔE may have any value.

Answer: A

- Watch Video Solution

38. The heat of combustion of solid benzoic acid at constant volume is
-321.30 kJ at $27^{\circ} \mathrm{C}$. The heat of combustion at constant pressure is
A. $-321 \cdot 30-300 R$
B. $-321 \cdot 30+300 R$
C. $-321 \cdot 30-150 R$
D. $-321 \cdot 30+900 R$

Answer: C

- Watch Video Solution

39. For hypothetical reaction
$A(g)+B(g) \rightarrow C(g)+D(g)$
Which of the following statements is correct ?
A. $\Delta H=\Delta E$
B. $\Delta H>\Delta E$
C. $\Delta H<\Delta E$
D. Unpredictable

Answer: A

- Watch Video Solution

40. ΔE° of combustion of isobutylene is $-X \mathrm{KJmol}^{-1}$. The value of ΔH° is
A. $=\Delta E^{\circ}$
B. $>\Delta E^{\circ}$
C. $=0$
D. $<\Delta E^{\circ}$

Answer: D

41. The difference between ΔH and ΔE at constant voluem is equal to
A. R
B. $p \Delta V$
C. $V \delta p$
D. $\frac{3}{2} R$.

Answer: C

- Watch Video Solution

42. The reaction given below
$\mathrm{BaCI}_{2}(s)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{BaCI}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}^{\Theta}=-x k J$ The value of
ΔH^{Θ} represents
A. Enthalpy of solution
B. Enthalpy of dilution
C. Enthalpy of combustion
D. Enthalpy of hydration

Answer: D

- Watch Video Solution

43. Enthalpy change of the reaction
$2 H(g) \rightarrow H_{2}(g)$ is $-104 k c a l$
The $H-H$ bond dissociation energy is
A. $104 k c a l$
B. -104 kcal
C. $-52 k c a l$
D. $+52 k \mathrm{cal}$

Answer: A

44. According to latest sign conventions, the correct expression representing the first law of thermodynamics is
A. $\Delta E=q+W$
B. $\Delta E=\Delta H+P V$
C. $\Delta E=q-W$
D. All are correct

Answer: A

(D) Watch Video Solution

45. If a system A is in thermal equilibrium with B and B is in thermal equilibrium with C, then A and C are in thermal equilibrium with each other." This is a statement of
A. Cyclic rule
B. Zeroth law of thermodynamics
C. First law of thermodynamics
D. Second law of thermodynamics

Answer: B

- Watch Video Solution

46. According to Hess's law, the thermal effects of a reaction depends
on
A. initial concentration of reactants
B. final conditions of the reacting substance
C. intermediate states of a reaction
D. initial and final conditions of the reacting substances.

Answer: D

47. Hess's law states,
A. $H=E+P V$
B. It is not possible to create or destory energy
C. Enthalpy change of a given chemical reaction is same whether the process occurs in one or more sequence of steps
D. Total entropy of the universe remains constant.

Answer: C

- Watch Video Solution

48. Which of the following statements relationship is not correct?
A. In exothermic reaction, the enthalpy of product is less than that of the reactants
B. $\Delta H_{f u s}=\Delta H_{\subset l}-\Delta H_{\text {vap }}$
C. A reaction for which $\Delta H^{\circ}<0$ and $\Delta S>0$ is possible at all temperatures.
D. ΔH is less than ΔE for combustion of carbon to carbon dioxide.

Answer: D

- Watch Video Solution

49. A hypothetical reaction, $A \rightarrow 2 B$, proceeds via following sequence of steps

$$
\begin{array}{ll}
A \rightarrow C & \Delta H=q_{1} \\
C \rightarrow D & \Delta H=q_{2} \\
\frac{1}{2} D \rightarrow B & \Delta H=q_{3}
\end{array}
$$

The heat of reaction is
A. $q_{1}-q_{2}+2 q_{3}$
B. $q_{1}+q_{2}-2 q_{3}$
C. $q_{1}+q_{2}+2 q_{3}$
D. $q_{1}+2 q_{2}-2 q_{3}$

Answer: C

- Watch Video Solution

50. $\mathrm{N}_{2}(g)+2 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)+X k J$
$2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}+Y k J$
The enthalpy of formation of $N O$ is
A. $(2 X-2 Y)$
B. $X-Y$
C. $\frac{1}{2}(Y-X)$
D. $\frac{1}{2}(x-y)$

Answer: D

51. Enthalpy of formation of compound is
A. always positive
B. always negative
C. can be either negative or zero
D. can be positive or negative

Answer: D

- Watch Video Solution

52. The value of ΔH for the process given below, $\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$is
A. positive
B. negative
C. zero
D. Unpredictable

Answer: A

- Watch Video Solution

53. i. $H_{2}(g)+C I_{2}(g) \rightarrow 2 H C I(g), \Delta H=-x k J$
ii. $\mathrm{NaCI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO}+\mathrm{HCI}, \Delta H=-y k J$
iii. $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CI}_{2} \rightarrow 4 \mathrm{HCI}+\mathrm{O}_{2}, \Delta H=-z k J$

From the above equations, the value of ΔH of $H C I$ is
A. $-x k J$
B. $-y k J$
C. $-z k J$
D. $-x / 2 k J$

Answer: D

54. The reaction
$\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})$ should be
A. Endothermic
B. Exothermic
C. $\Delta H=0$
D. Unpredictable

Answer: B

- Watch Video Solution

55. The enthalpy combustion of a substance
A. is always positive
B. is always negative
C. can be either zero or greater than zero
D. is unpredictable till calculations are done.

Answer: B

- Watch Video Solution

56. $X g$ of ethanal was subjected to combustion in a bomb calorimeter and the heat produced is $Y J$. Then
A. $\Delta E_{\text {combustion }}=-X J$
B. $\Delta E_{\text {combustion }}=-Y J$
C. $\Delta E_{\text {combustion }}=\frac{-44 Y}{X} \mathrm{Jmol}^{-1}$
D. $\Delta H_{\text {combustion }}=\frac{-44 Y}{X} \mathrm{Jmol}^{-1}$

Answer: C

(D) Watch Video Solution

57.

enthalpy
change for the process
$C_{(\text {graphite })} \rightarrow C_{(g)}, \Delta H=+x k J$ represents enthalpy of
A. fusion
B. sublimation
C. combustion
D. vaporization.

Answer: B

(D) Watch Video Solution

58. $\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{A}^{-}+q_{1} k J$
$\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+q_{2} \mathrm{~kJ}$
The enthalpy of dissociation of $H A$ is
A. $\left(q_{1}+q_{2}\right)$
B. $\left(q_{1}-q_{2}\right)$
C. $\left(q_{2}-q_{1}\right)$
D. $-\left(q_{1}+q_{2}\right)$

Answer: B

- Watch Video Solution

59. The heat change accompanying the reaction
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}):$
$\Delta H=-136 k c a l$ is called
A. heat of combustion of hydrogen
B. heat of reaction
C. heat of formation of water
D. None of these

Answer: B

60. When a solid melts there is
A. an increase in enthalpy
B. a decrease in enthalpy
C. no change in enthalpy
D. a decrease in internal energy.

Answer: A

- Watch Video Solution

61. One gram-atom of graphite and one gram-atom of diamond were separately burnt to CO_{2}. The amount of heat liberated was 393.5 KJ and $305.4 K J$ respectively. It is apparent that
A. graphite has greater affinity for oxygen
B. diamond has greater affinity for oxygen
C. graphite is stabler than diamond
D. diamond is stabler than graphite.

Answer: C

- Watch Video Solution

62. The reaction which shows heat of formation of water correctly is
A. $H_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow H_{2} O(l), \Delta H=-68.3 k c a l$
B. $\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s}), \Delta H=-68.3 \mathrm{kcal}$
C. $H_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow H_{2} O(g), \Delta H=-68.3 \mathrm{kcal}$
D. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta H=-136.6 \mathrm{kcal}$
63. Heat of formation, ΔH_{f}° of an explosive compound like $N C l_{3}$ is -
A. positive
B. negative
C. zero
D. positive or negative

Answer: A

- Watch Video Solution

64. The products of combustion of an aliphatic thiol (RSH) at 298 K are
A. $\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ and $\mathrm{SO}_{2}(\mathrm{~g})$
B. $\mathrm{CO}_{2}(g), \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ and $\mathrm{SO}_{2}(g)$
C. $\mathrm{CO}_{2}(l), \mathrm{H}_{2} \mathrm{O}(l)$ and $\mathrm{SO}_{2}(g)$
D. $\mathrm{CO}_{2}(g), \mathrm{H}_{2} \mathrm{O}(l)$ and $\mathrm{SO}_{2}(l)$

Answer: B

- Watch Video Solution

65. For the transition $C_{(\text {diamond) }} \rightarrow C_{\text {(graphite) }}, \Delta H=-1.5 k J$. It follows that
A. graphite is stabler than diamond
B. diamond is stabler than graphite
C. graphite is endothermic
D. diamond is exothermic

Answer: A

- Watch Video Solution

66. Which of the following statements is correct?
A. For exothermic reactions, ΔH is positive
B. For endothermic reactions, ΔH is negative
C. The $\Delta H_{\text {Neutralization }}$ for strong acid and strong base is always the same
D. The enthalpy of fusion, $\Delta H_{\text {fus }}$ is negative

Answer: C

- Watch Video Solution

67. The heat liberated in the following reaction
$\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$ is
A. 57.0 kJ
B. 60 kJ
C. 5.7 kJ
D. Unpredictable

- Watch Video Solution

68. For the neutralisation of 1 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ with 2 mols of NaOH in dilute solutions the heat evolved is
A. $=57.0 \mathrm{~kJ}$
B. $<57.0 k J$
C. $>57.0 \mathrm{~kJ}$
D. Unpredictable

Answer: C

- Watch Video Solution

69. Enthalpy of neutralisation of all strong acids strong bases has the
A. neutralisation leads to the formation of a salt and water
B. strong acids and bases are ionic substances
C. acids always give rise to H^{+}ions and bases always furnish OH^{-} ions
D. the net chemical change involve the combination of 1 mol of H^{+} ions and ions OH^{-}ions to form water.

Answer: D

- Watch Video Solution

70. A solution of 200 mL of 1 MKOH is added to 200 mL of 1 MHCl and the mixture is well shaken. The rise in temperature T_{1} is noted. The experiment is repeated by using 100 mL of each solution and increase in temperature T_{2} is again noted. Which of the following is correct?

$$
\text { A. } T_{1}=T_{2}
$$

B. T_{2} is twice as large as T_{1}
C. T_{1} is twice as large as T_{2}
D. T_{1} is four times as large as T_{2}

Answer: A

- Watch Video Solution

71. The heats of neutralisation of four acids a, b, c and d when neutralised against a common base are 13.7, 9.4, 11.2 and 12.4 kcal respectively. The weakest among these acids is
A. a
B. b
C. c
D. d

- Watch Video Solution

72. Enthalpy of neutralisation of NaOH with $\mathrm{H}_{2} \mathrm{SO}_{4}$ is $-57.3 \mathrm{kJmol}^{-1}$ and with ethanoic acid $-55.2 \mathrm{kJmol}^{-1}$. Which of the following is the best explanation of this difference?
A. Ethanoic acid is weak acid and thus requires less NaOH for neutralisation
B. Ethanoic acid is only partly ionized, neutralisation is therefore incomplete
C. Ethanoic acid is monobasic while $\mathrm{H}_{2} \mathrm{SO}_{4}$ is dibasic
D. Some heat is used to ionize the ethanoic acid completely.

Answer: D

73. The temperature at which the Joule Thomson coefficient changes sign is called
A. Critical temperature
B. Inversion temperature
C. van der Waals' constant
D. Kelivin temperature

Answer: B

- View Text Solution

74. In case of an ideal gas, Joule Thomson effect is
A. zero
B. positive
C. negative
D. infinite

Answer: A

- View Text Solution

75. Which of the following gases show a heating effect when allowed to expand into a region of low pressure?
A. CO_{2}
B. NH_{3}
C. F_{2}
D. H_{2}

Answer: D

- Watch Video Solution

76. When a gas is allowed to expand from a region of extremly high pressure to a region of extremly low pressure, there occurs a change of temperature. This phenomenon is associated with
A. First law of thermodynamics
B. Second law of thermodynamics
C. Joule-Thomson effect
D. Gibbs Helmholtz equation. II

Answer: C

- Watch Video Solution

77. Joule Thomson coefficient is given by the expression
A. $\left(\frac{\delta T}{\delta P}\right)_{H}$
B. $\left(\frac{\delta T}{\delta V}\right)_{H}$
C. $\left(\frac{\delta E}{\delta P}\right)_{V}$
D. $\left(\frac{\delta S}{\delta T}\right)_{P}$

Answer: A

- View Text Solution

78. Entropy of system depends upon
A. volume only
B. temperature only
C. pressure only
D. pressure, volume and temperature

Answer: D

- Watch Video Solution

79. The units of entropy are
A. $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. $J g^{-1}$
C. Jmol^{-1}
D. $K^{-1} \mathrm{~mol}$

Answer: A

- Watch Video Solution

80. Ammonium chloride when dissolved in water leads to a cooling sensation. The dissolution of ammonium chloride at constant temperature is accompanied by
A. increase in entropy
B. decrease in entropy
C. no change in entropy
D. no change in enthalpy

Answer: A

- Watch Video Solution

81. An isolated system comprises the liquid in equilibrium with vapours.

At this stage, the molar entropy of the vapour is
A. less than that of liquid
B. more than that of liquid
C. equal to zero
D. equal to that of liquid

Answer: D

82. For the gaseous reaction involving the complete combustion of isobutane
A. $\Delta H=\Delta E$
B. $\Delta H>\Delta E$
C. $\Delta H=\Delta E=0$
D. $\Delta H<\Delta E$

Answer: B

(D) Watch Video Solution

83. One of the following reactions involves decrease in entropy
A. Sublimation of dry ice
B. Crystallisation of salt from brine
C. Burning of rocket fuel
D. Decomposition of gaseous $\mathrm{N}_{2} \mathrm{O}_{4}$

Answer: B

- Watch Video Solution

84. When a solid changes into liquid, the entropy
A. becomes zero
B. becomes minimum
C. increases
D. remains constant

Answer: C

Watch Video Solution
85. The least random state of water system is
A. ice
B. liquid water
C. steam
D. randomness is same in all

Answer: A

(D) Watch Video Solution

86. Which of the following process has negative value of ΔS ?
A. Dissolution of sugar in water
B. Stretching of rubber band
C. Decomposition of lime stone
D. Evaporation of water.

Answer: B

87. Which of the following describes the criterion of spontaneity?
A. $\Delta S_{(\text {Total })}>0$
B. $\Delta G_{T} \quad P>0$
C. $\Delta H_{T} \quad P>0$
D. None of above

Answer: A

- Watch Video Solution

88. Which law of thermodynamics helps in calculating the absolute entropies of various substances at different temperatures?
A. First law
B. Second law
C. Third law
D. Zeroth law

Answer: C

- Watch Video Solution

89. When the egg is hard boiled, there is
A. increase in disorder
B. decrease in disorder
C. no change in disorder
D. ΔG is negative

Answer: A

- Watch Video Solution

90. For the reversible process, the value of ΔS is given by the expression:
A. $\Delta H / \Delta T$
B. $T \div q_{(r e v)}$
C. $q_{(r e v)} \times T$
D. $q_{(r e v)} \div T$

Answer: D

(D) Watch Video Solution

91. In any natural process
A. The entropy of universe remains constant
B. The entropy of universe tends towards maximum
C. The entropy of universe tends towards minimum
D. Any of the above can happen

Answer: B

- Watch Video Solution

92. For which of the following cases is
$\Delta S=\Delta H / T$
A. adiabatic process
B. a process for which $\Delta C_{P}=0$
C. an isothermal reversible phase change
D. a process at constant pressure.

Answer: C

- Watch Video Solution

93. In a reversible process,
$\Delta S_{\text {sys }}+\Delta S_{\text {surr }}$ is
A. >0
B. <0
C. ≥ 0
D. $=0$

Answer: D

- Watch Video Solution

94. According to third law of thermodynamics, the entropy at $0 K$ is zero for
A. elements in their stable form
B. perfectly crystalline solids
C. substances at 1 atm and $25^{\circ} \mathrm{C}$
D. $\mathrm{N}_{2} \mathrm{O}$

Answer: B

- Watch Video Solution

95. Which of the following has highest entropy?
A. Water
B. Graphite
C. Mercury
D. Hydrogen

Answer: D

(D) Watch Video Solution
96. The total entropy change for a system and its surroundings increases, if the process is
A. reversible
B. inversible
C. exothermic
D. endothermic

Answer: B

(D) Watch Video Solution

97. Which of the following provide exceptions to third law of thermodynamics?
A. Crystals of $C O$
B. Crystals of ice
C. Crystals of CO_{2}
D. All the above

Answer: D

- Watch Video Solution

98. Which thermodynamics property provides a measure of randomness in the system ?
A. Enthalpy
B. PV-work
C. Free energy
D. Entropy

Answer: D

99. Which one of the following is correct ?
A. $-\Delta G=\Delta H-T \Delta S$
B. $\Delta H=\Delta G-T \Delta S$
C. $\Delta S=(1) /(T)[\Delta G-\Delta H]$
D. $\Delta S=(1) /(T)[\Delta H-\Delta G]$

Answer: D

- Watch Video Solution

100. An endothermic gaseous reaction,

$$
\frac{1}{2} X+Y \rightarrow 2 Z
$$

proceeds spontaneously at $27^{\circ} \mathrm{C}$ because
A. $\Delta H<0, \Delta S<0$
B. $\Delta H>0, \Delta S>0$
C. $\Delta H<0, \Delta S>0$
D. $\Delta H>0, \Delta S<0$

Answer: B

- Watch Video Solution

101. The sign of ΔG for the process of melting of ice at 273 K and 1 atm pressure is
A. positive
B. negative
C. neither positive nor negative
D. either positive nor negative

Answer: C

102. For a hypothetical reaction
$A+B \rightarrow C$ if $\Delta G^{\circ}>0$
A. the reaction tends to proceed slowly towards formation of C
B. the increase in temperature increases the yield of C
C. A and B predominates in the reaction mixture
D. C predominates in the reaction mixture

Answer: C

(D) Watch Video Solution

103. The free energy change for a reversible reaction at equilibrium is
A. infinite
B. zero
C. positive
D. negative

Answer: B

- Watch Video Solution

104. At $27^{\circ} C$ for reaction,
$\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+\frac{15}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
proceeds spontaneously because the magnitude of
A. $\Delta H=T \Delta S$
B. $\Delta H>T \Delta S$
C. $\Delta H<T \Delta S$
D. $\Delta H>0$ and $T \Delta S<0$

Answer: B

105. A particular reaction at $27^{\circ} C$ for which $\Delta H>0$ and $\Delta S>0$ is found to be non-spontaneous. The reaction may proceed spontaneously if
A. the temperature is decreased
B. the temperature is increased
C. the temperature is kept constant
D. it is carried in open an vessel at 27°

Answer: B

- Watch Video Solution

106. Which of the following expression defines the physical significance of free energy change?
A. $-\Delta G=w_{(\text {non }-\exp)}$
B. $-\Delta G=-w_{(n o n-\exp)}$
C. $\Delta G=-w_{(\exp)}$
D. $\Delta G=w_{(\exp)}$

Answer: B

- Watch Video Solution

107. A gas is allowed to expand reversibly under adiabatic conditions.

What is zero for such a process ?
A. $\Delta G=0$
B. $\Delta T=0$
C. $\Delta S=0$
D. None of these

Answer: C

108. The hypothetical gaseous reaction
$A+B \rightarrow A B$
A. should be exothermic
B. should be endothermic
C. does not involve enthalpy change
D. cannot be predicted.

Answer: A

(D) Watch Video Solution

109. For a process $\mathrm{H}_{2} \mathrm{O}(s) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$ at 273 K
A. $G($ ice $)=G($ water $)=0$
B. $G($ ice $)=G($ water $) \neq 0$
C. $G($ ice $)>G($ water $)$
D. $G($ ice $)<G($ water $)$

Answer: A

- Watch Video Solution

110. For the process

Dry ice $\rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
A. Both ΔH and ΔS are positive
B. ΔH is -ve while ΔS is positive
C. ΔH is -ve while ΔS is negative
D. Both ΔH and ΔS are negative

Answer: A

- Watch Video Solution

111. The non- expansion work of a system
A. Equals decrease in free energy
B. Equals decrease in internal energy
C. Equals increase in enthalpy
D. Equals increase in internal energy

Answer: A

- Watch Video Solution

112. For the percipitation reaction of $A g^{\oplus}$ ions with $N a C I$, which of the following statements is true?
A. ΔH for the reaction is zero
B. ΔG for the reaction is zero
C. ΔG for the reaction is negative
D. $\Delta G=\Delta H$

Answer: C

- Watch Video Solution

113. Heat of neutralisation of NaOH and HCl is $-57.46 \mathrm{~kJ} /$ equivalent. The heat of ionisation of water in $k J / \mathrm{mol}$ is :
A. $-57.3 \mathrm{kJmol}^{-1}$
B. $-114.6 \mathrm{kJmol}^{-1}$
C. $+57.3 \mathrm{kJmol}^{-1}$
D. $+114.6 \mathrm{kJmol}^{-1}$

Answer: C

- Watch Video Solution

114. The enthalpy change for a given reaction at 298 K is $-x^{\text {calmol }^{-1}}$. If the reaction occurs spontaneously at $298 K$, the entropy change at that temperature
A. can be negative but numerically larger than $x / 298 \mathrm{calK}^{-1}$
B. can be negative but numerically smaller than $x / 298 \mathrm{calK} \mathrm{K}^{-1}$
C. cannot be negative
D. cannot be positive

Answer: B

(D) Watch Video Solution

115. One litre-atmosphere is approximately equal to
A. $19.2 k J$
B. 101 J
C. 8.31 J
D. 831 J

Answer: B

- Watch Video Solution

116. The heat change at constant volume for the decomposition of silver
(I) oxide is found to be 30.66 kJ . The heat change at constant pressure will be
A. 30.66 kJ
B. $>30.66 \mathrm{~kJ}$
C. $<30.66 k J$
D. Unpredictable

Answer: B

117. The maximum efficiency of a steam engine operating between $110^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$
A. 20%
B. 22.2%
C. 25%
D. 30%

Answer: B

- Watch Video Solution

118. What per cent T_{1} is of T_{2} for a heat engine whose efficiency is 10%
A. 92%
B. 10%
C. 90%
D. 100%

Answer: C

- Watch Video Solution

119. An engine operating between $100^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ takes 453.6 kcal of heat. How much useful work can be done by it ?
A. 508.8 kJ
B. 453.6 kcal
C. 508.8 kcal
D. None

Answer: A

120. Theheat capacity of liquid water at constant pressure, C_{P} is $18 \mathrm{caldeg}^{-1} \mathrm{~mol}^{-1}$. The value of heat capacity of water at constant volume, C_{V}, is approximately
A. $18 \mathrm{caldeg}^{-1} \mathrm{~mol}^{-1}$
B. $16 \mathrm{caldeg}^{-1} \mathrm{~mol}^{-1}$
C. $10.8 \mathrm{caldeg}^{-1} \mathrm{~mol}^{-1}$
D. cannot be predicted.

