© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

CHEMISTRY

BOOKS - S DINESH \& CO CHEMISTRY (HINGLISH)

REDOX REACTIONS

Example

1. The oxidation number of Cr in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is

- Watch Video Solution

2. Determine the oxidation number (O.N) of Fe in $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
3. Find out the oxidation number (O.N.) of S in (a) $\mathrm{H}_{2} \mathrm{~S}$ (b) SO_{2} (c) SO_{3}
(d) SO_{3}^{2-}.

Watch Video Solution

4. Balance the following redox reaction :
$\mathrm{Cu}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}_{2}+\mathrm{Cu}^{2+}$ (Acidic medium).

- Watch Video Solution

5. Balance the following redox equaiton by both methods.
$\left[\mathrm{Cr}(\mathrm{OH})_{4}\right]^{\ominus}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$ (basic medium)

- Watch Video Solution

6. Balance the following by ion electron method is basic medium.
$\mathrm{NO}_{3}^{\ominus}+\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\mathrm{NH}_{4}^{\oplus}$.

Mcqs

1. Oxidation is a process of
A. loss of electrons
B. gain of electrons
C. increase in the negative valency
D. decrease in positive valency

Answer: A

- Watch Video Solution

2. When zinc is added to CuSO_{4} solution, copper is precipitated. It is because of
A. Reduction of Zn
B. Reduction of $C u^{2+}$
C. Hydrolysis of CuSO 4
D. Reduction of SO_{4}^{2-}

Answer: B

D Watch Video Solution

3. The process in which oxidation number increase, is
A. Reduction
B. Hydrolysis
C. Oxidation
D. decomposition

Answer: C

4. When zinc metal is added to dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution, hydrogen is evolved. In this zinc undergoes
A. Reduction
B. Oxidation
C. Dissolution
D. None of the above

Answer: B

- Watch Video Solution

5. In which of the following, oxidation number of chloride is +5 ?
A. $\mathrm{Cl}_{2} \mathrm{O}_{7}$
B. ClO_{3}^{-}
C. ClO^{-}
D. ClO_{4}^{-}

Answer: B

- Watch Video Solution

6. Carbon has zero oxidation number in
A. CH_{4}
B. $\mathrm{CH}_{3} \mathrm{Cl}$
C. CCl_{4}
D. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Answer: D

- Watch Video Solution

7. The oxidation number of C in sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ is
A. 0
B. +22
C. +6
D. -6

Answer: A

D Watch Video Solution

8. In the reaction
$3 \mathrm{Br}_{2}+6 \mathrm{CO}_{3}^{2-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Br}^{\ominus}+\mathrm{BrO}_{3}^{\ominus}+6 \mathrm{HCO}_{3}^{\ominus}$
A. Bromine is oxidised and carbonate is reduced
B. Bromine is reduced and carbonate is oxidised
C. Bromine is neither reduced nor oxidised
D. Bromine is reduced and oxidised.
9.

The
oxidation
number,
of
C
in
$\mathrm{CH}_{4} . \mathrm{CH}_{3} \mathrm{CI}, \mathrm{CH}_{2} \mathrm{CI}_{2}, \mathrm{CHCl}_{3}$ and CCl_{4} are respectively:
A. $-4,-2,0,+2,+4$
B. $+2,4,0,-2,-4$
C. $4,2,0,-2,-4$
D. $0,2,-2,4,4$

Answer: A

- Watch Video Solution

10. Chlorine is in +3 oxidation state in
A. HCl
B. HClO_{4}
C. ICl
D. ClF_{3}

Answer: D

- Watch Video Solution

11. Oxidation number of Mn in $\mathrm{K}_{2} \mathrm{MnO}_{4}$ is
A. 2
B. 4
C. 6
D. 7

Answer: C

12. A student states that burning of lime in air is an oxidation process.

The reason he gives is that an oxide of the metal is produced on burning.
Which one is correct ?
A. The statement and reason are true, the reason is correct explanation
B. The statement and reason are true, the explanation is not correct
C. The statement is true but the reason is false
D. The statement in false but the reason is true

Answer: D

D View Text Solution

13. For the following reaction in the acidic solution $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 e^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ which of the following gives the true oxidation numbers of the manganese on each side of the equation?
A. +7 to +6
B. +7 to +2
C. +4 to +2
D. -1 to +2

Answer: B

- Watch Video Solution

14. In which of the following compounds iron has lowest oxidation state?
A. $\mathrm{Fe}(\mathrm{CO})_{5}$
B. $\mathrm{Fe}_{2} \mathrm{O}_{3}$
C. $K_{4}\left[F e(C N)_{6}\right]$
D. $\mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} 6 \mathrm{H}_{2} \mathrm{O}$

Answer: A

15. The oxidation number and covalency of sulphur in the sulphur molecule (S_{8}) are respectively:
A. 0 and 2
B. +6 and 8
C. 0 and 8
D. +6 and 2

Answer: A

- Watch Video Solution

16. The most common oxidation state of an element is -2 . The number of electrons present in the outermost shell is
A. 2
B. 4
C. 6
D. 8

Answer: C

- Watch Video Solution

17. In which of the following oxidation number of chlorine is +5 ?
A. $C l^{-}$
B. ClO^{-}
C. ClO_{2}^{-}
D. ClO_{3}^{-}

Answer: D

18. The oxidation nunber of P in $\mathrm{HP}_{2} \mathrm{O}_{7}^{-}$ion is
A. +5
B. +6
C. +7
D. +3

Answer: B

- Watch Video Solution

19. The oxidation number of Fe in $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ ion is
A. +2
B. +3
C. -2
D. -3

Answer: B

- Watch Video Solution

20. The oxidation number of Mn is +7 in
A. manganese dioxide
B. manganese chloride
C. manganese sulphate
D. potassium permanganate

Answer: D

- Watch Video Solution

21. A compound contains atoms X, Y and Z. The oxidation number of X is $+3, Y$ is +5 and Z is -2 . The possible formula of the compound is
A. $X Y Z_{2}$
B. $Y_{2}\left(X Z_{3}\right)_{2}$
C. $X_{3}\left(Y Z_{4}\right)_{3}$
D. $X_{3}\left(Y_{4} Z\right)_{2}$

Answer: C

- Watch Video Solution

22. The oxidation state of Cr in CrO_{5} is :
A. +3
B. +5
C. +6
D. 0

Answer: C

23. Oxidation number of Fe in $\mathrm{Fe}_{3} \mathrm{O}_{4}$ are:
A. +2 and +3
B. +1 and +2
C. +2 only
D. +3 only

Answer: A

- Watch Video Solution

24. In the conversion of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ to $\mathrm{K}_{2} \mathrm{CrO}_{4}$, the oxidation number of chromium.
A. Remains same
B. Increase
C. Decreases
D. None

Answer: A

D Watch Video Solution

25. The oxidation number of carbon in $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ is
A. +4
B. +3
C. +2
D. Zero

Answer: D

- Watch Video Solution

26. The oxidation number of C in HCN and HNC respectively are
A. $+2,+2$
B. $+2,+4$
C. $+4,+4$
D. $-2,-2$

Answer: A

- Watch Video Solution

27. Oxidation number of carbon in carbon sub-oxide is:
A. $+2 / 3$
B. $+4 / 3$
C. +4
D. $-4 / 3$

Answer: B

28. Oxidation number of silver in silver amalgam is
A. +1
B. zero
C. -1
D. none of these

Answer: B

- Watch Video Solution

29. The oxidation number of N and Cl in NOClO_{4} respectively are
A. +2 and +7
B. +3 and +7
C. -3 and +5
D. +2 and -7

Answer: B

- Watch Video Solution

30. On the basis of structure, the oxidation of two Cl atoms in CaOCl_{2} respectively are
A. -1 and +1
B. $+2,-2$
C. $-2,+2$
D. -1 and +3

Answer: A

- Watch Video Solution

31. In which of the following reactions, the underlined substance has been oxidized?
A. $\underline{\mathrm{Br}_{2}}+\underline{\mathrm{H}_{2} S} \rightarrow 2 \mathrm{HBr}+\mathrm{S}$
B. $\underline{2 \mathrm{HgCl}_{2}}+\mathrm{SnCl}_{2} \rightarrow \underline{\mathrm{Hg}_{2} \mathrm{Cl}_{2}}+\mathrm{SnCl}_{4}$
C. $\mathrm{Cl}_{2}+\underline{2 \mathrm{KI}} \rightarrow 2 \mathrm{KCl}+\underline{\mathrm{I}_{2}}$
D. $2 C u^{+2}+4 I^{-} \rightarrow \underline{C u_{2} I_{2}}+I_{2}$