Answer: B

- Watch Video Solution

121. A gas is allowed to expand at constant temperature from a volume of $1.0 L$ to $10.0 L$ against an external pressure of 0.50 atm . If the gas absorbs $250 J$ of heat from the surroundings, what are the values of q and $\Delta E ?($ Given $1 L$ atm $=101 J)$
A. $\begin{array}{lll}q & w & \Delta E \\ 250 J & -455 J & -205 J\end{array}$
B. $\begin{array}{lll}q & w & \Delta E \\ -250 J & -455 J & -710 J\end{array}$
C. $\begin{array}{lll}q & w & \Delta E \\ 250 J & 455 J & 710 J\end{array}$
D. $\begin{array}{lll}q & w & \Delta E \\ 250 J & 455 J & 205 J\end{array}$

Answer: A

- Watch Video Solution

122. For the reaction between CO_{2} and graphite:
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$,
$\Delta=170 \mathrm{~kJ}$ and $\Delta S=170 . J K^{-1}$. The reaction will be spontaneous at:
A. 298 K
B. 500 K
C. 900 K
D. 1200 K

- Watch Video Solution

123. A system has internal energy equal to $U_{1}, 450 \mathrm{~J}$ of heat is taken out of it and 600 J of work is done on it. The final energy of the system will be
A. $\left(E_{1}+150\right)$
B. $\left(E_{1}+1050\right)$
C. $\left(E_{1}-150\right)$
D. None of these

Answer: A

124. Entropy of vaporisation of water at $100^{\circ} \mathrm{C}$, if molar heat of vaporisation is 9710 calmol $^{-1}$ will be
A. $20 \mathrm{calmol}^{-1} \mathrm{~K}^{-1}$
B. $26 \mathrm{calmol}^{-1} \mathrm{~K}^{-1}$
C. 24 calmol $^{-1} K^{-1}$
D. $28 \mathrm{calmol}^{-1} \mathrm{~K}^{-1}$

Answer: D

- Watch Video Solution

125. For decomposition of $A g_{2} O$ into 2 mol of $A g(s)$ and $1 / 2 \mathrm{~mol}$ of $O_{2}(g)$. The heat absorbed is 30.66 J , when the process is carried out at constant volume. The process is carried out at constant volume. The value of ΔH of process is
A. -30.66 J
B. +30.66 J
C. +32.66 K
D. Unpredictable

Answer: D

- Watch Video Solution

126. One moles of anhydrous $A B$ dissolves in water and liberates $21.0 \mathrm{Jmol}^{-1}$ of heat. The valueof ΔH^{Θ} (hydration) of $A B$ is $-29.4 \mathrm{Jmol}^{-1}$. The heat of dissolution of hydrated salt $\mathrm{AB} .2 \mathrm{H}_{2} \mathrm{O}(s)$ is
A. $50.4 \mathrm{Jmol}^{-1}$
B. $8.4 \mathrm{Jmol}^{-1}$
C. $-50.4 \mathrm{Jmol}^{-1}$
D. $-8.4 \mathrm{Jmol}^{-1}$
127. The standard entropies of $\mathrm{N}_{2}(g), H_{2}(g)$ and $N H_{3}(g)$ are $191.5,130.5,192.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. The value of ΔS^{0} during the formation of 1 mole of ammonia is
A. $-98.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. zero
C. $+129.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. $-29.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Answer: A

- Watch Video Solution

128. For hypothetical reversible reaction
$1 / 2 A_{2}(g)+3 / 2 B_{2}(g) \rightarrow A B_{3}(g), \Delta H=-20 k J$ if \quad standard
entropies of A_{2}, B_{2}, and $A B_{3}$ are 60,40 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. The above reaction will be equilibrium at
A. 400 K
B. 500 K
C. 250 K
D. 200 K

Answer: B

(D) Watch Video Solution

129. If ΔH_{f}° of $\operatorname{Icl}(g), C l(g)$ and $I(g)$ is $17.57,121.34$ and $106.96 \mathrm{Jmol}^{-1}$ respectively. Then bond dissociation energy of $\mathrm{I}-\mathrm{Cl}$ bond is
A. $35.15 \mathrm{Jmol}^{-1}$
B. $106.69 \mathrm{Jmol}^{-1}$
C. $210.73 \mathrm{Jmol}^{-1}$
D. $420.9 \mathrm{Jmol}^{-1}$

Answer: C

- Watch Video Solution

130. If the enthalpy of combustion of C (graphite) is $-393.3 \mathrm{kJmol}^{-1}$, then for producing 39.3 kJ of heat the amount of carbon required is
A. 1.5 mol
B. 0.5 mol
C. $1.2 g$
D. $12 m g$

Answer: C

131. An ideal gas expands from $10^{-3} \mathrm{~m}^{3}$ to $10^{-2} \mathrm{~m}^{3}$ at 300 K against a constant pressure of $10^{5} \mathrm{Nm}^{-2}$. The workdone is
A. $-0.9 k J$
B. -900 kJ
C. 270 kJ
D. -270 kJ

Answer: A

- Watch Video Solution

132. The equilibrium constant for certain reaction is 100 . If the value R is given to be $2 \mathrm{calK}{ }^{-1} \mathrm{~mol}^{-1}$, then standard Gibb's free energy change will be
A. $-2.764 k c a l$
B. 2.674 kcal
C. 2.764 kcal
D. none of these

Answer: D

- Watch Video Solution

133. Bond dissociation energy of $\mathrm{O}_{2}(\mathrm{~g})$ is $x \mathrm{kJmol}^{-1}$. This means that
A. $x k J$ of energy is required to break one O_{2} molecule into atom
B. $x k J$ of energy is required to break 1 mole of $O=O$ bond in
gaseous state
C. $x k J$ of energy is needed to convert $O(g)$ in $O^{-1}(g)$
D. $x k J$ of energy is required to break $O=O$ bonds in $16 g$ of O_{2} gas.

Answer: B

134. $\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(g), \Delta H=+43.7 \mathrm{~kJ}$
$\mathrm{H}_{2} \mathrm{O}(s) \rightarrow \mathrm{H}_{2} \mathrm{O}(l), \Delta H=+6.05 k J$
The value of $\Delta H_{(~} \subset \lim$ ation) of ice is
A. $49.75 \mathrm{kJmol}^{-1}$
B. $37.65 \mathrm{kJmol}^{-1}$
C. $43.7 \mathrm{kJmol}^{-1}$
D. none of these

Answer: A

(D) Watch Video Solution

135. Given that
$\mathrm{CH}_{4}(g)+360 k J \rightarrow C(g)+4 H(g)$

$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+620 \mathrm{~kJ} \rightarrow 2 \mathrm{C}(\mathrm{g})+6 \mathrm{H}(\mathrm{g})$

The value of $C-C$ bond enegry is
A. $260 \mathrm{kJmol}^{-1}$
B. $180 \mathrm{kJmol}^{-1}$
C. $130 \mathrm{kJmol}^{-1}$
D. $80 \mathrm{kJmol}^{-1}$

Answer: D

- Watch Video Solution

136. For a reaction
$B r_{2}(l)+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BrCl}$ at 300 K the value of $\Delta H=7 \mathrm{kcal}$ and ΔS is $25 \mathrm{calK} \mathrm{K}^{-1}$. The free energy change is
A. -500 cal
B. 7493 cal
C. 18 kJ
D. 150 kcal

Answer: A

- Watch Video Solution

137. At what temperature, ΔG of a reaction is equal to $-5.2 \mathrm{kJmol}^{-1}$?
ΔH and ΔS of the reaction are respectively $145.6 \mathrm{kmol}^{-1}$ and $116 \mathrm{JK}^{-1}$.
A. $1300^{\circ} \mathrm{C}$
B. 130 K
C. 1300 K
D. $130^{\circ} \mathrm{C}$

Answer: C

138. For a reaction
$A(g)+3 B(g) \rightarrow 2 C(g), \Delta H^{\circ}=-24 k J$
The value of ΔG° is $-9 k J$. The standard entropy change of reaction is
A. $5 \mathrm{JK}^{-1}$
B. $50 \mathrm{JK}^{-1}$
C. $500 \mathrm{JK}^{-1}$
D. $0.5 \mathrm{JK}^{-1}$

Answer: B

- Watch Video Solution

139. Consider the following reaction at equilibrium
$2 \mathrm{Fe}^{2+}(a q)+\mathrm{Cu}^{2+} \rightarrow 2 \mathrm{Fe}^{3+}(a q)+\mathrm{Cu}$
When the reaction comes to equilibrium, what is the cell voltage ?
A. 0.43 V
B. 1.11 V
C. 0.78 V
D. 0 V

Answer: D

(D) Watch Video Solution

140. A gas absorbs 400 J of heat and expands by $2 \times 10^{-3} \mathrm{~m}^{3}$ against a constant pressure of $10^{5} \mathrm{Nm}^{-2}$. The cahnge in internal energy of gas is
A. Zero
B. 200 J
C. -600 J
D. -200 J
141. The enthalpy of formation of ammonia is $-46.0 \mathrm{kJmol}^{-1}$. The enthalpy for the reaction $2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NH}_{3}(\mathrm{~g})$
A. -46.0 kJ
B. 46.0 kJ
C. 184.0 kJ
D. -184.0 kJ

Answer: D

- Watch Video Solution

142. Which one of the following relations is incorrect ?
A. $\Delta H=\Delta G+T \Delta S$
B. $\Delta H=\Delta G-T \Delta S$
C. $\Delta S=\frac{(\Delta H-\Delta G)}{T}$
D. $\Delta G=\Delta H-T \Delta S$

Answer: B

- Watch Video Solution

143. The work done by the system in a cyclic process involving one mole of an ideal monoatomic gas is $-50 \mathrm{~kJ} / \mathrm{cyc} \leq$. The heat absorbed by the system per cycle is
A. Zero
B. 50 kJ
C. $-50 k J$
D. 250 kJ

- Watch Video Solution

144. The work done by the system in the conversion of 1 mol of water at $100^{\circ} C$ and 760 torr to steam is -3.1 kJ . Calculate the ΔE for the conversion (Latent heat of vaporisation of water is $40.65 \mathrm{kJmol}^{-1}$)
A. 43.75 kJ
B. 101.35 kJ
C. 37.55 kJ
D. -40.65 kJ

Answer: C

- Watch Video Solution

145. If $\Delta H_{f}(X), \Delta H_{f}(Y), \Delta H_{f}(R)$ and $\Delta H_{f}(S)$ denote the enthalpies of formation of X, Y, R and S respectively, the enthalpy of
the reaction $X+Y \rightarrow R+S$ is given by
A. $\Delta H_{f}(X)+\Delta H_{f}(Y)$
B. $\Delta H_{f}(R)+\Delta H_{f}(S)$
C. $\Delta H_{f}(X)+\Delta H_{f}(Y)-\Delta H_{f}(R)-\Delta H_{f}(S)$
D. $\Delta H_{f}(R)+\Delta H_{f}(S)-\Delta H_{f}(X)-\Delta H_{f}(Y)$

Answer: D

- Watch Video Solution

146. The enthalpy of the reaction

$$
\begin{aligned}
& \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(g) \quad \text { is } \quad \Delta H_{1} \quad \text { and that of } \\
& \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l) \text { is } \Delta H_{2} \text {. Then }
\end{aligned}
$$

A. $\Delta H_{1}>\Delta H_{2}$
B. $\Delta H_{1}=\Delta H_{2}$
C. $\Delta H_{1}<\Delta H_{2}$
D. $\Delta H_{1}+\Delta H_{2}=0$

Answer: A

- Watch Video Solution

147. The enthalpy of the reaction :
$\mathrm{H}_{2} \mathrm{O}_{2}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$ is $-23.5 \mathrm{kcalmol}^{-1}$ and the enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is $-68.3 \mathrm{kcalmol}^{-1}$. The enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}_{2}(l)$ is
A. $-44.8 \mathrm{kcalmol}^{-1}$
B. $44.8 \mathrm{kcalmol}^{-1}$
C. $-91.8 \mathrm{kcalmol}^{-1}$
D. $91.8 \mathrm{kcalmol}^{-1}$

Answer: A

148. One mole of a gas absorbs 200 J of heat at constant volume. Its temperature rises from 298 K to 308 K . The change in internal energy is
A. 200 J
B. -200 J
C. $200 \times \frac{308}{298} J$
D. $200 \times \frac{298}{308} J$

Answer: A

(D) Watch Video Solution

149. Work done on a system when one mole of an an ideal gas at 500 K is compressed isothermally and reversibly to $1 / 10$ th of its original volume ($\mathrm{R}=2$ cal).
A. 500 kcal
B. 1.51 kcal
C. -23.03 kcal
D. 2.303 kcal

Answer: D

(D) Watch Video Solution

150. For the reversible isothermal expansion of one mole of an ideal gas at 300 K , from a volume of $10 \mathrm{dm}^{3}$ to $20 \mathrm{dm}^{3}, \Delta H$ is -
A. $1.73 k J$
B. -1.73 kJ
C. 3.46 kJ
D. Zero
151. The latent heat of vaporisation of water at $100^{\circ} \mathrm{C}$ is $540 \mathrm{calg}^{-1}$. Calculate the entropy increase when one mole of water at $100^{\circ} \mathrm{C}$ is evaporated
A. $26 \mathrm{calK}^{-1} \mathrm{~mol}^{-1}$
B. $1.82 \mathrm{calK}^{-1} \mathrm{~mol}^{-1}$
C. $367 \mathrm{calK}^{-1} \mathrm{~mol}^{-1}$
D. $540 \times 18 \mathrm{calK}^{-1} \mathrm{~mol}^{-1}$

Answer: A

- Watch Video Solution

152. Given that $\frac{1}{2} S_{8}(s)+6 O_{2}(g) \rightarrow 4 S O_{3}(g), \Delta H^{\circ}=-1590 \mathrm{~kJ}$ The standard enthalpy of formation of SO_{3} is
A. $-1590 \mathrm{kJmol}^{-1}$
B. $-397.5 \mathrm{kJmol}^{-1}$
C. $-3.975 \mathrm{kJmol}^{-1}$
D. $+397.5 \mathrm{kJmol}^{-1}$

Answer: B

- Watch Video Solution

153. For the process
$\mathrm{NH}_{3}(g)+\mathrm{HCI}(g) \rightarrow \mathrm{NH}_{4} \mathrm{CI}(s)$
A. Both ΔH and ΔS are +ve
B. ΔH is -ve ΔS is +ve
C. ΔH is +ve ΔS is -ve
D. Both ΔH and ΔS are -ve
154. The enthalpy change at $298 K$ of the reaction
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$ is $-23.5 \mathrm{kcalmol}^{-1}$ and enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})$ is $-44.8 \mathrm{kcalmol}^{-1}$. The enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}(l)$ is
A. $-68.3 \mathrm{kcalmol}^{-1}$
B. $68.3 \mathrm{kcalmol}^{-1}$
C. $-91.8 \mathrm{kcalmol}^{-1}$
D. $91.8 \mathrm{kcalmol}^{-1}$

Answer: A

- Watch Video Solution

155. If $S+O_{2} \rightarrow S O_{2}, \Delta H=-298.2 \mathrm{~kJ} \mathrm{~mole}^{-1}$
$S O_{2}+\frac{1}{2} O_{2} \rightarrow S O_{3} \Delta H=-98.7 \mathrm{~kJ} \mathrm{~mole}^{-1}$
$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}, \Delta H=-130.2 \mathrm{~kJ} \mathrm{~mole}^{-1}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}, \Delta H=-287.3 \mathrm{~kJ} \mathrm{~mole}^{-1}$
the enthlapy of formation of $\mathrm{H}_{2} \mathrm{SO}_{4}$ at 298 K will be
A. $-814.4 k J$
B. $-650.3 k J$
C. $-320.5 k J$
D. -433.5 kJ

Answer: A

- Watch Video Solution

156. The entropy change for the fusion of 1 mol of a solid which melts at $27^{\circ} \mathrm{C}$ is (latent heat of fusion $=600 \mathrm{kcalmol}^{-1}$)
A. 2 caldeg ${ }^{-1}$
B. 22.2 caldeg $^{-1}$
C. 180kcaldeg
D. $0.5 \mathrm{cal}^{-1} \mathrm{deg}$

Answer: A

- Watch Video Solution

157. The heat change for the following reaction at $298 K$ and constant
pressure is $+7.3 k c a l$
$A \circ B(s) \rightarrow 2 A(s)+\frac{1}{2} B_{2}(g), \Delta H=+7.3 k c a l$
The heat change at constant volume would be
A. +7.3 kcal
B. More than $7.3 k c a l$
C. Less than 7.3 kcal
D. Zero

Answer: C

- Watch Video Solution

158. Which of the following equations express ΔH as heat of combustion ?
A. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}(\mathrm{g})$
B. $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(g)$
C. $\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
D. $2 \mathrm{KCIO}_{3}(s) \rightarrow 2 \mathrm{KCI}(s)+3 \mathrm{O}_{2}(g)$

Answer: C

- Watch Video Solution

159. The enthalpy of formation of ammonia is $-46.0 \mathrm{KJmol}^{-1}$. The enthalpy change for the reaction $2 \mathrm{NH}_{3}(g) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$ is :
A. +46.0 kJ
B. +92.0 kJ
C. $-23 k J$
D. $-92 k J$

Answer: B

- Watch Video Solution

160. The heat evolved in combustion of benzene is given by the following equation :
$C_{6} \mathrm{H}_{6}+15 / 2 \mathrm{O}_{2} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{CO}_{2}: \Delta H=-3264.6 \mathrm{~kJ}$
Which of the following quantities of heat will be evolved when $39 g$ of benzene are burnt in an open container?
A. $-816.15 k J$
B. $-1632.3 k J$
C. $-6528.2 k J$
D. $-2848.45 k J$

Answer: B

(D) Watch Video Solution

161. ΔG for a reaction at 300 K is -16 kcal and ΔH is -10 kcal . The entropy of the reaction is
A. 20 caldeg $^{-1}$
B. 86.6 caldeg $^{-1}$
C. $166 \mathrm{caldeg}^{-1}$
D. $100 \mathrm{caldeg}^{-1}$
162. Enthalpy of neutralisation of $\mathrm{NH}_{4} \mathrm{OH}$ and HCl is numerically
A. $57.1 \mathrm{kJmol}^{-1}$
B. $<57.1 \mathrm{kJmol}^{-1}$
C. $>57.1 \mathrm{kJmol}^{-1}$
D. Zero

Answer: B

(Watch Video Solution

163. The following are the heats of reactions -
(i) ΔH_{f}° of $H_{2} O_{(l)}=-68.3 \mathrm{~K} \mathrm{cal} \mathrm{mol}^{-1}$
(ii) $\Delta H_{\text {comb. }}^{\circ}$ of $C_{2} H_{2}=-337.2 \mathrm{~K} \mathrm{cal} \mathrm{mol}^{-1}$
(iii) $\Delta H_{\text {comb. }}^{\circ}$ of $C_{2} H_{4}=-363.7 \mathrm{~K} \mathrm{cal} \mathrm{mol}^{-1}$

Then heat change for the reaction $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}$ is -
A. -716.1 kcal
B. +337.2 kcal
C. -41.8 kcal
D. -579.5 kcal

Answer: C

- Watch Video Solution

164. The heat of combustion of $C H_{4(g)}, C_{(g)}$ and $H_{2(g)}$ at $25^{\circ} \mathrm{C}$ are -212.4 K cal, -94.0 K cal and -68.4 K cal respectively, the heat of formation of CH_{4} will be -
A. +54.4 kcal
B. -18.4 kcal
C. -375.2 kcal
D. +212.8 kcal

Answer: B

- Watch Video Solution

165. One mole of ice is converted into water at 273 K . The entropies of $\mathrm{H}_{2} \mathrm{O}(s)$ and $\mathrm{H}_{2} \mathrm{O}(l)$ are 38.20 and $60.01 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ respectively. Calculate the enthalpy change for this conversion a?
A. $59.54 \mathrm{Jmol}^{-1}$
B. $5954 \mathrm{Jmol}^{-1}$
C. 595. $4 \mathrm{Jmol}^{-1}$
D. $320.6 \mathrm{Jmol}^{-1}$

Answer: B

166. The equilibrium constant for a reaction is 10 . What will be the value of $\Delta G^{\Theta} ? R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, T=300 \mathrm{~K}$.
A. $-5527 \mathrm{kJmol}^{-1}$
B. $-5.527 \mathrm{kJmol}^{-1}$
C. $-55.27 \mathrm{kJmol}^{-1}$
D. $+5.527 \mathrm{kJmol}^{-1}$

Answer: B

- Watch Video Solution

167. One mole of an ideal gas expanded freely and isothermally at 300 K from 5 litres to 10 litres. If ΔE is 0 , then ΔH is
A. 5 cal
B. $5 \times 300 \mathrm{cal}$
C. zero
D. $-2 \times 5 \times 300 \mathrm{cal}$

Answer: C

- Watch Video Solution

168. For the reaction
$C_{6} H_{12}(l)+9 O_{2}(g) \rightarrow 6 \mathrm{H}_{2} \mathrm{O}(l)+6 \mathrm{CO}_{2}(g), \Delta H=-936.9 \mathrm{kcal}$ Which of the following is true ?
A. $-936.9=\Delta E-\left(2 \times 10^{-3} \times 298 \times 3\right) k c a l$
B. $+936.9=\Delta E+\left(2 \times 10^{-3} \times 298 \times 3\right) k c a l$
C. $-936.9=\Delta E+\left(2 \times 10^{-3} \times 298 \times 2\right) k c a l$
D. $-936.9=\Delta E-(20.0821 \times 298 \times 3) \mathrm{kcal}$

Answer: A

169. Given that the data for neutralization of weak acid (HA) and strong acid is :
$\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-41.80 \mathrm{~kJ}$
$\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=+-55.90 \mathrm{~kJ}$
The enthalpy of dissociation of weak acid would be
A. -97.20 kJ
B. +97.70 kJ
C. -14.10 kJ
D. 14.10 kJ

Answer: D

- Watch Video Solution

170. A system absorbs 10 kJ of heat at constant volume and its temperature rises from $27^{\circ} C$ to $37^{\circ} C$. The ΔE of reaction is
A. 100 kJ
B. 10 kJ
C. 0
D. 1 kJ

Answer: B

- Watch Video Solution

171. How many kcal of heat is evolved by the complete neutralisation of one mole sulphuric acid with NaOH ?
A. 13.7 kcal
B. 27.4 kcal
C. 6.85 kcal
D. none of these

Answer: B

- Watch Video Solution

172.

Given
$\Delta_{i} H^{\Theta}(H C N)=45.2 \mathrm{kJmol}^{-1}$
and
$\Delta_{i} H^{\Theta}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=2.1 \mathrm{kJmol}^{-1}$. Which one of the following facts is true?
A. $p K_{a}(\mathrm{HCN})=p K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$
B. $p K_{a}(\mathrm{HCN})>p K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$
C. $p K_{a}(\mathrm{HCN})<p K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$
D. $p K_{a}(H C N)=\left(\frac{45.50}{2.1}\right) p K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$

Answer: B

173. Calculate the work done when 1.0 mol of water at 373 K vaporises against an atmosheric pressure of 1.0 atm . Assume ideal gas behaviour.
A. -6200 J
B. -306 J
C. -3100 J
D. -1550 J

Answer: C

(D) Watch Video Solution

174. The maximum efficiency of heat engine operating between 100° and $25^{\circ} C$ is
A. 25%
B. 30%
C. 20.0%
D. 10%

Answer: C

- Watch Video Solution

175. A gas absorbs $250 J$ of heat and expands from 1 litre to 10 litres against the pressure 0.5 atmosphere at constant temperature. The values of q, w and ΔE are respectively
A. $+250,-455 \mathrm{~J},-205 \mathrm{~J}$
B. $250 \mathrm{~J}, 455 \mathrm{~J}, 205 \mathrm{~J}$
C. $-250 J, 205 J, 455 J$
D. $-205 \mathrm{~J},-250 \mathrm{~J},-455 \mathrm{~J}$

Answer: A

176. Which of the following value of ΔH_{f}° represent that the product is least stable?
A. $-94.0 \mathrm{kcalmol}^{-1}$
B. $-231.6 \mathrm{kcalmol}^{-1}$
C. $+21.4 \mathrm{kcalmol}^{-1}$
D. $+64.8 \mathrm{kcalmol}^{-1}$

Answer: D

- Watch Video Solution

177. The enthalpies of formation of $\mathrm{N}_{2} \mathrm{O}$ and NO are respectively 82 and $90 \mathrm{kJmol}^{-1}$. The enthalpy of reaction
$2 \mathrm{~N}_{2} \mathrm{O}(g)+\mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)$ is
A. $8 k J$
B. 88 kJ
C. $-16 k J$
D. 196 kJ

Answer: D

- Watch Video Solution

178. The value of ΔH_{O-H} is $109 \mathrm{kcalmol}^{-1}$. Then formation of one mole of water in gaseous state from $H_{2}(g)$ and $O_{2}(g)$ is acccompained by
A. release of 218 kcal of energy
B. release of 109 kcal of energy
C. absorption of 218 kcal of energy
D. Unpredictable
179. The heat of combustion of yellow phoshphorus and red phosphorus are $-9.91 \mathrm{~K} \mathrm{Jmol}^{-1}$ and $-8.78 \mathrm{KJ} / \mathrm{mol}$ respectivaly. The heat of transition from yellow phosphrous to red phosphorus is
A. $-18.69 k J$
B. $+1.13 k J$
C. +18.69 kJ
D. -1.13 kJ

Answer: D

- Watch Video Solution

180. For a system in equilibrium, $\Delta G=0$, under conditions of constant
A. temperature and pressure
B. temperature and volume
C. pressure and volume
D. energy and volume

Answer: A

- Watch Video Solution

181. In the reversible reaction of the type $A+B \Leftrightarrow A B$, in general.
A. neither of the reactions will be endothermic
B. both forward and backward reactions are exothermic
C. forward reactions will be exothermic
D. backward reaction will be exothermic

Answer: C

182. Given
$C(s)+O_{2}(g) \rightarrow C O_{2}(g), \Delta H=-395 k J$
$S(s)+O_{2}(g) \rightarrow S O_{2}(g), \Delta H=-295 k J$
$\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-1110 \mathrm{~kJ}$
The heat of formation of $C S_{2}(l)$ is
A. $125 \mathrm{kJmol}^{-1}$
B. $31.25 \mathrm{kJmol}^{-1}$
C. $62.5 \mathrm{kJmol}^{-1}$
D. $250 \mathrm{kJmol}^{-1}$

Answer: A

(D) Watch Video Solution

183. In an electrochemical cell, if E° is the e.m.f. of the cell involving ' n ' mole of electrons, then ΔG° is
A. $\Delta G^{\circ}=n F E^{\circ}$
B. $\Delta G^{\circ}=-n F E^{\circ}$
C. $E^{\circ}=n F \Delta E^{\circ}$
D. $\Delta G=n F / E^{\circ}$

Answer: B

(D) Watch Video Solution

184. If the enthalpy of vaporisation of water is $186.5 \mathrm{Jmol}^{-1}$, then entropy of its vaporisation will be
A. $0.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. $1.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
C. $1.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. $2.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
185. The ΔH value for reaction
$\mathrm{C}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}$ and $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$ are 100 and 200 kJ respectively. The heat of reaction for $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$ will be
A. 50 kJ
B. 100 kJ
C. 150 kJ
D. 300 kJ

Answer: D

- Watch Video Solution

186. Given :
$C($ diamond $)+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \Delta H=-395 k J$
$C($ graphite $)+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \Delta H=-393 k J$
The enthalpy of formation of diamond from graphite is
A. +2.0 kJ
B. -1.5 kJ
C. $-788 k J$
D. 788 kJ

Answer: A

(D) Watch Video Solution

187. The law of Lavoisier and Laplace illustrates
A. the priniciple of conservation of energy
B. equivalence of mechanical and thermal energy
C. the priniciple of conservation of matter
D. equivalent of mechanical and chemical energy.

Answer: A

- Watch Video Solution

188. For the reaction
$H_{2}+I_{2} \Leftrightarrow 2 N H I, \Delta H=12.40 \mathrm{kcal}$. The heat of formation (ΔH) of $H I$ is
A. 12.4 kcal
B. $-12.4 k \mathrm{cal}$
C. -6.20 kcal
D. 6.20 kcal

Answer: D

- Watch Video Solution

189. According to the reaction
$\mathrm{C}_{6} \mathrm{H}_{6}+15 / 2 \mathrm{O}_{2} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{CO}_{2}$
$(\Delta H=-3264.6 \mathrm{~kJ} / \mathrm{mol})$ the energy evolved when $3.9 g$ of benzene is burnt in air will be
A. $163.23 \mathrm{~kJ} / \mathrm{mol}$
B. $326.4 \mathrm{~kJ} / \mathrm{mol}$
C. $32.64 \mathrm{~kJ} / \mathrm{mol}$
D. $3.624 \mathrm{~kJ} / \mathrm{mol}$

Answer: A

- Watch Video Solution

190. Thermodynamic equilibrium involves
A. Chemical equilibrium
B. Mechanical equilibrium
C. Thermal equilibrium
D. All of the above simultaneously

Answer: D

- Watch Video Solution

191. In general, for exothermic reactions to be spontaneous
A. temperature should be high
B. temperature should be zero
C. temperature should be low
D. temperature has no effect

Answer: C

- Watch Video Solution

192. The heat of neutrasation of a strong acid and a strong alkali is $57.0 \mathrm{~K} \mathrm{Jmol}^{-1}$. The heat released when 0.5 mole of HNO_{3} solution is mixed with 0.2 mole of KOH is
A. 57.0 kJ
B. 11.40 kJ
C. 28.5 kJ
D. 34.9 kJ

Answer: B

- Watch Video Solution

193. Which of the following is true for a reaction $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at $100^{\circ} \mathrm{C}, 1 \mathrm{~atm}$. Pressure
A. $\Delta H=\Delta E$
B. $\Delta E=0$
C. $\Delta H=0$
D. $\Delta H=T \Delta S$

Answer: D

- Watch Video Solution

194. The free energy change $\Delta G=0$, when
A. the system is at equilibrium
B. catalyst is added
C. reactants are intially mixed throughly
D. the reactants are completely consumed.

Answer: A

- Watch Video Solution

Given: $\quad C+2 S \rightarrow C S_{2} \quad \Delta H=117 k J$
195.

$$
\begin{array}{ll}
C+O_{2} \rightarrow C O_{2} & \Delta H=-393 k J \\
S+O_{2} \rightarrow S O_{2} & \Delta H=-297 k J
\end{array}
$$

The heat is combustion of $C S_{2}$ to form CO_{2} and SO_{2} is
A. $-1104 \mathrm{kJmol}^{-1}$
B. $+1104 \mathrm{kJmol}^{-1}$
C. $+807 \mathrm{kJmol}^{-1}$
D. $-807 \mathrm{kJmol}^{-1}$

Answer: A

- Watch Video Solution

196. The enthalpies of combustion of carbon and carbon monoxide are $-390 \mathrm{kJmol}^{-1}$ and $-278 \mathrm{kJmol}^{-1}$ respectively. The enthalpy of formation of carbon monoxide is
A. $668 \mathrm{kJmol}^{-1}$
B. $112 \mathrm{kJmol}^{-1}$
C. $-112 \mathrm{kJmol}^{-1}$
D. $-668 \mathrm{kJmol}^{-1}$

Answer: C

- Watch Video Solution

197. The combustion reaction occuring in an automobile is $2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ This reaction is accompanied with:
A.,,+-+
B.,,-+-
C.,,-++
D.,,++-
198. Latent heat of vaporisation of a liquid at 500 K and 1 atm pressure is $10.0 \mathrm{kcal} / \mathrm{mol}$. What will be the change in internal energy (ΔE) of 3 mol of liquid at same temperature?
A. 13.0 kcal
B. -13.0 kcal
C. 27.0 kcal
D. -27.0 kcal

Answer: C

- Watch Video Solution

199. The table given below lists the bond dissociation energy ($E_{\text {diss }}$) for single covalent bonds formed between C and atoms A, B, D, E.

Bond $E_{\mathrm{diss}}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$
$C-A$ 240
$C-B$ 382
$C-D$ 276
$C-E$ 486

Which of the atoms has smallest size ?
A. D
B. E
C. A
D. B

Answer: B

- Watch Video Solution

200. The enthalpy of formation for $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $25^{\circ} \mathrm{C}$ and 1 atm . Pressure be $52,-394$ and $-286 \mathrm{kJmol}^{-1}$ respectively. The enthalpy of combustion of $C_{2} H_{4}(g)$ will be
A. $+1412 \mathrm{kJmol}^{-1}$
B. $-1412 \mathrm{kJmol}^{-1}$
C. $+141.2 \mathrm{kJmol}^{-1}$
D. $-141.2 \mathrm{kJmol}^{-1}$

Answer: B

- Watch Video Solution

201. For a reaction to occur spontaneously
A. $(\Delta H-T \Delta S))$ must be negative
B. $(\Delta H+T \Delta S))$ must be negative
C. ΔH must be nagative.
D. ΔS must be nagative.
202. For a process to be spontaneous
A. ΔG must be $-v e$
B. ΔG should be $+v e$
C. ΔH must be $-v e$
D. ΔS must be $-v e$

Answer: A

- Watch Video Solution

203. A particular reaction has a negative value for the free energy change. Then at ordinary temperature
A. It has a large $-v e$ value for the entropy change
B. It has a large $+v e$ value for the entropy change
C. It has small $+v e$ value for enthalpy change
D. It has a $+v e$ value for the entropy change and $a-v e$ value for the enthalpy change

Answer: D

- Watch Video Solution

204. The calorific value of fat is
A. less than that of carbohydrates and protein
B. less than that of protein but more than carbohydrates
C. less than that of carbohydrates but more than that of protein.
D. more than that of carbohydrate and protein.

Answer: D

205. The heat of formation of the compound in the following reaction is
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})+44 \mathrm{kcal}$
A. $-44 \mathrm{kcalmol}^{-1}$
B. $-22 \mathrm{kcalmol}^{-1}$
C. $11 \mathrm{kcalmol}^{-1}$
D. $-88 \mathrm{kcalmol}^{-1}$

Answer: B

(D) Watch Video Solution

206. When water is added to quick lime, the reaction is
A. explosive
B. endothermic
C. exothermic
D. photochemical

Answer: C

- Watch Video Solution

207. Which relation is correct ?
A. $\Delta G=\Delta H-T \Delta S$
B. $\Delta G=\Delta H+T \Delta S$
C. $\Delta G=T \Delta S-\Delta H$
D. $\Delta G=\Delta H-S \Delta T$

Answer: A

- Watch Video Solution

208. Variation of heat of reaction with temperature is known as
A. Vant Hoff's isotherm
B. Vant Hoff's isochore
C. Kirchoff's equation
D. Kemmerling equation

Answer: C

- Watch Video Solution

209. Enthalpy of reaction ΔH is expressed as
A. $\Delta H=\sum H_{P}-\sum H_{R}$
B. $\Delta H=d H_{P}+d H_{R}$
C. $\Delta H=\frac{d H_{P}}{d H_{R}}$
D. $\Delta H=\frac{\sum H_{P}}{\sum H_{R}}$
210. Heat capacity is
A. $\frac{d Q}{d T}$
B. $d Q \times d T$
c. $\sum Q \cdot \frac{1}{d t}$
D. none of these

Answer: A

- Watch Video Solution

211. Given that $C+O_{2} \rightarrow \mathrm{CO}_{2}, \Delta H^{\circ}=-x K J \quad$ and $2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}, \Delta \mathrm{H}^{\circ}=-y \mathrm{KJ}$ The enthalpy of formation of carbon monoxide will be
A. $y-2 x$
B. $\frac{2 x-y}{2}$
C. $\frac{y-2 x}{2}$
D. $2 x-y$

Answer: C

- Watch Video Solution

212. The enthalpy change of a reaction does not depend on
A. state of reactants and products
B. nature of reactants and products
C. different intermediate reactions
D. initial and final enthalpy change of reaction

Answer: C

213. Given : $S_{(s)}+\frac{3}{2} O_{2(g)} \rightarrow \mathrm{SO}_{3(g)+2 X K \text { cal }}$
$\mathrm{SO}_{2(s)}+\frac{1}{2} \mathrm{O}_{2(g)} \rightarrow \mathrm{SO}_{3(g)+Y K c a l}$
The heat of formation of SO_{2} is : -
A. $(2 x-y)$
B. $(2 x+y)$
C. $(x+y)$
D. $2 x / y$

Answer: A

(D) Watch Video Solution

214. $\mathrm{NH}_{3}(g)+3 \mathrm{Cl}_{2} \rightarrow \mathrm{NCl}_{3}(g)+3 \mathrm{HCl}(\mathrm{g}), \Delta \mathrm{H}_{1}$
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \Delta \mathrm{H}_{2}$
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g}), \Delta \mathrm{H}_{3}$

The heat of formation of $\mathrm{NCl}_{3}(\mathrm{~g})$ in the terms of
$\Delta H_{1}, \Delta H_{2}, \Delta H_{3}$ is :
A. $\Delta H_{f}=-\Delta H_{1}+\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
B. $\Delta H_{f}=\Delta H_{1}+\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
C. $\Delta H_{f}=\Delta H_{1}-\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
D. None of the above

Answer: A

(D) Watch Video Solution

215. When enthalpy and entropy change for a chemical reaction are -2.5×10^{3} cals and 7.4 cals deg^{-1} respectively. Predict that reaction at 298 K is
A. spontaneous
B. reversible
C. irreversible
D. non-spontaneous

Answer: A

- Watch Video Solution

216. The bond dissociation energy of gaseous $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and HCl are 104,58 and $103 \mathrm{kcalmol}^{-1}$ respecitvely. Calculate the enthalpy of formation for HCl gas.
A. $-44 k c a l$
B. -88 kcal
C. $-22 k c a l$
D. -11 kcal

Answer: C

217. At constant T and P, Which of the following statements is correct for the reaction,
$\mathrm{CO}(G)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$,
A. $\Delta H=\Delta E$
B. $\Delta H<\Delta E$
C. $\Delta H>\Delta E$
D. ΔH is independent of the physical states of reactants.

Answer: B

(D) Watch Video Solution

218. A reaction is not feasible if
A. ΔH is positive and ΔS is also positive
B. ΔH is positive and ΔS is negative
C. ΔH is negative and ΔS is also negative
D. ΔH is negative and ΔS is positive

Answer: B

- Watch Video Solution

219. One mole of an ideal gas at 300 K is expanded isothermally from an inital volume of 1 litre to 10 litres. The ΔE for this process is $\left(R=2\right.$ calmol $\left.^{-1} K^{-1}\right)$
A. 163.7 cal
B. 1381.1 cal
C. 9 lt atm
D. zero

Answer: D

220. Identify the correct statement regarding entropy
A. At absolute zero of temperature, the entropy of perfectly crystalline substance is $+v e$
B. At absolute zero of temperature entropy of perfectly crystalline substance is taken to be zero
C. At $0^{\circ} C$ the entropy of a perfectly crystalline substance is taken to be zero
D. At absolute zero of temperature, the entropy of all crystalline substance is taken to be zero

Answer: B

- Watch Video Solution

221. The reaction is sontaneous if the cell potential is
A. Positive
B. Negative
C. Zero
D. Infinite

Answer: A

- Watch Video Solution

222. In an endothermic reaction, the value of ΔH is
A. Zero
B. Positive
C. Negative
D. Constant

(D) Watch Video Solution

223. Enthalpy of an exothermic reaction is always
A. positive
B. negative
C. zero
D. may be positive or negative.

Answer: B

- Watch Video Solution

224. ΔH for solid to liquid transitions for protein A and B are
$2.73 \mathrm{kcal} / \mathrm{mol}$ and $3.0 \mathrm{kcal} / \mathrm{mol}$.The two melting points are $0^{\circ} \mathrm{C}$ and
$30^{\circ} C$ respectively. The entropy changes ΔS_{A} and ΔS_{B} at two transition temperatures are related as
A. $\Delta S_{A}=\Delta S_{B}$
B. $\Delta S_{A}<\Delta S_{B}$
C. $\Delta S_{B}<\Delta S_{A}$
D. $\Delta S_{B} \frac{300 \Delta S_{A}}{273}$

Answer: C

- Watch Video Solution

225. The heat absored at constant volume is equal to the system's change in
A. enthalpy
B. entropy
C. entropy \times temperature
D. internal energy

Answer: D

D Watch Video Solution

226. Which of the following holds good to the laws of thermodynamics for the reaction
$\mathrm{C}_{2} \mathrm{H}_{4}(g)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$
A. $\Delta H=\Delta E+R T$
B. $\Delta H=\Delta E-R T$
C. $\Delta H=\Delta E+2 R T$
D. $\Delta H=\Delta E-2 R T$

Answer: D

227. For a melting of a solid at $25^{\circ} \mathrm{C}$, the fusion process requires energy equivalent to2906joules o be added to system considering the process to be reversible at fusion point, the entropy change of the process is
A. $9.75 \mathrm{JK}^{-1}$
B. $11.272 \mathrm{JK}^{-1}$
C. $2.33 J^{-1}$
D. insufficient data

Answer: A

- Watch Video Solution

228. The difference between ΔH and ΔU for the combustion of methane at $27^{\circ} \mathrm{C}$ will be (in Jmol^{-1})

$$
\text { A. } 8.314 \times 27 \times(-3)
$$

B. $8.314 \times 300 \times(-3)$
C. $8.314 \times(300) \times(-2)$
D. $8.314 \times 300 \times 1$

Answer: C

- Watch Video Solution

229. The heat of neutralisation is maximum when
A. sodium hydroxide is neutralised by acetic acid
B. ammonium hydroxide is neutralised by acetic acid
C. ammonium hydroxide is neutralised by hydrochloric acid
D. sodium hydroxide is neutralised by hydrochloric acid

Answer: D

230. According to the second law of thermodynamics, a process (reaction) is spontaneous, if during the process
A. ΔS universe >0
B. ΔS universe $=0$
C. ΔH system >0
D. ΔS universe $=\Delta S$ system

Answer: A

(D) Watch Video Solution

231. The law of thermodynamics that provides the basis for the determination of absolute entropy of a substance is
A. Zeroth law
B. First law
C. Second law
D. Third law

Answer: D

- Watch Video Solution

232. The heat of combustion of graphite and carbon monoxide respectively are $393.5 \mathrm{kJmol}^{-1}$ and $283 \mathrm{kJmol}^{-1}$. Thus, heat of formation of carbon monoxide in kJol^{-1} is
A. +172.5
B. -110.5
C. -10760
D. -676.5

Answer: B

233. In order to decompose 9 grams of water 142.5 KJ heat is required. Hence the enthalpy of formation of water is
A. $-142.5 k J$
B. +142.5 kJ
C. $-285 k J$
D. $+285 k J$

Answer: C

- Watch Video Solution

234. In an adiabatic expansion of an ideal gas -
A. $W=-\Delta E$
B. $W=\Delta E$
C. $\Delta E=0$
D. $W=0$

Answer: B

- Watch Video Solution

235. The free energy change for a reversible reaction at equilibrium is
A. >0
B. <0
C. equal to zero
D. unpredictable

Answer: C

- Watch Video Solution

236. Which of the following conditions regarding the chemical process ensures its sponteneity at all temperatures
A. $\Delta H<0, \Delta S<0$
B. $\Delta H>0, \Delta S<0$
C. $\Delta H<0, \Delta S>0$
D. $\Delta H>0, \Delta S>0$

Answer: C

- Watch Video Solution

237. If for a given substance, melting point is T_{B} and freezing point is
T_{A} then correct variation of entropy is by graph between entropy change and temperature is
A.

B.

(C) $\Delta S \overbrace{}^{T_{A}} T_{B}^{T_{B}}$
T
C.
D.
(D) $\Delta S \underbrace{\overbrace{A}^{T} \overbrace{B}^{T}}_{T}$

Answer: A

- Watch Video Solution

238. When 1 mole of gas is heated at constant volume. Temperature is raised from 298 to 308 K . Heat supplied to the gas is 500 J . Then which stamenet is correct?
A. $q=W=500 J, \Delta U=0$
B. $q=\Delta U=500 J, W=0$
C. $q=W=500 J, \Delta U=500$
D. $\Delta U=0, q=W=-500 J$

Answer: B

- Watch Video Solution

239. Enthalpy of $\mathrm{CH}_{4}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH}$ is
negative. If enthalpy of combustion of CH_{4} and $\mathrm{CH}_{3} \mathrm{OH}$ are x and y respectively, then which relation is correct?
A. $x>y$
B. $x<y$
C. $x=y$
D. $x \geq y$

- Watch Video Solution

240. The heat required to raise the temperature of a body by 1 K is called
A. specific heat
B. thermal capacity
C. water equivalent
D. None of these

Answer: B

- Watch Video Solution

241. A heat engine absorbs heat Q_{1} at temperature T_{1} and Q_{2} at temperature T_{2}. Work done by the engine is $\left(Q_{1}+Q_{2}\right)$. This data:
A. violates 1 st law of thermodynamics
B. violates 1 st law of thermodynamics if Q_{1} is negative
C. violates 1 st law of thermodynamics if Q_{2} is negative
D. does not violates first law of thermodynamics

Answer: D

- Watch Video Solution

242. An endotthermic reaction is non-spontaneous at freezing point of water and becomes feasible at its boiling point, then:
A. ΔH is $-v e, \Delta S$ is $+v e$
B. ΔH and ΔS both are $+v e$
C. ΔH and ΔS both are $-v e$
D. ΔH is $+v e, \Delta S$ is $-v e$
243. Compounds with high heat of formation are less stable because
A. it is difficult to synthesise them
B. energy rich state leads to instability
C. high temperature is required to synthesise them
D. molecules of such compounds are distrubed

Answer: B

- Watch Video Solution

244. Which of the following statements is true?
A. ΔG may be lesser or greater or equal to ΔH
B. ΔG is always proportional to ΔH
C. ΔG is always greater than ΔH
D. ΔG is always less than ΔH

Answer: A

- Watch Video Solution

245. The intensive property among these quantities is
A. mass
B. volume
C. enthalpy
D. mass/volume

Answer: D

- Watch Video Solution

246. An adiabatic expansion of an Ideal gas always has
A. decrease in temperature
B. $q=0$
C. $W=0$
D. $\Delta H=0$

Answer: B

- Watch Video Solution

247. The favourable conditions for a spontaneous reaction are
A. $T \Delta S>\Delta H, \Delta H=+v e, \Delta S=+v e$
B. $T \Delta S>\Delta H, \Delta H=+v e, \Delta S=-v e$
С. $T \Delta S=\Delta H, \Delta H=-v e, \Delta S=-v e$
D. $T \Delta S=\Delta H, \Delta H=+v e, \Delta S=+v e$

(D) Watch Video Solution

248. In a closed insulated container, a liquid is stirred with a paddle to increase the temperature. Which of the following is true?
A. $\Delta E=W \neq 0, q=0$
B. $\Delta E=W=q \neq 0$
C. $\Delta E=0, W=q \neq 0$
D. $W=0, \Delta E=q \neq 0$

Answer: A

- Watch Video Solution

249. C (diamond) $\rightarrow C$ (Graphite), $\Delta H=-v e$. Then shows that
A. Graphite is more stable than diamond
B. Graphite has more energy than diamond
C. Both are equally stable
D. Stability cannot be predicted