Answer: C

- Watch Video Solution

32. In which of the following reactions, the underlined substance has been reduced?
A. $\underline{C O}+\mathrm{CuO} \rightarrow \underline{\mathrm{CO}_{2}}+\mathrm{Cu}$
B. $\underline{\mathrm{CuO}}+2 \mathrm{HCl} \rightarrow \underline{\mathrm{CuCl}}{ }_{2}+\mathrm{H}_{2} \mathrm{O}$
C. $\underline{4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})}+3 \mathrm{Fe} \rightarrow \underline{4 \mathrm{H}_{2}(\mathrm{~g})}+\mathrm{Fe}_{3} \mathrm{O}_{4}$
D. $\underline{C}+\mathrm{HNO}_{3} \rightarrow \underline{\mathrm{CO}_{2}}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{NO}_{2}$

Answer: C

- Watch Video Solution

33. Which of the following represents a redox reaction?
A. $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{HCl}$
C. $\mathrm{CuSO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}$
D. $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$

Answer: D

- Watch Video Solution

34. In the reaction
$3 \mathrm{Cl}_{2}+6 \mathrm{NaOH} \rightarrow \mathrm{NaClO}_{3}+5 \mathrm{NaCl}+3 \mathrm{H}_{2} \mathrm{O}$
the element which loses as well as gains electrons is
A. Na
B. Cl
C. 0
D. None of these

Answer: B

- Watch Video Solution

35. The number of electrons lost in the following change is
$\mathrm{Fe}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2}$
A. 2
B. 4
C. 6
D. 8

Answer: D

- Watch Video Solution

36. In the balanced chemical reaction

$$
I O_{3}^{\ominus}+a l^{\ominus}+b H^{\ominus} \rightarrow c H_{2} O+d I_{2}
$$

a, b, c, and d, respectively, correspond to
A. 5,1,6
B. 1,5,6
C. $6,1,5$
D. 5,6,1

Answer: A
37. $\mathrm{NH}_{3}+\mathrm{OCl}^{-} \rightarrow \mathrm{N}_{2} \mathrm{H}_{2}+\mathrm{Cl}^{-}$

On balancing the above equation in basic solution, using integral coefficient, which of the following whole number of will be the coefficient of $\mathrm{N}_{2} \mathrm{H}_{4}$?
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

38. $\mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{ClO}^{-}+3 \mathrm{OH}^{-} \rightarrow$? $+\mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O}$. The missing ion is
A. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
B. $C r^{3+}$
C. CrO_{4}^{2-}
D. $\mathrm{Cr}_{2} \mathrm{O}_{3}$

Answer: C

- Watch Video Solution

39. The value of x in the partial redox equation
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+x e \Leftrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ is
A. 5
B. 4
C. 3
D. 2

Answer: A

40. Balance the following redox equaiton by both methods.
$\left[\mathrm{Cr}(\mathrm{OH})_{4}\right]^{\ominus}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$ (basic medium)
A. 3
B. 6
C. 5
D. 2

Answer: B

- Watch Video Solution

41. The following redox reaction occurs in basic medium $\mathrm{NO}_{3}^{-} \mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{Zn}^{2+}+\mathrm{NH}_{4}^{+}$when the above reaction is balanced such that the stoichiometric coefficients are in smallest whole number ratio, then the difference of stoichiometric coefficient of $\mathrm{Zn}(\mathrm{s})$ and OH^{-} ion will be:
A. $4,1,7$
B. 7,4,1
C. $4,1,10$
D. $1,4,10$

Answer: C

- Watch Video Solution

42. The ratio of coefficient of $\mathrm{HNO}_{3}, \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{NH}_{4} \mathrm{NO}_{3}$ in the following redox reaction
$\mathrm{Fe}+\mathrm{HNO}_{3} \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NH}_{4} \mathrm{NO}_{3}+\mathrm{H}_{2} \mathrm{O}$
are respectively
A. $10: 1: 4$
B. $10: 4: 1$
C. $4: 10: 1$
D. $4: 1: 10$

Answer: B

- Watch Video Solution

Revision Question

1. The oxidation number of Cr in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is
A. 4
B. 6
C. 7
D. -6

Answer: B

Watch Video Solution
2. Which of the following is not a redox reaction ?
A. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
B. $\mathrm{O}_{2}+2 \mathrm{H}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\frac{1}{2} \mathrm{H}_{2}$
D. $\mathrm{MnCl}_{3} \rightarrow \mathrm{MnCl}_{2}+\frac{1}{2} \mathrm{Cl}_{2}$

Answer: A

- Watch Video Solution

3. The colour of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ changes from red-orange to lemon-yellow on treatment with $\mathrm{KOH}(a q)$, because of:
A. reduction of $C r(V I)$ or $C r(I I I)$
B. formation of chromium hydroxide
C. Conversion of dichromate ion to chromate ion
D. oxidation of potassium hydroxide to potassium peroxide

Answer: C

4. Oxidation number of O in $\mathrm{H}_{2} \mathrm{O}_{2}$ will be
A. -2
B. -1
C. +1
D. +2

Answer: B

Watch Video Solution
5. Which of the following halogen acid is better reducing agent ?
A. HCl
B. HBr
C. HI

D. HF

Answer: C

- Watch Video Solution

6. Which substance is serving as a reducing agent in the following reaction?
$14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{Ni} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Ni}^{2+}$
A. $\mathrm{H}_{2} \mathrm{O}$
B. Ni
C. H^{+}
D. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$

Answer: B

- Watch Video Solution

7. For the redox reation
$\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+} \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
The correct stoichiometric coefficients of $\mathrm{MnO}_{4}^{-}, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ and H^{+} respectively:
A. 2,5,16
B. 16,5,2
C. 5,16,2
D. 2,16,5

Answer: A

- Watch Video Solution

8. In which of the following reactions $\mathrm{H}_{2} \mathrm{O}_{2}$ is a reducing agent?
A. $2 \mathrm{FeCl}_{2}+2 \mathrm{HCl}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{FeCl}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{HCl}+\mathrm{O}_{2}$
C. $2 \mathrm{HI}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$
D. $\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$

Answer: B

- Watch Video Solution

9. The oxidation number of P in $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is
A. +3
B. +2
C. +5
D. -3

Answer: C
10. In the reaction $2 \mathrm{Ag}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Ag}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{SO}_{40}$ acts as $a / a n$
A. Oxidising agent
B. Reducing agent
C. Catalyst
D. Acid as well as oxidant

Answer: D

- Watch Video Solution

11. Oxidation state of S in SO_{4}^{2-}
A. +8
B. +6
C. +4
D. 0

D Watch Video Solution

12. The oxidation number of Cr in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is
A. -6
B. +6
C. +2
D. -2

Answer: B

Watch Video Solution

13. A 2.5 mol of hydrazine $N_{2} H_{4}$ loses 25 mole of electrons is being converted to a new compound X. Assuming that all of the nitrogen
appears in the new compound, what is the oxidation state of nitrogen in compound X ?
A. -1
B. -2
C. +3
D. +4

Answer: C

- Watch Video Solution

14. In the chemical reaction,
$\mathrm{Ag}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}+2 e^{-} \rightarrow 2 \mathrm{Ag}+2 \mathrm{OH}^{-}$
A. Water is oxidised
B. Silver is oxidised
C. Silver is reduced
D. Hydrogen is reduced

Answer: C

- Watch Video Solution

15. The oxidation state of Fe in $\mathrm{Fe}(\mathrm{CO})_{5}$ is
A. Zero
B. 5
C. -5
D. +3

Answer: A

- Watch Video Solution

16. Oxidation state of oxygen in $\mathrm{H}_{2} \mathrm{O}_{2}$ is
A. -2
B. -1
C. 0
D. 4

Answer: B

- Watch Video Solution

17. The reaction
$5 \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{XClO}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{XCl}^{-}+\mathrm{YO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
is balanced if
A. $x=5, y=2$
B. $x=2, y=5$
C. $x=4, y=10$
D. $x=5, y=5$