Answer: A

- Watch Video Solution

250. If a reaction involves only solids and liquid, which of the following is true
A. $\Delta H<\Delta E$
B. $\Delta H=\Delta E$
C. $\Delta H>\Delta E$
D. $\Delta H=\Delta E+R T \Delta n$
251. Mechanical work is specially important in systems that contain
A. solid-liquid
B. liquid-liquid
C. solid-solid
D. gases

Answer: D

- Watch Video Solution

252. The law formulated by Nernst is
A. First law of thermodynamics
B. Second law of thermodynamics
C. Third law of thermodynamics
D. Both A and B

Answer: C

- Watch Video Solution

253. Heat exchanged in a chemical reaction at constant temperature and pressure is called
A. entropy change
B. enthalpy change
C. internal energy change
D. free energy change

Answer: B

254. Heat of combustion ΔH° for $C(s), H_{2}(g)$ and $C H_{4}(g)$ are 94, -68 and $-213 \mathrm{Kcal} / \mathrm{mol}$. Then ΔH° for $C(s)+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \Delta \mathrm{CH}_{4}(\mathrm{~g})$ is
A. -17 kcal
B. -111 kcal
C. -170 kcal
D. 85 kcal

Answer: A

(D) Watch Video Solution

255. The enthalpy of formation of ammonia is $-46.2 \mathrm{~mol}^{-1}$. The enthalpy change for the reaction
$2 \mathrm{NH}_{3} \rightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$ is
A. 42.0 kJ
B. 64.0 kJ
C. 80.0 kJ
D. 92.0 kJ

Answer: D

- Watch Video Solution

256. The molar heat capacity of water at constant pressure, C_{P}, is $75 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. When 1.0 kJ of heat is supplied to 100 g of water which is free to expand, the increase in temperature of water is
A. 6.6 K
B. 1.2 K
C. $2.4 K$
D. 4.8 K
257. What is the entropy change (in $J K^{-1} \mathrm{~mol}^{-1}$) when one mole of ice is converted into water at $0^{\circ} C$?
(The enthalpy change for the conversion of ice to liquid water is $6.0 \mathrm{~K} \mathrm{Tmol}^{-1}$ at $0^{\circ} \mathrm{C}$)
A. 21.98
B. 20.13
C. 2.013
D. 2.198

Answer: A

- Watch Video Solution

258. For which one of the following equation is $\Delta H_{\text {reaction }}^{\circ}$ equal to
ΔH_{f}° for the product ?
A. $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
B. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})$
C. $\mathrm{CH}_{4}(g)+2 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{l})+2 \mathrm{HCl}(\mathrm{g})$
D. $\mathrm{Xe}(g)+2 \mathrm{~F}_{2}(g) \rightarrow X e F_{4}(g)$

Answer: D

- Watch Video Solution

259. If a $298 K$ the bond energies of $C-H, C-C, C=C$ and $H-H$ bonds are respectivly $414,347,615 \mathrm{KJmol}^{-1}$, the vlaue of enthalpy change for the reaction
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}(\mathrm{~g})$ at 298 K will be
A. $+250 k J$
B. -250 kJ
C. $+125 k J$
D. $-125 k J$

Answer: D

- Watch Video Solution

260. The enthalpy change for a reaction does not depend upon:
A. the physical states of reactants ad products
B. use of different reactants for the same product
C. the nature of intermediate reaction steps.
D. the differences in initial or final temperature of involved substances

Answer: C

261. In an irreversible process taking place at constant T and P and in which only pressure-volume work is being done, the change in Gibbs free energy $(d G)$ and the change in entropy $(d S)$ satisfy the criteria
A. $(d S)_{V, E}<0,(d G)_{T, P}<0$
B. $(d S)_{V, E}>0,(d G)_{T, P}<0$
C. $(d S)_{V, E}=0,(d G)_{T, P}=0$
D. $(d S)_{V, E}=0,(d G)_{T, P}>0$

Answer: B

- Watch Video Solution

262. The internal energy change when a system goes fromk state A to B is $40 \mathrm{kJmol}^{-1}$. If the system goes from A to B by a reversible path
and returns to state A by an irreversible path, what would be the net change in internal energy?
A. 40 kJ
B. $>40 \mathrm{~kJ}$
C. $<40 k J$
D. zero

Answer: D

(D) Watch Video Solution

263. The correct relationship between free energy change in a reaction and the corresponding equilibrium constant K_{c} is:
A. $\Delta G=R T \ln K_{c}$
B. $-\Delta G=R T \ln K_{c}$
C. $\Delta G^{\circ}=R T \ln K_{c}$
D. $-\Delta G^{\circ}=R T \ln K_{c}$

Answer: D

- Watch Video Solution

264. The enthalpies of formation of $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Cr}_{2} \mathrm{O}_{3}$ are -1596 KJ and $-1134 K J$ respectively. ΔH for the reaction $2 \mathrm{Al}+\mathrm{Cr}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Cr}+\mathrm{Al}_{2} \mathrm{O}_{3}$ is
A. $-1365 k J$
B. +2730 kJ
C. $-2730 k J$
D. $-462 k J$

Answer: D

265. Enthalpy of formation of HF and HCl are -161 kJ and $-92 k J$ respectively. Which of the following statements is incorrect ?
A. The affinity of fluorine to hydrogen is greater than the affinity of chlorine to hydrogen
B. HF is more stable than HCl
C. HCl is more stable than $H F$
D. HF and HCl are endothermic compounds.

Answer: C

- Watch Video Solution

266. Heat liberated when 100 mL of 1 NNaOH is neutralised by 300 mL of 1 NHCl
A. 22.92 kJ
B. 17.19 kJ
C. 11.46 kJ
D. 5.73 kJ

Answer: D

- Watch Video Solution

267. Which of the following has ΔS° greater than zero
A. $\mathrm{CaO}(s)+\mathrm{CO}_{2}(g) \Leftrightarrow \mathrm{CaCO}_{3}(s)$
B. $\mathrm{NaCl}(a q) \Leftrightarrow \mathrm{NaCl}(s)$
C. $\mathrm{NaNO}_{3}(s) \Leftrightarrow \mathrm{Na}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q)$
D. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$

Answer: C

- Watch Video Solution

268. The system in which there is no exchange of matter, work, or energy from the surroundings is
A. closed
B. isolated
C. adiabatic
D. isothermal

Answer: B

(D) Watch Video Solution

269. A gas can expand from $100 m L$ to $250 m L$ under a constant pressure of 2 atm . The work done by the gas is
A. 30.38 joule
B. 25 joule
C. $5 k$ joule
D. 16 joule

Answer: A

- Watch Video Solution

270. Hess's law states that
A. the standard enthalpy of an overall reaction is the sum of the enthalpy changes in individual reactions.
B. enthalpy of formation of a compound is same as the enthalpy of decompostion of the compound into constituent elements, but with opposite sign.
C.at constant temperture the pressure of a gas is inversely proportional to its volume
D. the mass of a gas dissolved per litre of a solvent is porportional to the pressure of the gas in equilibrium with the solution.

Answer: A

- Watch Video Solution

271. The free energy change for the following reactions are given below $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{5}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta G^{\circ}=-1234 \mathrm{~kJ}$
$C(s)+O_{2}(g) \rightarrow O_{2}(g), \Delta G^{\circ}=-394 k J$
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta G^{\circ}=237 \mathrm{~kJ}$
What is the standard free energy change for the reaction

$$
H_{2}(g)+2 C(s) \rightarrow C_{2} H_{2}(g) ?
$$

A. 209 kJ
B. -2259 kJ
C. +2259 kJ
D. 209 kJ

(D) Watch Video Solution

272. In the thermodynamics which one of the following is not an intensive property?
A. Pressure
B. Density
C. Volume
D. Temeprature

Answer: C

(D) Watch Video Solution

273. The value of $\Delta H-\Delta E$ for the following reaction at $27^{\circ} C$ will be
$2 \mathrm{NH}_{3}(g) \rightarrow \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g)$
A. $8.314 \times 27 \times(-2)$
B. $8.314 \times 300 \times(-2)$
C. $8.314 \times 27 \times(-2)$
D. $8.314 \times 273 \times(1)$

Answer: D

- Watch Video Solution

274. For the reaction,
$A(s)+3 B(s) \rightarrow 4 C(s)+D(l)$
ΔH and ΔU are related as-
A. $\Delta H=\Delta U$
B. $\Delta H=\Delta U+3 R T$
C. $\Delta H=\Delta U+R T$
D. $\Delta H=\Delta U-3 R T$

(D) Watch Video Solution

275. If $(I) C+O_{2} \rightarrow \mathrm{CO}_{2}, Q_{1}$
$(I I) C+\frac{1}{2} O_{2} \rightarrow C O, Q_{2}$
$(\mathrm{III}) \mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \mathrm{Q}_{3}$
The heats of reaction Q_{1} and Q_{2} are $-12,-10$ respectively. Then $Q_{3}=$
A. -2
B. 2
C. -22
D. -16

Answer: A

276. Considering entropy (S) as a thermodynamics parameter, the criterion for the spontaneity of any process is
A. $\Delta S_{\text {surroundings }}>0$ only
B. $\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}>0$
C. $\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}<0$
D. $\Delta S_{\text {system }}>0$ only

Answer: B

- Watch Video Solution

277. Standard enthalpy and standard entropy changes for the oxidation of ammonia at 298 K are $-382.64 \mathrm{kJmol}^{-1}$ and $-145.6 \mathrm{jK}^{-1} \mathrm{~mol}^{-1}$ respectively. Standard Gibbs energy change for the same reaction at $298 K$ is

$$
\text { A. }-523.2 \mathrm{kJmol}^{-1}
$$

B. $-22.1 \mathrm{kJmol}^{-1}$
C. $-339.3 \mathrm{kJmol}^{-1}$
D. $-439.3 \mathrm{kJmol}^{-1}$

Answer: C

- Watch Video Solution

278. The enthalpy of the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad$ is $\quad \Delta H_{1} \quad$ and \quad that of
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$ is ΔH_{2}. Then
A. $\Delta H_{1}<\Delta H_{2}$
B. $\Delta H_{1}+\Delta H_{2}=0$
C. $\Delta H_{1}>\Delta H_{2}$
D. $\Delta H_{1}=\Delta H_{2}$
279. When $50 \mathrm{~cm}^{3}$ of $0.2 \mathrm{NH}_{2} \mathrm{SO}_{4}$ is mixed with $50 \mathrm{~cm}^{3}$ of 1 NKOH , the heat liberated is
A. 11.46 kJ
B. 57.3 kJ
C. 573 kJ
D. 573 J

Answer: D

- Watch Video Solution

280. How much energy is released when 6 mole of octane is burnt in air ? Given ΔH_{f}° for $\mathrm{CO}_{2}(g), \mathrm{H}_{2} \mathrm{O}(g)$ and $\mathrm{C}_{8} H_{18}(l)$ respectively are $-490,-240$ and $+160 \mathrm{KJ} / \mathrm{mol}$
A. $-6.2 M J$
B. $-37.4 M J$
C. -35.5 MJ
D. -20.0 MJ

Answer: B

- Watch Video Solution

281. For the equilibrium
$\mathrm{H}_{2} \mathrm{O}(1) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
at 1 atm $298 K$
A. standard free energy change is equal to zero $\left(\Delta G^{\circ}=0\right)$
B. free energy change is less than zero $(\Delta G<0)$
C. standard free energy change is less than zero $\left(\Delta G^{\circ}<0\right)$
D. standard free energy change is more than zero $\left(\Delta G^{\circ}>0\right)$

- Watch Video Solution

282.1 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in mixed with 2 mol of NaOH . The heat evolved will be
A. $57.3 k J$
B. $2 \times 57.3 k J$
C. $57.3 / 2 k J$
D. cannot be predicted.

Answer: B

- Watch Video Solution

283. In a reversible process,
$\Delta S_{s y s}+\Delta S_{\text {surr }}$ is
A. >0
B. <0
C. ≥ 0
D. $=0$

Answer: D

- Watch Video Solution

284. For the reaction $N_{2}+3 H_{2} \Leftrightarrow 2 N H_{3}, \Delta H=$?
A. $\Delta E+2 R T$
B. $\Delta E-2 R T$
C. $\Delta E+R T$
D. $\Delta E-R T$

Answer: B
285. One mole of a perfect gas expands isothermally to ten times its original volume. The change in entropy is
A. $0.1 R$
B. $2.303 R$
C. $10.0 R$
D. $100.0 R$

Answer: B

- Watch Video Solution

286. An ideal gas expands from $1 \times 10^{-3} m^{3}$ to $1 \times 10^{-2} m^{3}$ at $300 K$ againts a constant pressure of $1 \times 10^{5} \mathrm{Nm}^{-2}$. The work done is :
A. -900 J
B. 900 kJ
C. 270 kJ
D. -900 kJ

Answer: A

- Watch Video Solution

287. The enthalpies of combustion of carbon and carbon monoxide are -393.5 and $-283 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The enthaly of formation of carbon monoxide per mole is :
A. $110.5 k J$
B. -110.5 kJ
C. -676.5 kJ
D. 676.5 kJ
288. One mole of an ideal gas is expanded freely and isothermally at 300 K from 10 litres to 100 litres. If $\Delta E=0$, the value of ΔH is
A. 10 kJ
B. 200 kJ
C. -200 kJ
D. Zero

Answer: D

- Watch Video Solution

289. A cylinder of gas supplied by Bharat Petroleum is assumed to contain 14 kg of butane. If a normal family requires $20,000 \mathrm{~kJ}$ of energy
per day for cooking, butane gas in the cylinder lasts
$\left(\Delta_{C} H^{\circ}\right.$ of $\left.C_{4} H_{10}=-2658 \mathrm{kJmol}^{-1}\right)$
A. 15 days
B. 20 days
C. 50 days
D. 40 days

Answer: D

- Watch Video Solution

290. The value of ΔH and ΔS for five different reaction are given below.
$\left|\begin{array}{lll}\text { Reaction } & \Delta H\left(\mathrm{kJmol}^{-}\right) & \Delta S\left(\mathrm{JK}^{-} \mathrm{mol}^{-}\right) \\ I & +98.0 & +14.8 \\ I I & +55.5 & +14.8 \\ I I I & +28.3 & -84.8 \\ I V & -40.5 & +24.6 \\ V & +34.7 & 0.0\end{array}\right|$

On the basis of these values, predict which one of these will be spontaneous at all temperature?
A. Reaction I
B. Reaction II
C. Reaction III
D. Reaction $I V$

Answer: D

(D) Watch Video Solution

291. A process is taking place at constant temperature and pressure. Then
A. $\Delta H=\Delta E$
B. $\Delta H=T \Delta S$
C. $\Delta H=0$
D. $\Delta S=0$

Answer: C

- Watch Video Solution

292. ΔH and ΔS for a reaction are $+30.558 \mathrm{kJmol}^{-1}$ and $0.66 \mathrm{kJmol}^{-1}$ at 1 atm pressure. The temperature at which free energy is equal to zero and the nature of the reaction below this temperature are
A. $483 K$, spontaneous
B. $443 K$, non- spontaneous
C. $443 K$, spontaneous
D. $463 K$,non- spontaneous

Answer: D

293. What would be the heat released when an aqueous solution containing 0.5 mol if HNO_{3} is mixed with 0.3 mol of OH^{-1} (enthalpy of neutralisation is -57.1 kJ)
A. $28.5 k J$
B. 17.1 kJ
C. 45.7 kJ
D. 1.7 kJ

Answer: B

- Watch Video Solution

294. A reaction occurs spontaneously if:
A. $T \Delta S<\Delta H$ and both ΔH and ΔS are $+v e$
B. $T \Delta S>\Delta H$ and both ΔH and ΔS are $+v e$
C. $T \Delta S=\Delta H$ and both ΔH and ΔS are $+v e$
D. $T \Delta S<\Delta H$ and ΔH is $+v e$ and ΔS is $-v e$

Answer: B

- Watch Video Solution

295. The absolute enthalpy of neutralization of the reaction,
$\mathrm{MgO}(s)+2 \mathrm{HCl}(a q)+.\mathrm{H}_{2} \mathrm{O}(l)$ will be
A. less than $-57.33 \mathrm{kJmol}^{-1}$
B. $-57.33 \mathrm{kJmol}^{-1}$
C. greater than $-57.33 \mathrm{kJmol}^{-1}$
D. $57.33 \mathrm{kJmol}^{-1}$

Answer: C

296. For a spontaneous reaction, ΔG, equilibrium constant (K) and $E_{\text {cell }}^{\circ}$ will be respectively:
A. $-v e,>1,+v e$
B. $+v e,>1,-v e$
C. $-v e,<1,-v e$
D. $-v e,>1,-v e$

Answer: A

- Watch Video Solution

297. Consider the reaction: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ carried out at constant pressure and temperature. If ΔH and ΔU are change in enthalpy and change in internal energy respectively, then:
A. $\Delta=0$
B. $\Delta=\Delta U$
C. $\Delta H<\Delta U$
D. $\Delta H>\Delta U$

Answer: C

- Watch Video Solution

298. If the bond dissociation energies of $X Y, X_{2}$ and Y_{2} (all diatomic molecules) are in the ratio $1: 1: 0.5$ and $\Delta_{f} H$ of $X Y$ is $-200 \mathrm{kJmol}^{-1}$. The bond dissociation energy of X_{2} will be :
A. $100 \mathrm{kJmol}^{-1}$
B. $200 \mathrm{kJmol}^{-1}$
C. $800 \mathrm{kJmol}^{-1}$
D. $400 \mathrm{kJmol}^{-1}$

Answer: C

299. Which of the following pairs of a chemical reaction is certaion to result a spontaneous reaction ?
A. exothermic and decreasing disorder
B. endothermic and increasing disorder
C. exothermic and increasing disorder
D. endothermic and decreasing disorder

Answer: C

- Watch Video Solution

300. Which of the following is nor correct ?
A. Dissolution of $\mathrm{NH}_{4} \mathrm{Cl}$ in excess of water is an endothermic
B. Neutralisation is always exothermic
C. The absolute value of enthalpy (H) can be determined experimentally
D. The heat of reaction ar constant volume is denoted by ΔE

Answer: C

- Watch Video Solution

301. If the heat of neutralization for a strong acid - base reaction is -57.1 kJ , what would be the heat released when $350 \mathrm{~cm}^{3}$ at $0.20 \mathrm{MH}_{2} \mathrm{SO}_{4}$ is mixed with $650 \mathrm{~cm}^{3}$ of 0.10 MNaOH ?
A. 37.1 kJ
B. 3.71 kJ
C. 3.17 kJ
D. 0.317 kJ

Answer: B

D Watch Video Solution

302. The heats fo neutralization of HCl with $\mathrm{NH}_{4} \mathrm{OH}$ and NaOH with $\mathrm{CH}_{3} \mathrm{COOH}$ are $-51.4 \mathrm{kJeq}^{-1}$ and $-50.6 \mathrm{kJeq}^{-1}$, respectively. The heat of neutralization of acetic acid with $\mathrm{NH}_{4} \mathrm{OH}$ will be
A. $-44.6 k J e q^{-1}$
B. $-50.6 k J e q^{-1}$
C. $-51.4 k J e q^{-1}$
D. $-57.4 k J e q^{-1}$
303. Five mole of a gas put through a series of change as shown below graphically in a cyclic process. The processes $A \rightarrow B, B \rightarrow C$ and $C \rightarrow A$, respectively, are

A. isochoric, isobaric, isothermal
B. isobaric, isocharic, isothermal
C. isothermal, isobaric, isochoric
D. isochoric,isothermal,isobaric

- Watch Video Solution

304. A process is taking place at constant temperature and pressure. Then
A. ΔH
B. $\Delta H=T \Delta S$
C. $\Delta H=0$
D. $\Delta S=0$

Answer: C

- Watch Video Solution

305. One mole of a perfect gas expands isothermally to ten times its original volume. The change in entropy is
A. $0.1 R$
B. $2.303 R$
C. $10.0 R$
D. $100.0 R$

Answer: B

- Watch Video Solution

306. $A \rightarrow B, \Delta H=4 \mathrm{kcalmol}^{-1}, \Delta S=10 \mathrm{calmol}^{-1} \mathrm{~K}^{-1}$. Reaction is spontaneous when temperature is
A. 400 K
B. 300 K
C. 500 K
D. none of these

- Watch Video Solution

307. The sublimation energy of I_{2} (solid) is $57.3 \mathrm{KJ} /$ mole and enthalpy of fusion is $15.5 \mathrm{KJ} /$ mole. The enthalpy of vapourisation of I_{2} is
A. $41.8 \mathrm{~kJ} / \mathrm{mol}$
B. $-41.8 \mathrm{~kJ} / \mathrm{mol}$
C. $72.8 \mathrm{~kJ} / \mathrm{mol}$
D. $-72.8 \mathrm{~kJ} / \mathrm{mol}$

Answer: A

- Watch Video Solution

308. For the reaction:
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta H=-571 \mathrm{~kJ}$
bond enegry of $(H-H)=435 k J$ and of $(O=O)=498 k J$. Then,
calculate the average bond enegry of $(O-H)$ bond using the above data.
A. 484
B. -484
C. 271
D. -271

Answer: A

- Watch Video Solution

309. The standard molar heats of formation of ethane, carbon dioxide, and liquid water are $-21.1,-94.1$, and -68.3 kcal , respectively. Calculate the standard molar heat of combustion of ethane.
A. $-372 k c a l$
B. 162 kcal
C. -340 kcal
D. 183.5 kcal

Answer: A

- Watch Video Solution

310. 0.06 mole of $K N O_{3}$ is added to $100 \mathrm{~cm}^{3}$ of water at 298 K . The enthalpy of $\mathrm{KNO}_{3}(a q)$ solution is $35.8 \mathrm{kJmol}^{-1}$. After the solute is dissolved, the temerature of the solution will be
A. 293 K
B. 298 K
C. 301 K
D. $304 K$

Answer: A

311. Which of the following equations does not correctly represent the first law of thermodynamcis?
A. isothermal process : $q=-w$
B. cyclic process : $q=-w$
C. isocharic process : $\Delta E=q$
D. adiabatic process : $\Delta E=-w$

Answer: D

- Watch Video Solution

312. For the reaction
$\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
ΔH and ΔS are $-283 k J$ and $-87 J K^{-1}$, respectively. It was intended to carry out this reaction at $1000,1500,3000$, and 3500 K . At which of
these temperatures would this reaction be thermodynamically spontaneous?
A. 1500 and 3500 K
B. 3000 and $3500 K$
C. 1000,1500 and 3000 K
D. 1500,3000 and 3500 K

Answer: C

- Watch Video Solution

313. The enthalpy of vaporisation of liquid water using the data

$$
\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta H=-285.77 \mathrm{~kJ} / \mathrm{mol}
$$

$$
H_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow H_{2} O(g), \Delta H=-241.84 k J / \mathrm{mol}
$$

A. $+43.93 \mathrm{~kJ} / \mathrm{mole}$
B. $-43.93 \mathrm{~kJ} / \mathrm{mole}$
C. $+527.61 k J$
D. -527.61 kJ

Answer: A

- Watch Video Solution

314. The enthalpy of certain reaction at 273 K is $-20.75 k J$. The enthalpy of the same reaction at 373 K provided heat capacities fo reactants and products are the same) will be
A. $-20.75 k J$
B. -2075 kJ
C. zero
D. $-20.75 \times \frac{373}{273} k J$

Answer: A

315. The bond energies of $C=C$ and $C-C$ at $298 K$ are 590 and $331 \mathrm{kJmol}^{-1}$, respectively. The enthalpy of polymerisation per mole of ethaylene is
A. $+259 \mathrm{kJmol}^{-1}$
B. $+72 \mathrm{kJmol}^{-1}$
C. $-259 \mathrm{kJmol}^{-1}$
D. $-72 \mathrm{kJmol}^{-1}$

Answer: D

- Watch Video Solution

316. Water is supercooled to $-4^{\circ} \mathrm{C}$. The enthalpy (H) is
A. same as ice at $-4^{\circ} C$
B. more than ice at $-4^{\circ} C$
C. same as ice at $0^{\circ} C$
D. less than ice at $-4^{\circ} \mathrm{C}$

Answer: D

- Watch Video Solution

317. When 0.1 mol of a gas absorbs 41.75 J of heat at constant volume, the rise in temperature occurs equal to $20^{\circ} \mathrm{C}$. The gas must be
A. triatomic
B. diatomic
C. polyatomic
D. monoatomic

Answer: B

318. If 150 kJ of energy is needed for muscular work to walk a distance of one km, than how much of gulcose one has to consume to walk a distance of five km , provided only 30% energy is available for muscular work.The enthalpy of combustion of glucose is $3000 \mathrm{kJmol}^{-1}$
A. 75 g
B. $30 g$
C. $180 g$
D. $150 g$

Answer: D

- Watch Video Solution

319. A process is spantaneous at a given temperature if
A. $\Delta H=0, \Delta S<0$
B. $\Delta H>0, \Delta S<0$
C. $\Delta H<0, \Delta S>0$
D. $\Delta H>0, \Delta S=0$

Answer: C

- Watch Video Solution

320. Enthalpy is equal to
A. $T^{2}\left[\frac{\delta(G / T)}{\delta T}\right]_{P}$
B. $-T^{2}\left[\frac{\delta(G / T)}{\delta T}\right]_{P}$
C. $T^{2}\left[\frac{\delta(G / T)}{\delta T}\right]_{V}$
D. $-T^{2}\left[\frac{\delta(G / T)}{\delta T}\right]_{V}$

Answer: B

- Watch Video Solution

321. Which one of the following sets of units represents the smallest and the largest amout of energy, respectively?
A. J and $e r g$
B. $e r g$ and $c a l$
C. cal and eV
D. lit atm and J

Answer: D

(D) Watch Video Solution

322. If $K<1$ then the value of ΔG° will be
A. 1.0
B. Zero
C. Negative
D. Positive

Answer: D

- Watch Video Solution

323. During isothermal expansion of an ideal gas, its:
A. internal energy increases
B. enthalpy increases
C. enthalpy reduces to zero
D. enthalpy remains unchanged

Answer: D

Watch Video Solution
324. For a reaction $A+2 B \rightarrow C+D$, if $\Delta H=-25 k c a l$, $T=300 K$ and $\Delta S=90 \mathrm{cal}$, then the reaction is
A. reversible at $300 K$
B. irreversible at 300 K
C. equilibrium, at 300 K
D. none of these

Answer: B

(D) Watch Video Solution

325. ΔG° for a reaction is $46.06 \mathrm{kcalmol}^{-} . K_{P}$ for the reaction at 300 K is
A. 10^{-8}
B. $10^{-22.22}$
C. $10^{-33.55}$
D. none of these

Answer: C

- Watch Video Solution

326. For an ideal gas expanding adiabatically in vacuum,
A. $\Delta H=0$
B. $\Delta H>0$
C. $\Delta H<0$
D. None of these

Answer: A

(D) Watch Video Solution
327. How many calories are required to heat 40 g of argon from $40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ at constant volume? $\left(R=2 \mathrm{calmol}^{-1} \mathrm{~K}^{-1}\right)$
A. 120
B. 2400
C. 1200
D. 180

Answer: D

(D) Watch Video Solution

328. If one mole of ammonia and one mole of hydrogen chloride are mixed in a closed container to form ammonium chloride vapor, then
A. $\Delta H<\Delta U$
B. there is no relationship
C. $\Delta H>\Delta U$
D. $\Delta H=\Delta U$

Answer: A

- Watch Video Solution

329. If an endothermic reaction occurs spontaneously at constant T and P, then which of the following is true
A. $\Delta G>0$
B. $\Delta H>0$
C. $\Delta S>0$
D. $\Delta S<0$

Answer: C

330. 4.48 L of an ideal gas at $S T P$ requires 12 cal to raise its temperature by $15^{\circ} \mathrm{C}$ at constant volume. The C_{P} of the gas is
A. 3 cal
B. $4 c a l$
C. 7 cal
D. 6 cal

Answer: D

D Watch Video Solution

331. Change in internal energy when $4 k J$ of work is done on the system and $1 k J$ of heat is given out of the system is
A. $+1 k J$
B. $-5 k J$
C. $+5 k J$
D. $+3 k J$

Answer: D

- Watch Video Solution

332. Which of the ions in the table below would have the largest value of enthalpy of hydration?

Ionic radius in nm Charge of ion

A.Ionic radii in nm Charge of ion 0.0065 +2	
B.Ionic radii in nm Charge of ion 0.095 +1	
C.Ionic radii in nm 0.135	Charge of ion
D.Inic radii in nm	Charge of ion 0.169

Answer: A

333. A piece of ice kept at room temperature melts of its own. This reaction is governed by which law?
A. First law of thermodynamics
B. Zeroth law of thermodynamics
C. Second law of thermodynamics
D. Third law of thermodynamics

Answer: C

- Watch Video Solution

334. A pressure cooker reduces cooking time because
A. food particles are efffectively mashed
B. water boils at higher temperture inside the pressure cooker
C. food is cooked at constant volume
D. loss of heat due to radiation is minimum

Answer: B

(D) Watch Video Solution

335. Calculate the work invoved when 1 mol of an ideal gas is compressed reversibly from 1.00 bar to 5.00 bar at a constant temperature of 300 K .
A. 4.01 kJ
B. -8.02 kJ
C. 18.02 kJ
D. -14.01 kJ

Answer: A

336. The enthalpy of neutralization of oxitic acid by strong acid is $25.4 \mathrm{kcalmol}^{-1}$. The enthalpy of neutralization of strong acid and strong base is $-13.7 \mathrm{kcalequil}^{-1}$. The enthalpy of dissociation of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{H}^{+}+\mathrm{C}_{\circ} \mathrm{O}_{4}^{2-}$ is
A. $1.0 \mathrm{kcalmol}^{-1}$
B. $2.0 \mathrm{kcalmol}^{-1}$
C. $18.55 \mathrm{kcalmol}^{-1}$
D. $11.7 \mathrm{kcalmol}^{-1}$

Answer: B

- Watch Video Solution

337. An endothermic reaction has a positive internal energy change ΔU . In such a case, what is the minimum value that activation energy can
have?
A. ΔU
B. $\Delta U=\Delta H+\Delta n R T$
C. $\Delta U=\Delta H-\Delta n R T$
D. $\Delta U=E_{a}+R T$

Answer: C

- Watch Video Solution

338. The reaction $A \rightarrow B, \Delta H=+24 k J /$ mole. For the reaction $B \rightarrow C, \Delta H=-18 \mathrm{~kJ} /$ mole. The decreasing order of enthalpy of A, B, C follow the order
A. A, B, C
B. B, C, A
C. C, B, A
D. C, A, B

Answer: B

- Watch Video Solution

339. For a chemical reaction, ΔG will always be negative if,
A. ΔH and $T \Delta S$ both are positive
B. ΔH and $T \Delta S$ both are negative
C. ΔH is negative and $T \Delta S$ is positive
D. ΔH is positive and $T \Delta S$ is negative

Answer: C

A. $\mathrm{Na}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NaOH}(a q)+1 / 2 \mathrm{H}_{2}(g)$
B. $\mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q) \rightarrow \mathrm{AgCl}(s)$
C. $\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$
D. $\mathrm{Cu}^{2+}+4 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} a q$

Answer: A

- Watch Video Solution

341. A chemical reaction cannot occur at all if its
A. ΔH is $+v e$ and ΔS is $-v e$
B. ΔH is $-v e$ and ΔS is $+v e$
C. ΔH and ΔS are $+v e$ but $\Delta H>\Delta S$
D. ΔH and ΔS are $-v e$ but $\Delta H>\Delta S$

Answer: C

342. Rate of a reaction can be expressed by Arrhenius equation as:
$k=A e^{-E_{a} / R T}$

In this equation, E_{a} represents:
A. The energy above which not all the colliding molecules will react
B. The energy below which colliding molecules will not react
C. The total energy of the reacting molecules at temperature T
D. The fraction of molecules with energy greater than the activation enrgy of the reaction.

Answer: B

- Watch Video Solution

343. BaSO_{4} is insoluble in water due to its
A. High hydration energy
B. High lattice energy
C. High ionization energy
D. High kinetic energy

Answer: B

- Watch Video Solution

344. Given that $\Delta h_{f}(H)=218 \mathrm{~kJ} / \mathrm{mol}$. Express the $H-H$ bond energy in $\mathrm{Kcal} / \mathrm{mol}$
A. 52.15
B. 9.11
C. 104
D. 52.53

- Watch Video Solution

345. Calculate ΔH° for the reaction
$\mathrm{Na}_{2} \mathrm{O}(\mathrm{g})+\mathrm{SO}_{3}(\mathrm{~g}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$
Given the following
(i) $\mathrm{Na}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NaOH}(\mathrm{s})+\frac{1}{2} \mathrm{H}_{2}(g), \Delta H^{\circ}=-146 \mathrm{~kJ}$
(ii) $\mathrm{Na}_{2} \mathrm{SO}_{4}(s)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{NaOH}(s)+\mathrm{SO}_{3}(g), \Delta H=+418 \mathrm{~kJ}$
$($ iii $) 2 \mathrm{Na}_{2} \mathrm{O}(s)+2 \mathrm{H}_{2}(g) \rightarrow 4 \mathrm{Na}(s)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=+259 k J$
A. $+823 k J$
B. -581 kJ
C. $-435 k J$
D. +531 kJ

Answer: B

- Watch Video Solution

346. For the reaction
$N_{2}(g)+3 H_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$, which of the following is correct regarding ΔH ?
A. $\Delta H=\Delta U+R T$
B. $\Delta H=\Delta U+2 R T$
C. $\Delta H=\Delta U-2 R T$
D. $\Delta H=\Delta U-R T$

Answer: C

- Watch Video Solution

347. Given that $d E=T d S-P d V$ and $H=E+P V$, which one of the following relations is true?
A. $d H=T d S+V d P$
B. $d H=S d T+V d P$
C. $-d H=S d T+V d P$
D. $d H=d E+P d V$

Answer: A

- Watch Video Solution

348. The activation energies of two reactions are $E_{1} \& E_{2}$ with $E_{1}>E_{2}$. If temperature of reacting system is increased from T_{1} (rate constant are k_{1} and k_{2}) to T_{2} (rate constant are k_{1}^{1} and k_{2}^{1}) predict which of the following alternative is incorrect.
A. $\frac{k_{1}{ }^{\prime}}{k_{1}}=\frac{k_{2}{ }^{\prime}}{k_{2}}$
B. $\frac{k_{1}{ }^{\prime}}{k_{1}}>\frac{k_{2}{ }^{\prime}}{k_{2}}$
C. $\frac{k_{1}{ }^{\prime}}{k_{1}}<\frac{k_{2}{ }^{\prime}}{k_{2}}$
D. $\frac{k_{1}{ }^{\prime}}{k_{1}}=\frac{k_{2}{ }^{\prime}}{k_{2}{ }^{\prime}}$
349. A reaction cannot take place spontaneously at any temperture when
A. both ΔH and ΔS are positive
B. both ΔH and ΔS are negative
C. ΔH is negative and ΔS is positive
D. ΔH is zero and ΔS is positive

Answer: B

(D) Watch Video Solution

350. The heat of atomisation of $\mathrm{PH}_{3}(\mathrm{~g})$ and $\mathrm{P}_{2} \mathrm{H}_{4}(\mathrm{~g})$ are $954 \mathrm{kJmol}^{-1}$ and $1485 \mathrm{kJmol}^{-1}$ respectively. The $P-P$ bond energy in kJmol^{-1} is
A. 213
B. 426
C. 318
D. 1272

Answer: A

- Watch Video Solution

351. $\mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{Cl}_{2} \rightarrow \mathrm{NCl}_{3}(\mathrm{~g})+3 \mathrm{HCl}(\mathrm{g}), \Delta \mathrm{H}_{1}$
$N_{2}(g)+3 H_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g), \Delta H_{2}$
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g}), \Delta \mathrm{H}_{3}$
The heat of formation of $\mathrm{NCl}_{3}(\mathrm{~g})$ in the terms of
$\Delta H_{1}, \Delta H_{2}, \Delta H_{3}$ is :
A. $\Delta H_{f}=-\Delta H_{1}+\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
B. $\Delta H_{f}=\Delta H_{1}+\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
c. $\Delta H_{f}=\Delta H_{1}+\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
D. None of the above

- Watch Video Solution

352. If 1 mole of an ideal gas expands isothermally at $37^{\circ} C$ from 15 litres to 25 litres, the maximum work obtained is:
A. $12.87 J$
B. 6.43 J
C. 8.57 J
D. 2.92 J

Answer: A

- Watch Video Solution

353. The heat liberated when $1.89 g$ of benzoic acid is burnt in a bomb calorimeter at $25^{\circ} \mathrm{C}$ increases the temperture of 18.94 kg of water by
$0.632^{\circ} \mathrm{C}$. If the specific heat of water at $25^{\circ} \mathrm{C}$ is $0.998 \mathrm{cal} / \mathrm{gdeg}$, the value of the heat of combustion of benzoic acid is
A. 88.1 kcal
B. 771.4 kcal
C. 981.1 kcal
D. 871.2 kcal

Answer: B

- Watch Video Solution

354. The source of energy in a cellular reaction is
A. chemical energy
B. light energy
C. heat energy
D. solar energy

- Watch Video Solution

355. The work differential, $d w$, is
A. a state function
B. an inexact differential
C. exact differential
D. None of the above

Answer: C

- Watch Video Solution

356. Three moles of an ideal gas expanded spotaneously into vacuum.

The work done will be
A. infinity
B. 10 J
C. zero
D. 5 J

Answer: C

- Watch Video Solution

357. Which is correct for an endothermic reaction ?
A. ΔE is negative
B. ΔH is negative
C. ΔH is positive
D. ΔH is equal to zero

Answer: C

358. For an adiabatic process:
A. $T=$ constant
B. $q=0$
C. $q=$ constant
D. $W=0$

Answer: C

- Watch Video Solution

359. The enthalpy change in the reaction :
$2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$
is termed as
A. enthalpy of reaction
B. enthalpy of fusion
C. Enthalpy of combustion
D. enthalpy of formation

Answer: C

- Watch Video Solution

360. In a reversible isothermal process, the change in internal energy is
A. zero
B. positive
C. Negative
D. None of the above

Answer: A
361. Based on the following thermochemical equations
$\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{C}(s) \rightarrow \mathrm{CO}(g)+\mathrm{H}_{2}(g), \Delta H=131 K J$
$\mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-282 \mathrm{KJ}$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta \mathrm{H}=-242 \mathrm{KJ}$
$C(s)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \Delta H=X K J$
The value of X will be
A. $-393 k J$
B. $-655 k J$
C. $+393 k J$
D. $+655 k J$

Answer: A

362. The heat of formation of water is 260 kJ . How much $\mathrm{H}_{2} \mathrm{O}$ is decomposed by $130 k J$ heat?
A. 0.25 mol
B. 1 mol
C. 0.5 mol
D. 2 mol

Answer: C

(D) Watch Video Solution

363. Which equation is correct for adiabatic process ?
A. $Q=+W$
B. $Q=0$
C. $\Delta E=Q$
D. $P+\Delta V=0$

Answer: A

(D) Watch Video Solution

364. The amount of heat evolved when $500 \mathrm{~cm}^{3} 0.1 \mathrm{MHCl}$ is mixed with $200 \mathrm{~cm}^{3}$ of 0.2 MNaOH is
A. $2.292 k J$
B. 1.292 kJ
C. 0.292 kJ
D. 3.393 kJ

Answer: A

- Watch Video Solution

365. Enthalpy of vapourization of benzene is $+35.3 \mathrm{kJmol}^{-1}$ at its boiling point of $80^{\circ} \mathrm{C}$. The entropy change in the transition of the vapour to liquid at its boiling points [in $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$] is
A. -441
B. -100
C. +441
D. +100

Answer: D

- Watch Video Solution

366. For one mole of an ideal gas, increasing the temperature from $10^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$
A. increases the average kinetic energy by two times
B. increases the rms velocity by $\sqrt{2}$ times
C. increases the rms velocity by two times
D. increases both the average kinetic energy and rms velocity, but not significantly

Answer: D

- Watch Video Solution

367. Based on the first law of thermodynamics, which one of the following is correct?
A. For an isocharic process : $\Delta U=-q$
B. For an adiabatic process : $\Delta U=-w$
C. For an isothermal process : $q=+w$
D. For a cyclic process : $q=-w$

Answer: D

368. Gibb's free energy G is defined as
A. $G=H-T S$
B. $G=H+T S$
C. $G=U-T S$
D. $G=U+T S$

Answer: A

- Watch Video Solution

369. A spontaneous reaction is impossible if
A. both ΔH and ΔS are negative
B. both ΔH and ΔS are positive
C. ΔH is negative and ΔS is positive
D. ΔH is positive and ΔS is negative

Answer: D

- Watch Video Solution

370. The standard enthalpy of formation of $\mathrm{H}_{2}(g)$ and $\mathrm{Cl}_{2}(g)$ and $\mathrm{HCl}(\mathrm{g})$ are $218 \mathrm{~kJ} / \mathrm{mol}, \quad 121.88 \mathrm{~kJ} / \mathrm{mol}$ and $-93.31 \mathrm{~kJ} / \mathrm{mol}$ respectively. Calculate standard enthalpy change in $k J$ for $\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{HCl}(\mathrm{g})$
A. ${ }^{`}+431.99$
B. -262.14
C. -431.99
D. +247.37

Answer: B

371. Changes in a system from a initial state to the final state were made by a different manner that ΔH remains same but q changes because
A. ΔH is a path function and q is a state function
B. ΔH is a state function and q is a path function
C. both ΔH and q are state function
D. both ΔH and q are path function

Answer: B

- Watch Video Solution

372. In which of the following reactions, the enthalpy is the least ?

$$
\text { A. } \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}
$$

B. $\mathrm{HCl}+\mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{HCN}+\mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{NH}_{4} \mathrm{CN}+\mathrm{H}_{2} \mathrm{O}$

Answer: D

- Watch Video Solution

373. According to the first law of thermodynamics which of the following quantities represents change in a state function ?
A. $q_{r e v}$
B. $q_{\text {rev }}-w_{\text {rev }}$
C. $q_{r e v} / w_{r e v}$
D. $q_{\text {rev }}+w_{\text {rev }}$

Answer: D

374. A 1.0 g sample of substance A at $100^{\circ} \mathrm{C}$ is added to 100 mL of $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$. Using separate 100 mL portions of $\mathrm{H}_{2} \mathrm{O}$, the procedure is repeated with substance B and then with substance C. How will the final temperatures of the water compare ?
Substance Specific heat
A
$\left.0.60 \mathrm{Jg}^{-1 \wedge}(@) \mathrm{C}^{\wedge}(-1)\right),\left(\mathrm{B}, 0.40 \mathrm{Jg}^{\wedge}(-1){ }^{\circ} C^{-1}\right.$
$C \quad 0.20 \mathrm{Jg}^{-1 \circ} \mathrm{C}^{-1}$
A. $T_{C}>T_{B}>T_{A}$
B. $T_{B}>T_{A}>T_{C}$
C. $T_{A}>T_{B}>T_{C}$
D. $T_{A}=T_{B}=T_{C}$

Answer: C

- Watch Video Solution

375. The amount of heat evolved when $500 \mathrm{~cm}^{3} 0.1 \mathrm{MHCl}$ is mixed with
$200 \mathrm{~cm}^{3}$ of 0.2 MNaOH is
A. $2.292 k J$
B. $1.292 k J$
C. $0.292 k J$
D. 5.292 kJ

Answer: A

- Watch Video Solution

376. Based on first law of thermodynamics, which one of the following is correct ?
A. For an isothermic process : $\Delta U=-q$
B. For an adiabatic process : $\Delta U=-w$
C. For an isothermal process : $q=+w$
D. For a cyclic process : $q=-w$
377. The value of enthalpy change (ΔH) for the reaction
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
at $27^{\circ} \mathrm{C}$ is $-1366.5 \mathrm{kJmol}^{-1}$.
The value of internal energy change for the above reactio at this temperature will be
A. $-1371.5 k J$
B. -1369.0 kJ
C. -1364.0 kJ
D. -1361.5 kJ

Answer: C

- Watch Video Solution

378. Which of the following is correct option for the free expansion of an ideal gas under adiabatic condition ?
A. $q=0, \Delta T<0, w \neq 0$
B. $q=0, \Delta T \neq 0, w=0$
C. $q \neq 0, \Delta T=0, w=0$
D. $q=0, \Delta T=0, w=0$

Answer: D

- Watch Video Solution

379. The entropy change involved in the isothermal reversible expansion of 2 moles of an ideal gas from a volume of $10 \mathrm{dm}^{3}$ to a volume of $100 \mathrm{dm}^{3}$ at $27^{\circ} \mathrm{C}$ is
A. $35.8 \mathrm{Jmol}^{-1} K^{-1}$
B. $322 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
C. $42.3 \mathrm{Jmol}^{-1} K^{-1}$
D. $38.3 \mathrm{Jmol}^{-1} K^{-1}$

Answer: D

- Watch Video Solution

380. Enthalpy change for the reaction
$2 H(2)(g) \rightarrow 4 H(g)$ is $-869.6 k J$
The dissociation energy of $H--H$ bond is:
A. $+217.4 k J$
B. -431.8 kJ
C. -869.6 kJ
D. +434.8 kJ

Answer: B

381. Consider the reaction,
$4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}(g), \Delta_{r} \mathrm{H}=-111 \mathrm{~kJ}$. If $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~s})$ is formed instead of $N_{2} O_{5}(g)$ in the above reaction, the $\Delta_{r} H$ value will be
(Given, ΔH of sublimation for $\mathrm{N}_{2} \mathrm{O}_{5}$ is $54 \mathrm{kJmol}^{-1}$)
A. 165 kJ
B. $+54 k J$
C. $+219 k J$
D. $-219 k J$

Answer: A

- Watch Video Solution

382. In view of the signs of $\Delta_{r} G^{0}$ for the following reactions
$\mathrm{PbO} \mathrm{O}_{2}+\mathrm{Pb} \rightarrow 2 \mathrm{PbO}, \Delta_{r} G^{0}<0$
$\mathrm{SnO}_{2}+\mathrm{Sn} \rightarrow 2 \mathrm{SnO}, \Delta_{r} G^{0}>0$
Which oxidation state are more characteristic for lead and tin?
A. For lead +4 and for tin +2
B. For lead +2 and for tin +2
C. For lead +4 and for tin +4
D. For lead +2 and for tin +4

Answer: D

383. Consider the following processes :-

$$
\Delta H(k J / m o l)
$$

$\frac{1}{2} A \rightarrow B$
$3 B \rightarrow 2 C+D$
$E+A \rightarrow 2 D$
For $B+D \rightarrow E+2 C, \Delta H$ will be
A. $525 \mathrm{~kJ} / \mathrm{mol}$
B. $-175 \mathrm{~kJ} / \mathrm{mol}$
C. $-325 \mathrm{~kJ} / \mathrm{mol}$
D. $325 \mathrm{~kJ} / \mathrm{mol}$