- Watch Video Solution

18. Which of the following is not a reducing agent ?
A. SO_{2}
B. $\mathrm{H}_{2} \mathrm{O}_{2}$
C. CO_{2}
D. NO_{2}

Answer: C

Watch Video Solution
19. The equivalent mass of oxidising agent in the following reaction is

$$
\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}
$$

A. 32
B. 64
C. 16
D. 8

Answer: C

- Watch Video Solution

20. A, B and C are three elements forming a compound in which their oxidation state are $+2,+5$, and -2 respectively. Which could not be the formula of compound?
A. $A_{2}(B C)_{2}$
B. $A_{2}\left(B C_{4}\right)_{3}$
C. $A_{3}\left(B C_{4}\right)_{2}$
D. $A B C$

Answer: C

D Watch Video Solution

21. When KMnO_{4} is reduced with oxalic acid in acidic solution, the oxidation number of $M n$ changes from
A. From 7 to 2
B. From 6 to 2
C. From 5 to 2
D. From 7 to 4

Answer: A

D Watch Video Solution

22. Oxidation state of in $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is
A. +2
B. +3
C. $8 / 3$
D. $2 / 3$

Answer: C

- Watch Video Solution

23. The number of moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ reduced by 1 mol of Sn^{2+} ions is
A. $1 / 3$
B. 3
C. $1 / 6$
D. 6

Answer: A

24. During nitration of benzene withnitrating mixture, HNO_{3} acts as
A. acid
B. oxidising agent
C. reducing agent
D. Both A and B

Answer: D

- Watch Video Solution

25. The chemical that undergoes self oxidation and self reduction in the same reaction is
A. benzyl alcohol
B. acetone
C. formaldehyde
D. acetic acid

Answer: C

- Watch Video Solution

26. The reaction in which hydrogen peroxide acts as a reducting agent is .
A. $\mathrm{PbS}+4 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{PbSO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$
B. $2 \mathrm{KI}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{KOH}+\mathrm{I}_{2}$
C. $2 \mathrm{FeSO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{Ag}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Ag}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

Answer: D

- Watch Video Solution

27. The set of numerical coefficients that balances the chemical equation $\mathrm{K}_{2} \mathrm{CrO}_{4}+\mathrm{HCl} \rightarrow \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}$
A. 1,1,2,2,1
B. 2,2,1,1,1
C. 2,1,1,2,1
D. 2,2,1,2,1

Answer: D

- Watch Video Solution

28. The oxidation state of sulphur in $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$ is
A. 1.5
B. 2.5
C. 3
D. 2

D Watch Video Solution

29. The values of X, Y and $Z \mathrm{~s}$ in the reaction are repectively: $\mathrm{XMnO}_{4}^{-}+\mathrm{YH}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{H}_{2} \mathrm{O}+9 \mathrm{O}_{2}+\mathrm{Ze}$
A. 2,6,6
B. 5,2,9
C. 3,5,5
D. 2,6,6

Answer: A

- Watch Video Solution

30. Which of the following is a redox reaction ?
A. $\mathrm{NaCl}+\mathrm{KNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{KCl}$
B. $\mathrm{CaC}_{2} \mathrm{O}_{4}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
C. $\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{NH}_{4} \mathrm{OH}$
D. $Z n+2 A g C N \rightarrow 2 A g+Z n(C N)_{2}$

Answer: D

- Watch Video Solution

31. When KMnO_{4} acts as an oxidising agent and ultimately from $\mathrm{MnO}_{4}^{2-}, \mathrm{MnO}_{2}, \mathrm{Mn}_{2} \mathrm{O}_{3}$, and Mn^{2+}, then the number of electrons transferred in each case, respectively, are
A. $4,3,1,5$
B. 1,5,3,7
C. $1,3,4,5$
D. $3,5,7,1$

Answer: C

- Watch Video Solution

32. The oxidation number of Fe in $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is
A. +2
B. +6
C. +3
D. +4

Answer: A

Watch Video Solution
33. The oxidation number of S in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ is
A. +2
B. +4
C. +6
D. +7

Answer: C

- Watch Video Solution

34. The oxidation states of sulphur in the anions $\mathrm{SO}_{3}^{2-}, \mathrm{S}_{2} \mathrm{O}_{4}^{2-}$, and $S_{2} O_{6}^{2-}$ follow the order
A. $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{3}^{2-}$
B. $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{3}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
C. $\mathrm{SO}_{3}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
D. $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{SO}_{3}^{2-}$

Answer: B

35. MnO_{4}^{2-} (1 mole) in neutral aqueous medium is disproportionate to
A. $2 / 3$ mole of MnO_{4}^{-}and $1 / 3$ mole of MnO_{2}
B. $1 / 3$ mole of MnO_{4}^{2-} and $2 / 3$ mole of MnO_{2}
C. $1 / 3$ mole of $\mathrm{Mn}_{2} \mathrm{O}_{7}$ and $1 / 3$ mole of MnO_{2}
D. $2 / 3$ mole of $\mathrm{Mn}_{2} \mathrm{O}_{7}$ and $1 / 3$ mole of MnO_{2}

Answer: A

- Watch Video Solution

36. $\mathrm{P}_{4}+\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaH}_{2} \mathrm{PO}_{3}+\mathrm{PH}_{3}$ is
A. Oxidation reaction
B. Reduction reaction
C. Both oxidation and reduction
D. None

Answer: C

- Watch Video Solution

37. Which of the following act both as an oxidising as well as reducing agent?
A. $\mathrm{H}_{3} \mathrm{PO}_{4}$
B. HNO_{3}
C. HNO_{2}
D. SO_{3}

Answer: C

- Watch Video Solution

38. How many mole of electrons are involved in the reduction of one mole of MnO_{4}^{-}ion in alkaline medium to MnO_{3}^{-}
A. 1
B. 2
C. 5
D. 3

Answer: D

D Watch Video Solution

39. What is the oxidation number of chlorine in ClO_{3}^{-}?
A. +5
B. +3
C. +4
D. +2

Answer: A

40. In acidic medium, dichromate ion oxidizes ferrous ion to ferric ion. If the gram molecular weight of potassium dichromate is $294 g$, is gram equivalent weight is \qquad
A. 294
B. 127
C. 49
D. 24.5

Answer: C

- Watch Video Solution

41. In the reaction,
$\mathrm{KMnO}_{4}+16 \mathrm{HCl} \rightarrow 5 \mathrm{C1}_{2}+2 \mathrm{MnCl}_{2}+2 \mathrm{KCl}+8 \mathrm{H}_{2} \mathrm{O}$ the reduction product is
A. $C l_{2}$
B. MnCl_{2}
C. $\mathrm{H}_{2} \mathrm{O}$
D. KCl

Answer: B

- Watch Video Solution

42. Nitrogen shows different oxidation states in the range
A. 0 to +5
B. -3 to +5
C. -5 to +3
D. -3 to +3

Answer: B

43. What is the equivalent mass of IO_{4}^{-}when it is converted into I_{2} in acid medium ?
A. $M / 6$
B. $M / 7$
C. $M / 5$
D. $M / 4$

Answer: B

Watch Video Solution
44. Which is the best description of the behaviour of bromine in the reaction given below
$\mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2} \rightarrow \mathrm{HOBr}+\mathrm{HBr}$
A. Reduced only
B. Proton acceptor only
C. Both oxidised and reduced
D. Oxidised only

Answer: C

D Watch Video Solution

45. Oxidation state of oxygen in $\mathrm{H}_{2} \mathrm{O}_{2}$ is
A. -2
B. -1
C. 0
D. +2

Answer: B

46. In the iodometric estimation in the laboratory which process is involved?
A.

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}^{+}+\mathrm{I}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+\mathrm{I}_{2}, \mathrm{I}_{2}+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+\mathrm{I}^{-}
$$

B.

$$
\mathrm{MnO}_{4}^{2-}+\mathrm{H}^{+}+\mathrm{I}^{-} \rightarrow \mathrm{Mn}^{2+}+\mathrm{I}_{2}, \mathrm{I}_{2}+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+\mathrm{I}^{-}
$$

C.

$$
\mathrm{MnO}_{4}^{-}+\mathrm{OH}^{-}+\mathrm{I}^{-} \rightarrow \mathrm{MnO}_{2}+\mathrm{I}_{2}, \mathrm{I}_{2}+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+\mathrm{I}^{-}
$$

D.