Answer: B

- Watch Video Solution

384. At the sublimation temperature, for the process $\mathrm{CO}_{2}(\mathrm{~S}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
A. $\Delta H, \Delta S$ and ΔG will be negative
B. $\Delta H>0, \Delta S>0$ and $\Delta G<0$
C. $\Delta H<0, \Delta S>0$ and $\Delta G<0$
D. $\Delta H>0, \Delta S>0$ and $\Delta G>0$

Answer: D

- Watch Video Solution

385. Which of the following sets of conditions would result in a reaction that is spontaneous at high temperature but non-spontaneous at low temperature?
A. $\Delta H>0, \Delta S>0$
B. $\Delta H<0, \Delta S>0$
C. $\Delta H>0, \Delta S=0$
D. $\Delta H<0, \Delta S<0$

Answer: D

386. The enthalpy of solution of sodium chloride is $4 \mathrm{kmol}^{-1}$ and its enthalpy of hydration of ion is $-784 \mathrm{kJmol}^{-1}$. Then the lattice enthalpy of $\mathrm{NaCl}\left(\right.$ in $\left.\mathrm{kJmol}^{-1}\right)$ is
A. +788
B. +4
C. +398
D. +780

Answer: A

- Watch Video Solution

387. The standard enthalpy of formation of $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{l}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are 52,394 and $-286 \mathrm{kJmol}^{-1}$ respectively. Then the amount
of heat evolved by burning $7 g$ of $C_{2} H_{4}(g)$ is
A. $1412 k J$
B. $9884 k J$
C. 353 kJ
D. 706 kJ

Answer: C

- Watch Video Solution

388. In which of the following reactions,standard reaction entropy change $\left(\Delta S^{\circ}\right)$ is positive and standard Gibb,s energy change $\left(\Delta G^{\circ}\right)$ decreases sharply with increasing temperature?
A. C (graphite) $+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
B. $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
C. $\mathrm{Mg}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{MgO}(g)$
D. $\frac{1}{2} \mathrm{C}($ graphite $)+\frac{1}{2} \mathrm{O}_{2} \rightarrow \frac{1}{2} \mathrm{CO}_{2}(g)$

Answer: A

- Watch Video Solution

389. The enthalpy of fusion of water is $1.435 \mathrm{kcal} / \mathrm{mole}$. The molar entropy change for melting of ice at $0^{\circ} C$ is
A. $10.52 \mathrm{cal} /(\mathrm{molK})$
B. $21.04 \mathrm{cal} /(\mathrm{molK})$
C. $5.260 \mathrm{cal} /(\mathrm{molK})$
D. $0.526 \mathrm{cal} /(\mathrm{molK})$

Answer: C

- Watch Video Solution

390. Standard enthalpy of vaporisation $\Delta V_{\text {vap }} . H^{\Theta}$ for water at $100^{\circ} \mathrm{C}$ is $40.66 \mathrm{kJmol}^{-1}$. The internal energy of Vaporization of water at $100^{\circ} C\left(\mathrm{in} \mathrm{kJ} \mathrm{mol}^{-1}\right)$ is
A. +37.56
B. -43.76
C. +43.76
D. 40.66

Answer: A

- Watch Video Solution

391. Using the data provided, calculate the multiple bond energy $\left(\mathrm{kJmol}^{-1}\right)$ of a $C \equiv C$ bond in $C_{2} H_{2}$. That energy is (take the bond energy of a $C-H$ bond as $350 \mathrm{kmol}^{-1}$).
$2 C_{(s)}+H_{2(g)} \rightarrow C_{2} H_{2(g)}, \Delta=225 \mathrm{kJmol}^{-1}$
$\left.2 C_{(s)} \rightarrow 2 C_{g}\right), \Delta H=1410 \mathrm{kJmol}^{-1}$
$H_{2(g)} \rightarrow 2 H_{(g)}, \Delta H=330 \mathrm{kJmol}^{-1}$
A. 1165
B. 837
C. 865
D. 815

Answer: D

- Watch Video Solution

392. Equal volumes of two monoatomic gases, A, B, at the same temperature and pressure are mixed.The ratio of specific heats $\left(C_{p} / C_{v}\right)$ of the mixture will be
A. 0.83
B. 1.50
C. 3.3
D. 1.67

Answer: D

- Watch Video Solution

393. The incorrect expression among the following is
A. $\ln K=\frac{\Delta H^{\circ}-T \Delta S}{R T}$
B. $K=E^{-\Delta^{\circ} / R T}$
C. in isothermal process $W_{\text {rev }}=-n R T \ln \frac{V_{f}}{V_{c}}$
D. $\frac{\Delta G \text { system }}{\Delta S \text { total }}=-T$

Answer: A

- Watch Video Solution

394. Identify the correct statement from the following in a chemical reaction
A. The entropy always increases
B. The change in entropy along the suitable change in enthalpy decides the fate of a reaction
C. The enthalpy always decreases
D. Both the enthalpy and the entropy remains constant.

Answer: B

- Watch Video Solution

395. A gasesous system during a thermodynamic process does not undertake any volume changes, it is called
A. isochoric process
B. isobaric process
C. isothermal system
D. mesoentropic system

Answer: A

- Watch Video Solution

396. Calculate the work done (in joules) when 0.2 mole of an ideal gas at $300 K$ expands isothermally and reversible from an initial volume of 2.5 litres to the final volume of 25 litres.
A. 996
B. 1148
C. 11.48
D. 114.8
397. Which of the following is correct
A. Evaporation of water causes an increase in disorder of the system
B. Melting of ice causes a decrease in randomness
C. Condensation of steam causes an increase in disorder of steam.
D. There is practically no change in randomness of the system when water is evaporated

Answer: A

- Watch Video Solution

398. Choose the reaction with negative ΔS value
A. $2 \mathrm{NaHCO}_{3}(s) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(s)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)$
B. $\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{Cl}(g)$
C. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
D. $2 \mathrm{KCIO}_{3}(s) \rightarrow 2 \mathrm{KCI}(s)+3 \mathrm{O}_{2}(g)$

Answer: C

- Watch Video Solution

399. A chemical reaction is spontancous at $298 K$ but non spontaneous at 350 K . Which one of the following is true for the reaction ?
А. $\begin{array}{llll} & \Delta G & \Delta H & \Delta S \\ A & - & - & +\end{array}$
B. $\Delta G \quad \Delta H \quad \Delta S$
B. $B++\quad+$
С. $\begin{array}{llll} & \Delta G & \Delta H & \Delta S \\ C & - & + & -\end{array}$
D. $\Delta G \quad \Delta H \quad \Delta S$
$D+\quad-\quad+$

Answer: C

400. A gas expands from a volume of $1 m^{3}$ to a volume of $2 m^{3}$ against an external pressure of $10^{5} \mathrm{Nm}^{-2}$. The work done of the gas will be
A. $10^{5} \mathrm{~kJ}$
B. $10^{2} k J$
C. $10^{2} \mathrm{~J}$
D. $10^{3} \mathrm{~J}$

Answer: B

- Watch Video Solution

401. The equilibrium constant of a reaction is 0.008 at 298 K . The standard free energy change of the reaction at the same temperture is
A. +11.96 kJ
B. -11.96 kJ
C. $-5.43 k J$
D. -8.46 kJ

Answer: A

- Watch Video Solution

402. Which of the following statement is true ?
A. The total entropy of the universe is continuously decreasing
B. The total entropy of the universe remains same
C. The total entropy of the universe is continuously decreasing
D. The total entropy of the universe remains constant

Answer: A

403. A piston filled with 0.04 mole of an ideal gas expands reversible from 50.0 mL at a constant temperature of $37.0^{\circ} \mathrm{C}$. As it does so, it absorbs $208 J$ of heat. The value of q and W for the process will be $(R=8.314 J /$ molK, $1 n 7.5=2.01)$
A. $q=+208 J, w=+208 J$
B. $q=208 J, w=-208 J$
C. $q=-208 J, w=-208 J$
D. $q=-208 J, w=+208 J$

Answer: B

- Watch Video Solution

404. The standard enthalpies fo formation of $\mathrm{CO}_{2}(g), \mathrm{H}_{2} \mathrm{O}(1)$, and glucose (s) at $25^{\circ} \mathrm{C}$ are $-400 \mathrm{kJmol}^{-1},-300 \mathrm{kJmol}^{-}$, and
$-1300 \mathrm{kJmol}^{-1}$, respectively. The standard enthalply of combustion per gram of glucose at $25^{\circ} C$ is
A. +2900 kJ
B. -2900 kJ
C. $-16.11 k J$
D. +16.11 kJ

Answer: C

(D) Watch Video Solution

405. $2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+x k J$ In the above reaction
A. $z \mathrm{kJmol}^{-1}$ is the value of ΔH_{f} for water
B. ΔH_{f} of $H_{2} O(l)$ is $-x k J$
C. ΔH_{f} of $H_{2} O(l)$ is $-x / 2 k \mathrm{Jmol}^{-1}$
D. $\Delta H_{\text {comb }}$ of H_{2} is $-x / 2 \mathrm{kJmol}^{-1}$

Answer: C::D

(D) Watch Video Solution

406. For which of the following reaction, change of enthalpy equals the change in internal energy ?
A. $\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}$
B. $P C l_{5}(g) \rightarrow P C l_{3}(g)+C l_{2}$
C. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2}$
D. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$

Answer: A::D

D Watch Video Solution

407. Which of the following expression represent the criterion of spontaneity?
A. $(\delta S)_{E}, V<0$
B. $(\delta G)_{T, P}<0$
C. $(\delta H)_{T, P}<0$
D. $(\delta G)_{S, V}<0$

Answer: B::D

- Watch Video Solution

408. Which relations among the following is/are correct ?
A. $G=H-T S$
B. $P V=H-V$
C. $w=\Delta W-q$
D. $q v-q p=-\Delta n R T$

Answer: A::C::D

409. Which statements among the following is/are incorrect ?
A. Absoulte value of heat content of the system can be easily determined by calorimetery.
B. Absoulte value of entropy cannot be known
C. Absolute value of internal energy cannot be known
D. Value of ΔG_{f}° cannot be determined.

Answer: A: D

- Watch Video Solution

410. Second law of thermodynamics points out that
A. All the spontaneous processes are thermodynamically irreversible
B. Entrophy of universe is continuously increasing
C. Energy of universe is constant
D. Mass and energy are interconvertible

Answer: A::B

- Watch Video Solution

411. which among the following is intensive quantity ?
A. Enthalpy
B. Temperature
C. Volume
D. Refractive index

Answer: B::D

- Watch Video Solution

412. The following is(are) endothermic reaction (s):
A. combustion of methane
B. Decomposition of water
C. Dehydrogenation of ethane to ethylene
D. Conversion of graphite to diamond

Answer: B::C::D

- Watch Video Solution

413. Among the following, the intensive property is (properties are) :
A. molar conductivity
B. electromotive force
C. resistance
D. heat capacity

Answer: A::B

(D) Watch Video Solution

414. In a flask, colourless $\mathrm{N}_{2} \mathrm{O}_{4}$ is in equilibrium with brown-coloured
NO_{2}. At equilibrium, when the flask is heated to $100^{\circ} \mathrm{C}$ the brown colour deepens and on cooling, the brown colour became less coloured.

The change in enthalpy ΔH for the ayatem is
A. Negative
B. Positive
C. Zero
D. Undefined

Answer: B

415. The gas with the highest heat of combustion is:
A. Methane
B. Ethane
C. Ethene
D. Ethyne

Answer: B

- Watch Video Solution

416. Given
$\mathrm{NH}_{3}(g)+3 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{NCl}_{3}(\mathrm{~g})+3 \mathrm{HCl}(\mathrm{g})+x_{1}$
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(g)+x_{2}$
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})-x_{3}$
The heat of formation of $\mathrm{NCl}_{3}(\mathrm{~g})$

$$
\text { A. }-x_{1}-\frac{x_{2}}{2}-\frac{3 x_{3}}{2}
$$

B. $x_{1}+\frac{x_{2}}{2}-\frac{3}{2} x_{3}$
C. $x_{1}-\frac{x_{2}}{2}-\frac{3}{2} x_{3}$
D. $x_{1}+x_{2}+\frac{3 x_{3}}{2}$

Answer: A

- Watch Video Solution

417. A scientist needs a refrigeration machine to maintain temperature of $-13^{\circ} C$ for certain chemical process. How much work must be performed on the system during each cycle of its operation if 3000 J of heat is to be withdrawn from the $-13^{\circ} \mathrm{C}$ reservoir and discharged to the room at $+27^{\circ} \mathrm{C}$? Assume that the machine operates at 100% of its theoretical efficiency.
A. 65000 J
B. 3000 J
C. 154 J
D. 133 J

Answer: B

- Watch Video Solution

418. Under the same conditions, how many $m L$ of $1 M K O H$ and $0.5 \mathrm{MH}_{2} \mathrm{SO}_{4}$ solutions, respectively, when mixed to form a total volume of 100 mL , produces the highest rise in temperature?
A. 67,33
B. 33,67
C. 40,60
D. 50,50

Answer: D

Watch Video Solution

419. The standard molar heats of formation of ethane, carbon dioxide, and liquid water are $-21.1,-94.1$, and $-68.3 k c a l$, respectively. Calculate the standard molar heat of combustion of ethane.
A. $372 k c a l$
B. $-162 k c a l$
C. -240 kcal
D. -183.5 kcal

Answer: A

- Watch Video Solution

420. The enthalpy of combustion of H_{2}, cyclohexene $\left(C_{6} H_{10}\right)$ and cyclohexane $\left(C_{6} H_{12}\right)$ are $-241,-3800$ and $-3920 K J$ per mol respectively. Heat of hydrogenation of cyclohexene is

$$
\text { A. }-121 \mathrm{kJmol}^{-1}
$$

B. $+121 \mathrm{kJmol}^{-1}$
C. $-242 \mathrm{kJmol}^{-1}$
D. $+242 \mathrm{kJmol}^{-1}$

Answer: A

- Watch Video Solution

421. Which of the following is an endothermic reaction?
A. $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$
C. $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

Answer: C

422. The heat released when $\mathrm{NH}_{4} \mathrm{OH}$ and HCl neutralise is
A. 13.7 kcal
B. $>13.7 \mathrm{kcal}$
C. $<13.7 \mathrm{kcal}$
D. None of the above

Answer: C

- Watch Video Solution

423. The difference between the heats of reaction at constant pressure
and a constant volume for the reaction
$2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 \mathrm{O}_{2}(g) \rightarrow 12 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $25^{\circ} \mathrm{C}$ in $k J$ is
A. -7.43
B. +3.72
C. -3.72
D. +7.43

Answer: A

- Watch Video Solution

424. Which of the following equations represents standard heat of combustion of CH_{4} ?
A. $\mathrm{C}($ diamond $)+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(g)$
B. C (graphite) $+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$
C. C (diamond) $+4 H(g) \rightarrow C H_{4}(g)$
D. C (graphite) $+4 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$

Answer: B

425. Identify the state quantiy among the following
A. q
B. $q-w$
C. $q+w$
D. q / w

Answer: C

- Watch Video Solution

426. The ΔH_{f}° for $\mathrm{CO}_{2}(g), \mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2} \mathrm{O}(g)$ are $-395.5,-110.5$ and $-241.8 \mathrm{kJmol}^{-1}$ respectively. The standard enthalpy change in (in kJ) for the reaction
$\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g) \rightarrow \mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g)$ is
A. 524.1
B. 41.2
C. -262.5
D. -41.2

Answer: B

- Watch Video Solution

427. Which of the following statement is false ?
A. Work is a state function
B. Temperature is a state function
C. Change of state is completely defind when initial and final states are specified
D. Work appears at the boundary of the system.

Answer: A

428. In thermodynamics, a process is called reversible when
A. surroundings and system change into each other
B. there is no boundary between system and surroundings
C. surrounding are always in equilibrium with system
D. system changes into surroundings spontaneously.

Answer: C

- Watch Video Solution

429. One mole of non-ideal gas undergoes a change of state (2.0atm, $3.0 L, 95 K) \rightarrow(4.0 \mathrm{~atm}, 5.0 L, 245 K)$ with a change in internal energy, $\Delta U=30.0 \mathrm{Latm}$. The change in enthalpy (ΔH) of the process in Latm is
A. 40.0
B. 42.3
C. 44.0
D. not defined because pressure is not constant

Answer: C

- Watch Video Solution

430. Which of the following reactions will define ΔH_{f}° ?
A. C (diamond) $+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
B. $\frac{1}{2} H_{2}(g)+\frac{1}{2} F_{2}(g) \rightarrow H F(g)$
C. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}$
D. $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$

Answer: B

- Watch Video Solution

431. The enthalpy of vaporisation of a liquid is $30 \mathrm{kJmol}^{-1}$ and entropy of vaporisation is $75 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$. The boiling point of the liquid at 1 atm is :
A. 250 K
B. 400 K
C. 450 K
D. 600 K

Answer: B

(D) Watch Video Solution

432. Two moles of an ideal gas is expanded isothermally and reversibly from 1 liter to 10 liter at 300 K . The enthalpy change (in $k J$) for the process
A. $11.4 k J$
B. $-11.4 k J$
C. 0 kJ
D. 4.8 kJ

Answer: C

- Watch Video Solution

433. One mole of monoatomic ideal gas at $T(K)$ is exapanded from $1 L$ to $2 L$ adiabatically under constant external pressure of 1 atm . The final tempreture of gas in kelvin is
A. T
B. $\frac{T}{2^{5 / 3-1}}$
С. $T-\frac{2}{3 \times 0.0821}$
D. $T+\frac{2}{3 \times 0.0821}$

Answer: C

- Watch Video Solution

434. An ideal gas is allowed to expand both reversibly and irreversibly in an isolated system. If T_{i} is the initial temperature and T_{f} is the final temperature, which of the following statement is correct ?
A. $\left(T_{f}\right)_{\text {rev }}=\left(T_{f}\right)_{\text {irrev }}$
B. $T_{f}=T_{i}$ for both reversible and irreversible process
C. $\left(T_{f}\right)_{\text {irrev }}>\left(T_{f}\right)_{\text {rev }}$
D. $T_{f}>T_{i}$ for reversible process but $T_{f}=T_{i}$ for irreversible process

Answer: B

435. The standard enthalpy of formation $\left(\Delta_{f} H^{\circ}\right)$ at 298 K for methane $\left(\mathrm{CH}_{4(\mathrm{~g})}\right)$ is $-74.8 \mathrm{kJmol}^{-1}$. The additional information required to determine the average energy for $C-H$ bond formation would be :
A. The first four ionization of carbon and electron gain enthalpy of hydrogen
B. The dissociation energy of hydrogen molecule H_{2}.
C. The dissociation energy of H_{2} and enthlpy of sublimation of carbon
D. latent heat of vaporisation of methane.

Answer: C

- Watch Video Solution

436. ($\Delta H-\Delta U)$ for the formation of carbon monoxide ($C O$) from its elements at 298 K is
$\left(R=8.314 K^{-1} \mathrm{~mol}^{-1}\right)$
A. $-2477.57 \mathrm{Jmol}^{-1}$
B. $2477.57 \mathrm{Jmol}^{-1}$
C. $-1238.78 \mathrm{Jmol}^{-1}$
D. $1238.78 \mathrm{Jmol}^{-1}$

Answer: D

- Watch Video Solution

437. The enthalpy and entropy change for the reaction,
$B r_{2}(l)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{BrCl}(g)$
are $30 \mathrm{~K} \mathrm{~mol}^{-1}$ and $105 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. The temperature at which the raction will be in equilibrium is:
A. 450 K
B. 300 K
C. $285.7 K$
D. 273 K

Answer: C

- Watch Video Solution

438. The enthalpy of hydrogenation of cyclohexene is $-119.5 \mathrm{kJmol}^{-1}$. If resonance energy of benzene is $-150.4 \mathrm{kJmol}^{-1}$, its enthalpy of hydrogenation would be :
A. $-269.9 \mathrm{kJmol}^{-1}$
B. $-358.5 \mathrm{kJmol}^{-1}$
C. $-508.9 \mathrm{kJmol}^{-1}$
D. $-208.1 \mathrm{kJmol}^{-1}$

Answer: D

439. The direct conversion of A to B is difficult, hence is carried out by the following shown path:
$\Delta(A \rightarrow C)=50, \Delta S(C \rightarrow D)=30, \Delta S(B \rightarrow D)=20$ The entropy change for the process $A \rightarrow B$ is :
A. +100 eV
B. +60 eV
C. -100 eV
D. -60 eV

Answer: B

- Watch Video Solution

440. Consider the following reactions:
(i) $\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$,
$\Delta H==-X_{1}$ Kjmol $^{-1}$
(ii) $\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta H=-X_{2} \mathrm{Kjmol}^{-1}$
(iii) $\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g) \rightarrow \mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(l)$,

(iv) $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{5}{2} \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$,
$\Delta H=+X_{4} K$ Jmol $^{-1}$
Enthanlpy of formation of $\mathrm{H}_{2} \mathrm{O}(l)$ is
A. $+x_{1} \mathrm{kJmol}^{-1}$
B. $-x_{2} \mathrm{kJmol}^{-1}$
C. $+x_{3} k J m o l^{-1}$
D. $-x_{4} \mathrm{kJmol}^{-1}$

Answer: B

441. Given the bond energies of $H-H$ and $C l-C l$ are $430 \mathrm{kJmol}^{-1}$ and $240 \mathrm{kJmol}^{-1}$, respectively, and $\Delta_{f} H^{\circ}$ for HCl is $-90 \mathrm{kJmol}^{-1}$. Bond enthalpy of HCl is
A. $245 \mathrm{kJmol}^{-1}$
B. $290 \mathrm{kJmol}^{-1}$
C. $380 \mathrm{kJmol}^{-1}$
D. $425 \mathrm{kJmol}^{-1}$

Answer: D

- Watch Video Solution

442. In conversion of lime-stone to lime,
$\mathrm{CaCO}_{3(s)} \rightarrow \mathrm{CaO}_{(s)}+\mathrm{CO}_{2(\mathrm{~g})}$ the values of ΔH° and ΔS° are $+179.1 \mathrm{kJmol}^{-1}$ and $160.2 \mathrm{~J} / \mathrm{K}$ respectively at 298 K and 1 bar. Assuming that ΔH° and ΔS° do not change with temperature,
temperature above which conversion of lime-stone to lime will be spontaneous is:
A. 1118 K
B. 1008 K
C. 1200 K
D. 845 K

Answer: A

- Watch Video Solution

443. Assuming that water vapour is an ideal gas, the internal energy change (ΔU) when 1 mole of water is vaporised at $1 b a r$ pressure and $100^{\circ} C$, (given: molar enthalpy of vaporization of water $41 \mathrm{kJmol}^{-1}$ at 1 bar and 373 K and $R=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$) will be :
A. $41.00 \mathrm{kJmol}^{-1}$
B. $4.100 \mathrm{kJmol}^{-1}$
C. $3.7904 \mathrm{kJmol}^{-1}$
D. $37.904 \mathrm{kJmol}^{-1}$

Answer: D

- Watch Video Solution

444. Identify the correct statement regarding a spontaneous process.
A. Lowering of energy in the reaction process is the only criterion for spontaneity
B. For a spontaneous process in an isolated system ,the change in entropy is positive
C. Endothermic reaction are never spontaneous
D. Exothermic reactions are always spontaneous.

Answer: B

- Watch Video Solution

445. The value of $\log _{10} K$ for a reaction $A \Leftrightarrow B$ is (Given:
$\Delta_{f} H_{298 K}^{\Theta}=-54.07 \mathrm{kJmol}^{-1}$,
$\Delta_{r} S_{298 K}^{\Theta}=10 J K^{=1} \mathrm{~mol}^{-1}$, and $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
A. 5
B. 10
C. 95
D. 100

Answer: B

- Watch Video Solution

446. For the process $\mathrm{H}_{2} \mathrm{O}(l)(1 \mathrm{bar}, 373 \mathrm{~K}) \rightarrow \mathrm{H}_{2} \mathrm{O}(g)(1 \mathrm{bar}, 373 \mathrm{~K})$ the correct set of thermodynamic parameters is
A. $\Delta G=0, \Delta S=+v e$
B. $\Delta G=0, \Delta S=-v e$
C. $\Delta G=+v e, \Delta S=+v e$
D. $\Delta G=-v e, \Delta S=+v e$

Answer: A

- Watch Video Solution

447. The bond dissociation energies for $\mathrm{Cl}_{2}, \mathrm{I}_{2}$ and ICl are $242.3,151.0$ and 211.3 kJ / mole respectively. The enthalpy of sublimation of iodine is $62.8 \mathrm{~kJ} / \mathrm{mole}$. What is the standard enthalpy of formation of $\operatorname{ICI}(\mathrm{g})$ nearly equal to
A. $-211.3 k J /$ mole
B. $-14.6 \mathrm{~kJ} / \mathrm{mole}$
C. $16.8 \mathrm{~kJ} / \mathrm{mole}$
D. $33.5 \mathrm{~kJ} / \mathrm{mole}$

Answer: C

- Watch Video Solution

448. Which of the following are not state functions?
(I) $q+w$
(II) q
(III) w
(IV) $H-T S$
A. I and $I V$
B. $I I, I I I$ and $I V$
C. $I, I I$ and $I I I$
D. $I I$ and $I I I$

- Watch Video Solution

449. For the gas phase reaction
$\mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
which of the following conditions are correct?
A. $\Delta H=0$ and $\Delta S<0$
B. $\Delta H>0$ and $\Delta S>0$
C. $\Delta H<0$ and $\Delta S<0$
D. $\Delta H>0$ and $\Delta S<0$

Answer: B

- Watch Video Solution

450. Bond dissociation enthalpy of $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and HCl are 434, 242 and $431 \mathrm{~K} \mathrm{Tmol}^{-1}$ respectively. Enthalpy of formation of HCl is
A. $93 \mathrm{kJmol}^{-1}$
B. $-245 \mathrm{kJmol}^{-1}$
C. $-93 \mathrm{kJmol}^{-1}$
D. $+245 \mathrm{kJmol}^{-1}$

Answer: C

- Watch Video Solution

451. Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below

$$
\frac{1}{2} C L_{2}(g) \xrightarrow{\frac{1}{2} \Delta_{\text {diss }} H^{\ominus}} C l(g) \xrightarrow{\Delta H_{E g}^{\ominus}}
$$

$\mathrm{Cl}^{-}(\mathrm{g}) \xrightarrow{\Delta_{\text {hyd }} H^{\ominus}} \mathrm{Cl}^{-}(a q)$
The energy involved in the conversion of $\frac{1}{2} C l_{2}(g)$ to
$C l^{-}(a q)$
(Using the data $\Delta_{\text {diss }} H_{C l_{2}}^{\Theta}=240 \mathrm{~K}_{\mathrm{Jmol}^{-1}}$)
$\Delta_{E g} H_{C l}^{\Theta}=-349 \mathrm{KJmol}^{-1}$,
$\Delta_{E g} H_{C l}^{\Theta}=-381 \mathrm{KJmol}^{-1}$) will be
A. $-850 \mathrm{kJmol}^{-1}$
B. $+120 \mathrm{kJmol}^{-1}$
C. $+152 \mathrm{kJmol}^{-1}$
D. $-610 \mathrm{kJmol}^{-1}$

Answer: D

- Watch Video Solution

452. The bond dissociation energy of $B-F$ in $B F_{3}$ is $646 \mathrm{kmol}^{-1}$ whereas that of $C-F$ in $C F_{4}$ is $515 \mathrm{kJmol}^{-1}$. The correct reason for higher $B-F$ bond dissociation energy as compared to that of $C-F$ in $C F_{4}$ is
A. Smaller size of B-atom as compared to that of C atom
B. Stronger the bond between B and F in $B F_{3}$ as compared to $C-F$ in $C F_{4}$
C. Significant $p \pi-p \pi$ interaction between B and F in $B F_{3}$ whereas there is no possibility of such interaction between C and F in $C F_{4}$
D. Lower degree of $p \pi-p \pi$ interaction between B and F in $B F_{3}$ than that between C and F in $C F_{4}$

Answer: C

- Watch Video Solution

453. From the following bond energies
$H-H$ bond energy $431.37 \mathrm{kJmol}^{-1}$
$C=C$ bond energy $606.10 \mathrm{kJmol}^{-1}$
$C-C$ bond energy $336.49 \mathrm{kJmol}^{-1}$
$C-H$ bond energy $410.5 \mathrm{kJmol}^{-1}$
Enthalpy for the reaction

will be
A. $553.6 \mathrm{kJmol}^{-1}$
B. $1573.6 \mathrm{kJmol}^{-1}$
C. $-243.6 \mathrm{kJmol}^{-1}$
D. $-120.0 \mathrm{kJmol}^{-1}$

Answer: D

- Watch Video Solution

454. The values of ΔH and ΔS for the reaction
C (graphite) $+\mathrm{CO}_{2}(g) \rightarrow 2 \mathrm{CO}(g)$ are 170 kJ and $170 \mathrm{JK}^{-1}$
respectively. The reaction will be spontaneous at
A. 990 K
B. 1140 K
C. 1100 K
D. 1110 K

Answer: A

- Watch Video Solution

455. For a particular reversible reaciton at temperature $T, \Delta H$ and ΔS were found to be both $+v e$. If T_{e} is the temperature at equilibrium, the reaciton would be spontaneous when :
A. $T=T_{e}$
B. $T_{e}>T$
C. $T_{e}<T$
D. T_{e} is 5 times T.

Answer: C

- Watch Video Solution

456. The standard enthalpy of formation of NH_{3} is $-46.0 \mathrm{~K} \mathrm{Jmol}^{-1}$. If the enthalpy of formation of H_{2} from its atoms is $-436 \mathrm{KJmol}^{-1}$ and that of N_{2} is $-712 \mathrm{KJmol}^{-1}$, the average bond enthalpy of $N-H$ bond in NH_{3} is
A. $-1102 \mathrm{kJmol}^{-1}$
B. $-964 \mathrm{kJmol}^{-1}$
C. $-352 \mathrm{kJmol}^{-1}$
D. $+1056 \mathrm{kJmol}^{-1}$

Answer: C

457. Standard entropy of X_{2}, Y_{2} and $X Y_{3}$ are 60,40 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively. For the reaction, $\frac{1}{2} X_{2}+\frac{3}{2} Y_{2} \rightarrow X Y_{3}, \Delta H=-30 K J$, to be at equilibrium, the temperature will be:
A. $1000 K$
B. 1250 K
C. 500 K
D. 750 K

Answer: D

- Watch Video Solution

458. The bond energy (in kcal mol^{-1}) of a $C-c$ single bond is approximately
A. 1
B. 10
C. 100
D. 1000

Answer: C

- Watch Video Solution

459. The entropy change involved in the isothermal reversible expansion of 2 moles of an ideal gas from a volume of $10 \mathrm{dm}^{3}$ to a volume of 100 dm at $27^{\circ} \mathrm{C}$ is
A. $35.8 \mathrm{Jmol}^{-1} K^{-1}$
B. $32.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
C. $42.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
D. $38.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
460. If the enthaply change for the transition of liquid water to steam is $30 \mathrm{KJ} \mathrm{mol}^{-1}$ at $27^{\circ} \mathrm{C}$. The entropy change for the process would be
A. $0.1 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
B. $100 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
C. $10 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
D. $1.0 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

Answer: B

- Watch Video Solution

461. Enthalpy change for the reaction
$2 H(2)(g) \rightarrow 4 H(g)$ is $-869.6 k J$
The dissociation energy of $H--H$ bond is:
A. $+434.8 k J$
B. $+217.4 k J$
C. 434.8 kJ
D. 869.6 kJ

Answer: C

- Watch Video Solution

462. A sample consisting of 1 mol of a mono-atomic perfect gas $\left(C_{V}=\frac{3}{2} R\right)$ is taken through the cycle as shown.

Temperature at points (1), (2) and (3) respectively is
A. $273 K, 546 K, 273 K$
B. $546 K, 273 K, 273 K$
C. $273 K, 273 K, 273 K$
D. $546 K, 546 K, 273 K$

Answer: A
463. A sample consisting of 1 mol of a mono-atomic perfect gas $\left(C_{V}=\frac{3}{2} R\right)$ is taken through the cycle as shown.

ΔH for the overall cycle is
A. $+5.67 \times 10^{3} \mathrm{~J}$
B. $-5.67 \times 10^{5} \mathrm{~J}$
C. $-11.34 \times 10^{3} J$
D. zero
464. A sample consisting of 1 mol of a mono-atomic perfect gas $\left(C_{V}=\frac{3}{2} R\right)$ is taken through the cycle as shown.

ΔU for the process $(1 \rightarrow 2)$ is
A. 0.00 J
B. $+3.40 \times 10^{3} \mathrm{~J}$
C. -3.40 J
D. $-3.40 \times 10^{3} \mathrm{~J}$

- Watch Video Solution

465. A sample consisting of 1 mol of a mono-atomic perfect gas $\left(C_{V}=\frac{3}{2} R\right)$ is taken through the cycle as shown.

ΔU for the process $(2 \rightarrow 3)$ is
A. 0.00 J
B. +3.40 J
C. -3.40 J
D. None of these

Answer: C

- Watch Video Solution

466. Entropy has great importance in thermodynamics. It is a state function and it is a measure of the degree of disorder or randomness of the system. More is the disorder of the system, greater will be the entropy and vice versa. It is normally expressed in terms of change of entropy.
(i) For a reaction entropy change is given by
$\Delta S=\sum S($ product $)-\sum S($ reactant $)$
(ii) $\Delta S=\frac{Q_{\text {rev }}}{T}=\frac{W_{\text {rev }}}{T}=\frac{n R T \ln \left(V_{2} / V_{1}\right)}{T}$
$=n R T \frac{\ln \left(V_{2}\right)}{V_{1}}=n R \frac{\ln \left(P_{1}\right)}{P_{2}}$
(iii) $\Delta S=\Delta H-T \Delta S$
(iv) Entropy change in reversible and irreversible process : Consider a

Carnot cycle as shown in figure below in which $a b$ and $c d$ are isothermal.

Irrespective of the path of the system in its reversible change, $d q / T$ is same

For entire Carnot cycle
$\frac{d q_{1}}{T_{1}}-\frac{d q_{2}}{T_{2}}=0$
$\therefore \Delta S_{\text {universe }}=D e<s S_{\text {system }}+\Delta S_{\text {surrounding }}$
$\Delta S_{\text {Surrounding }}=\frac{q_{1}}{T_{1}}+\frac{q_{2}}{T_{2}}$ (q term includes their own sign)
$b c$ and $d a$ are adiabatics. Let $d q_{1}$ be the heat supplied to the working system at $T_{1} K$ and $d q_{2}$ be heat rejected by it to the sink at $T_{2} K$. All these steps are reversible. In a Carnot cycle.

$$
\frac{d q_{1}-d q_{2}}{d q_{1}}=\frac{T_{1}-T_{2}}{T_{1}} \text { or } \frac{d q_{1}}{T_{1}}=\frac{d q_{2}}{T_{2}}
$$

Let us now confine our attention only to the change of the system from
point ' a ' to point ' c ' and attempt to find out the ratio of heat change to the temperature at which thermal changes occur by proceeding from a to c either along $a b c$ or $a d c$.

Along the path $a b c, \frac{\text { Heat change }}{\text { Temp. }}=\frac{d q_{1}}{T_{1}}$
Along the path $a d c, \frac{\text { Heat change }}{\text { Temp }}=\frac{d q_{2}}{T_{2}}$
In case of spontaneous and irreversible expansion to volume $V_{1}+V_{2}$, $W=0$ and so will be ΔU

In the reversible expansion of the gas at $T K$ from volume V_{1} to $V_{1}+V_{2}$, heat absorbed $\Delta U+R T \frac{\ln \left(V_{1}+V_{2}\right)}{V_{1}}$
(v) Suppose n moles of an ideal gas are enclosed in a vessel A of volume V_{1} which is connected through a stop cock to a completely evacuated vessel B of volume V_{2}. The system is insulated and has temperature $T K$.

If the stop cock is opened, the gas will attain the volume $V_{1}+V_{2}$.
Which of the following statement is correct about entropy ?
A. It is a function of temperature only
B. It is a function of pressure only
C. It is a function of volume only
D. It is a function of pressure, temperature and volume.

Answer: D

- View Text Solution

467. Entropy has great importance in thermodynamics. It is a state function and it is a measure of the degree of disorder or randomness of the system. More is the disorder of the system, greater will be the entropy and vice versa. It is normally expressed in terms of change of entropy.
(i) For a reaction entropy change is given by

$$
\Delta S=\sum S(\text { product })-\sum S(\text { reactant })
$$

(ii) $\Delta S=\frac{Q_{\text {rev }}}{T}=\frac{W_{\text {rev }}}{T}=\frac{n R T \ln \left(V_{2} / V_{1}\right)}{T}$
$=n R T \frac{\ln \left(V_{2}\right)}{V_{1}}=n R \frac{\ln \left(P_{1}\right)}{P_{2}}$
$(i i i) \Delta S=\Delta H-T \Delta S$
(iv) Entropy change in reversible and irreversible process : Consider a Carnot cycle as shown in figure below in which $a b$ and $c d$ are isothermal.

Irrespective of the path of the system in its reversible change, $d q / T$ is same

For entire Carnot cycle

$\frac{d q_{1}}{T_{1}}-\frac{d q_{2}}{T_{2}}=0$
$\therefore \Delta S_{\text {universe }}=D e<s S_{\text {system }}+\Delta S_{\text {surrounding }}$
$\Delta S_{\text {Surrounding }}=\frac{q_{1}}{T_{1}}+\frac{q_{2}}{T_{2}}$ (q term includes their own sign)
$b c$ and $d a$ are adiabatics. Let $d q_{1}$ be the heat supplied to the working system at $T_{1} K$ and $d q_{2}$ be heat rejected by it to the sink at $T_{2} K$. All these steps are reversible. In a Carnot cycle.
$\frac{d q_{1}-d q_{2}}{d q_{1}}=\frac{T_{1}-T_{2}}{T_{1}}$ or $\frac{d q_{1}}{T_{1}}=\frac{d q_{2}}{T_{2}}$
Let us now confine our attention only to the change of the system from point ' a ' to point ' c ' and attempt to find out the ratio of heat change to the temperature at which thermal changes occur by proceeding from a to c either along $a b c$ or $a d c$.
Along the path $a b c, \frac{\text { Heat change }}{\text { Temp. }}=\frac{d q_{1}}{T_{1}}$
Along the path $a d c, \frac{\text { Heat change }}{\text { Temp }}=\frac{d q_{2}}{T_{2}}$
In case of spontaneous and irreversible expansion to volume $V_{1}+V_{2}$,
$W=0$ and so will be ΔU
In the reversible expansion of the gas at $T K$ from volume V_{1} to
$V_{1}+V_{2}$, heat absorbed $\Delta U+R T \frac{\ln \left(V_{1}+V_{2}\right)}{V_{1}}$
(v) Suppose n moles of an ideal gas are enclosed in a vessel A of volume V_{1} which is connected through a stop cock to a completely evacuated vessel B of volume V_{2}. The system is insulated and has temperature $T K$.

Fig-II

If the stop cock is opened, the gas will attain the volume $V_{1}+V_{2}$.

Ethanol boils at $78.4^{\circ} \mathrm{C}$ and standard enthalpy of vaporisation of ethanol is $42.4 \mathrm{~kJ} / \mathrm{mol}$. Calculate the enthropy of vaporisation of ethanol
A. 0
B. $90 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
C. $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. $120.66 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Answer: D

- View Text Solution

468. Entropy has great importance in thermodynamics. It is a state function and it is a measure of the degree of disorder or randomness of the system. More is the disorder of the system, greater will be the entropy and vice versa. It is normally expressed in terms of change of entropy.
(i) For a reaction entropy change is given by
$\Delta S=\sum S($ product $)-\sum S($ reactant $)$
(ii) $\Delta S=\frac{Q_{\text {rev }}}{T}=\frac{W_{\text {rev }}}{T}=\frac{n R T \ln \left(V_{2} / V_{1}\right)}{T}$
$=n R T \frac{\ln \left(V_{2}\right)}{V_{1}}=n R \frac{\ln \left(P_{1}\right)}{P_{2}}$
$(i i i) \Delta S=\Delta H-T \Delta S$
(iv) Entropy change in reversible and irreversible process : Consider a

Carnot cycle as shown in figure below in which $a b$ and $c d$ are isothermal.

Irrespective of the path of the system in its reversible change, $d q / T$ is

same

For entire Carnot cycle

$$
\frac{d q_{1}}{T_{1}}-\frac{d q_{2}}{T_{2}}=0
$$

$\therefore \Delta S_{\text {universe }}=D e<s S_{\text {system }}+\Delta S_{\text {surrounding }}$
$\Delta S_{\text {Surrounding }}=\frac{q_{1}}{T_{1}}+\frac{q_{2}}{T_{2}}(q$ term includes their own sign $)$
$b c$ and $d a$ are adiabatics. Let $d q_{1}$ be the heat supplied to the working system at $T_{1} K$ and $d q_{2}$ be heat rejected by it to the sink at $T_{2} K$. All these steps are reversible. In a Carnot cycle.

$$
\frac{d q_{1}-d q_{2}}{d q_{1}}=\frac{T_{1}-T_{2}}{T_{1}} \text { or } \frac{d q_{1}}{T_{1}}=\frac{d q_{2}}{T_{2}}
$$

Let us now confine our attention only to the change of the system from point ' a ' to point ' c ' and attempt to find out the ratio of heat change to the temperature at which thermal changes occur by proceeding from a to c either along $a b c$ or $a d c$.

Along the path $a b c, \frac{\text { Heat change }}{\text { Temp. }}=\frac{d q_{1}}{T_{1}}$
Along the path $a d c, \frac{\text { Heat change }}{\text { Temp }}=\frac{d q_{2}}{T_{2}}$
In case of spontaneous and irreversible expansion to volume $V_{1}+V_{2}$, $W=0$ and so will be ΔU

In the reversible expansion of the gas at $T K$ from volume V_{1} to $V_{1}+V_{2}$, heat absorbed $\Delta U+R T \frac{\ln \left(V_{1}+V_{2}\right)}{V_{1}}$
(v) Suppose n moles of an ideal gas are enclosed in a vessel A of volume V_{1} which is connected through a stop cock to a completely evacuated vessel B of volume V_{2}. The system is insulated and has temperature $T K$.

Fig-II

If the stop cock is opened, the gas will attain the volume $V_{1}+V_{2}$.
In the figure- I, what will be the value of $\frac{d q}{T}$ along the line $b c$?
A. 0
B. $d q_{1} / T$
C. $\frac{d q_{2}}{T_{2}}$
D. $\frac{d q_{1}}{T_{1}}-\frac{d q_{2}}{T_{2}}$

Answer: A

- View Text Solution

469. Entropy has great importance in thermodynamics. It is a state function and it is a measure of the degree of disorder or randomness of the system. More is the disorder of the system, greater will be the
entropy and vice versa. It is normally expressed in terms of change of entropy.
(i) For a reaction entropy change is given by
$\Delta S=\sum S($ product $)-\sum S($ reactant $)$
(ii) $\Delta S=\frac{Q_{\text {rev }}}{T}=\frac{W_{\text {rev }}}{T}=\frac{n R T \ln \left(V_{2} / V_{1}\right)}{T}$
$=n R T \frac{\ln \left(V_{2}\right)}{V_{1}}=n R \frac{\ln \left(P_{1}\right)}{P_{2}}$
$(i i i) \Delta S=\Delta H-T \Delta S$
(iv) Entropy change in reversible and irreversible process : Consider a Carnot cycle as shown in figure below in which $a b$ and $c d$ are isothermal.

Irrespective of the path of the system in its reversible change, $d q / T$ is

For entire Carnot cycle
$\frac{d q_{1}}{T_{1}}-\frac{d q_{2}}{T_{2}}=0$
$\therefore \Delta S_{\text {universe }}=D e<s S_{\text {system }}+\Delta S_{\text {surrounding }}$
$\Delta S_{\text {Surrounding }}=\frac{q_{1}}{T_{1}}+\frac{q_{2}}{T_{2}}(q$ term includes their own sign $)$
$b c$ and $d a$ are adiabatics. Let $d q_{1}$ be the heat supplied to the working system at $T_{1} K$ and $d q_{2}$ be heat rejected by it to the sink at $T_{2} K$. All these steps are reversible. In a Carnot cycle.

$$
\frac{d q_{1}-d q_{2}}{d q_{1}}=\frac{T_{1}-T_{2}}{T_{1}} \text { or } \frac{d q_{1}}{T_{1}}=\frac{d q_{2}}{T_{2}}
$$

Let us now confine our attention only to the change of the system from point ' a ' to point ' c ' and attempt to find out the ratio of heat change to the temperature at which thermal changes occur by proceeding from a to c either along $a b c$ or $a d c$.
Along the path $a b c, \frac{\text { Heat change }}{\text { Temp. }}=\frac{d q_{1}}{T_{1}}$
Along the path $a d c, \frac{\text { Heat change }}{\text { Temp }}=\frac{d q_{2}}{T_{2}}$
In case of spontaneous and irreversible expansion to volume $V_{1}+V_{2}$, $W=0$ and so will be ΔU

In the reversible expansion of the gas at $T K$ from volume V_{1} to
$V_{1}+V_{2}$, heat absorbed $\Delta U+R T \frac{\ln \left(V_{1}+V_{2}\right)}{V_{1}}$
(v) Suppose n moles of an ideal gas are enclosed in a vessel A of
volume V_{1} which is connected through a stop cock to a completely evacuated vessel B of volume V_{2}. The system is insulated and has temperature $T K$.

Fig-II

If the stop cock is opened, the gas will attain the volume $V_{1}+V_{2}$.
In figure I, which is a reversible cyclic process, what will be the value of $\Delta U, \Delta H, \oint \frac{d q}{T}$ respectively ?
A. $0,0,0$
B. $0,0, \frac{d q_{1}}{T_{1}}$
C. $0,0, \frac{d q_{2}}{T_{2}}$
D. None of these

Answer: A

470. Entropy has great importance in thermodynamics. It is a state function and it is a measure of the degree of disorder or randomness of the system. More is the disorder of the system, greater will be the entropy and vice versa. It is normally expressed in terms of change of entropy.
(i) For a reaction entropy change is given by
$\Delta S=\sum S($ product $)-\sum S($ reactant $)$
(ii) $\Delta S=\frac{Q_{\text {rev }}}{T}=\frac{W_{\text {rev }}}{T}=\frac{n R T \ln \left(V_{2} / V_{1}\right)}{T}$
$=n R T \frac{\ln \left(V_{2}\right)}{V_{1}}=n R \frac{\ln \left(P_{1}\right)}{P_{2}}$
$(i i i) \Delta S=\Delta H-T \Delta S$
(iv) Entropy change in reversible and irreversible process : Consider a Carnot cycle as shown in figure below in which $a b$ and $c d$ are isothermal.