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{OH}^{-}+\mathrm{I}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+\mathrm{I}_{2}, \mathrm{I}_{2}+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+\mathrm{I}^{-}
$$

Answer: A

- Watch Video Solution

47. KI and CuSO_{4} solution when mixed give .
A. $\mathrm{CuI}_{2}+\mathrm{K}_{2} \mathrm{SO}_{4}$
B. $\mathrm{Cu}_{2} \mathrm{I}_{2}+\mathrm{K}_{2} \mathrm{SO}_{4}$
C. $K_{2} S O_{4}+C u_{2} I_{2}+I_{2}$
D. $\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{CuI}_{2}+I_{2}$

Answer: C

- Watch Video Solution

48. The strongest reducing agent is
A. F^{-}
B. Cl^{-}
C. $B r^{-}$
D. I^{-}

Answer: D

49. Which of the following is the strongest oxidising agent ?
A. HOCl
B. HClO_{2}
C. HClO_{3}
D. HClO_{4}

Answer: A

D Watch Video Solution

50. What is the net charge on ferrous ion ?
A. +2
B. +3
C. +4
D. +5

Answer: A

- Watch Video Solution

51. The oxidation number of carbon in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is
A. 0
B. 2
C. 3
D. 5

Answer: A

- Watch Video Solution

52. The element which forms oxides in all oxidation states +1 to +5 is.
A. N
B. P
C. As
D. Sb

Answer: A

- Watch Video Solution

53. For decolourisation of 1 mol of KMnO_{4}, the moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ required is
A. $1 / 2$
B. $3 / 2$
C. $5 / 2$
D. $7 / 2$

Answer: C

54. Among the properties (A) reducing (B) oxidising (C) complexing the set of properties shown by $C N^{\Theta}$ ion towards metal species is .
A. a, b
B. a,b,c
C. c,a
D. b,c

Answer: C

- Watch Video Solution

55. The number of moles of KMnO_{4} reduced by 1 mol of $K I$ in alkaline medium is
A. one
B. two
C. five
D. one-fifth

Answer: B

- Watch Video Solution

56. In the balanced chemical reaction
$I O_{3}^{\ominus}+a l^{\ominus}+b H^{\ominus} \rightarrow c H_{2} O+d I_{2}$
a, b, c, and d, respectively, correspond to
A. 5,6,3,3
B. $5,3,6,3$
C. $3,5,3,6$
D. $5,6,5,5$
57. Which fo the following statements are correct concerning redox propreties?
(i) The reducing power of hydrogen halides increases from hydrogen chloride to hydrogen iodide.
(ii) The oxidizing power of halogens decreases from chlorine to iodine.
(iii) A metal M for which E^{\ominus} for the half-reaction
$M^{n+}+n e^{-} \Leftrightarrow M$
is very negative will be a good reducing agent.
A. (i),(ii),(iii)
B. (i) and (ii)
C. (i) only
D. (i) and (iii) only

Answer: A

58. One mole of acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in reaction with excess KI will liberate $\left.\hat{\text { â }}\right|_{\mid} ^{\mid} \hat{\not} €_{1}^{\prime}$ moles of I_{2}
A. 6
B. 1
C. 7
D. 3

Answer: D

- Watch Video Solution

59. In
the
reaction,
$\mathrm{As}_{2} \mathrm{~S}_{5}+x \mathrm{HNO}_{3} \rightarrow 5 \mathrm{H}_{2} \mathrm{SO}_{4}+y \mathrm{NO}_{2}+2 \mathrm{H}_{3} \mathrm{AsO}_{4}+12 \mathrm{H}_{2} \mathrm{O}$. The
values of x and y are
A. 40,40
B. 10,10
C. 30, 30
D. 20,20

Answer: A

- Watch Video Solution

60. Oxidation numbers of two Cl atoms in belaching powder, CaOCl_{2}, are
A. Zero
B. +1
C. -1
D. $+1,-1$

Answer: D

61. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \xrightarrow{\mathrm{H}^{+}} \mathrm{Cr}^{3+}$, Eq. wt. of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ is :-
A. mol. Wt/6
B. mol . Wt/3
C. mol. Wt/4
D. mol . $\mathrm{Wt} / 1$

Answer: A

- Watch Video Solution

62. KMnO_{4} is a strong oxidising agent in acidic medium. To provide acidic medium $\mathrm{H}_{2} \mathrm{SO}_{4}$ is used instead of HCl . This is because
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a stronger acid than HCl
B. HCl is oxidised by KMnO_{4} to Cl_{2}
C. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a dibasic acid
D. Rate is faster in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: B

- Watch Video Solution

63. Which of the following is a set of reducing agents?
A. $H \mathrm{NO}_{3}, \mathrm{Fe}^{2+}, F_{2}$
B. $\mathrm{F}, \mathrm{Cl}^{-}, \mathrm{MnO}_{4}^{-}$
C. $I^{-}, N a, \mathrm{Fe}^{2+}$
D. $\mathrm{CrO}_{7}^{2-}, \mathrm{CrO}_{4}^{2-}, \mathrm{Na}$

Answer: C

- Watch Video Solution

64. Which of the following is a redox reaction ?
A. $2 \mathrm{CuSO}_{4}+4 \mathrm{KI} \rightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{I}_{2}$
B. $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$
C. $\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{BaCl}_{2} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{NaCl}$
D. $\mathrm{CuSO}_{4}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$

Answer: A

- Watch Video Solution

65. Oxidation number if iodine in $\mathrm{IO}_{3}^{-}, \mathrm{IO}_{4}^{-}, \mathrm{KI}$ and I_{2} respectively are
A. $-1,-1,0,+1$
B. $+3,+5,+7,0$
C. $+5,+7,-1,0$
D. $-1,-5,-1,0$

Answer: C

66. MnO_{4}^{-}ions are reduced in acidic conditions to Mn^{2+} ions whereas they are reduced in neutral condition to MnO_{2}. The oxidation of 25 mL of a solution x containing Fe^{2+} ions required in acidic condition 20 mL of a solution y containing MnO_{4} ions. What value of solution y would be required to oxidize 25 mL of solution x containing $F e^{2+}$ ions in neutral condition?
A. 11.4 mL
B. 12.0 mL
C. 33.3 mL
D. 35.0 mL

Answer: C

- Watch Video Solution

67. Which of the following reactions involve disproportionation ?
A. $2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Cu} \rightarrow \mathrm{CuSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}$
B. $A s_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{As} s_{2} \mathrm{~S}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
C. $2 \mathrm{KOH}+\mathrm{Cl}_{2} \rightarrow \mathrm{KCl}+\mathrm{KOCl}+\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{Ca}_{3} \mathrm{P}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{Ca}(\mathrm{OH})_{3}+2 \mathrm{PH}_{3}$

Answer: C

- Watch Video Solution

68. The reaction $\mathrm{P}_{4}+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaH}_{2} \mathrm{PO}_{2}+\mathrm{PH}_{3}$ is an example of
A. Disproportionation reaction
B. Neutralization reaction
C. double decomposition reaction
D. Pyrolytic reaction
69. $\mathrm{Cr}_{2} \mathrm{O}_{5}$ has structure as shown

The oxidation number of chromium in the above compound is
A. 4
B. 5
C. 6
D. 10

Answer: C

70. The oxidation number of S in $S_{8}, S_{2} F_{2}$, and $H_{2} S$, respectively, are
A. $0,+1,-2$
B. $+2,+1$ and -2
C. $0,+1$ and +2
D. $-2,+1$ and +2

Answer: A

- Watch Video Solution

71. In the following reaction:
$x \mathrm{KMnO}_{4}+y \mathrm{NH}_{3} \rightarrow \mathrm{KNO}_{3}+\mathrm{MnO}_{2}+\mathrm{KOH}+\mathrm{H}_{2} \mathrm{O}$
x and y are
A. $x=4, y=6$
B. $x=3, y=8$
C. $x=8, y=6$
D. $x=8, y=3$

Answer: D

- Watch Video Solution

72. The brown ring complex compound of iron is formulated as $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{NO})\right] \mathrm{SO}_{4}$. The oxidation state of iron is
A. +3
B. 0
C. +2
D. +1

Answer: C

73. The equivalent mass of potassium permanganate in alkaline medium is
A. Molar mass/5
B. Molar mass/3
C. Molar mass/2
D. Molar mass/1

Answer: D

- View Text Solution

74. In which of the following reactions, there is no change in valency ?
A. $\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{~S}$
B. $2 \mathrm{Na}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}_{2}$
C. $\mathrm{Na}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}$
D. $3 \mathrm{KClO}_{3} \rightarrow 3 \mathrm{KClO}_{4}+\mathrm{KCl}$