Irrespective of the path of the system in its reversible change, $d q / T$ is

same

For entire Carnot cycle

$$
\begin{aligned}
& \frac{d q_{1}}{T_{1}}-\frac{d q_{2}}{T_{2}}=0 \\
& \therefore \Delta S_{\text {universe }}=D e<s S_{\text {system }}+\Delta S_{\text {surrounding }}
\end{aligned}
$$

$\Delta S_{\text {Surrounding }}=\frac{q_{1}}{T_{1}}+\frac{q_{2}}{T_{2}}$ (q term includes their own sign)
$b c$ and $d a$ are adiabatics. Let $d q_{1}$ be the heat supplied to the working system at $T_{1} K$ and $d q_{2}$ be heat rejected by it to the sink at $T_{2} K$. All these steps are reversible. In a Carnot cycle.

$$
\frac{d q_{1}-d q_{2}}{d q_{1}}=\frac{T_{1}-T_{2}}{T_{1}} \text { or } \frac{d q_{1}}{T_{1}}=\frac{d q_{2}}{T_{2}}
$$

Let us now confine our attention only to the change of the system from point ' a ' to point ' c ' and attempt to find out the ratio of heat change to the temperature at which thermal changes occur by proceeding from
a to c either along $a b c$ or $a d c$.
Along the path $a b c, \frac{\text { Heat change }}{\text { Temp. }}=\frac{d q_{1}}{T_{1}}$
Along the path $a d c, \frac{\text { Heat change }}{\text { Temp }}=\frac{d q_{2}}{T_{2}}$
In case of spontaneous and irreversible expansion to volume $V_{1}+V_{2}$,
$W=0$ and so will be ΔU

In the reversible expansion of the gas at $T K$ from volume V_{1} to
$V_{1}+V_{2}$, heat absorbed $\Delta U+R T \frac{\ln \left(V_{1}+V_{2}\right)}{V_{1}}$
(v) Suppose n moles of an ideal gas are enclosed in a vessel A of volume V_{1} which is connected through a stop cock to a completely evacuated vessel B of volume V_{2}. The system is insulated and has temperature $T K$.

If the stop cock is opened, the gas will attain the volume $V_{1}+V_{2}$.
In a reversible isothermal expansion of the gas at $T K$ as shown in
figure $I I$, the $\Delta S_{\text {system }}, \Delta S_{\text {surroundings }}$ and $\Delta S_{\text {universe }}$ will be respectively
A. $R \frac{\ln \left(V_{1}+V_{2}\right)}{V_{1}}, 0,+v e$
B. $0, R \frac{\ln \left(V_{1}+V_{2}\right)}{V_{1}},+v e$
C. $R \frac{\ln \left(V_{1}+V_{2}\right)}{V_{2}}, 0,+v e$
D. $R \frac{\ln \left(V_{2}+V_{1}\right)}{V_{2}}, 0,-v e$

Answer: A

- View Text Solution

471. Entropy has great importance in thermodynamics. It is a state function and it is a measure of the degree of disorder or randomness of the system. More is the disorder of the system, greater will be the entropy and vice versa. It is normally expressed in terms of change of entropy.
(i) For a reaction entropy change is given by $\Delta S=\sum S($ product $)-\sum S($ reactant $)$
(ii) $\Delta S=\frac{Q_{\text {rev }}}{T}=\frac{W_{\text {rev }}}{T}=\frac{n R T \ln \left(V_{2} / V_{1}\right)}{T}$
$=n R T \frac{\ln \left(V_{2}\right)}{V_{1}}=n R \frac{\ln \left(P_{1}\right)}{P_{2}}$

$($ (iii) $\Delta S=\Delta H-T \Delta S$

(iv) Entropy change in reversible and irreversible process : Consider a Carnot cycle as shown in figure below in which $a b$ and $c d$ are isothermal.

Irrespective of the path of the system in its reversible change, $d q / T$ is same

For entire Carnot cycle
$\frac{d q_{1}}{T_{1}}-\frac{d q_{2}}{T_{2}}=0$
$\therefore \Delta S_{\text {universe }}=D e<s S_{\text {system }}+\Delta S_{\text {surrounding }}$
$\Delta S_{\text {Surrounding }}=\frac{q_{1}}{T_{1}}+\frac{q_{2}}{T_{2}}$ (q term includes their own sign)
$b c$ and $d a$ are adiabatics. Let $d q_{1}$ be the heat supplied to the working system at $T_{1} K$ and $d q_{2}$ be heat rejected by it to the sink at $T_{2} K$. All these steps are reversible. In a Carnot cycle.
$\frac{d q_{1}-d q_{2}}{d q_{1}}=\frac{T_{1}-T_{2}}{T_{1}}$ or $\frac{d q_{1}}{T_{1}}=\frac{d q_{2}}{T_{2}}$
Let us now confine our attention only to the change of the system from point ' a ' to point ' c ' and attempt to find out the ratio of heat change to the temperature at which thermal changes occur by proceeding from a to c either along $a b c$ or $a d c$.
Along the path $a b c, \frac{\text { Heat change }}{\text { Temp. }}=\frac{d q_{1}}{T_{1}}$
Along the path $a d c, \frac{\text { Heat change }}{\text { Temp }}=\frac{d q_{2}}{T_{2}}$
In case of spontaneous and irreversible expansion to volume $V_{1}+V_{2}$, $W=0$ and so will be ΔU

In the reversible expansion of the gas at $T K$ from volume V_{1} to $V_{1}+V_{2}$, heat absorbed $\Delta U+R T \frac{\ln \left(V_{1}+V_{2}\right)}{V_{1}}$
(v) Suppose n moles of an ideal gas are enclosed in a vessel A of volume V_{1} which is connected through a stop cock to a completely evacuated vessel B of volume V_{2}. The system is insulated and has temperature $T K$.

If the stop cock is opened, the gas will attain the volume $V_{1}+V_{2}$. In irreversible cyclic process, which of the following is correct ?
A. $\Delta S_{\text {universe }}>0, \Delta S_{\text {system }}=0, \Delta S_{\text {surround } \in g s}>0$
B. $\Delta S_{\text {universe }}>0, \Delta S_{\text {system }}>0, \Delta S_{\text {surround } \in g s}=0$
C. $\Delta S_{\text {universe }}>0, \Delta S_{\text {system }}>0, \Delta S_{\text {surround } \in g s}=0$
D. $\Delta S_{\text {universe }}=0, \Delta S_{\text {system }}=0, \Delta S_{\text {surround } \in g s}=0$

Answer: A

- View Text Solution

472. Energy is associated with the orientation and distribution of molecules in space. Disordered crystals have higher entropy than ordered crystals and diffused gases have higher entropy than compressed gases.

Entropy is also associated with molecular motion. As the temperature of a substance increases, random molecular motion increases hence entropy increases. Figure gives variation of entropy with temperature. At absolute zero ($-273^{\circ} \mathrm{C}$) every substance is in solid state whose particles are rigidly fixed in a crystalline structure. If there is no residual orientational disorder, like that in $C O$, entropy of the substance is zero. Third law of thermodynamics states.

At the absolute zero of temperature the entropy of every substance become zero and does become zero in case of perfectly crystalline structure.
unders $\tan d(T \rightarrow 0)(L t S)=0$
In case of $C O$ and $N O$ molecules in solid state, there is randomness even at $0 K$ due to their dipole moments hence entropy in such cases is
not zero even at $0 K$. As the temperature is raised, the molecules begin to vibrate. The number of ways in which the vibrational energy can be distributed increases with increases in temperature and the entropy of solid increases steadily as the temperature increaes. At the melting point (mp) of the solid, there is a discontinous jump in entropy because there are many more ways of arranging the molecules in the liquid than in the solid. An even greater jump in entropy is observed at the boiling point (bp) because molecules in the gas are to free to occupy a more larger volume and randomness increases.

Which of the following process is spontaneous?
A. Solid state
B. Liquid state
C. Gaseous state
D. Equal in all states.

Answer: C

473. Energy is associated with the orientation and distribution of molecules in space. Disordered crystals have higher entropy than ordered crystals and diffused gases have higher entropy than compressed gases.

Entropy is also associated with molecular motion. As the temperature of a substance increases, random molecular motion increases hence entropy increases. Figure gives variation of entropy with temperature. At absolute zero ($-273^{\circ} C$) every substance is in solid state whose particles are rigidly fixed in a crystalline structure. If there is no residual orientational disorder, like that in $C O$, entropy of the substance is zero. Third law of thermodynamics states.

At the absolute zero of temperature the entropy of every substance
become zero and does become zero in case of perfectly crystalline structure.
unders $\tan d(T \rightarrow 0)(L t S)=0$
In case of $C O$ and $N O$ molecules in solid state, there is randomness even at $0 K$ due to their dipole moments hence entropy in such cases is not zero even at $0 K$. As the temperature is raised, the molecules begin to vibrate. The number of ways in which the vibrational energy can be distributed increases with increases in temperature and the entropy of solid increases steadily as the temperature increaes. At the melting point (mp) of the solid, there is a discontinous jump in entropy because there are many more ways of arranging the molecules in the liquid than in the solid. An even greater jump in entropy is observed at the boiling point (bp) because molecules in the gas are to free to occupy a more larger volume and randomness increases.

Which of the following process is spontaneous?
A. Diffusion of perfume molecules from one side of the room to the other
B. Decomposition of solid CaCO_{3}
C. Heat flow from a cold object to a hot object
D. Climbing up a mountain.

Answer: A

- Watch Video Solution

474. Energy is associated with the orientation and distribution of molecules in space. Disordered crystals have higher entropy than ordered crystals and diffused gases have higher entropy than compressed gases.

Entropy is also associated with molecular motion. As the temperature
of a substance increases, random molecular motion increases hence entropy increases. Figure gives variation of entropy with temperature. At absolute zero $\left(-273^{\circ} \mathrm{C}\right)$ every substance is in solid state whose particles are rigidly fixed in a crystalline structure. If there is no residual orientational disorder, like that in $C O$, entropy of the substance is zero. Third law of thermodynamics states.

At the absolute zero of temperature the entropy of every substance become zero and does become zero in case of perfectly crystalline structure.
unders $\tan d(T \rightarrow 0)(L t S)=0$
In case of $C O$ and $N O$ molecules in solid state, there is randomness even at $0 K$ due to their dipole moments hence entropy in such cases is not zero even at $0 K$. As the temperature is raised, the molecules begin to vibrate. The number of ways in which the vibrational energy can be distributed increases with increases in temperature and the entropy of solid increases steadily as the temperature increaes. At the melting point (mp) of the solid, there is a discontinous jump in entropy because there are many more ways of arranging the molecules in the liquid than in the solid. An even greater jump in entropy is observed at the boiling
point (bp) because molecules in the gas are to free to occupy a more
larger volume and randomness increases.
Which has maximum entropy of vaporisation ?
A. Ethanol (l)
B. Benzene (l)
C. Toluene (l)
D. $\mathrm{CO}_{2}(\mathrm{~g})$

Answer: A

- View Text Solution

475. Energy is associated with the orientation and distribution of molecules in space. Disordered crystals have higher entropy than ordered crystals and diffused gases have higher entropy than compressed gases.

Entropy is also associated with molecular motion. As the temperature of a substance increases, random molecular motion increases hence entropy increases. Figure gives variation of entropy with temperature. At absolute zero ($-273^{\circ} \mathrm{C}$) every substance is in solid state whose particles are rigidly fixed in a crystalline structure. If there is no residual orientational disorder, like that in $C O$, entropy of the substance is zero. Third law of thermodynamics states.

At the absolute zero of temperature the entropy of every substance become zero and does become zero in case of perfectly crystalline structure.
unders $\tan d(T \rightarrow 0)(L t S)=0$
In case of $C O$ and $N O$ molecules in solid state, there is randomness even at $0 K$ due to their dipole moments hence entropy in such cases is
not zero even at $0 K$. As the temperature is raised, the molecules begin to vibrate. The number of ways in which the vibrational energy can be distributed increases with increases in temperature and the entropy of solid increases steadily as the temperature increaes. At the melting point (mp) of the solid, there is a discontinous jump in entropy because there are many more ways of arranging the molecules in the liquid than in the solid. An even greater jump in entropy is observed at the boiling point (bp) because molecules in the gas are to free to occupy a more larger volume and randomness increases.

For the following reaction

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

If at $0 \mathrm{~K}, \Delta S$ of this reaction is $\mathrm{Xcalmol}^{-1}$ then entropy of $\mathrm{CO}_{2}(\mathrm{~g})$ at $0 K$ is
A. - Xcal
B. -2 Xcal
C. + Xcal
D. 0 cal

Answer: C

- View Text Solution

476. Energy is associated with the orientation and distribution of molecules in space. Disordered crystals have higher entropy than ordered crystals and diffused gases have higher entropy than compressed gases.

Entropy is also associated with molecular motion. As the temperature of a substance increases, random molecular motion increases hence entropy increases. Figure gives variation of entropy with temperature. At absolute zero ($-273^{\circ} \mathrm{C}$) every substance is in solid state whose
particles are rigidly fixed in a crystalline structure. If there is no residual orientational disorder, like that in $C O$, entropy of the substance is zero.

Third law of thermodynamics states.
At the absolute zero of temperature the entropy of every substance become zero and does become zero in case of perfectly crystalline structure.
unders $\tan d(T \rightarrow 0)(L t S)=0$
In case of $C O$ and $N O$ molecules in solid state, there is randomness
even at $0 K$ due to their dipole moments hence entropy in such cases is not zero even at $0 K$. As the temperature is raised, the molecules begin to vibrate. The number of ways in which the vibrational energy can be distributed increases with increases in temperature and the entropy of solid increases steadily as the temperature increaes. At the melting point (mp) of the solid, there is a discontinous jump in entropy because there are many more ways of arranging the molecules in the liquid than in the solid. An even greater jump in entropy is observed at the boiling point (bp) because molecules in the gas are to free to occupy a more larger volume and randomness increases.

Which has the highest entropy per mol of the substance?
A. H_{2} at $25^{\circ} \mathrm{C}$ at 1 atm
B. H_{2} at STP
C. H_{2} at 100 K at 1 atm
D. $\mathrm{H}_{-}(2) a t 0 \mathrm{Kat1}$ atm

Answer: A

- View Text Solution

477. Energy is associated with the orientation and distribution of molecules in space. Disordered crystals have higher entropy than ordered crystals and diffused gases have higher entropy than compressed gases.

Entropy is also associated with molecular motion. As the temperature of a substance increases, random molecular motion increases hence entropy increases. Figure gives variation of entropy with temperature. At absolute zero $\left(-273^{\circ} C\right)$ every substance is in solid state whose particles are rigidly fixed in a crystalline structure. If there is no residual orientational disorder, like that in $C O$, entropy of the substance is zero. Third law of thermodynamics states.

At the absolute zero of temperature the entropy of every substance become zero and does become zero in case of perfectly crystalline structure.
unders $\tan d(T \rightarrow 0)(L t S)=0$
In case of $C O$ and $N O$ molecules in solid state, there is randomness even at $0 K$ due to their dipole moments hence entropy in such cases is
not zero even at $0 K$. As the temperature is raised, the molecules begin to vibrate. The number of ways in which the vibrational energy can be distributed increases with increases in temperature and the entropy of solid increases steadily as the temperature increaes. At the melting point (mp) of the solid, there is a discontinous jump in entropy because there are many more ways of arranging the molecules in the liquid than in the solid. An even greater jump in entropy is observed at the boiling point (bp) because molecules in the gas are to free to occupy a more larger volume and randomness increases.

Predict the sign of ΔS in the system for each of the following process
$(\mathrm{I}) \mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$(\mathrm{II}) \mathrm{CaSO}_{4}(s) \rightarrow \mathrm{CaO}(s)+\mathrm{SO}_{3}(g)$
$(\mathrm{III}) \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
$(I V) I_{2}(s) \rightarrow I_{2}(a q)$
$\begin{array}{llll}\text { A. } & I I & I I I & I V \\ +v e & +v e & -v e & +v e\end{array}$
I II III IV
B. $+v e-v e-v e+v e$
$\begin{array}{llll}\text { c. } & I I & I I I & I V \\ -v e & -v e & +v e & +v e\end{array}$
D. $\begin{array}{llll}I & I I & I I I & I V \\ +v e & -v e & -v e & -v e\end{array}$

Answer: A

- View Text Solution

478. Energy is associated with the orientation and distribution of molecules in space. Disordered crystals have higher entropy than ordered crystals and diffused gases have higher entropy than compressed gases.

Entropy is also associated with molecular motion. As the temperature of a substance increases, random molecular motion increases hence entropy increases. Figure gives variation of entropy with temperature.

At absolute zero $\left(-273^{\circ} C\right)$ every substance is in solid state whose particles are rigidly fixed in a crystalline structure. If there is no residual orientational disorder, like that in $C O$, entropy of the substance is zero. Third law of thermodynamics states.

At the absolute zero of temperature the entropy of every substance become zero and does become zero in case of perfectly crystalline structure.
unders $\tan d(T \rightarrow 0)(L t S)=0$
In case of $C O$ and $N O$ molecules in solid state, there is randomness even at $0 K$ due to their dipole moments hence entropy in such cases is not zero even at $0 K$. As the temperature is raised, the molecules begin to vibrate. The number of ways in which the vibrational energy can be distributed increases with increases in temperature and the entropy of solid increases steadily as the temperature increaes. At the melting point (mp) of the solid, there is a discontinous jump in entropy because there are many more ways of arranging the molecules in the liquid than in the solid. An even greater jump in entropy is observed at the boiling point (bp) because molecules in the gas are to free to occupy a more larger volume and randomness increases.

Out of the following statements: $I, I I$ and $I I I$. I. A system may be a complex as a human body as simple as a mixture consiting of a drop of water.
II. A large system is said to be microscopic when it consists of a large number of molecules, atoms or ions.
III. Pressure, volume, temperature and surface area are some macroscopic properties.

Select correct statements
A. I, II, III
B. $I, I I$
C. I, IV
D. $I I, I I I$

Answer: A

479. A gas expands against a constant external pressure so that the work done is 607.8 J . The work done in litre atmosphere is

- Watch Video Solution

480. The number of state functions the following properties are

Temperature, Pressure, Volume, Heat capacity.
Density, $p H$ of a solution, $E M F$ of a cell.
Entropy, Free energy. Enthalpy, Surface tension, Viscosity, Boiling point.

D View Text Solution

481. In a constant volume calorimeter, 3.5 g of a gas with molecular weight 28 was burnt in excess oxygen at 298.0 K . The temperature of the calorimeter was found to increase from $298.0 \mathrm{~K} \rightarrow 298.45 \mathrm{~K}$ due to the combustion process. Given that the heat capacity of the calorimeter
is $2.5 \mathrm{kJK}^{-1}$, find the numerical value for the enthalpy of combustion of the gas in kJmol^{-1}

- Watch Video Solution

482. One mole of an ideal gas is taken from a to b along two paths denoted by the solid and the dashed lines as shown In the graph below. If the work done along the solid line path is W_{s} and that along the the dotted line path is w_{d}, then the integer closest to the ratio w_{d} / w_{s} is

- Watch Video Solution

483. Assertion(A) : When sodium chloride dissolves in water, then Na^{+} and Cl^{-}ions leaving the crystal lattice acquire far greater freedon.

Reason(R): In thermodynamic terms, the formation of solution occurs with a favourable change in energy i.e., ΔH has a high positive value and $T \Delta S$ has a low negative value.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: C

- Watch Video Solution

484. Assertion(A) : The mass and volume of a substance are the extensive properties and are proportional to each other.

Reason (R) : The ratio of mass of a sample to its volume is an intensive property
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: B

(D) Watch Video Solution

485. Assertion (A): Enthalpy of graphite is lower than that of diamond.

Reason (R) : Entropy of graphite is lower than that of diamond.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: B

- Watch Video Solution

486. Assertion(A) : For the combustion reactions, the value of ΔH is always negative.

Reason (R) : The combustion reactions are always endothermic.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: C

487. Assertion(A) : The value of enthalpy of neutralization of a weak acid by strong base is numerically less than 57.1 kJ .

Reason(R) : All OH^{-}ions of strong base are not completely neutralized by H^{+}ions obtained from acid.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: C

- Watch Video Solution

488. Statement-1 : Many endothermic reactions that are not spontaneous at room temperature become spontaneous at high temperatures.

Statement-2: Energy of the system increases with increase in temperature.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: A

- Watch Video Solution

489. Assertion(A) : Helium has lower entropy than CO_{2} gas which has lower entropy than gaseous benzene.

Reason(R): The larger the complexity of molecule, the larger is its absolute entropy.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: A

- Watch Video Solution

490. Assertion: The enthalpy of formation of gaseous oxygen molecules at 298 K and under 1 atm is zero.

Reason: The entropy of formation of gaseous oxygen molecules under the same condition is zero.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true
491. Assertion(A) : Heat of vaporisation is always endothermic.

Reason (R) : Water is exithermic compound.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: B

- Watch Video Solution

492. Assertion(A) : Endothermic compounds are stable than the exothermic componds.

Reason(R) : Endothermic compounds have positive enthalpy of formation.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: D

(D) Watch Video Solution

493. Assertion(A) : q is a state function.

Reason(R): q is a path function.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: D

- Watch Video Solution

494. Assertion(A) : Heat of neutralisation is always less than zero.

Reason(R) : Neutralisation involves reactions between an acid and a base.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: B

495. Assertion(A) : Absolute value of H cannot be determined.

Reason (R) : Absolute value of E cannot be determined.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: A

(D) Watch Video Solution

496. Assertion(A) : Heat of neutralisation of HCl and NaOH is same as that of $\mathrm{H}_{2} \mathrm{SO}_{4}$ with NaOH .

Reason(R) : $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and NaOH are all strong electrolytes.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: A

- Watch Video Solution

497. Assertion (A): The dissolution of gases in water is always an endothermic process.

Reason (R) : The dissolution of gases in water proceed with a negative value of ΔS.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true
498. Assertion(A) : The enthalpy of formation of O_{2} at 1 atmospheric pressure and $298 K$ is zero.

Reason (R) : The enthalpy of formation of all the elements at STP is zero.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: C

D Watch Video Solution

499. Assertion(A) : Two systems which are both in thermal equilibrium with the third system are in thermal equilibrium with one another.

Reason(R) : The heat flows spontaneously from a system at high temperature to a system at low temperature.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: A

- Watch Video Solution

500. Assertion(A) : The value of enthalpy of neutralisation of strong acid and weak base is numerically less than $57.1 k J$.

Reason(R) : All the H^{+}ions furnished by $1 g$ equivalent of a strong acid are not completely neutralized by the OH^{-}ions from the weak base.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: A

- Watch Video Solution

501. Assertion(A) : Standard entropy of O_{2} gas is >0.

Reason (R) : Entropy of free elements at the standard state conditions is equal to zero.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true
502. Assertion(A) : Decrease of free energy during the process under particular conditions provides a measure of its spontaneity. Reason(R) : A spontaneous change must have +ve sign of $\Delta S_{\text {total }}$.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: B

- View Text Solution

503. Assertion:Absolute values of intenal energy of substances cannot be determined.

Reason:It is impossible to determine exact values of constituent energies of the substances.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: A

(D) Watch Video Solution

504. Assertion: Mass and volume are extensive properties.

Reason: Mass/volume is also an extensive parameter.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: C

- Watch Video Solution

505. Assertion: The heat absorbed during the isothermal expansion of an ideal gas against vacuum is zero.

Reason: The volume occupied by the molecules of an ideal gas is zero.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: C

506. Assertion: The increase in internal energy (ΔE) for the vaporisation of 1 mole of water at 1 atm and 373 K is zero.

Reason: For all isothermal processes $\Delta E=0$.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: D

- Watch Video Solution

507. Assertion: Molar entropy of vaporization of water is different from ethanol.

Reason: Water is more polar than ethanol.
A. Both A and R are true and R is the correct explantion of A
B. Both A and R are true and R is not a correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: B

- Watch Video Solution