D Watch Video Solution

75. In the balanced chemical reaction
$\mathrm{IO}_{3}^{\ominus}+a l^{\ominus}+b \mathrm{H}^{\ominus} \rightarrow c \mathrm{H}_{2} \mathrm{O}+d \mathrm{I}_{2}$
a, b, c, and d, respectively, correspond to
A. 5,6,3,3
B. 5,3,6,3
C. $3,5,3,6$
D. $5,6,5,5$

Answer: A

76. The oxidation states of S atoms in $S_{2} O_{6}^{2-}$ from left to right respectively are
A. $+6,0,0,+6$
B. $+3,+1,+1,+3$
C. $+5,0,0,+5$
D. $+4,+1,+1,+4$

Answer: C

- Watch Video Solution

77. Small quantities of compounds TX, TY and TZ are put into separate test tubes containing X, Y and Z solutions. TX does not react with any of
these. TY reacts with both X and Z . TZ reacts only with X . The decreasing order of ease of oxidation of the anions X^{-}, Y^{-}and Z^{-}is
A. Y^{-}, Z^{-}, X^{-}
B. Z^{-}, X^{-}, Y^{-}
C. Y^{-}, X^{-}, Z^{-}
D. X^{-}, Z^{-}, Y^{-}

Answer: A

- Watch Video Solution

78. The oxidation number of sulphur in $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ and $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$ are respectively
A. $+3,+4,+5$
B. $+5,+4,+3$
C. $+6,+3,+5$
D. $+3,+5,+4$

Answer: C

- Watch Video Solution

79. Which of the following has//have been arranged in order of decreasing oxidation number of sulphur?
A. $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}>\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}>\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}>\mathrm{S}_{8}$
B. $\mathrm{H}_{2} \mathrm{SO}_{4}>\mathrm{SO}_{2}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
C. $\mathrm{SO}_{2}>\mathrm{SO}_{4}^{2-}>\mathrm{SO}_{3}^{2-}>\mathrm{HSO}_{4}^{-}$
D. $\mathrm{H}_{2} \mathrm{SO}_{5}>\mathrm{H}_{2} \mathrm{SO}_{3}>\mathrm{SCl}_{2}>\mathrm{H}_{2} \mathrm{~S}$

Answer: D

- Watch Video Solution

80. Which of the following species can functon as an oxidising as well as reducing agent ?
A. $C l^{-}$
B. ClO_{4}^{-}
C. ClO^{-}
D. MnO_{4}^{-}

Answer: C

- Watch Video Solution

81. Oxidation no. of P in $H_{4} P_{2} O_{5}, H_{4} P_{2} O_{6}$, and $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ are respectively
A. $+3,+5,+4$
B. $+5,+3,+4$
C. $+5,+4,+3$
D. $+3,+4,+5$

Answer: D

- Watch Video Solution

82. The oxidation state of chrominium in the final product formed in the reaction between $K I$ and acidified potassium dichromate soluttion is
A. +3
B. +2
C. +6
D. +4

Answer: A

D Watch Video Solution

83. Acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, solution turns green when $\mathrm{Na}_{2} \mathrm{SO}_{3}$ is added to it.

Thus is due to the formation of
A. $C r_{2}\left(S O_{4}\right)_{3}$
B. CrO_{4}^{2-}
C. $\mathrm{Cr}_{2}\left(\mathrm{SO}_{3}\right)_{3}$
D. CrSO_{4}

Answer: A

- Watch Video Solution

84. In which of the following compounds, carbon exhibits a valency of four but oxidation state of -2 ?
A. $\mathrm{CH}_{3} \mathrm{Cl}$
B. CHCl_{3}
C. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
D. HCHO
85. In the disproportionation $3 \mathrm{HClO}_{3} \rightarrow \mathrm{HClO}_{4}+\mathrm{Cl}_{2}+2 \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$ the equivalent mass of the oxidising agent is (molar mass of $\left.\mathrm{HClO}_{4}=84.45\right)$
A. 16.89
B. 32.22
C. 84.45
D. 28.15

Answer: A

- Watch Video Solution

86. If the molecular mass of $N a_{2} S_{2} O_{3}$ and I_{2} are M_{1} and M_{2} respectively, then what will be the equivalent mass of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and I_{2} in
the following reaction
$2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{I}_{2} \rightarrow \mathrm{~S}_{2} \mathrm{O}_{6}^{2-}+\mathrm{I}$
A. M_{1}, M_{2}
B. $M_{1}, M_{2} / 2$
C. $2 M_{1}, M_{2}$
D. $M_{1}, 2 M_{2}$

Answer: B

- Watch Video Solution

87. Which ordering of compounds is according to the decreasing order of the oxidation state of nitrogen ?
A. $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$
B. $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{N}_{2}, \mathrm{NH}_{4} \mathrm{Cl}$
C. $\mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NO}, \mathrm{N}_{2}$
D. $\mathrm{NO}, \mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$

Answer: B

- Watch Video Solution

88. In which of the following compounds,nitrogen exhibits highest oxidation state?
A. $N_{2} H_{4}$
B. NH_{3}
C. $\mathrm{N}_{3} \mathrm{H}$
D. $\mathrm{NH}_{2} \mathrm{OH}$

Answer: C

89. When Cl_{2} gas reacts with hot and concentrated sodium hydroxide solution, the oxidation number of chlorine changes from
A. Zero to +1 and zero to 5
B. Zero to -1 and zero to +5
C. Zero to -1 and zero to +3
D. Zero to +1 and zero to -3

Answer: B

- Watch Video Solution

90. The reaction of white phosphorus with aqueous NaOH gives phosphine along with another phosphorus containing compound. The reaction type, the oxidation states of phosphorus in phosphine and the other product are respectively :
A. redox reaction, -3 and -5
B. redox reaction, +3 and +5
C. disproportionation reaction, -3 and -1
D. disproportionation reaction, -3 and +3

Answer: C

- Watch Video Solution

91. What is the oxidation state of $\mathrm{Co}\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]^{2+}$?
A. +2
B. +3
C. +1
D. +4

Answer: C

92. Consider the following reaction
$x \mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+z \mathrm{H}^{+} \rightarrow x \mathrm{Mn}^{2+}+2 y \mathrm{CO}_{2}+\frac{z}{2} \mathrm{H}_{2} \mathrm{O}$
The value of x, y and z in the reaction are respectively
A. 5,2 and 8
B. 5,2 and 6
C. 2,5 and 8
D. 2,5 and 6

Answer: D

- Watch Video Solution

Selected Straight

1. Which of the following reactions is (are) not redox reaction (s) ?
A. $\mathrm{NH}_{3} \mathrm{Cl}+\mathrm{KOH} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{KCl}$
B. $4 \mathrm{KCN}+\mathrm{Fe}(\mathrm{CN})_{2} \rightarrow \mathrm{~K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
C. $2 \mathrm{Rb}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{RbOH}+\mathrm{H}_{2}$
D. $2 \mathrm{CuI}_{2} \rightarrow 2 \mathrm{CuI}+\mathrm{I}_{2}$

Answer: A: B

- Watch Video Solution

2. Which of the following act both as an oxidising as well as reducing agent?
A. $\mathrm{H}_{2} \mathrm{O}_{2}$
B. $H_{2} S$
C. SO_{2}
D. HNO_{2}

Answer: A::C::D

3. Which of the following reactions is (are) redox reactions?
A. $6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { Sun light }} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$
B. $K C N+A g C N \rightarrow K\left[A g(C N)_{2}\right]$
C. $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
D. $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}+2 \mathrm{HCl}$

Answer: A: C

- Watch Video Solution

4. A reducing agent in a redox reaction undergoes
A. a decrease in oxidation number
B. an increase in oxidation number
C. loss of electrons
D. gain of electrons

- View Text Solution

5. When $C l_{2}$ is passed through NaOH in cold, the oxidation number of Cl changes from
A. 0 to -1
B. 0 to +1
C. 0 to - 2
D. 0 to +2

Answer: A: B

- Watch Video Solution

6. Oxidation number of carbon is correctly given for

Compound O.N.
A. $\mathrm{HN} \Longrightarrow C+2$

Compound O.N.
$H-C \equiv N+4$
Compound O.N.
C.
$C^{C l} l_{4}+4$
Compound O.N.
D.
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \quad 0$

Answer: C::D

- Watch Video Solution

7. The oxidation state of Cr in CrO_{5} is:
A. +10
B. +8
C. +6
D. +4

Answer: C

8. Oxidation number of sulphur in $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is
A. +2
B. -2
C. +6
D. Both B and C

Answer: D

- Watch Video Solution

9. The oxidation state of Fe in $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is :
A. +2
B. $+8 / 3$
C. +3
D. Both A and C

Answer: D

- Watch Video Solution

10. Oxidation number of N and H_{3} is
A. +3
B. -3
C. $+1 / 3$
D. $-1 / 3$

Answer: D

- Watch Video Solution

11. Oxidation state of O in KO_{2} is
A. -2
B. 0
C. +2
D. None of these

Answer: D

- Watch Video Solution

12. Oxidation number of S in KCNS is
A. -2
B. +2
C. 0
D. None of these

Answer: C

13. Oxidation numbers of Mn in $\mathrm{K}_{2} \mathrm{MnO}_{4}$ and MnSO_{4} are respectively
A. +5
B. +7
C. +4
D. +2

Answer: D

- Watch Video Solution

14. The oxidation number of C in $\mathrm{CH}_{2} \mathrm{O}$ is
A. -2
B. +2
C. 0
D. +4

Answer: C

- Watch Video Solution

15. The brown ring complex compound of iron is formulated as $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{NO})\right] \mathrm{SO}_{4}$. The oxidation state of iron is
A. 1
B. 2
C. 3
D. 0

Answer: B::C

16. Oxidation number of P in $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ is
A. +3
B. +2
C. +1
D. +1

Answer: C

- Watch Video Solution

17. White P reacts with caustic soda, the products are $P H_{3}$ and $\mathrm{NaH}_{2} \mathrm{PO}_{2}$. This reaction is an example of:
A. oxidation
B. reduction
C. disproportionation
D. neutralisation

Answer: C

- Watch Video Solution

18. The oxidation states of the most electronegative elements in the products of the reaction between BaO_{2} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ are
A. 0 and -1
B. -1 and -2
C. -2 and 0
D. -2 and +1

Answer: B::C

- Watch Video Solution

19. For the redox reaction
$\mathrm{MnO}_{4}^{\ominus}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{\oplus} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
the correct coefficients of the reactions for the balanced reaction are
A. $\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$ $2 \quad 5 \quad 16$
B. $\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$

C. | 16 | 5 | 2 |
| :--- | :--- | :--- |
| MnO_{4}^{-} | $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ | H^{+} |
| 5 | 16 | 2 |
| MnO_{4}^{-} | $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ | H^{+} |
| 2 | 16 | 5 |

Answer: A

- Watch Video Solution

20. In the reaction
$3 \mathrm{Br}_{2}+6 \mathrm{CO}_{3}^{2-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Br}^{\ominus}+\mathrm{BrO}_{3}^{\ominus}+6 \mathrm{HCO}_{3}^{\ominus}$
A. Bromine is oxidised and carbonate is reduced
B. Bromine is reduced and water is oxidised
C. Bromine is neither reduced not oxidised
D. Bromine is both reduced and oxidised

- Watch Video Solution

21. The oxidation number of sulphur in $S_{8}, S_{2} F_{2}, H_{2} S$ and $H_{2} S_{4}$ respectively are:
A. $0,+1,-2$ and 6
B. $+2,0,+2$ and 6
C. $0,+1,+2$ and +4
D. $-2,0,-2$ and 6

Answer: A

D Watch Video Solution

22. Among these, identify the species with an atom in +6 oxidation state
A. MnO_{4}^{-}
B. $C r(C N)_{6}^{3-}$
C. $N i F_{6}^{2-}$
D. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$

Answer: D

- Watch Video Solution

23. The reaction
$3 \mathrm{ClO}^{\ominus}(a q) \rightarrow \mathrm{ClO}_{3}(a q)+2 C l^{\ominus}(a q)$
is an example of
A. Oxidation reaction
B. Reduction reaction
C. disproportionation reaction
D. decomposition reaction

Answer: C

D Watch Video Solution

24. In the standardization of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ using $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ by iodometry, th equivalent weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is
A. (molecular weight)/2
B. (molecular weight)/6
C. (molecular weight)/3
D. same as molecular weight

Answer: B

- Watch Video Solution

25. The pair of the compounds in which both the metals are in the highest possible oxidation state is
A. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-},\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
B. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{MnO}_{4}^{-}$
C. $\mathrm{TiO}_{3}, \mathrm{MnO}_{2}$
D. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}, \mathrm{MnO}_{2}$

Answer: B::C

- Watch Video Solution

26. Which of the following chemical reactions depicts the oxidizing behaviour of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
A. $\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO} 4+\mathrm{HCl}$
B. $2 \mathrm{PCl}_{5}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{POCl}_{3}+2 \mathrm{HCl}+\mathrm{SO}_{2} \mathrm{Cl}_{2}$
C. $2 \mathrm{HI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{I}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
27. What products are expected from the desproprtionation reactin of hypochorous acid?
A. HCl and $\mathrm{Cl}_{2} \mathrm{O}$
B. HCl and HClO_{3}
C. HClO_{3} and $\mathrm{Cl}_{2} \mathrm{O}$
D. HClO_{2} and HClO_{4}

Answer: B::C

- Watch Video Solution

28. The products formed when an aqueous solution of NaBr is electrolysed in a cell having inert electrodes are :
A. $N a$ and $B r_{2}$
B. $N a$ and O_{2}
C. $\mathrm{H}_{2}, \mathrm{Br}_{2}, \mathrm{NaOH}$
D. H_{2} and O_{2}

Answer: C

- Watch Video Solution

29. Consider a titration of potassium dichromate solution with acidified Mohr's salt solution using diphenylamine as indicator. The number of moles of Mohr's salt required per mole of dichromate is:
A. 3
B. 4
C. 5
D. 6

Answer: D

30. Amount of oxalic acid present in a solution can be determined by its titration with KMnO_{4} solution in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The titration gives unsatisfactory result when carried out in the presence of HCl because HCl
A. oxidizes oxalic acid to carbon dioxide and water
B. gets oxidized by oxalic acid to chlorine
C. furnishes H^{+}ions in addition to those from oxalic acid
D. reduces permanganate to Mn^{2+}

Answer: D

- Watch Video Solution

31. Number of moles of MnO_{4}^{-}required to oxidise one mole of ferrous oxalate completely in acidic medium will be
A. 7.5 mol
B. 0.2 mol
C. 0.6 mol
D. 0.4 mol

Answer: C

- Watch Video Solution

32. Oxidation state of P in $H_{4} P_{2} O_{5}, H_{4} P_{2} O_{6}, H_{4} P_{2} O_{7}$ are respectively
A. $+3,+5,+4$
B. $+5,+3+4$
C. $+5,+4,+3$
D. $+3,+4,+5$

Answer: D

Linked Comprehension

1. Redox reactions involve simultaneous reduction-oxidation reactions.

The process of oxidation involves addition of oxygen or any other electronegative element or loss of hydrogen or any other electropositive element. The reverse of this process is called reduction. Reduction also involves addition of electrons or decrease in the oxidation number an atom or ion present in a substance. Substances which bring about oxidation of other substances are called oxidants while those which bring about the reduction of other substances are called reductants. In terms of electronic concept, reductants. In terms of electronic concept, reductants are electron donors while oxidants are electron acceptors. Oxidants also involve decrease in oxidation number of one of its atoms/ions while reductants involve increase in the oxidation number of one of its atoms/ions.

Oxidation numbers are always while numbers and must be always calculated on the basis of their structures and never from their molecular
formulae. Redox reactants may involve combination of atoms/molecules, decomposition of substances, displacement of metals of non metals and disproportionation of a particular species which may be metals, nonmetals or ions. Redox reactions can be balanced both by oxidation number method as well as by ion electron method.

From the reaction $\mathrm{M}^{x+}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{MO}_{3}^{-}+\mathrm{Mn}^{2+}+1 / 2 \mathrm{O}_{2}$ If one mole of MnO_{4}^{-}oxidizes 1.67 moles of M^{x+} to MO_{3}^{-}, then the value of x in the reaction is
A. 5
B. 3
C. 2
D. 0

Answer: C

- View Text Solution

2. Redox reactions involve simultaneous reduction-oxidation reactions.

The process of oxidation involves addition of oxygen or any other electronegative element or loss of hydrogen or any other electropositive element. The reverse of this process is called reduction. Reduction also involves addition of electrons or decrease in the oxidation number an atom or ion present in a substance. Substances which bring about oxidation of other substances are called oxidants while those which bring about the reduction of other substances are called reductants. In terms of electronic concept, reductants. In terms of electronic concept, reductants are electron donors while oxidants are electron acceptors. Oxidants also involve decrease in oxidation number of one of its atoms/ions while reductants involve increase in the oxidation number of one of its atoms/ions.

Oxidation numbers are always while numbers and must be always calculated on the basis of their structures and never from their molecular formulae. Redox reactants may involve combination of atoms/molecules, decomposition of substances, displacement of metals of non metals and disproportionation of a particular species which may be metals, non-
metals or ions. Redox reactions can be balanced both by oxidation number method as well as by ion electron method.

For the redox reaction $x \mathrm{MnO}_{4}^{-}+y \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+z \mathrm{H}^{+} \rightarrow x, y$ and z are
A. $2 \quad 5 \quad 16$
B. $16 \quad 5 \quad 2$
C. $5 \quad 16 \quad 2$
D. $2 \quad 16 \quad 5$

Answer: A

D View Text Solution

3. Redox reactions involve simultaneous reduction-oxidation reactions.

The process of oxidation involves addition of oxygen or any other electronegative element or loss of hydrogen or any other electropositive element. The reverse of this process is called reduction. Reduction also involves addition of electrons or decrease in the oxidation number an atom or ion present in a substance. Substances which bring about
oxidation of other substances are called oxidants while those which bring about the reduction of other substances are called reductants. In terms of electronic concept, reductants. In terms of electronic concept, reductants are electron donors while oxidants are electron acceptors. Oxidants also involve decrease in oxidation number of one of its atoms/ions while reductants involve increase in the oxidation number of one of its atoms/ions.

Oxidation numbers are always while numbers and must be always calculated on the basis of their structures and never from their molecular formulae. Redox reactants may involve combination of atoms/molecules, decomposition of substances, displacement of metals of non metals and disproportionation of a particular species which may be metals, nonmetals or ions. Redox reactions can be balanced both by oxidation number method as well as by ion electron method.

A mole of $\mathrm{N}_{2} \mathrm{H}_{4}$ loses 10 moles of electrons to forn a new compound Y .
Assuming that all the nitrogen appears in the new compound, what is the oxidation rate of nitrogen in Y ?
(There is no change in the oxidation number of hydrogen)
A. -1
B. -3
C. +3
D. +5

Answer: C

D View Text Solution

4. Redox reactions involve simultaneous reduction-oxidation reactions.

The process of oxidation involves addition of oxygen or any other electronegative element or loss of hydrogen or any other electropositive element. The reverse of this process is called reduction. Reduction also involves addition of electrons or decrease in the oxidation number an atom or ion present in a substance. Substances which bring about oxidation of other substances are called oxidants while those which bring about the reduction of other substances are called reductants. In terms of electronic concept, reductants. In terms of electronic concept, reductants are electron donors while oxidants are electron acceptors.

Oxidants also involve decrease in oxidation number of one of its atoms/ions while reductants involve increase in the oxidation number of one of its atoms/ions.

Oxidation numbers are always while numbers and must be always calculated on the basis of their structures and never from their molecular formulae. Redox reactants may involve combination of atoms/molecules, decomposition of substances, displacement of metals of non metals and disproportionation of a particular species which may be metals, nonmetals or ions. Redox reactions can be balanced both by oxidation number method as well as by ion electron method.

When copper is treated with a certain concentration of nitric acid, nitric oxide and nitrogen dioxide are liberated in equal volumes according to the equation $x \mathrm{Cu}+u \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$. The coefficients of x and y are
A. 2 and 3
B. 2 and 6
C. 1 and 3
D. 3 and 8

Answer: B

D View Text Solution

5. Redox reactions involve simultaneous reduction-oxidation reactions. The process of oxidation involves addition of oxygen or any other electronegative element or loss of hydrogen or any other electropositive element. The reverse of this process is called reduction. Reduction also involves addition of electrons or decrease in the oxidation number an atom or ion present in a substance. Substances which bring about oxidation of other substances are called oxidants while those which bring about the reduction of other substances are called reductants. In terms of electronic concept, reductants. In terms of electronic concept, reductants are electron donors while oxidants are electron acceptors. Oxidants also involve decrease in oxidation number of one of its atoms/ions while reductants involve increase in the oxidation number of one of its atoms/ions.

Oxidation numbers are always while numbers and must be always calculated on the basis of their structures and never from their molecular
formulae. Redox reactants may involve combination of atoms/molecules, decomposition of substances, displacement of metals of non metals and disproportionation of a particular species which may be metals, nonmetals or ions. Redox reactions can be balanced both by oxidation number method as well as by ion electron method.

In the reaction $3 \mathrm{Br}_{2}+6 \mathrm{CO}_{3}^{2-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-}+6 \mathrm{HCO}_{3}^{-}$.
A. Bromine is oxidized and carbonate is reduced
B. Bromine is reduced and water is oxidized
C. Bromine is neither reduced nor oxidized
D. Bromine is both reduced and oxidized

Answer: D

- View Text Solution

6. Redox reactions involve simultaneous reduction-oxidation reactions.

The process of oxidation involves addition of oxygen or any other electronegative element or loss of hydrogen or any other electropositive
element. The reverse of this process is called reduction. Reduction also involves addition of electrons or decrease in the oxidation number an atom or ion present in a substance. Substances which bring about oxidation of other substances are called oxidants while those which bring about the reduction of other substances are called reductants. In terms of electronic concept, reductants. In terms of electronic concept, reductants are electron donors while oxidants are electron acceptors. Oxidants also involve decrease in oxidation number of one of its atoms/ions while reductants involve increase in the oxidation number of one of its atoms/ions.

Oxidation numbers are always while numbers and must be always calculated on the basis of their structures and never from their molecular formulae. Redox reactants may involve combination of atoms/molecules, decomposition of substances, displacement of metals of non metals and disproportionation of a particular species which may be metals, nonmetals or ions. Redox reactions can be balanced both by oxidation number method as well as by ion electron method.

A compound contains atoms of three elements A, B and C . If the oxidation
number of A is $+2, B$ is +5 and that of C is -2 the possible formula of the compound is
A. $A_{3}\left(B C_{4}\right)_{2}$
B. $A_{3}\left(B_{4} C\right)_{2}$
C. $A B C_{2}$
D. $A_{3}\left(B C_{3}\right)_{2}$

Answer: A

- View Text Solution

7. Redox reactions involve simultaneous reduction-oxidation reactions.

The process of oxidation involves addition of oxygen or any other electronegative element or loss of hydrogen or any other electropositive element. The reverse of this process is called reduction. Reduction also involves addition of electrons or decrease in the oxidation number an atom or ion present in a substance. Substances which bring about oxidation of other substances are called oxidants while those which bring
about the reduction of other substances are called reductants. In terms of electronic concept, reductants. In terms of electronic concept, reductants are electron donors while oxidants are electron acceptors. Oxidants also involve decrease in oxidation number of one of its atoms/ions while reductants involve increase in the oxidation number of one of its atoms/ions.

Oxidation numbers are always while numbers and must be always calculated on the basis of their structures and never from their molecular formulae. Redox reactants may involve combination of atoms/molecules, decomposition of substances, displacement of metals of non metals and disproportionation of a particular species which may be metals, nonmetals or ions. Redox reactions can be balanced both by oxidation number method as well as by ion electron method.

Amongst the following, identify the species with an atom in +6 oxidation state
A. MnO_{6}^{-}
B. $C r(C N)_{6}^{3-}$
C. $M n F_{6}^{2-}$
D. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$

Answer: D

- View Text Solution

Matrix

1. Here, each question contains statements given in two columns which have to be matched.

Statements in column I are labelled as A,B, C, and D whereas in column II are labelled as p, q, r and s.

The answers to these questions are to be appropriately bubbled as illustrated in the following example.

If the correct matches are A-p, A-s, B-q, B-r, C-p, C-q and D-p, then correctly labelled 4×4 matrix looks like

888

Column-I
A. $\mathrm{CuSO}_{4}+\mathrm{Zn} \rightarrow \mathrm{Cu}+\mathrm{ZnSO}_{4}$
B. $2 \mathrm{KClO}_{3} \rightarrow \mathrm{KCl}+3 \mathrm{O}_{2}$
C. $3 \mathrm{Cl}_{2}+6 \mathrm{KOH} \rightarrow 5 \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{Cl}_{2}+2 \mathrm{KCl} \rightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}$

Column-II
p. Non-metal displacem
q. Disproportionation r
r. Decomposition reacti
s. Redox reaction

- View Text Solution

2. Here, each question contains statements given in two columns which have to be matched.

Statements in column I are labelled as A,B, C, and D whereas in column II are labelled as p,q,r and s.

The answers to these questions are to be appropriately bubbled as illustrated in the following example.

If the correct matches are A-p, A-s, B-q, B-r, C-p, C-q and D-p, then correctly labelled 4×4 matrix looks like

Column-I Column-II
(A) $\mathrm{I} \quad p$ zero oxidation state
(B) $\mathrm{KMnO}_{4} \quad$ q. Reducing agent
(C) $\mathrm{H}_{2} \mathrm{O}_{2} \quad r$. Oxidizing agent
(D) $\mathrm{M}(\mathrm{CO})_{4} \quad$ s. Oxidizing as well as reducing agent

- View Text Solution

3. Here, each question contains statements given in two columns which have to be matched.

Statements in column I are labelled as A,B, C, and D whereas in column II
are labelled as p,q,r and s.

The answers to these questions are to be appropriately bubbled as illustrated in the following example.

If the correct matches are A-p, A-s, B-q, B-r, C-p, C-q and D-p, then correctly labelled 4×4 matrix looks like

Column-I
(A) $H_{2} S$
(B) SO_{2}
(C) P_{4}
(D) $6 \mathrm{OH}^{-}+3 \mathrm{Br}_{2} \rightarrow 5 \mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
s. This proportionati

- View Text Solution

1. The difference in the oxidation numbers of two types of sulphul atoms in $N a_{2} S_{4} O_{6}$ is.....

Watch Video Solution

2. Reaction of Br_{2} with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in aqueous solution given sodium bromide and sodium bromate with evolution of CO_{2} gas. The number of sodium bromide molecules involved in the balanced chemical equation is

- Watch Video Solution

3. The value of n in the molecular formula $\mathrm{Be}_{n} \mathrm{Al}_{2} \mathrm{SiO}_{18}$ is

- Watch Video Solution

4. Among the following, what is the number of elements showing only one non-zero oxidation state?

Assertion And Reason

1. Assertion: Nitrous acid $\left(\mathrm{HNO}_{2}\right)$ may act as an oxidising as well as a reducing agent.

Reason: The oxidation number of nitrogen remains same in all the compounds.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation A
C. A is true but R is false
D. A is false but R is true

Answer: C

2. Assertion : The reaction of ammonia solution with calomel is a disproportionation reaction in which a mixture Hg (II) amido chloride and mercury are formed

Reason : In a disproportionation reaction species under reaction is neither oxidised nor reduced.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation A
C. A is true but R is false
D. A is false but R is true

Answer: C

- Watch Video Solution

3. Assertion: When SnCl_{2} solution is added to HgCl_{2} solution, a milky white precipitate is obtained and on adding excess SnCl_{2}, a black
precipitate is formed.
Reason : The disproportionation if $\mathrm{Hg}(\mathrm{II})$ is easier than its reduction only.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation A
C. A is true but R is false
D. A is false but R is true

Answer: A

- Watch Video Solution

4. Assertion(A) : The oxidation numbers are artificial, they are useful as a book keeping device of elements in reactions

Reason (R) : The oxidation numbers do not usually represent real charge on atoms, they are simply conventions that indicate what the maximum charge could possibly be on an atom in a molecule.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation A
C. A is true but R is false
D. A is false but R is true

Answer: A

D Watch Video Solution

5. Assertion : In the reaction
$Z n(s)+C u^{2+}(a q) \rightarrow Z n^{2+}(a q)+C u(s) C u^{2+}$ ions acts as oxidising agent and Zn atoms act as a reducing agent

Reason : A substance (atom, ion, or molecule) which readily gain electrons from other substances is an oxidising agent while reducing agent is a substance (atom, ion or molecule) which can lose electrons to other substances.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation A
C. A is true but R is false
D. A is false but R is true

Answer: A

- Watch Video Solution

6. Assertion : $Z n(s)+C u^{2+}(a q) \rightarrow Z n^{2+}(a q)+C u(s)$ can be split into following two half reactions $Z n(s) \rightarrow Z n^{2+}+2 e^{-}$ (oxidation half reaction)

Reason : Every redox reaction can be split into two reactions, one representing loss of electrons and the other representing gain of electrons.

$$
C u^{2+}(a q)+2 e^{-} \rightarrow \quad \underset{\text { (reduction half reaction) }}{C u(s)}
$$

A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation A
C. A is true but R is false
D. A is false but R is true

Answer: A

- Watch Video Solution

7. Assertion(A): $\stackrel{+1-2}{{ }_{H}^{2}}{ }_{2}{ }^{-}+\stackrel{0}{C C_{2}} \rightarrow \stackrel{+1-1}{\mathrm{H}} \stackrel{1}{\mathrm{C}} \mathrm{l}+\stackrel{0}{\mathrm{~S}}$

In the above reaction, Cl has been oxidised to Cl^{-}while S^{2-} has been reduced to S .

Reason(R): In a reaction the element whose oxidation number decreases is reduced and element whose oxidation number increases is oxidised.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not a correct explanation A
C. A is true but R is false
D. A is false but R is true

Answer: D

- Watch Video Solution

1. When copper is treated with a certain concentration of nitric acid, nitric oxide and nitrogen dioxide are liberated in equal volumes according to the equation
$x \mathrm{Cu}+y \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
The coefficients x and y are
A. 2 and 3
B. 2 and 6
C. 1 and 3
D. 3 and 8

Answer: B

- Watch Video Solution

2. For the reaction

$$
\mathrm{M}^{x+}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{MO}_{3}^{-}+\mathrm{Mn}^{2+}+(1 / 2) \mathrm{O}_{2}
$$

if 1 mol of MnO_{4}^{-}oxidises 1.67 mol of M^{x+} to MO_{3}^{-}, then the value of x in the reaction is
A. 5
B. 3
C. 2
D. 1

Answer: C

Watch Video Solution

3. The number of electrons involved in the reduction of nitrate $\left(\mathrm{NO}_{3}^{\ominus}\right)$ to hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ is
A. 8
B. 7
C. 5
D. 3

Answer: B

- Watch Video Solution

4. The oxidation number of S in $N a_{2} S_{4} O_{6}$ is
A. +2.5
B. +2 and +3 (two S have +2 and other two have +3)
C. +2 and +3 (three S have +2 and one S has +3)
D. +5 and 0 (two S have +5 and the other two have 0)

Answer: D

5. A compound of Xe and F is found to have $53.5 \% \mathrm{Xe}$. What is the oxidation number of Xe in this comound?
A. +2
B. 0
C. +4
D. +6

Answer: D

Watch Video Solution

6. The number of moles of KMnO_{4} required to oxidise 1 mol of $\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)$ in acidic medium is
A. 0.6
B. 1.67
C. 0.2
D. 0.4

Answer: A

- Watch Video Solution

7. In a reaction, 4 mole of electrons are transferred to 1 mole of HNO_{3}, the possible product obtained due to reduction is:
A. 0.5 mole of N_{2}
B. 0.5 mole of $\mathrm{N}_{2} \mathrm{O}$
C. 1 mole of NO_{2}
D. 1 mole of NH_{3}

Answer: B

- Watch Video Solution

8. If equal volumes of $1 \mathrm{M} \mathrm{KMnO}_{4}$ and $1 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solutions are allowed to oxidise Fe (II) to Fe (III) in acidic medium, then $\mathrm{Fe}(\mathrm{II})$ oxidised will be
A. more by KMnO_{4}
B. more by $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
C. equal in both the cases
D. can't be determined

Answer: B

- Watch Video Solution

9. Equivalent weight of MnO_{4}^{-}in acidic, neutral and basic media are in ratio of:
A. $3: 5: 15$
B. 5: 3:1
C. 5: 1: 3
D. 3:5:5

Answer: D

- Watch Video Solution

